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Abstract This paper studies a decentralized routing problem over a network,

using the paradigm of mean-field games with large number of players. Building

on a state space extension technique, we turn the problem into an optimal con-

trol one for each single player. The main contribution is an explicit expression

of the optimal decentralized control which guarantees the convergence both

to local and global equilibrium points. Furthermore, we study the stability of

the system also in the presence of a delay which we model using an hysteresis

operator. As a result of the hysteresis, we prove existence of multiple equilib-

rium points and analyze convergence conditions. The stability of the system

is illustrated via numerical studies .

Keywords Optimal control · Mean field games · Inverse control problem ·

Decentralized routing policies · Hysteresis

Mathematics Subject Classification (2000) 91A13 · 91A25 · 49N25 ·

49L20 · 47J40

1 Introduction

In recent years, dynamics on networks have sparked interest in different ap-

plication domains such as data transmission, traffic flows and consensus (see

[1–3]) just to name a few. In this paper, we investigate a routing problem

defined over a network. The problem involves a population of individuals, re-

ferred to as players. As main contribution, we provide convergence conditions

to an equilibrium point, characterized by uniform distribution over all the ver-

tices of the network. At the equilibrium, each player plays its best response,
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given the observed distribution of the other players. To prove such a conver-

gence result, we recast the problem within the framework of optimal control

theory. A similar problem is studied in [4], in which the authors consider a

centralized control and a density flow for each edge dependent on the density

of the whole population. This implies that each player minimizes a common

cost functional which depends on the whole population’s density distribution.

Differently from [4], we consider a decentralized control (as in [5–7]), in which

the density of each node is controlled locally. We highlight next three distinct

approaches relating to routing/jump problems. The first one consists in con-

trolling the probability to jump from a node to another one (or to flow along

the edges) [4]. The second one consists in controlling the transition rate from

nodes (or edges) [8], and the last one in assigning the product among the

probability and the relative transition rate. As in [9], in this paper we use the

last approach, in particular we control the product between the probability

to jump from one node to an adjacent one and the relative transition rate.

In the same spirit as in inverse control problems, [10], we provide an explicit

expression of the running cost function in order to obtain our desired optimal

feedback control as solution of the optimal control problem.

In this paper, we consider the problem of stabilizing the system under the

assumption that each agent ignores both the controls of the far agents and the

network topology. We formulate the problem as follows: from a microscopic

point of view, each player jumps from a node to an adjacent one according to a

continuous-time Markov process. From a macroscopic point of view, each node
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is characterized by a dynamics describing the time-evolution of the density.

Such dynamics depends on a decentralized control. We rearrange the problem

as a mean-field game and then via a state-space extension approach as an

optimal control one. The state space extension procedure is reminiscent of the

McKaen-Vlasov control problem, in which the statistical distribution is en-

coded by our density. Similarities and differences between the McKean-Vlasov

and the Mean-Field framework are analyzed in [11].

Furthermore, we prove convergence to a local equilibrium which is character-

ized by an equal density on the neighbor nodes. Finally, we prove a similar con-

vergence result for the global equilibrium, characterized by a uniform distribu-

tion of the density over all nodes. We then introduce a hysteresis operator act-

ing on the optimal feedback decentralized control. A similar model was already

discussed in [12]. The authors make a rigorous treatment of continuous-time

average consensus dynamics with uniform quantization in communications.

The consensus is reached by quantized measurement which are transmitted

using a delay thermostat. In contrast to this, we use a different hysteresis op-

erator, the play operator, that can be considered as a concatenation of delayed

thermostats. Moreover, we apply such an operator to our control, and this re-

sults in a nonlinear dynamics. We use an hysteresis to capture a scenario where

the players have distorted information on the density distribution in neighbor

nodes. We prove that the problem has multiple equilibrium points, and we

prove their stability.
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1.1 Related Literature

The mean-field game theory was developed in the work of M.Huang, R. Malhamé

and P. Caines [13, 14] and independently in that of J. M. Lasry and P.L. Li-

ons [15,16], where the new standard terminology of Mean Field Games (MFG)

was introduced. This theory includes methods and techniques to study differ-

ential games with a large population of rational players, and it is based on the

assumption that the population influences the individuals’ strategies through

mean-field parameters. In addition to this theory, the notion of Oblivious Equi-

libria for large population dynamical game was introduced by G. Weintraub, C.

Benkard, and B. Van Roy [17] in the framework of Markov Decision Processes.

Several application domains, such as economic, physics, biology and network

engineering accommodate mean-field game theoretical models (see [16,18–20]).

Decision problems with mean-field coupling terms have also been formalized

and studied in [21], and application to power grid management are recently

provided in [22]. The literature provides explicit solutions in the case of linear

quadratic structure. In most cases, a variety of solution schemes have been

recently proposed, based on discretization and or numerical approximations

(see [18,23]). Computing an explicit solution in the nonlinear case is difficult,

and therefore in this paper, in spirit with [24,25], we reformulate the problem

as an inverse optimal control problem.

Regarding hysteresis, the concept of hysteretic operator is due to Krasnoselskii

and his co-worker [26]. There are several physical and natural phenomena in

which hysteresis occurs such as in filtration through porous media, phase tran-
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sition, superconductivity, shape memory and communication delay (see [12,27]

for more details).

1.2 Structure of the Paper

This paper is organized as follows: a mean-field game formulation of the prob-

lem is provided in Sect. 2. In Sect. 3, we introduce a state-space extension

solution approach which is an alternative method to the classical fixed point

one and exhibits the optimal decentralized feedback control under a suitable

assumption. In Sect. 4 we study the convergence to and the stability of a local

Wardrop equilibrium and then its extension to a global equilibrium. In Sect. 5

we carry out numerical studies. Finally, in Sect. 6 we introduce the play oper-

ator which acts on the control function, and study both the global equilibrium

and the stability of the density equation subject to this operator.

2 Model and Problem Set-up

In this section, we provide a model of a pedestrian density flow over a network

with dynamics defined on each node, and using a line graph as topology. Let

G be a graph with h nodes, e edges, and vertex degree di for i = 1, . . . , h.

We define the line graph L(G) = (V,E) to be the graph with n = e nodes

and m = 1
2

∑h
i=1 d

2
i edges. In particular, the graph is obtained by associating

a vertex to each edge of the original graph and connecting two vertices with

an edge if and only if the corresponding edges of G have a vertex in common.

Hence, instead of considering a flux on the edges, from now on we will consider
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jumps between vertices. Now, let a connected line graph L(G) = (V,E) be

given, where V = {1, . . . , n} is the set of vertices and E = {1, . . . ,m} is the

set of edges. For each node i ∈ V , let us denote by N(i) the set of neighbor

nodes of i:

N(i) = {j ∈ V : {i, j} ∈ E} .

We consider a large population of players and each of them is characterized

by a time-varying state X(t) ∈ V at time t ∈ [0, T ], where [0, T ] is the time

horizon window. Players represent pedestrians and jump across the nodes of

the graph according to a decentralized routing policy described by the matrix-

valued function

u(·) :R+ −→ Rn×n+ , t 7−→ u(t). (1)

Note that u takes value in Rn×n+ because each component uij is the product

between the probability to jump from one node to an adjacent one and the

relative transition rate.

Let i ∈ V be the player’s initial state. The state evolution of a single player

is then captured by the following continuous-time Markov process:

{X(t), t ≥ 0}

qij(uij) =



uij , j ∈ N(i), j 6= i,

−
∑
k∈N(i),k 6=i uik, i = j,

0, otherwise,

(2)
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where qij is the microscopic dynamics from i to j.

Denote by ρ the vector whose components are the densities on vertices. This

implies that the sum of the components is equal to one. Thus we have

ρ ∈ D := {ρ̂ ∈ [0, 1]n :
∑
i∈V

ρ̂i = 1}.

The density evolution can be described by the following forward Kolmogorov

Ordinary Differential Equation (ODE)
ρ̇(t) = ρ(t)A(u),

ρ(0) = ρ0,

(3)

where ρ is a row vector, ρ0 is the initial condition and the matrix-valued

function A : Rn×n+ → Rn×n is given by

Aij(u) =



uij if j ∈ N(i), j 6= i,

−
∑
j∈N(i),j 6=i uij if i = j,

0 if j 6∈ N(i).

Equation (3) establishes that the density variation on each node balancing

densities on neighbor nodes.

It is well known that the uniform distribution of the density on a graph corre-

sponds to a Wardrop equilibrium [28]. Since we are considering a line graph,

our aim is to achieve a uniform distribution of the density over all nodes. Indeed

in traffic network the Wardrop equilibrium corresponds to equidistribution of

agents along edges. Therefore on its line graph we view the equilibrium as

uniform distribution on nodes. We start by proving convergence to a local
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equilibrium, i.e. a uniform density on the nodes adjacent to i.

For each player, consider a running cost `(·) : V × [0, 1]n × Rn×n+ → [0,+∞[,

and an exit cost g(·) : V × [0, 1]n → [0,+∞[ of the form given below

`(i, ρ, u) =
∑

j∈N(i),j 6=i

u2
ij

2
(γij(ρ))

+
, (4)

g(i, ρ) = dist(ρ, M̂i). (5)

where γij is a suitable coefficient yet to be designed and (·)+ is the positive

part operator.

In (5) the dist(ρ, M̂i) denotes the distance of the vector ρ from the manifold

M̂i, where M̂i is the local consensus manifold/local Wardrop equilibrium set

for the player i defined as

M̂i = {ξ ∈ Rn : ξj = ξi ∀ j ∈ N(i)}. (6)

Therefore, the choice of the exit cost g(i, ρ) describes the difference between

the number of agents in the node i and the local equidistribution of agents

among the adjacent nodes.

The problem in its general form is then the following:

Problem 1: Design a decentralized routing policy to minimize the output dis-

agreement, i.e., each player solves the following problem:

infu(·) J(i, u(·), ρ[·](·), ·),

J(·) =
∫ T
t
`(X(τ), ρ(τ), u(τ))dτ + g(X(T ), ρ(T )),

{X(t), t ≥ 0} as in (2),

X(t) = i,

(7)
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where u is the control (1) taking value in Rn×n+ for any t ∈ [0, T ] and ρ evolves

as in (3). Note that every player minimizes a cost functional which depends

on the density of his neighbours. Thus, the microscopic (2) and macroscopic

(3) representations of the system are strongly intertwined which makes the

problem different from classical optimal control.

2.1 Mean-Field Formulation

This subsection presents a mean-field formulation of problem (7). Let v(i, t)

be the value function of the optimization problem (7) starting from time t in

state i. We can establish the following preliminary result.

Lemma 2.1 The mean-field system for the decentralized routing problem in

Problem 1 takes the form:

v̇(i, t) +H(i,∆(v), t) = 0 in V × [0, T [,

v(i, T ) = g(i, ρ(T )),∀x ∈ V,

ρ̇(t) = ρ(t)A(u∗),

ρ(0) = ρ0,

(8)

where

H(i,∆(v), t) = inf
u

{ ∑
j∈N(i)

qij(v(j, t)− v(i, t)) + `(i, ρ, u)

}
, (9)

and g is given as in (5).

In the expression above, ∆(v) denotes the difference of the value function com-

puted in two successive vertices, qij is given in (2) and `(i, ρ, u) as in (4). The
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optimal time-varying control u∗(i, t) is given by

u∗(i, t) ∈ arg min
u

{∑
j∈V

qij(v(j, t)− v(i, t)) + `(i, ρ, u)

}
. (10)

Proof.: To prove the first equation of (8) we know from dynamic programming

that

v̇(i, t) + inf
u

{ ∑
j∈N(i)

qij(v(j, t)− v(i, t)) + `(i, ρ, u)
}

= 0 in V × [0, T [.

We obtain the first equation, by introducing the Hamiltonian in (9). Since

(2) depends on the routing policy u, then the latter is obtained minimizing

the Hamiltonian as expressed by (10). The second equation is the boundary

condition on the terminal cost. The third and fourth equation are the forward

Kolmogorov equation and the corresponding initial condition. ut

The mean-field game (8) appears in the form of two coupled ODEs linked

in a forward-backward way. The first equation in (8) is the Hamilton-Jacobi-

Bellman (HJB) equation with variable v(i, t) and parametrized in ρ(·). Given

the boundary condition on final state and assuming a given population density

behaviour captured by ρ(·), the HJB equation is solved backwards and returns

the value function and the optimal control (10). The Kolmogorov equation is

defined on variable ρ(·) and parametrized in u∗(i, t). Given the initial condition

ρ(0) = ρ0 and assuming a given individual behaviour described by u∗, the

density equation is solved forward and returns the population time evolution

ρ(t).
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3 State Space Extension

We solve Problem 1 and the related mean-field game (8) through state space

extension, in spirit with [4]; namely we review ρ as an additional state variable.

Then the resulting problem is of the form

inf
u(·)

J(i, u(·), ρ[·](·), ·),

subject to {X(t), t ≤ 0} as in (2),

ρ̇(t) = ρ(t)A(u).

We are looking for a value function Ṽ (i, ρ, t) which depends on i and on the

density vector ρ as a state variable, rather than as a parameter as in (7). The

problem can be rewritten as follow.

Lemma 3.1 The mean-field system for the decentralized routing problem in

Problem 1 takes the form:
∂tṼ (i, ρ, t) + H̃(i, ρ,∆(Ṽ ), ∂ρṼ , t) = 0 in V × [0, 1]n × [0, T [,

Ṽ (i, ρ, T ) = g(i, ρ(T )),

(11)

where for the Hamiltonian we have

H̃(i, ρ,∆(Ṽ ), ∂ρṼ , t) = inf
u

{ ∑
j∈N(i)

qij(Ṽ (j, ρ, t)−Ṽ (i, ρ, t))+∂ρṼ (i, ρ, t)(ρA(u))T+`(i, ρ, u)

}
,

(12)

and the optimal time-varying control u∗(i, ρ, t) is given by

u∗(i, ρ, t) ∈ arg min
u

{ ∑
j∈N(i)

qij(Ṽ (j, ρ, t)−Ṽ (i, ρ, t))+∂ρṼ (i, ρ, t)(ρA(u))T+`(i, ρ, u)

}
.

(13)
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Proof: From dynamic programming we obtain

∂tṼ (i, ρ, t)+inf
u

{∑
j∈V

qij(Ṽ (j, ρ, t)−Ṽ (i, ρ, t))+∂ρṼ (i, ρ, t)(ρA(u))T+`(i, ρ, u)

}
= 0.

By introducing the Hamiltonian H̃(i, ρ,∆(Ṽ ), ∂ρṼ , t) given in (12), the first

equation is proven. To prove (13), observe that the optimal control is the

minimizer in the computation of the extended Hamiltonian. Finally, the second

equation in (11) is the boundary condition. ut

Remark 3.1 The use of the state space extension approach reduces our initial

problem to an optimal control problem. Therefore from now on we will no

longer consider the mean field formulation.

Now, our aim is to review the optimal control problem as an inverse problem.

Our aim is to find a suitable γij (see (4)) such that the optimal control u∗ij ,

which is the argmin of the extended Hamiltonian, is

u∗ij =


ρi(t)− ρj(t) ρi(t) > ρj(t), j ∈ N(i),

0 otherwise.

(14)

In [4] for the infinite horizon problem, the authors take the value functions

as V (ρ) = dist(ρ,M), where M is the global equilibrium manifold. Therefore

in our finite horizon problem we assume that

V (i, ρ) = dist(ρ,Mi) =

√√√√√ ∑
j∈N(i)

(
ρj −

∑
k∈N(i)

ρk

#N(i)

)2

. (15)

Note that the above satisfies the boundary condition in (11), according to our

choice of the exit cost g (see (5)).

We can write (3) for the generic component i as
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ρ̇i(t) =
∑

j∈N(i),j 6=i

ρj(t)uji −
∑

j∈N(i),j 6=i

ρi(t)uij .

Starting from the Hamiltonian (12) (see also (4)) we assume that if ρi 6= ρj ,

γij is

γij(ρ) =

(
ρ2
i − ρiρj − dist(ρ, M̂j)dist(ρ, M̂i) + dist(ρ, M̂i)

2

(ρi − ρj)dist(ρ, M̂i)

)
. (16)

We want to prove that, using (16), the correspondent running cost (4) is such

that our control (14) is the optimal one. We have the following cases:

a) γij > 0

The Hamiltonian (12) is strictly convex in uij . Therefore the optimal con-

trol uij is the solution of

∂H̃

∂uij
= uijγij(ρ) +

ρiρj − ρ2
i

dist(ρ, M̂i)
+ dist(ρ, M̂j)− dist(ρ, M̂i) = 0. (17)

Namely if ρi > ρj , uij = ρi − ρj , instead if ρi < ρj since we are supposing

that uij ∈ R+ we have that the optimal control is uij = 0.

b) γij ≤ 0

The Hamiltonian (12) is linear in uij and is increasing or decreasing de-

pending on the sign of

βij =
ρiρj − ρ2

i

dist(ρ, M̂i)
+ dist(ρ, M̂j)− dist(ρ, M̂i) = −γij(ρ)(ρi − ρj)

– if ρi > ρj the Hamiltonian is increasing in uij , hence it admits minimum

at uij = 0 ,

– if ρi < ρj the Hamiltonian is decreasing in uij , therefore it takes smaller

and smaller values as uij → +∞.
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Now note that, if the densities are converging in time to the same value,

which is the case if we use the control u∗ij , the function (16) is never neg-

ative and thus case b) before cannot occur. Simulations will show this

phenomenon and also suggest that

lim
ρi→ρj ,j∈N(i)\{i}

γij = +∞. (18)

which is coherent with the constraint u∗ij = 0. Therefore, using function (16),

the corresponding running cost given by

`(i, ρ, u) =
∑

j∈N(i), j 6=i ρi>ρj

u2
ij

2

(
ρ2
i − ρiρj − dist(ρ, M̂j)dist(ρ, M̂i) + dist(ρ, M̂i)

2

(ρi − ρj)dist(ρ, M̂i)

)+

︸ ︷︷ ︸
γij(ρ)

,

(19)

leads the optimal feedback control to take the same value as in (14). Moreover,

when using control (14), the Hamiltonian (12) also converges to zero as t tends

to infinity. Hence, the function V (i, ρ) as defined in (15), is almost a solution

of the Hamilton-Jacobi-Bellman problem (11). Such a consideration leads to

the fact that, at least when time becomes large, the control (14) is optimal.

The fact that the Hamiltonian (12) converges to zero derives from (17) where

the second addendum of the right-hand side is bounded (the distance from

the manifold is larger than |ρi − ρj | up to a multiplicative constant). This

boundedness leads to (ρi − ρj)2γij(ρ)→ 0 and hence the conclusion, because

inside the Hamiltonian we almost have (17) multiplied by (ρi − ρj).

Now with the control (14), we can rewrite the evolution of ρ as

ρ̇i(t) =
∑

j 6=i,j∈N(i):ρj>ρi

ρj(t)(ρj(t)− ρi(t))−
∑

j∈N(i):ρi>ρj

ρi(t)(ρi(t)− ρj(t)) ∀i

(20)
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Now our aim is to study the stability properties of dynamical system (20).

In other words if using the optimal control u∗ij the system converges to an

equilibrium.

4 Wardrop Equilibrium

In this section, we will show how to obtain a uniform distribution of the density

ρ, at first on a neighborhood of a node and then throughout the graph.

The right-hand side of equation (20) is zero only when ρi = ρj ∀i ∈ V and

j ∈ N(i), which leads to a uniform density over the nodes.

The following assumption establishes that for a given feasible target manifold,

there always exists a decentralized routing policy u(t) which drives the density

ρ toward the relative manifold M̂i (see (6)).

This assumption will be used later on to prove the convergence to a local

Wardop equilibrium.

Fig. 1 Geometric illustration of the Attainability condition.
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Assumption 1 (Attainability condition)

Let M̂i be given by (6), r > 0 and Si = {ρ : dist(ρ, M̂i) < r}. For all ρ ∈ Si\M̂i

there exists an element in the projection, ξ(i, ρ) ∈ ΠM̂i
ρ, such that the value

val[λi] is negative for every λi = (ρ(t)− ξ(i, ρ)), namely

∀i, val[λi] = inf
u
{λi ·[(I−∂ρ(ξ(i, ρ)))ρ̇T +

∑
j∈N(i)

(ξ(j, ρ)−ξ(i, ρ))qij ]} < 0, (21)

where ∂ρξ(i, ρ) is a constant matrix since ξ(i, ρ) is a linear function of ρ.

We point out that, as we will show in Section 5 (see (25)), assumption (21) is

satisfied by our optimal control u∗ij (14).

Assumption (21) represents the trend of the agents in node i to be influenced

by the choices of the neighbor agents. Agents can act in order to reach the

same density as in the adjacent nodes.

In the proof of the next theorem, we review the value function of (11) as a

Lyapunov function.

Theorem 4.1 Let Assumption 1 hold true. Then, ρ(t) converges asymptoti-

cally to M̂i, i.e.

lim
t→∞

dist(ρ, M̂i) = 0. (22)

Proof : Let ρ be a solution of (3) with initial value ρ(0) ∈ Si \ M̂i.

Set τ = {inf t > 0 : ρ(t) ∈ M̂i} ≤ ∞ and let V (i(t), ρ(t)) = dist(ρ(t), M̂i). For

all t ∈ [0, τ ] and ξ ∈ ΠM̂i
(ρ(t)). We wish to compute V̇ (i(t), ρ(t)) as the limit

of the incremental ratio, thus at first we write its numerator, where X(t) is



18 Fabio Bagagiolo et al.

the Markov process giving the evolution of the index i(t), that is:

V (i(t), ρ(t+ dt))− V (i(t), ρ(t)) + V (i(t+ dt), ρ(t))− V (i(t), ρ(t)) =

‖ρ(t+ dt)− ξ(ρ(t+ dt), X(t))‖ − ‖ρ(t)− ξ(ρ(t), X(t))‖+

‖ρ(t)− ξ(ρ(t), X(t+ dt))‖ − ‖ρ(t)− ξ(ρ(t), X(t))‖ =

‖ρ(t) + ρ̇(t)dt− ξ(ρ(t), X(t))−∇ρξ(ρ(t), X(t))ρ̇(t)dt‖−

‖ρ(t)− ξ(ρ(t), X(t))‖+ |dt|ε(dt)+

‖ρ(t)− ξ(ρ(t), X(t))− ∂Xξ(ρ(t), X(t))Ẋ(t)dt+ o(dt)‖ − ‖ρ(t)− ξ(ρ(t), X(t))‖

where limdt→0 ε(dt) = 0 and limdt→0 o(dt) = 0. Hence
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V̇ (i(t), ρ(t)) =

lim
dt→0

1

dt

(
‖ρ(t) + ρ̇(t)dt− ξ(ρ(t), X(t))−∇ρξ(ρ(t), X(t))ρ̇(t)dt‖2

‖ρ(t) + ρ̇(t)dt− ξ(ρ(t), X(t))−∇ρξ(ρ(t), X(t))ρ̇(t)dt‖
−

‖ρ(t)− ξ(ρ(t), X(t))‖2

‖ρ(t)− ξ(ρ(t), X(t))‖
+ |dt|ε(dt)+

‖ρ(t)− ξ(ρ(t), X(t))− ∂Xξ(ρ(t), X(t))Ẋ(t)dt‖2

‖ρ(t)− ξ(ρ(t), X(t))− ∂Xξ(ρ(t), X(t))Ẋ(t)dt‖
−

‖ρ(t)− ξ(ρ(t), X(t))‖2

‖ρ(t)− ξ(ρ(t), X(t))‖
+ o(dt)

)
=

lim
dt→0

1

dt

(
‖ρ(t) + ρ̇(t)dt− ξ(ρ(t), X(t))−∇ρξ(ρ(t), X(t))ρ̇(t)dt‖2

‖ρ(t)− ξ(ρ(t), X(t))‖+O(
√
dt)

−

‖ρ(t)− ξ(ρ(t), X(t))‖2

‖ρ(t)− ξ(ρ(t), X(t))‖
+ |dt|ε(dt)+

‖ρ(t)− ξ(X(t))− ∂Xξ(ρ(t), X(t))Ẋ(t)dt‖2

‖ρ(t)− ξ(ρ(t), X(t))‖+O(
√
dt)

−

‖ρ(t)− ξ(ρ(t), X(t))‖2

‖ρ(t)− ξ(ρ(t), X(t))‖
+ o(dt)

)
=

1

‖ρ(t)− ξ(ρ(t), X(t))‖
d

dt

(
‖ρ(t)− ξ(ρ(t), X(t))‖2

)
≤

2

‖ρ(t)− ξ(i, ρ)‖

[
(ρ(t)− ξ(i, ρ))·(

(I −∇ρ(ξ(i, ρ)))ρ̇(t)T +
∑

j∈N(i)

(ξ(j, ρ)− ξ(i, ρ))qij

)]
.

Using now Assumption 1 we have that the second factor of the last product is

strictly negative, hence V̇ (i(t), ρ(t)) < 0. This proves not only that a Wardrop

equilibrium but also that the solution ρ of the dynamics (3) is locally asymp-

totically stable for the Lyapunov theorem. ut

The next step is to prove the asymptotic convergence of ρ, solution of (3), to

the global consensus manifold M defined as follows

M = {ρ ∈ D : ρ = 1
1

n
}, (23)
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where n is the number of nodes.

Corollary 4.1 Let Assumption 1 hold true, then

lim
t→+∞

d(ρ(t),M) = 0.

Proof: We are in the hypothesis of Theorem (4.1), then

lim
t→∞

dist(ρ, M̂i) = 0.

It follows that for any sequence (tm)m∈N such that tm → +∞ we have that

ρi → β

ρj → β ∀ j ∈ N(i)

ρk → β ∀ k ∈ N(j) s.t j ∈ N(i)

...

(24)

By doing this, since the graph is connected, we can conclude that

ρi(tm)→ β =
1

n
∀i ∈ V.

Then, there exists a subsequence (tm`
)`∈N such that

ρi(tm`
)→ 1

n
∀i ∈ V.

This proves that ρ(t)→ 1
n for t→ +∞ and thus limt→+∞ d(ρ(t),M) = 0. ut
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5 Numerical Example

In this section, numerical simulation show that on a graph with seven nodes,

the provided distributed routing policy (14) provides convergence to the equi-

librium.

Consider the following network consisting of 7 nodes and 8 edges.

Fig. 2 Network system with seven nodes.

Solving the Kolmogorov equation (20) with the following initial conditions

ρ1(0) = 0.15, ρ2(0) = 0.2, ρ3(0) = 0.1, ρ4(0) = 0.3,

ρ5(0) = 0.1, ρ6(0) = 0.15, ρ7(0) = 0,

we obtain the density evolution as shown in Fig. 3
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Fig. 3 Simulation of the density.

As expected the density converges to the global equilibrium in which all

the ρi are equal.

In Fig. 4 we can see that the function γij (16) is positive, in accordance with

our statements in Section 3.

Fig. 4 Evolution of γ12 and γ16 along the trajectories obtained using control u∗ij (14).
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Note that the optimal control u∗ij = (ρi − ρj)+ satisfies Assumption 1 as

by defining

αi = λi · [(I − ∂ρ(ξ(i, ρ)))ρ̇(t)T +
∑

j∈N(i)

(ξ(j, ρ)− ξ(i, ρ))qij ], ∀i = 1, · · · , 7,

we have that the maximum values of αi are

max
ρ
{α1} = −6.1489 · 10−7 max

ρ
{α2} = −2.1462 · 10−6

max
ρ
{α3} = −3.1123 · 10−9 max

ρ
{α4} = −6.7065 · 10−7

max
ρ
{α5} = −8.0771 · 10−7 max

ρ
{α6} = −2.1169 · 10−6

max
ρ
{α7} = −7.4670 · 10−7.

(25)

Then, function αi is negative for all i, for our choice of the control.

According to Theorem (4.1), in Fig. 4 we show that the distance of ρi from

the relative M̂i, ∀i = 1, . . . , 7, converges to zero.
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Fig. 5 Distances to the consensus manifolds.
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6 Stability with Hysteresis

In the following section we study stability of the macroscopic dynamics of the

vector ρ when the optimal decentralized feedback control (14) is affected by

a hysteresis phenomena modeled by a scalar play operator. We study how

the evolution of the macroscopic equation changes when we apply the play

operator to the control u∗ obtained from (14). Furthermore, we characterize

the set of equilibrium points as union of several manifolds. Finally, we provide

convergence condition for the resulting dynamics.

After introducing the play operator the controlled dynamical system is given

by



ρ̇(t) = ρ(t)A(w),

w(t) = P [u∗]+(t),

ρ(0) = ρ0,

w(0) = w0,

(26)

where P [·](·) is the play operator whose behavior is explained in the following

subsection and ∧+ is the positive part.
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6.1 The Play operator

Fig. 6 Hysteresis play operator

Let ε > 0 be a parameter which characterizes the Play operator and define

Ωε :=
{

(u, v) ∈ R2 : u− ε < v < u+ ε
}
.

The behavior of the scalar play operator v(·) := P [u](·), with its typical hys-

teresis loops, can be described using Fig. 6. For instance, supposing that u is

piecewise monotone, if (u(t), v(t)) ∈ Ωε then v is constant in a neighborhood

of t; if v(t) = u(t)− ε and u is non increasing in [t, t+ τ ] (with small τ) then v

stays constant in [t, t+τ ] ; if v(t) = u(t)−ε and u is non decreasing in [t, t+τ ]

then v = u(t)−ε in [t, t+τ ]. A similar argument holds when replacing u(t)−ε

by u(t) + ε.

The same explanation of the play operator behavior can be extended to con-

tinuous inputs [26,27].

With reference to system (26), we consider as input to matrix A the posi-
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tive part of the play operator, applied to the control u∗ij = (ρi − ρj)
+, i.e.

wij(t) = P [(ρi − ρj)]+(t).

Remark 6.1 Since (ρi(0)− ρj(0)) = −(ρj(0)− ρi(0)), then

(ρi(t)− ρj(t)) = −(ρj(t)− ρi(t)) ∀t.

Thus it is not a restriction as

P [(ρi−ρj)](0) = −P [(ρj−ρi)](0), hence P [(ρi−ρj)](t) = −P [(ρj−ρi)](t) ∀t.

Moreover since we are taking the positive part of the play, we will have that if

wij > 0 then wji = 0.

6.2 Equilibria

We are looking for the equilibrium points of the first equation of (26) consid-

ering the simple case of a network with four nodes as the one depicted in Fig. 7

Fig. 7 Network system with four nodes.
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The evolution of the vector ρ is given by

ρ̇1(t) = −
(
w12 + w13

)
ρ1(t) + w21ρ2(t) + w31ρ3(t),

ρ̇2(t) = w12ρ1(t)−
(
w21 + w24

)
ρ2(t) + w42ρ4(t),

ρ̇3(t) = w13ρ1(t)−
(
w31 + w34

)
ρ3(t) + w43ρ4(t),

ρ̇4(t) = w24ρ2(t) + w34ρ3(t)−
(
w42 + w43

)
ρ4(t).

(27)

Case 1

Assume that w12 > 0, w31 > 0, w24 > 0, w43 > 0. If

|ε| > max
{
ρ4

(w43

w12
− w43

w24

)
, ρ4

(w43

w24
− 1
)
, ρ4

(w43

w31
− w43

w12

)
, ρ4

(
1− w43

w31

)}
,

then the system to solve is

ρ̇1(t) = −w12ρ1(t) + w31ρ3(t),

ρ̇2(t) = w12ρ1(t)− w24ρ2(t),

ρ̇3(t) = −w31ρ3(t) + w43ρ4(t),

ρ̇4(t) = w24ρ2(t)− w43ρ4(t),

(28)

that is zero in

(
ρ4
w43

w12
, ρ4

w43

w24
, ρ4

w43

w31
, ρ4, w12, w24, w31, w43

)
. (29)

In the following we consider only the values of w12, w24, w31, w43 because their

symmetric w21, w42, w13, w34 are always zero according to Remark 6.1.

Case 2
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Assume that w12 > 0, w31 > 0, w24 > 0, w43 = 0. If |ε| > 1, then the system is

zero in (
0, 0, 0, 1, w12, w31w24, 0

)
. (30)

Case 3

For w12 > 0, w31 > 0, w24 = 0, w43 = 0. If |ε| > max{ρ4, 1 − ρ4}, then the

system is zero in (
0, 1− ρ4, 0, ρ4, w12, w31, 0, 0

)
. (31)

Case 4

For w12 > 0, w31 = 0, w24 = 0, w43 = 0. if |ε| > max{ρ4, ρ3, 1− ρ4 − ρ3} then

the system is zero in

(
0, 1− ρ4 − ρ3, ρ3, ρ4, w12

)
. (32)

Case 5

Assume that all wij = 0 ∀j ∈ N(i). If

|ε| > max{ρ1 − ρ2, ρ2 − ρ4, ρ3 − ρ1, ρ4 − ρ3},

then the equilibrium point of the system is

(1− ρ2 − ρ3 − ρ4, ρ2, ρ3, ρ4,w) = (ρ1, ρ2, ρ3, ρ4,0), (33)

where w denotes the vector of all eight wij .
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Remark 6.2 Note that the equilibria in cases 2, 3, 4, 5 can be obtained as

limits of the equilibrium in case 1. Indeed if we let w43 → 0 we end up with

equilibrium (30) and since
∑4
i=1 ρi = 1, ρ4 = 1. If w43 → 0 and w24 → 0 we

obtain equilibrium (31) where we denoted by 1 − ρ4 the indeterminate form

ρ4
w43

w24
, taking into account the conservation of mass. Furthermore if w31 → 0,

w24 → 0 and w43 → 0 we get equilibrium (32), where we call the indeterminate

forms ρ4
w43

w31
and ρ4

w43

w24
respectively ρ3 and 1− ρ4 − ρ3 for the same reason as

before.

Finally letting all wij → 0 we end up with equilibrium (33), in which ρ2,

ρ3, and 1 − ρ2 − ρ3 − ρ4 denote the indeterminate forms ρ4
w43

w24
, ρ4

w43

w31
, and

ρ4
w43

w12
that respect the conservation of mass.

Moreover, our choice of taking w12 > 0, w31 > 0, w24 > 0, w43 > 0 and not

other wij is completely arbitrary, indeed taking any 4 non symmetric wij > 0

we will end up with an equilibrium of the same type of (29).

In the following numerical simulations we show the behavior of the system for

two different choices of the parameter ε
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(a)

(b)

Fig. 8 Numerical simulations of the system converging to the equilibria in case 1 (Fig. 8(a))

and case 3 (Fig. 8(b))

In Fig. 8(a) we take ε = 0.5. We can see that the densities converge to the

equilibrium (29). Instead in the Fig. 8(b), using ε = 0.95, the system converges
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to equilibrium (31).

6.3 Stability

In the following subsection we show that also in the presence of the play op-

erator we converge to the equilibrium for t → ∞. Before doing this we make

a further assumption for the manifold as defined next.

The global equilibrium manifold M in this case is the union of different equi-

librium manifolds

M =

5⋃
z=1

Mz, (34)

where M̄z denotes the manifold whose points are equilibria relative to the z-th

case.

Assumption 2

Let M be given as in (34), s > 0 and S = {ρ : dist(ρ,M) < s}. For all

ρ = (ρ, w) ∈ S \M , there exists ξ ∈ ΠMρ such that the value val[λ] is negative

for every λ = (ρ− ξ), namely

val[λ] = inf
u
{λ · (I − ∂ρξ(ρ(t)))ρ̇(t)T } < 0. (35)

This assumption is analogous to the attainability (21) in the presence of hys-

teresis. Note that here the term involving qij in (21) is not present, since

depending on whether we are in the node i or in the node j the projection on

the global manifold ξ is the same. Moreover, at the end of this section we will

stress the fact that (35) is satisfied under control wij = P [(ρi − ρj)]+.
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Theorem 6.1 Let Assumption 2 hold true. Then ρ(t) converges asymptomat-

ically to M , namely

lim
t→+∞

dist(ρ,M) = 0. (36)

Proof.: Let ρ a solution of (26) with initial value ρ(0) ∈ S \M . Set

τ = {inf t > 0 : ρ(t) ∈M} ≤ ∞ and let V (ρ(t)) = dist(ρ,M). We compute:

V̇ (ρ(t)) =
d

dt

(
‖ρ(t)− ξ(ρ(t))‖

)
=

1

‖ρ(t)− ξ(ρ(t))‖

[(
ρ(t)− ξ(ρ(t))

)(
I − ∂ρξ(ρ(t))

)
ρ̇(t)T

]
< 0

by (35). Then the solution ρ of (26) is asymptotically stable and we have a

global equilibrium. ut

In the following we deal with some examples of convergence to the equilibria

in different Mz using the decentralized control u∗ij = (ρi − ρj)+.

At first we suppose that ε > 1 thus for all t, w(t) satisfies the conditions in

case 2. The system to study is

ρ̇1(t) = −w12(t)ρ1(t) + w31(t)ρ3(t),

ρ̇2(t) = w12(t)ρ1(t) + w24(t)ρ2(t),

ρ̇3(t) = −w31(t)ρ3(t),

ρ̇4(t) = w24(t)ρ2(t).

(37)

From the assumption on the wij we have

∃c > 0 : wij(t) > c ∀t ≥ 0.

Then considering the third equation of (37) we have that

ρ3(t) ≤ e−ctρ3(0)→ 0 for t→ +∞. By contradiction, we suppose that
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ρ1(t)→ ρ̄1 with ρ̄1 > 0. Thus,

lim
t→+∞

ρ̇1(t) = lim
t→+∞

−w12(t)ρ̄1 + lim
t→+∞

w31(t)ρ3(t) 6= 0. (38)

This is a contradiction as the left hand side should be equal to zero. Hence

limt→+∞ ρ1(t) = 0. With similar argument also limt→+∞ ρ2(t) = 0. For the

mass conservation ρ4(t) → 1 for t → +∞ hence we obtain the equilibrium

point (30).

Assuming now that ε > max{ρ4(0), 1−ρ4(0)} and w(0) satisfies the conditions

in case 3, the system becomes

ρ̇1(t) = −w12(t)ρ1(t) + w31(t)ρ3(t),

ρ̇2(t) = w12(t)ρ1(t),

ρ̇3(t) = −w31(t)ρ3(t),

ρ̇4(t) = 0,

(39)

for all t ∈ [0, t̄[ where

t̄ = sup{t ≥ 0 : u∗12 + ε > w12(t) ≡ w12(0) > 0, u∗31 + ε >w31(t) ≡ w31(0) > 0,

w24 ≡ 0, w43 ≡ 0}.

We will now prove that t̄ = +∞.

Let us suppose by contradiction that t̄ < +∞. Obviously ρ4(t) ≡ ρ4(0) in [0, t̄[.

Using the hypothesis over wij we have that ρ3(t) = e−w31(0)tρ3(0) in [0, t̄[ and

thus ρ3 decreases. Moreover ρ2 is increasing.

Let us now focus on the differences among the densities. Since ρ4 is constant
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and ρ3 ↘ then ρ4−ρ3 ↗. This difference is always less than or equal to ρ4 and

thus it is less than ε. By the continuity of ρ, lim
t→t̄

(ρ4(t)− ρ3(t)) < ε. Therefore

w43 does not change and remains equal to 0 in [0, t̄].

Let us now consider ρ2− ρ4. By (39), in [0, t̄[ ρ2 ↗, thus ρ2− ρ4 increases and

is less than 1− ρ4 < ε. By the previous continuity argument w24 ≡ 0 in [0, t̄].

From the last two results we can conclude that ρ4(t) ≡ ρ4(0) in [0, t̄].

Considering ρ3 − ρ1 we have that, if ρ3 − ρ1 ↘ in [0, t̄[, the last difference is

greater than −ρ1 = ρ4−1+ρ3+ρ2 > ρ4−1 > −ε. This implies ε > ρ1 and thus

using the continuity argument w31(t) = w31(0) > 0 in [0, t̄]. Instead if ρ3−ρ1 ↗

it is always less that ρ3 < 1 − ρ4 < ε. Then as before w31(t) = w31(0) > 0 in

[0, t̄]. From the last one and w43 ≡ 0 we conclude ρ3(t) = ρ3(0)e−w31(0)t in [0, t̄].

Again if ρ1 − ρ2 ↘ it is greater than −ρ2 > ρ4 − 1 > −ε. Proceeding as

before we conclude that w12(t) = w12(0) > 0 in [0, t̄]. Instead if ρ1 − ρ2 ↗

reasoning as before we reach the same conclusion, i.e, w12(t) = w12(0) > 0 in

[0, t̄].

Hence we have proven that in t̄, the same conditions valid in the interval [0, t̄[,

hold. Therefore there exists δ > 0 such that in [0, t̄+ δ], wij(t) are the same as

in t = 0. This is a contradiction as t̄ is a supremum, thus we conclude t̄ = +∞.

We will now prove that the system converges to equilibrium (31). From the

assumption on the wij we have ρ3(t) = e−w31(0)tρ3(0) → 0 for t → +∞. By
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contradiction, we suppose that ρ1(t)→ ρ̄1 with ρ̄1 > 0. Thus,

lim
t→+∞

ρ̇1(t) = lim
t→+∞

−w12(t)ρ̄1 6= 0. (40)

This is a contradiction as it should be equal to zero. Hence limt→+∞ ρ1(t) = 0.

Regarding ρ4 and ρ2, the first is constant and limt→+∞ ρ2(t) = ρ̄2 > 0. From

the mass conservation ρ̄2 = 1− ρ̄4 hence we obtain an equilibrium point as in

(31).

Using similar arguments, if ε is like in case 4 and 5 we will converge to equi-

libria (32) and (33) respectively.

The above procedure can be extended to the case where ε is such that for all

t we have four non symmetric wij > 0 like in case 1.

Note also that the decentralized control u∗ij = (ρi − ρj)+ satisfies Assump-

tion 2, indeed the function V (ρ(t)) is strictly decreasing along the trajectories

(see Fig. 9).

As a consequence, the distance of ρ from the manifold M is a Lyapunov func-

tion and thus Theorem 6.1 holds true.

The picture below (Fig. 9) displays the distance of ρ from the manifold M1

as function of time. It is visually clear that the time plot is decreasing in

accordance to our expectations.
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Fig. 9 The distance of ρ from the manifold M1.

7 Conclusions

In this paper we study a decentralized routing problem defined over a network.

We show that by reformulating the problem as a mean-field game, we obtain a

consensus dynamics on the densities. Using a state space extension approach

we recast the problem in the framework of optimal control. We give an explicit

expression of a suitable current cost function in order to obtain a preassigned

optimal decentralized control. We provide conditions for the convergence to

both to local and global consensus. In the presence of a play operator, we prove

that the same control does not guarantee convergence to a consensus point.

In this case, we characterize the set of equilibrium points for the hysteretic

system and prove its asymptotic stability.
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14. Huang, M.Y., Caines, P.E., Malhamé, R.P.: Large population cost-coupled LQG prob-

lems with non-uniform agents: individual-mass behaviour and decentralized ε-Nash equi-

libria. IEEE Trans. Automat. Control 52(9), 1560-1571 (2007)
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