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ABSTRACT
In a pulsar, there are gaps and difficulties in our knowledge of glitches, mainly because of
the absence of information about the physics of the matter of the star. This has motivated
several authors to suggest dynamical models that interpret most of the astronomical data.
Many predictions are based on the assumption that the inner part is analogous to the structure
of matter of superfluids. Here, we illustrate a new mathematical model, partially inspired
by the dynamics of superfluid helium. We obtain two evolution equations for the angular
velocities (of the crust and of superfluid), which are supported by another evolution equation
for the average vortex line length per unit volume. This third equation is more delicate from
an analytical perspective and is probably at the origin of glitches. We identify two stationary
solutions, corresponding to the straight vortex regime and the turbulent regime.
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1 IN T RO D U C T I O N

Neutron stars are compact self-gravitating objects, which are one of
possible end products of stellar evolution. Their structure is funda-
mentally unknown. From physical and astronomical considerations,
it is widely accepted that there are several distinct layers, which ro-
tate at different angular velocities. The mass of a neutron star is
about one solar mass (∼1030 kg), but its radius is ∼10 km, which
is very small with respect to the size of the original star. At the
top, we find the surface layer, which is composed of Fe nuclei and
forms a closed-packed solid. The next layer, called the outer crust,
contains a lattice of heavy nuclei and electrons. The inner crust is
composed of a lattice of neutron-rich nuclei, free degenerate neu-
trons and degenerate electron gas. As soon as the density increases,
the nuclei dissolve. The bulk of these stars consists essentially of a
superfluid neutron liquid at the huge density of ∼1017 kg m−3 with
a small concentration of protons and electrons, which may become
superconductors, under certain circumstances. Finally, there may
be an extremely compact core region, composed of hadrons, whose
radius is actually unknown; for more details, see Packard (1972),
Padmanabhan (2001), Andersson, Sidery & Comer (2007), Fat-
toyev & Piekarewicz (2010), Espinoza et al. (2011), Urama, Joshi
& Chukwude (2012) and Sedrakian, Hayrapetyan & Baghdasaryan
(2014).

Even if this picture of the star and the existence of superfluidity
in neutron stars is not confirmed observationally, there are several
aspects that allow us to suppose that the interiors of non-young
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pulsars may contain superfluid. For instance, the data of Page et al.
(2011) and Shternin et al. (2011) are based on the study of the
cooling process of a young pulsar (i.e. almost 330 yr old), and the
observational evidence of cooling of Cassiopeia A by Heinke &
Ho (2010) is interpreted as evidence of superfluidity in Page et al.
(2011) and Shternin et al. (2011). However, superfluid models of
neutron stars are not new in the literature, as evidenced by Migdal
(1959), Baym, Pethick & Pines (1969) and Baym, Bethe & Pethick
(1971). In fact, the presence of superfluid seems to describe better
a series of phenomena, which were not noted in the so-called star
quake models (see Padmanabhan 2001). The reader can refer to
Haskell et al. (2015) and Howitt, Haskell & Melatos (2016) for
more information on the dynamical models that have been proposed
in the study of pulsars.

When the neutron star originates, the conservation of the angular
momentum leads to very rapid rotation. It is known that the average
period of the neutron star increases very slowly at a constant rate
(typically ∼10−9 s d−1), showing that the rotating neutron star is
slowing down, and is gradually losing its rotational energy. The
periods of neutron stars are remarkably stable once the systematic
increase (as a result of radiation loss) is taken into account. Some
pulsars may suddenly suffer small decreases of period, which are
known as glitches. These jumps (in the rotational speeds) are phe-
nomena of particular interest, which are noted in rotating superfluid
neutron stars such as the Crab pulsar and the Vela pulsar. We men-
tion Espinoza et al. (2011) and Wang et al. (2000), who describe
the peculiarity of each pulsar and the stability of their periods. In
particular, Espinoza et al. (2011) study the rotation of more than
700 pulsars and report significant data for glitches and periods of
most of the pulsars that are known. Tables 1 and 2 of Espinoza et al.
(2011) collect a series of information that is fundamental for the
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Table 1. Data for the Vela pulsar.

Mtot 1.2 × (1.98855 × 1030) kg
Rtot 10.5 km
τ 950 d
τ 1 30 s
�0 70 s−1

kr = kc
r + ks

r 7.37 × 1025 J
Itot 1038 kg m2

yav(1) − yc(1) 20 × 10−6

Table 2. Data from Table 1 and data used in the plots.

Ic = 10−1Itot 1037 kg m2

Is = (1 − 10−1)Itot 9 × 1037 kg m2

B = Ic/Itot 0.1
A = Is/Itot 0.9
kc

r 2.772 × 1026

Kc = (kc
r /Ic)(τ/�0) 0.0000325037

Ks = ((kr − kc
r )/Is)(τ/�0) −2.65132 × 10−6

a 6.08001
b 61.8001
D1 1
D2 −0.0000173875

present study of the periods of pulsars. Apart from the Vela pul-
sar, most neutron stars show irregular glitches with different sizes
of magnitude and different temporal intervals between two con-
secutive glitches. However, the Vela pulsar is not the only pulsar
that glitches at regular intervals with similar size (see Middleditch
et al. 2006).

The paper is organized as follows. In Section 2, we provide a
description of the dynamics of a neutron star and we provide a
physical justification for the glitch. In Section 3, we illustrate the
mathematical model, which is able to describe the phenomenology
of the glitches in a neutron star. Then, in Section 4, we discuss
two separate regimes: the straight vortex regime and the turbulent
regime. Our model is applied to the Vela pulsar in Section 5, where
we use MATHEMATICA to reproduce the glitches of the star. The re-
sults agree quite well with the existing literature. In Section 6, we
explain our conclusions and new lines of investigation. Finally, in
Appendix A, we report results on the turbulence in counterflowing
rotating superfluid helium. Notations and terminology are standard
and follow Donnelly (1991), Padmanabhan (2001), Jou & Mongiovı̀
(2004), Peralta et al. (2006, 2008), Melatos & Peralta (2007) and
Mongiovı̀ & Jou (2007).

2 PH Y S I C A L P I C T U R E O F T H E G L I T C H

Let us assume that a neutron star is made of two components, which
rotate with different angular velocities and interact with each other:
the superfluid neutron liquid, which corresponds to the superfluid
component in the two-fluid model of superfluid helium, and the
crust, which, in our view, also includes protons and electrons spread
out inside the star (i.e. the so-called normal component). This is a
simplified scenario, but, as we will see, it is able to describe the main
features of the phenomenon. We refer to Haskell et al. (2015) for
a detailed compendium of the mathematical models that have been
proposed to describe the behaviour of pulsars. Here, it is impossible
to summarize the efforts made over many decades to understand the
astronomical features of these stars, but it is possible to definitively
recognize a first set of models, based on the fact that the outer crust
forms a crystalline crust that can support stress. This approach has

justified glitches as a consequence of star quakes, but recent data –
such as the data of Espinoza et al. (2011), Page et al. (2011) and
Shternin et al. (2011) – seem to support a second set of models,
based on the presence of superfluid. Our model follows such a line
of research.

According to our view, glitches are caused by the relative velocity
between the two components (crust and superfluid) and the pres-
ence of quantized vortices. In neutron stars, a solid shell contains a
superfluid neutron liquid, which cannot sustain rigid body rotation.
Thus, the rotating superfluid is penetrated by a large number of
quantized vortex lines, as happens for superfluid helium in rotating
vessels.

In fact, in rotating superfluids, it is known that some quan-
tized vortices (with quantized circulation) appear in the bulk for
high enough angular velocity of the vessel (in He II, these vortices
show a fixed core of 1 Å and a quantum of circulation given by
κ = 9.97 × 10−4 cm2 s−1). We recall some information on the dy-
namics of superfluid helium in Appendix A, but the reader can
find more details in Donnelly (1991), Barenghi, Donnelly &
Vinen (2001), Nemirovskii, Stamm & Fiszdon (1993), Nemirovskii
(2013) and Tsakadze & Tsakadze (1980).

Following Donnelly (1991), the rotation sustains mainly straight
quantized vortices, which (in stationary superfluid) must be parallel
to the rotation vector and pinned to the crust of the star. However,
various topologies of the vortex array are possible, and a transition
between them can cause modifications of the angular momentum
of the superfluid. This might be responsible for the glitches, as
explained in more detail below.

A simplified sketch of the dynamics of a neutron star is summa-
rized here.

Pinned and almost straight vortex regime

In rotating superfluid helium, it is known that the presence of straight
quantized vortices causes the corotation of the normal and super-
fluid components (Donnelly 1991). In comparison with superfluid
helium, the interior of the neutron star is also composed of these
two components. We assume that the first component is protons
and electrons in a normal state, which rotates rigidly with the crust;
the second component, which is viscousless, does not detect fric-
tion apart from the presence of vortices. We must observe that, in
a neutron star, pinned vortices are not strictly straight lines, as in
a rotating cylinder filled with He II; in fact, they must be slightly
curved near the crust and orthogonal to it. Nevertheless, for the sake
of simplicity, in the following this state is equally called the straight
vortex regime, in analogy with the rotating helium superfluid inside
a cylinder (see Appendix A).

Let us suppose that both the crust and the inner part of the star
corotate with an initial angular velocity �0, because of the presence
of vortex filaments, which are (almost) parallel to the rotating axis
and pinned to the crust (see Fig. 1).

The crust (and hence the normal component) slows down because
of the loss of energy, some of which radiates away from the star
and the remaining is supplied to the superfluid component, through
the mutual interaction between the normal component (protons and
electrons) and the vortex lines, which in some stars could cause a
slow acceleration of the superfluid. In this scenario, vortex lines,
which are strongly pinned to the crust, deform their straight con-
figuration for two main reasons: (i) the crust slows down faster
than the superfluid and the vortices move approximately with the
same velocity as the superfluid, and as a consequence they deform
and become longer; (ii) the mutual friction force between the two
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Figure 1. A schematic diagram of what occurs inside a neutron star in the
straight vortex regime: the quantized vortices are (almost) straight lines,
parallel to the rotating axis and pinned perpendicularly to the crust. In the
diagram, only a few vortex lines are represented. Indeed, because of the
very high angular velocity of the star, the density of the vortex lines is much
higher.

components of the superfluid depends on the distance from the cen-
tre of the star and this means that the mutual friction force is not
uniform all over the vortex filament. A further consequence is that
the inter-vortex distance slows.

Turbulent regime

The slowing down of the crust increases the difference between
the rotating velocities of the crust and superfluid, and hence the
distribution of the mutual friction over the quantized vortices. It
allows the formation of Kelvin waves over the vortices and the
consequent appearance of the Donnelly–Glaberson instability (see
Donnelly 1991). When the inter-vortex distance is of the same
order as the amplitude of the waves, quantum turbulence appears
and there is unpinning from the crust. It can be macroscopically
referred to the difference between the two angular velocities of the
crust and the inner part of the star. When it is higher than a critical
value, the vortices can no longer keep an ordered configuration,
and therefore they unpin catastrophically from the crust. After the
unpinning, the vortices undergo reconnections and change their
topology in the neutron star. Thus, a disordered tangle of quantized
vortices is present in the interior of the star. This state is called the
turbulent state, by analogy with the rotating turbulent superfluid
helium subject to an external heat flow (see Appendix A and Figs 1
and 2). At the transition, this unpinning transfers angular momentum
to the outer crust, which accelerates suddenly (i.e. there is a glitch);
see Andersson et al. (2007), Melatos & Peralta (2007) and Peralta
et al. (2006, 2008). Thus, according to our model, glitches have two
main causes: (i) the unpinning of the vortices from the crust, which
makes the tension forces null (see Khalatnikov 1965; Jou, Mongiovı̀
& Sciacca 2011); (ii) the sudden change of the distribution of the
mutual friction force caused by the different topology of quantized
vortices. The growth in the length of the vortex line density per unit
volume and the near absence of tension force the crust and neutron
superfluid to be matched in a very short time τ 1 (i.e. at the end of
this regime).

At the same time, the superfluid neutron quickly slows down until
the difference between the two velocities of rotation is less than the
critical value. This is a very rapid phenomenon; indeed, because of

Figure 2. A schematic diagram of what occurs inside the neutron star in
the turbulent regime (just after the glitch). Most of the quantized vortices
are unpinned (the cause of the glitch) in such a way that the vortex tangle
takes place inside the neutron star. As in Fig. 1, in the plot only a few vortex
lines are represented.

the fast rotation, the vortex filaments tend to be parallel to the rotat-
ing axis, and therefore pin to the outer crust, and the two parts of the
star (the outer crust and the inner part of the star) will corotate again.

As we have seen, we follow the standard view of pulsar glitches
by assuming a superfluid component whose vortices are pinned to
the crust, before the glitch. The superfluid cannot lose vorticity and
spin down, lagging behind the normal fluid, which spins down along
with the solid crust. We infer that the internal structure of any star
contributes to the formation of glitches in different ways; that is, an
inhomogeneous distribution of density and of normal and superfluid
components contributes to the presence of inhomogeneous regions
of pinning, or to regions with different local velocities and to local
quantum turbulence. Thus, the microscopic view before any glitch
is different from any other, and this would explain why glitches can
vary in size over several orders of magnitude. Indeed, one glitch
could be caused by the unpinning from some regions of the star, and
the next glitch from other regions where a mild quantum turbulence
has been kept.

This is probably the reason why in some neutron stars the size
of glitches does not appear to depend on parameters such as the
time since previous glitches. In fact, the straight vortex regime may
become turbulent in principle at an arbitrary value of rotation. Fol-
lowing Alpar, Langer & Sauls (1984) and the so-called ‘snowplow
model’, we believe that this is a possible trigger mechanism, which
is behind the nature of the glitches of Vela. As noted by Haskell
et al. (2015, p. 24), this trigger mechanism can explain the glitch
behaviour of Vela and the other quasi-periodic phenomena in non-
young pulsars. However, it is in general surpassed by more advanced
hypotheses such as the so-called ‘vortex avalanches’. Because our
aim is to explain and describe the formation of one glitch, we can
focus our attention on the behaviour of the Vela pulsar.

3 C O N S T RU C T I O N O F T H E M AT H E M AT I C A L
M O D E L

As we have said in Section 2, the outer layers and protons and elec-
trons (inside the star) are called the crust, while the inner superfluid
neutron liquid (inside the star) is called the superfluid.

In order to describe the dynamics of a glitch in a superfluid
neutron star, we choose the average vortex line length per unit
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volume L (i.e. the vortex line density) and the angular velocities
�c and �s of the crust and the superfluid, respectively, as our
fundamental variables. The variable L provides information on the
array of quantum vortex lines inside the neutron superfluid.

Let us assume that the dynamics of the star is governed by the
equations

Ic
d�c

dt
= −kc

radiation + Kfriction

Is
d�s

dt
= −ks

radiation − Kfriction

dL

dt
=

(
dL

dt

)
formation

−
(

dL

dt

)
destruction

, (1)

where Ic and Is are the moments of inertia of the crust and super-
fluid, respectively. The quantities kc

radiation = kc
r and ks

radiation = ks
r

determine the steady change in the rotational speed, due to the loss
of rotational energy by radiation. Here, Kfriction is the torque due
to the friction between the crust, the superfluid and the quantized
vortex lines.

There are different contributions to Kfriction; the more important
contributions are the mutual friction force FMF and the vortex ten-
sion ρsT (Donnelly 1991; Jou, Mongiovı̀ & Sciacca 2011). The
first is a result of the interaction between superfluid vortices and
the normal component (protons and electrons inside the star). The
vortex tension force is a restoring force related to the curvature of
the vortex lines, and its contribution is important near the pinning
regions of vortex lines. These forces, when acting on vortices, can
produce either a growth of line density L or its decay, and this effect
depends on the curvature of vortex lines.

We choose for Kfriction a linear dependence on �c and L as it
occurs in rotating He II. We then assume that the friction is almost
absent for straight vortex lines, which occurs for L = 2�/κ (as
happens in superfluid helium), where the crust and the superfluid
corotate:

Kfriction = − 1

τ

IsIc

Is + Ic

(
�c − κL

2

)
. (2)

Here, τ is the characteristic time-scale of the coupling between
the crust and the superfluid, and κ = h/2mn is the quantum of
vorticity (see Padmanabhan 2001), where h is the Planck constant
and mn is the neutron mass, because the superfluidity in neutron
stars originates from the formation of Cooper pairs (see Barenghi
et al. 2001).

REMARK 1. The term κL/2 has the dimension s−1, which corre-
sponds to the angular velocity of the vessel in rotating He II (see
equation A2 in Appendix A), but here it coincides with �s = �c,
only when the crust and superfluid corotate.

The evolution equation of L is obtained by the difference between
two terms, taking into account the formation and destruction of vor-
tices (see Appendix A). Inspired by previous studies on superfluid
helium by Mongiovı̀ & Jou (2007) and Sciacca, Mongiovı̀ & Jou
(2008), we choose the decay term in the following form,(

dL

dt

)
destruction

= −ℵ κ L2, (3)

where ℵ is a dimensionless constant (see Vinen 1957a,b,c). We as-
sume further that the growth of L is due not only to �s but also
to the relative angular velocity �sc = �s − �c, which produces a
situation inside the star that is analogous to that of the counterflow
in rotating superfluid helium. In fact, Jou & Mongiovı̀ (2004) have

shown that the rate of formation of vortices in He II in the counter-
flow in rotating containers depends on the counterflow velocity V
and on the intensity � of the angular velocity of the container (see
Appendix A). In a neutron star, the role of V, which randomizes the
vortex lines in the tangle, is substituted by �sc and the role of �,
which tends to align vortex lines to the rotation axis, is substituted
by �s. Because we do not perform a microscopic derivation of the
dynamics of L in a neutron star, here we limit ourselves to deriving
the evolution equation for L, using phenomenological and dimen-
sionless ingredients. Dimensional analysis leads to the following
expression for the vortex production:(

dL

dt

)
formation

= κL2φf

(
�s

kL
,
�sc

κL

)
. (4)

For the function φf, we choose a quadratic dependence on its
variables, obtaining

(
dL

dt

)
formation

= κL2

⎡
⎣α1

�sc

kL
+ α2

�s

κL

+ β1

(
�s

kL

)2

+ β2
�sc�s

(κL)2

⎤
⎦, (5)

where α1, α2, β1 and β2 are dimensionless constants. The term
(�sc/kL)2 has not been considered because of the physical idea
according to which the crust and the inner part of the star rotate
with angular velocities of the same order. This implies that the
difference �sc = �s − �c is much smaller than �s. This is also
confirmed by the results in Section 5. Thus, the equation for L
becomes

dL

dt
= −ℵκL2 + (α1�sc + α2�s)L + 1

κ

(
β1�

2
s + β2�sc�s

)
. (6)

The stationary solutions of this equation are

L1,2 = 1

2ℵκ

[
α1�sc + α2�s

±
√

(α1�sc + α2�s)2 + 4ℵ(β1�2
s + β2�s�sc)

]
. (7)

Now, we choose αi and β i in such a way that the two stationary
solutions of equation (6) (assuming �c and �s constant) correspond
to the two states described in Section 2. The first is for straight
vortices, which depends only on the velocity of rotation �s, and
the second is for a disordered tangle of vortices, which depends
on the combination of the two velocities �s and �sc. Indeed, �s

tends to align the vortex lines in the tangle, while �sc tends to
randomize them (see Appendix A; Mongiovı̀ & Jou 2007; Jou &
Mongiovı̀ 2004).

The assumption L1 = 2�s/κ , mimicking a solid-body rotation, is
due to the analogy with He II in a rotating container. If this happens,
then the following conditions are obtained:

β2 = −2α1, β1 = −2(α2 − 2 ℵ). (8)

Note that here �s depends on t, because of the energy losses due to
the radiation, while for He II in a rotating vessel �s is constant.

Thus, the solutions of equation (6) become

L1 = 2�s

κ

L2 = α1

ℵ
�sc

κ
− β1

2 ℵ
�s

κ
. (9)
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Solution L1 is independent of the relative angular velocity �sc and
corresponds to the straight vortex regime, where almost rectilinear
vortices are strongly pinned to the crust; in fact, vortex lines pin
to the crust orthogonal to it, and therefore they can actually be
straight lines only near the rotation axis of the star. Solution L2

depends linearly on �sc and corresponds to the turbulent regime
(i.e. vortices form a turbulent disordered tangle; see Fig. 2).

Thus, we obtain the system

Ic
d�c

dt
= −kc

r − 1

τ

IsIc

Is + Ic

(
�c − κL

2

)

Is
d�s

dt
= −ks

r + 1

τ

IsIc

Is + Ic

(
�c − κL

2

)
1

ℵκ

dL

dt
=−

(
L − 2�s

κ

) [
L −

(
α1

ℵ
�sc

κ
− β1

2 ℵ
�s

κ

)]
. (10)

Finally, we obtain

kc
r + ks

r = kr, (11)

where kr is the total torque.

REMARK 2. Note that the loss of energy of the star is the result of
two different contributions: the first is the electromagnetic radiation,
and the second is the loss of energy at the smallest scales in the vortex
lines. In fact, this occurs in the quantized vortices in superfluid
helium (see Vinen 2001; Kozik & Svistunov 2009).

REMARK 3. We consider the sign of the coefficients in equation (6).
In fact, at the beginning of the turbulent regime, straight vortices are
still pinned and �sc reaches its maximum value. Here, the angular
velocity of the crust begins to grow, while that of the superfluid is
decreasing (with respect to the average velocity of the whole star).
This behaviour is because the inner part of the star transfers energy
and angular momentum to the crust. Consequently, Kfriction must
have a different sign in the two regimes. Furthermore, at the final
time of the turbulent regime, we have assumed that the crust and
superfluid corotate again, and therefore �sc = 0. This is reflected
by β1 being negative in equation (9).

3.1 Dimensionless form

To perform a mathematical study of this system, first we write the
system in dimensionless form, introducing the following variables:

ys = �s

�0
, yc = �c

�0
, z = κL

2�0
, q = t

τ
. (12)

Here, �0 is the characteristic angular velocity (note that it is the
angular velocity of the crust and of the core, before the spin-down
begins). Now, equation (10) can be rewritten as

dyc

dq
= −Kc − A(yc − z)

dys

dq
= −Ks + B(yc − z)

γ
dz

dq
= −(z − ys)(z + aysc − bys), (13)

where

ysc = ys − yc, γ = 1

2ℵτ�0

and we denote

Kc = kc
r τ

Ic�0
, Ks = ks

r τ

Is�0
, A = Is

Is + Ic
,

B = Ic

Is + Ic
, a = − α1

2 ℵ , b = − β1

4 ℵ . (14)

Note that γ can be written as

γ = 1

ℵτ

L
−1/2
0

κL
1/2
0

= τ ′

τ
= 1

τ

δ

vl

,

where τ ′ = δ/vl is the ratio between the initial inter-vortex space
δ = L−1/2 and the typical turbulent superfluid velocity around a
vortex vl = ℵκL1/2 (Sciacca et al. 2010).

In this paper, we assume that γ � 1; that is, the characteristic time
of the dynamics of vortices (τ ′) is smaller than the characteristic
time of coupling between the crust and superfluid (τ ). In terms of
the observational data, this is what happens in a pulsar with good
approximation. Indeed, a rough evaluation of τ ′ can be achieved by
assuming that the constant ℵ is of the order of the unit, as it occurs
in superfluid helium. In the straight vortex regime, τ ′ � (κL)−1 ≡
(2�s)−1. Because �s is of the same order of magnitude as �0, so
τ ′ � 0.007 s for �0 = 68 s−1. This implies that the characteristic
time τ ′ turns out to be smaller than τ (in principle, this implies that
the dynamics of L is much faster than the dynamics of the angular
velocities of the crust and of the inner part of the star).

4 DY NA M I C A L B E H AV I O U R O F T H E
N E U T RO N STA R

Under the hypothesis that the coefficient γ is negligible, the third
equation of system (13) provides two steady solutions for z

z1 = ys

z2 = −aysc + bys, (15)

which correspond to the values in equation (9) for L. The first
solution z1 corresponds to the straight vortex regime (i.e. almost
rectilinear pinned vortices), whereas z2 corresponds to the turbulent
regime (i.e. a disordered tangle of vortices).

In the following, we study the solutions of the system (13) sep-
arately in the two different regimes: straight vortex (z = z1) and
turbulent (z = z2).

4.1 State 1: straight vortex regime

Let us assume that initially the inner part of the star and the outer
crust corotate in such a way that yc = ys = 1 (i.e. �c = �s = �0).
Here, the rigid-body rotation is going to happen.

In the case described here, the vortex line density z is steady; yc

and ys (which we denote by y(1)
c and y(1)

s , in order to have a suitable
notation with the corresponding solutions of Section 4.2) change in
agreement with equation (13). In fact, the system (13) becomes:

dy(1)
c

dq
= −Kc − A[y(1)

c − z]

dy(1)
s

dq
= −Ks + B[y(1)

c − z]

z = ys. (16)

Substituting z = z1 = y(1)
s in the first two equations, the following

simplified system is obtained,

dy(1)
c

dq
= −Kc − A[y(1)

c − y(1)
s ]

dy(1)
s

dq
= −Ks + B[y(1)

c − y(1)
s ], (17)
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whose solutions, which satisfy the initial conditions y(1)
c (0) =

y(1)
s (0) = 1, are

y(1)
c (q) = yav(q) − A(Kc − Ks)(1 − e−q )

y(1)
s (q) = yav(q) + B(Kc − Ks)(1 − e−q ), (18)

Here, we have defined the dimensionless average angular velocity

yav(q) := Ays + Byc = 1 − (AKs + BKc)q. (19)

Equations (18) correspond to the following solutions for �c and
�s:

�(1)
c (t) = �av(t) − A(Kc − Ks)(1 − e−t/τ )

�(1)
s (t) = �av(t) + B(Kc − Ks)(1 − e−t/τ ). (20)

Equation (19) in dimension form provides the average angular ve-
locity of the star (which loses energy because of the electromagnetic
radiation and the sound emission at the lowest scales). This is es-
sentially the moment of inertia-weighted average of the angular
velocities of the two components:

�av = Is

Is + Ic
�s + Ic

Is + Ic
�c.

At time t0 = 0, they corotate so we have

�av(t) = �0 − ks
r + kc

r

Is + Ic
t = �0 − kr

Is + Ic
t . (21)

The difference between the two solutions (18) is

y(1)
sc = (Kc − Ks)(1 − e−q ). (22)

This provides the relative angular velocity of the inner part of the
star with respect to the crust:

�(1)
sc (t) = τ

(
kc

r

Ic
− ks

r

Is

) [
1 − e−(t/τ )

]
. (23)

Of course, if Ks = Kc, then �sc = 0 for all t. This reflects the
fact that the crust and the superfluid always rotate with the same
velocities. This allows us to assume Ks 	= Kc. The case Ks = 0 has
been already studied by Mongiovı̀ & Sciacca (2010).

Note also that Kc > Ks because the relative velocity �sc has to be
positive. In fact, the velocity of the crust is lower than the velocity
of the inner part of the star, which rotates together with the straight
vortices.

The relative angular velocity �sc in equation (23) asymptotically
tends to the value Kc − Ks. The sudden appearance of glitches,
caused by the unpinning of the vortices from the crust, confines
the growth of �sc to the value (23) with t = τ . We can compute
some parameters of a given star, once we know from astronomic
observations the time τ and the angular velocity of the star just after
the glitch. Indeed, if t = τ , then q = 1, and so we obtain

y(1)
sc (1) = (Kc − Ks)(1 − e−1). (24)

After the time τ (i.e. for q = 1), the difference ysc between the two
angular velocities reaches its critical value ycrit

sc , and the quantized
vortices unpin from the crust, transferring some momentum to the
crust. This is the origin of the glitch. Indeed, we believe that the
unpinning of the straight vortex filaments from the crust (caused by
the Donnelly–Glaberson instability) strongly reduces the tension
between the vortices and the crust, and changes the topology of
the vortex array. This sudden event allows the crust to rotate faster
because of the small tension of quantized vortices. This trivial sce-
nario depends strongly on the complexity of the interior of the star
as well as of the crust. Indeed, local inhomogeneities in the interior

of the star can encourage the formation of regions with a higher
concentration of vortex filaments, or regions with a higher remnant
of straight vortex filaments, even after a previous glitch. Hence, the
two consecutive glitches may be caused by two different internal
regions of the star. Furthermore, the complexity of the crust with
some star quakes could make the appearance of glitches easier, as
well as the amount of protons and electrons (which are in a normal
state) and of the superfluid component in the interior of the star. All
these ingredients make glitches more frequent in time and varying
in size. However, our aim is to describe the behaviour between two
consecutive glitches. For this reason, we have considered the dimen-
sionless form of our dynamical equations, which abstracts from the
particular glitch considered. We claim that our model is able to de-
scribe most of the glitches reported in Espinoza et al. (2011), even
though the unpinning of the vortices is artificially inserted in our
model.

4.2 State 2: turbulent regime

If z = z2, then the system (10) becomes

dy(2)
c

dq
= −Kc − A[y(2)

c − z2]

dy(2)
s

dq
= −Ks + B[y(2)

c − z2]

z2 = −ay(2)
sc + by(2)

s , (25)

where we use the notation y(2)
c and y(2)

s in order to avoid ambiguities
with the previous case in Section 4.1. We obtain

dy(2)
c

dq
= −Kc − A

[
(1 − a)y(2)

c + (a − b)y(2)
s

]
dy(2)

s

dq
= −Ks + B

[
(1 − a)y(2)

c + (a − b)y(2)
s

]
. (26)

Putting D1 = A(1 − a) + B(b − a) and D2 = Kc(1 − a) − Ks(b − a),
we find the solutions

y(2)
c = A

D1
C exp(−D1q) + b − a

D1
yav − A

D2

D2
1

y(2)
s = − B

D1
C exp(−D1q) + 1 − a

D1
yav + B

D2

D2
1

, (27)

where C = (1 − a)c1 + (a − b)c2 and

yav = Ays + Byc = (Ac2 + Bc1) − (BKc + AKs)q, (28)

which must be equal to equation (19). So we equalize and we find
that

Ac2 + Bc1 = 1. (29)

In equation (27), we recognize the contributions of an exponential
term – which contributes in a different way, depending on whether
it is positive or negative – and of a linear term. The values c1 and
c2 are constants of integration, which can be found by solving the
Cauchy problem

y(2)
c (1) = y(1)

c (1)

y(2)
s (1) = y(1)

s (1), (30)

that is, by imposing that the final values of State 1 coincide with
those of State 2.

REMARK 4. Only two of the three conditions (29) and (30) are
independent. From these, we can determine c1 and c2 through the
other parameters (such as, for instance, a and b).
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4.3 Conditions on the coefficients

The neutron star is in the straight vortex regime for q ∈ [0, 1]
(or t ∈ [0, τ ]) and in the turbulent regime for q ∈ [1, 1 + q1]
(or t ∈ [τ , τ 1]) with q1 = τ 1/τ , where τ 1 is the duration of the
glitch (i.e. how long the sudden acceleration of the crust lasts).
For instance, astronomical data from the Vela pulsar show that the
angular velocity of the crust undergoes a step of almost 20 part on
106 at the glitch (q = 1) compared with the average angular velocity.
Because our model assumes that, at q = 0, the crust and superfluid
corotate (ys = yc = yav), we deduce that at the glitch (q = 1) this
gap is

yav(1) − yc(1) = A(Kc − Ks)(1 − e−1). (31)

The formed gap runs out at q = 1 + q1 = q2 (i.e. at the end of
the turbulent regime). After this regime, the crust and the superfluid
corotate again, and y(2)

sc (q2) = 0, and so we note the straight vortex
regime again. Therefore, we have a further condition between the
coefficients of the equations and the astronomical data:

y(2)
sc (q2) = 1 − b

D1
yav

+ D2

D2
1

[
1 − D1C

D2
exp(−D1q2)

]
= 0. (32)

The physical meaning of this request comes from the quantum
mechanical request that the microscopic superfluid component is
curl-free and from the fact that the straight vortex regime is the
most favourable configuration from an energetic point of view, in a
rotating container (Donnelly 1991). Thus, the straight vortex regime
is the final configuration towards which the quantum fluid inside
the star points over time τ 1. To establish this configuration entails
the appearance of vortex tension with the crust and of a different
topology of the vortex array. Thus, the sudden increase of the angular
velocity of crust is a result of the appearance of quantum turbulence,
and it finishes when quantum turbulence is again converted into the
straight vortex regime, which requires rigid-body rotation as occurs
in rotating superfluid helium (Donnelly 1991).

However, because of inhomogeneities in the interior of the star,
in some glitches the straight vortex regime could not be the final
configuration; however, an intermediate configuration of mild tur-
bulence could be reached. This configuration would be a metastable
configuration, and therefore other glitches would be produced, until
the straight vortex regime is reached. This could explain why, in
the youngest neutron stars, glitches have different frequencies and
dimensions.

The previous condition (32) is valid under the assumption that the
final configuration of the glitch is that of rectilinear vortices parallel
to the rotation axis. After the turbulent regime, the inner part of the
neutron star will again be in the straight vortex regime (i.e. in State
1), with the following Cauchy problem:

y(1)
c (q2) = y(2)

c (q2) = 1 − (AKs + BKc)q2

y(1)
s (q2) = y(2)

s (q2) = 1 − (AKs + BKc)q2. (33)

REMARK 5. As in the previous case, only one of these conditions
is independent.

Summarizing, from the knowledge of equation (31), the values
of Kc and Ks follow, once the value of A is known. The exact values
of A and B (or Is and Ic) are essentially unknown in our simplified
model, because we do not know the effective radius of the crust and
of the inner part of the star. In the following, we choose Is > Ic as

in Sedrakian, Hayrapetyan & Sedrakian (2007) and Sedrakian et al.
(2014), as this seems to be accepted in the existing literature.

From the conditions (29), (30) and (32) and the definitions of D1

and D2, the coefficients c1, c2, a, b and D2 can be easily expressed
in terms of the coefficient D1, which controls the growth of the
exponential term in the solutions (27). All these coefficients are then
known once all the parameters of the neutron stars are substituted.

5 A P P L I C AT I O N TO T H E V E L A P U L S A R

The aim of this section is to apply the model, which has been pro-
posed and analysed in the previous sections, to a concrete example
(i.e. the Vela pulsar), even though our results can be easily applied
to any other pulsar. The main data of the Vela pulsar are reported
in Table 1 and are taken from Dodson, Lewis & McCulloch (2007),
Yu et al. (2013) and Padmanabhan (2001). In Table 2, we report the
values obtained from Table 1 and used in our model. The values of
c1, c2, a, b and D2 are obtained using equations (29), (30) and (32)
and the definitions of D1 and D2 below equation (26) for a suitable
choice. We fixed D1 = 1 for the sake of simplicity in the simula-
tions. One of the main difficulties is to find the inertia momentum
Ic and Is because we do not know the exact regions of the star that
belong to the crust and to the superfluid. Because we have checked
that our model also works well with different relative choices of Ic

and Is with the condition that Is > Ic, we use the inertia momen-
tum Ic = 10−1Itot and hence Is = Itot − Ic = 9 × 10−1Itot. A more
detailed discussion of this choice is made in Section 6. Regarding
the other data reported in Table 1, we use the definitions A = Is/Itot

and B = Ic/Itot for A and B, respectively, and then equation (31)
for yielding kr and hence Kc and Ks from Kc = (kc

r /Ic)(τ/�0) and
Ks = ((kr − kc

r )/Is)(τ/�0).
We note that the values of Table 2 are connected with the choice

of Ic, Is and D1. Thus, different values of the duration of the glitch
or of the momenta Ic and Is can significatively influence the set of
numerical values in Table 2. In particular, the lack of knowledge of
the amount of vortex lines inside the star makes the determination
of a and b variable. However, we point out that some sophisticated
calculations are involved, in order to have all the parameters that are
dependent on D1 only. As shown in the figures, the model grasps
the main features of the appearance of the glitch in the neutron star.

The positive values of a and b imply that α1 and β1 are negative
in equations (5) and (6). From equation (8), it follows that α2 and β2

are positive (as ℵ > 0). Physically, this means that the positive terms
contribute to the growth of vortex line density while the negative
terms obstruct it. The negative contribution of α1�sc stands for the
transferring of the energy lost by the vortex tangle (and hence also
from the inner part of the star) to the crust to raise its velocity. The
high value of the coefficient b means that there is a high amount
of quantized vortex line density z2 (or L) inside the neutron star
in the turbulent regime, which reflects the loss of the rotational
velocity of the superfluid during the glitch. These coefficients are
strongly related to the coefficients of mutual friction, as shown by
Jou, Mongiovı̀ & Sciacca (2011), which reflects the contribution
of the mutual friction force to the appearance of the glitch, as also
found in van Eysden & Melatos (2010) and Howitt et al. (2016).

In Fig. 3, the two dimensionless velocities of the crust and of the
inner part of the neutron star, yc and ys, respectively, are plotted both
in the straight vortex regime and in the turbulent regime. Here we
assume (for the sake of illustration) that duration and frequency (af-
ter the glitch occurs again) are constant, but it must be noted that the
glitches are in general neither periodic nor with the same intensity.
In Fig. 3, we have drawn the velocities among three consecutive
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Figure 3. Plots of the velocity of the crust yc(q) and of the superfluid
ys(q), in both the straight vortex regime (SV) and the turbulent regime
(T). The jumps of the velocities reflect the glitches, which last for a very
short time. We have chosen the value reported in Table 1 τ 1 = 30 s or
q1 = 3.65497 × 10−7.

Figure 4. Vortex line density in the straight vortex regime.

Figure 5. Vortex line density in the turbulent regime (glitch).

glitches. As shown by Fig. 3, it is hard to appreciate the duration of
the glitches in these plots because it lasts only q1 = 3.65497 × 10−7

(τ 1 = 30 s) compared to q = 1 (τ = 950 d). This is why we have
devoted Fig. 6 to a more detailed analysis of this circumstance. In
Figs 4 and 5, the dimensionless vortex line density is plotted in
the straight vortex regime and in the turbulent regime, respectively.
Note that in Fig. 4 the amount of vortex line grows, because of
the appearance of Kelvin waves along the straight vortices, induced
by the growth of �sc (a similar phenomenon has been studied by
Brugarino, Mongiovı̀ & Sciacca 2015) for He II.

At q = 1, the straight vortex regime ceases, because the topology
of the vortex lines changes: the vortex tangle takes part in the
superfluid, and the vortex line density undergoes a sudden increase

Figure 6. An enlargement of the plots shown in Fig. 3 to show the jump in
the two velocities (glitch).

at q = 1, as shown in Fig. 6. Consequently, the angular superfluid
velocity decreases and the velocity of the crust increases, as shown
in Fig. 6, until the two velocities coincide again at q = q2 and the
straight vortex regime is restored.

6 C O N C L U S I O N S

In this paper, we have proposed a simplified mathematical model
to describe glitches in pulsars. We have found justifications in the
quantized vortex lines that fill the superfluid neutron liquid, com-
bined with the slowing down of the crust. This phenomenon is
mainly related to the outer crust, which allows a rate of growth of
the relative velocity between the crust and the superfluid. Two main
regimes occur: a straight vortex regime and a turbulent regime. The
crust and the superfluid corotate in such a way that vortex lines
arrange like straight lines parallel to the rotation axis and pinned
to the outer crust. Because of the slowing down of the crust, the
relative velocity increases and acts on the vortices both by means
of the mutual friction force (inside the star) and by stretching the
vortices in the pinning regions (outer crust). When the amplitude of
the Kelvin waves reaches the inter-vortex distance between consec-
utive vortices or the tension in the pinning regions becomes strong
enough, the topology of the vortices (inside the star) changes, and
a disordered vortex tangle originates. The sudden unpinning of the
vortices and the decrease of the vortex tension supply momentum to
the crust at the cost of the momentum of the superfluid. This change
of the dynamical system produces a sudden spin-up of the angular
velocity of the crust, which is in fact the glitch.

We modelled the above scenario using the system of equations
(10) (or the dimensionless form (13)), involving the vortex line
density L, the velocity of the crust �c and the velocity of the inner
part of the star (superfluid) �s. The evaluation made at the end
of Section 2 allows us to assume that γ = τ ′/τ � 1 (i.e. the
characteristic time τ ′ for the dynamics of the vortex line is small
with respect to τ ). Two stationary solutions L = L1 and L = L2 for
the third equation of system (10) have been found, which then model
the straight vortex regime and the turbulent regime, respectively.

We have made the following requirements:

(i) the velocity of the whole star �av decreases with the same
rule in both regimes;

(ii) there is continuity of the solution �s and �c in the transition
between two consecutive regimes;

(iii) the difference between the two velocities, �s and �c, in-
creases in the straight vortex regime, but decreases in the turbulent
regime;

(iv) the value of L increases at t = τ .
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The above requirements have allowed us to find the values of
some parameters of the model. We have a certain freedom for the
choice of Is and Ic, and our model works well with the condition that
Is > Ic. These requirements differ slightly from those in Sedrakian
et al. (2007, 2014) (see Table 2), because they are adapted to our
simulations. More precisely, Fig. 3 plots the dimensionless angu-
lar velocities of the superfluid ys and the crust yc, in the straight
vortex regime and turbulent regime. This figure also reproduces
the dynamics between three consecutive glitches (we have assumed
that the gap between two consecutive glitches is constant). In the
straight vortex regime, the velocity of the crust suffers a greater
decrease with respect to the superfluid velocity. The situation sud-
denly changes when the glitch takes place, as shown by Fig. 6, in
such a way that the two velocities take the same value again after a
time τ 1 (or q2).

We have assumed, for the sake of simplicity, that Is = 9Ic. We
stress that the main behaviour shown in all the figures does not
change significantly by changing the coefficient D1. We have indeed
seen that by changing coefficient D1, all the coefficients c1, c2, D2

and a change apart from b, which remains almost constant. This
implies that z is not as affected by D1. This is not the case when
one changes the values of Is and Ic. More efforts will be made in
future studies. In fact, we plan to generalize the above model in the
following directions:

(i) application of our model to different pulsars;
(ii) additional study in presence of polarization and vortex diffu-

sion (Saluto, Jou & Mongiovı̀ 2014a,b);
(iii) derivation of equations of a local nature.
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A P P E N D I X A : O U T L I N E O F ROTAT I N G
S U P E R F L U I D T U R BU L E N C E

We briefly recall some results on the turbulence in rotating super-
fluid helium, which have inspired the construction of our mathe-
matical model for glitches in pulsars.

It is well known that when one applies a rotation to a sample
filled with superfluid helium, a vortex array (aligned to the rotation
axis) is formed. A disordered tangle of quantized vortex lines is
created in the so-called counterflow experiments (a channel filled
with superfluid helium and heated at one end), when the heat flow
is greater than a critical value. Using the two-fluid model, only the
normal fluid component carries entropy and heat flow, so its motion
will be from the heated end to the opposite end. At the same time,
there is conservation of mass and so the superfluid component must
counterflow towards the heated end. Thus, a relative counterflow
is established between the normal fluid and superfluid components,
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characterized by the absolute value of the counterflow velocity V =
〈|vn − vs|〉, where vn and vs denote the velocities of the normal and
superfluid components, respectively.

In both cases (rotation only and counterflow only), the vortex
array is described in terms of a macroscopic average of the vortex
line length per unit volume L (called the vortex line density, which
has dimensions length−2).

In the steady state in counterflow experiments, the vortex line
density L is described well by

L = γHV 2, (A1)

where γ H is a coefficient dependent on the temperature. We refer
to Donnelly (1991) for details.

In a rotating cylindrical sample, the line density L (i.e. the number
of vortex lines per unit surface, in this case) is given by

L = 2�

κ
, (A2)

where � denotes the modulus of the angular velocity and κ is
the quantum of vorticity (i.e. κ = h/m4 � 9.97 × 10−4 cm2

s−1, involving the Planck constant h and the mass m4 of the
4He atom).

Historically, the first form of an evolution equation for L under
constant values of the counterflow velocity V appears in Vinen
(1957c) as

dL

dt
= αvV L3/2 − βvκL2, (A3)

where αv and βv are dimensionless constants. This equation was
formulated by Vinen (1957a,b,c). Indeed, following the suggestion
of Feynman – see also Barenghi et al. (2001) and Swanson et al.
(1983) – Vinen assumes that the time derivative dL/dt is composed
of two terms:

dL

dt
=

(
dL

dt

)
formation

−
(

dL

dt

)
destruction

. (A4)

The first is responsible for the growth of L and the second for its
decay. The form of the destruction term was obtained in analogy
with classical turbulence(

dL

dt

)
destruction

= −βvκL2, (A5)

while the form of the formation term was supposed to be dependent
on the quantum of circulation κ , on the instantaneous value of L
and on the force between the vortex line and the normal component
(which is linked to the intensity of the counterflow velocity). The
dimensional analysis has also been discussed by Vinen (1957a,b,c)
and leads to(

dL

dt

)
formation

= κL2φf

(
V

κL1/2

)
, (A6)

where φf is a suitable dimensionless function.
In the steady state, the combined rotation and the axial coun-

terflow exhibit a rich set of features. A well-known experiment on
simultaneous rotation and counterflow in superfluid helium is the
apparatus of Swanson et al. (1983).

Experimental observations can be summarized as follows. A con-
tainer, filled with superfluid helium, is rotating at a given angular
speed � and an increasing heat flow (corresponding to a counter-
flow velocity V) is imposed. The presence of a critical counterflow
rotation velocity VC is found, which scales as �1/2. More precisely,
for V ≤ VC, the length L per unit volume of the vortex lines is ap-
proximately independent of V and proportional to the angular speed
�, so that L = 2�/κ . However, for V ≥ VC, L depends also on V.
The transition appears to be towards turbulence, when the ordered
array begins to behave like a turbulent tangle. The tangle appears to
be ‘polarized’ to accomplish the rotation. The effective polarization
increases with rotation.

Jou & Mongiovı̀ (2004) studied an evolution equation for L in
the presence of counterflow and rotation. The destruction term,
following Vinen, was modelled by equation (A5). The production
term was assumed to be dependent on V and �, as well as on κ and
L. Dimensional analysis leads to(

dL

dt

)
formation

= κL2φf

[(
�

κL

)1/2

,

(
V

κL1/2

)]
. (A7)

Therefore, the following generalization of equation (A3) was pro-
posed,

dL

dt
= −βκL2 + (α1V + α2

√
κ�)L3/2 −

(
β1� + β2

V
√

�√
κ

)
L,

(A8)

with suitable dimensionless constants α1, α2, β1 and β2, which have
to be determined by comparison with experimental data. The term
in V2 has been omitted in equation (A8), because the values of V
considered are not too high.

Sciacca et al. (2008) suggested another possible form for the
evolution of L in the presence of counterflow and rotation. This
was a further generalization of the ideas of Vinen (1957a,b,c) and
described in a better way some of the experimental results, assuming
a different expression for the production terms. The expression of
one of the main equations of evolution in Sciacca et al. (2008) is

dL

dt
= −βκL2 + A1

(
L − ν1

�

κ

)
V 2

κ
+ B1

(
L − ν2

�

κ

)
�,

(A9)

where A1, B1, ν1 and ν2 are dimensionless constants.
With suitable values of the coefficients, both equations (A8)

and (A9) are able to describe experimental results at various an-
gular velocities. More details can be found in Mongiovı̀ & Jou
(2007), Jou & Mongiovı̀ (2004), Sciacca et al. (2008) and Sciacca
(2010).
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