
Consensus via multi-population robust mean-field games

D. Bausoa,b

aDepartment of Automatic Control and Systems Engineering, The University of
Sheffield, Mappin Street, Sheffield, S1 3JD, United Kingdom

bDipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di
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Abstract

In less prescriptive environments where individuals are told ‘what to do’
but not ‘how to do’, synchronization can be a byproduct of strategic thinking,
prediction, and local interactions. We prove this in the context of multi-
population robust mean-field games. The model sheds light on a multi-scale
phenomenon involving fast synchronization within the same population and
slow inter-cluster oscillation between different populations.
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1. Introduction

Synchronization is a natural phenomenon which arises in many applica-
tions such as pricing in finance [2, 5], opinion dynamics [13], or transient
stability of generators [3] etc. Most of the models for synchronization are
derived in prescriptive environments in which individuals, the agents, are
pre-programmed to adopt specific behaviors, see [12] and references therein.

In this paper we consider a multi-population of dynamic agents as illus-
trated in Fig. 1.

The dynamics of each agent — henceforth referred to as microscopic dy-
namics — describes the time evolution of its state in the form of a stochastic
differential equation. In addition, for each population of agents, we consider
the corresponding phase coherence, which is a measure of the synchroniza-
tion of the agents of that population, and the associated dynamics, the latter
called macroscopic dynamics. Each agent seeks to synchronize its phase to
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Figure 1: Multi-population model with local interactions.

the local average phase obtained via mean-field computation. The model
highlights the following aspects: i) each agent is a rational player equipped
with strategic and computation capabilities; ii) the interaction is local and
subject to disturbances; iii) agents are heterogeneous. Local interaction is
determined by geographic proximity between two populations, and is mod-
eled by a network topology where the nodes are the populations and the
links establish neighbor relations. The model is a multi-population robust
mean-field games within the theory proposed by M.Y. Huang, P. E. Caines
and R. Malhamé in [6, 7, 8] and independently by Lasry and Lions in [10].
For a survey see [4]. Modeling synchronization as a game is also in [15].
Game theoretic learning is also discussed in [16]. Efficiency loss in equilibria
is studied in [17]. Higher level interactions between the subpopulations are
analyzed in [9] in the context of auctions. While sharing some of the general
concepts already present in the aforementioned references, this paper adds
new elements such as local interactions, disturbances and heterogeneity in a
unified framework.

Main contribution. This paper shows that synchronization can be ob-
tained in less prescriptive environments as byproduct of strategic thinking,
prediction, and local interactions, see Fig. 2. Even if the agents are not
pre-programmed to adopt certain strategies, a proper mix of the above three
factors will lead to synchronization. To address model misspecification, the
game involves the presence of an adversarial disturbance which captures un-
certainty in the microscopic dynamics (i.e. some players may be irrational).
The resulting game is then a robust mean-field game as the one in [1] and in
the same spirit as [14].
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Figure 2: Synchronization as a result of a proper mix of strategic thinking, prediction,
and local interaction in a structured environment.

The model involves a system of coupled partial differential equations
(PDEs). For each population we have one PDE in the form of a Hamilton-
Jacobi-Isaacs (HJI) equation, and a second PDE which is the Fokker-Planck-
Kolmogorov (FPK) equation describing the diffusion process of the agents’
states. We provide a solution of the HJI equation under the assumption that
the time evolution of the common state is given. We show that the problem
reduces to solving three matrix equations and that in the infinite horizon
case the macroscopic dynamics is a typical consensus dynamics.

The analysis of the mean-field game is then extended to the case of second-
order dynamics. Even for this case, we prove that the problem of approx-
imating mean-field equilibrium strategies reduces to solving three matrix
equations. By taking the limit for T → ∞ the macroscopic dynamics takes
the form of a second-order consensus dynamics. Simulations of simple heuris-
tics show the multi-scale nature of the process involving fast synchronization
within the same population and slow inter-cluster oscillation capturing delays
due to the geographic sparsity of the populations.

The remainder of the paper is structured as follows. In Section 2 we
formulate the problem. In Section 3 we discuss examples. The main results
are presented in Sections 4 and 5. Section 6 provides a numerical example.
Finally in Section 7 we provide conclusions.
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2. Model and problem set-up

Consider p populations of homogeneous agents (players); each player be-
longs to a population k ∈ {1, . . . , p} and is characterized by a state X(t) ∈ R
at time t ∈ [0, T ], where [0, T ] is the time horizon window. The control vari-
able is a measurable function of time, u(·) ∈ U , where U is the control set,
defined as t 7→ R and establishes the rate of variation of an agent’s state. A
disturbance tries to affect the agents’ state in a way that is proportional to
his efforts w(·) ∈ W , where W is the control set of the disturbance.

The state dynamics of each player is

dX(t) = (u(t) + w(t))dt+ σdB(t), t > 0, (1)

where X(0) = x for given initial state x, σ > 0 is a weighting coefficient and
B(t) is the standard Brownian motion process.

For every population k ∈ {1, . . . , p}, consider a probability density func-
tion mk : R × [0,+∞[→ R, (x, t) 7→ mk(x, t), representing the density of
agents of that population in state x at time t, which satisfies

∫
Rmk(x, t)dx =

1 for every t. Let the mean state of population k at time t be mk(t) :=∫
R xmk(x, t)dx. From averaging both sides of (1) we get the aggregated dy-

namics
d

dt
mk(t) = uk(t) + wk(t),

where uk(t) and wk(t) are the mean state-feedback control and disturbance
of that population, i.e.,

uk(t) :=

∫
R
u(x, t)mk(x, t)dx, wk(t) :=

∫
R
w(x, t)mk(x, t)dx.

Let a graph G = (V,E) be given where V = {1, . . . , p} is the set of ver-
tices, one per each population, and E = V × V is the set of edges. Although
most results are easily generalizable to more general graphs, possibly time-
varying, for the sake of simplicity we henceforth assume that G = (V,E) is
a connected undirected graph, see e.g. [12, Lemma 1]. Denote the set of
neighbors of k by N(k) = {j ∈ V | (k, j) ∈ E}.

The objective of an agent is to adjust his state based on the aggregate
kth state. Set

ρk =

∑
j∈N(k) mj(t)

|N(k)|
, (2)
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where |N(k)| denotes the cardinality of the set N(k), namely the number of
neighbors of k.

Then, for the agents, consider a running cost g : R × R × U → [0,+∞[,
and a terminal cost Ψ : R× R→ [0,+∞[, given by:

g(x, ρk, u) =
1

2

[
a(ρk − x)2 + cu2

]
, (3)

Ψ(ρk, x) =
1

2
S(ρk − x)2. (4)

The problem in abstract terms is then formulated as follows.

Problem 1. Let B be a one-dimensional Brownian motion defined on the
probability space (Ω,F ,P), where Ω is the set of outcomes of a random ex-
periment, F is the natural filtration generated by B, and P is a probabil-
ity measure. Let the initial state X(0) be independent of B and with den-
sity mk0. Given a finite horizon T > 0, an initial distribution of the states
mk0 : R→ R, a running cost: g : R×R×U → [0,+∞[ as in (3); a terminal
cost Ψ : R× R→ [0,+∞[ as in (4), and dynamics as in (1), solve

minu(·) maxw(·) E
∫ T

0

[
g(X(t), ρk(t), u(t))− γ2

2
w(t)2

]
dt+ Ψ(ρk(T ), X(T )),

where γ > 0, and U , W are the sets of all measurable functions u(·) and w(·)
from [0,+∞[ to U , W respectively.

3. Examples

We review three examples of synchronization phenomena from different
application domains. All examples are based on the model of Kuramoto
networked-coupled oscillators [12]. Consider the synchronization of the phase
angles of a set of N coupled oscillators, for which the dynamics of the ith
oscillator is given by

Θ̇i = Ωi +
K
n

∑
j∈N

sin(Θj −Θi),

where Θi is its phase and Ωi is its (time-invariant) natural frequency. The
coupling term on the RHS is responsible of synchronization in that regulates
the angular velocity Θ̇i based on the deviation of the ith phase from the
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average phase computed over the population. The level of synchronization
increases with the parameter K present in the global coupling term.

The level of synchronization is captured by the complex order parameter

z = reiΦ =
1

n

n∑
j=1

eiΘi , (5)

where r is referred to as phase-coherence and Φ is the average phase.
Considering indistinguishable players and the corresponding asymptotic

limit for n→∞ (we drop the index i) we have

Θ̇(t) = ω +Kr sin(Φ(t)−Θ(t)) (6)

that, after linearization around zero, can be approximated by

Θ̇︸︷︷︸
Ẋ(t)

= ω︸︷︷︸
w(t)

+ r(Φ(t)−Θ(t))︸ ︷︷ ︸
u(t)

. (7)

Equation (7) is the deterministic version of (1) provided that u(t) = r(Φ(t)−
Θ(t)) and w(t) = ω. Through game-theoretic approach we wish to design u(t)
to incentivize synchronization among the oscillators. To do this, introduce a
running cost and terminal penalty:

g(δ,Φ, u) = 1
2

[a(Φ−Θ)2 + cu2] , Ψ(Φ, δ) = 1
2
S(Φ−Θ)2,

which are of the same types as (3) and (4), where ρk is replaced by Φ. It
remains to show that the control u(t) = r(Φ(t)−Θ(t)) and the disturbance
w(t) = ω can be obtained solving the min-max problem

minu(·) maxw(·) E
∫ T

0

[
g(δ(t),Φ(t), u(t))− γ2

2
w(t)2

]
dt+ Ψ(Φ(T ), δ(T )),

(8)
subject to the dynamics

dδ(t) =
(
ω + r sin(Φ(t)− δ(t))

)
dt+ σdB(t), t > 0.

Now consider p population of oscillators, at different geographic locations,
with average angles interconnected via a network topology. Each population
k ∈ {1, 2, . . . , p} represents a population of oscillators, and is characterized
by an average phase Φk (the average phase is now indexed by the population
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type). A network topology is used to model the interconnection between the
average phases of two distinct populations of oscillators. The synchronization
angle ρk for the population k is then expressed by the averaging law:

ρk =

∑
j∈N(k) Φj(t)

|N(k)|
,

which is of the same form of (2) with mj(t) replaced by Φj(t).

Example 1 (Stock price synchronization). In the financial market, syn-
chronization of stock prices arises during financial crisis (e.g. the Black
Monday and the the global economic crisis of 2008) [2] or as a consequence
of high speed trading [5]. Nodes correspond to stocks and the connections
between two nodes are established according to a measurement related to the
correlation between the temporal price evolutions of the respective stocks. The
phase coherence increases, indicating the emergence of a collective behavior
of stock prices, since most of them tend to have a similar evolution.

Example 2 (Opinion dynamics). The analogy assimilates oscillators to
individuals, phases to opinions, and natural frequencies to natural opinion
changing rates [13]. Global coupling is a result of the interactions among
the individual, these depending on the respective distance between them. In
this new perspective, the dynamic model (7) appears as a consensus dynamics
(opinion synchronization), in which the coupling term accounts for “emula-
tion” (an individual’s opinion is influenced by those of its neighbours), and
which includes an additional input representing the “natural changing rate”.

Example 3 (Transient stability of power grids). It is well-known (see,
e.g., [3]) that in a multi-machine power grid involving n generators, the rotor
angle dynamics are interconnected and each rotor angle evolves according
to the swing equation which resemble the classical Kuramoto oscillators’
dynamics. The level of synchronization is the complex order parameter in
(5) which is now called common power angle. Imagine multiple smart grids
k ∈ {1, 2, . . . , p} each involving a population of generators. Populations are
geographically sparse and the synchronization occurs locally by involving only
neighbor populations. The average phase is now called common power angle
Φk and is indexed by the population type. A network topology can be used to
model the interconnection between the common power angles of the different
populations of generators based on their relative geographic distance.
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4. The mean-field game formulation

For every population k ∈ {1, 2, . . . , p}, denote by vk(x, t) the (upper)
value of the robust optimization problem under worst-case disturbance start-
ing at time t and at state x. The problem results in the following multi-
population mean-field game in vk(x, t), and mk(x, t) for all k ∈ {1, 2, . . . , p}:

∂tvk(x, t) + {f(x, u∗k, w
∗
k)∂xvk(x, t) + g(x, ρk(t), u

∗
k)

−γ2

2
w∗k(t)

2
}

+ σ2

2
∂2
xxvk(x, t) = 0, in R× [0, T [,

vk(x, T ) = Ψk(ρk(T ), x) in R,

∂tmk(x, t) + div(mk(x, t)f(.))− σ2

2
∂2
xxmk(x, t) = 0 , in R× [0, T [,

mk(x, 0) = mk0(x) in R,

(9)

where the aggregate variables are given by

mk(t) :=
∫
R xmk(x, t)dx, ρk =

∑
j∈N(k) mj(t)

|N(k)|
, (10)

and where u∗k and w∗k are the optimal time-varying state-feedback control and
disturbance for every single agent in population k obtained as

u∗k(x, t) ∈ argminu∈U{f(x, u, w∗k)∂xvk(x, t) + g(x, ρk(t), u)},
w∗k(x, u

∗
k, t) ∈ argmaxw∈W{f(x, u∗k, w)∂xvk(x, t) + g(x, ρk, u

∗
k)−

γ2

2
w2}.

(11)

Note that the function f(x, u, w)∂xvk(x, t) + g(x, ρk, u) − γ2

2
w2 is strictly

concave in w and strictly convex in u for γ > 0 and c > 0, and hence there
exists a saddle point (u∗k, w

∗
k). Any solution of the above system of equations

is referred to as worst-disturbance feedback mean-field equilibrium.
Let the Hamiltonian (without disturbance w) be given by H(x, p̃, ρk) =

infu {g(x, ρk, u) + p̃u} , where p̃ is the co-state. The robust Hamiltonian is

H̃(x, p̃, ρk) = H(x, p̃, ρk) + sup
w

{
p̃w − 1

2
γ2w2

}
.

After solving for w we obtain w∗k = 1
γ2
∂xvk(x, t). Introducing the Hamiltonian
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and the expression for w∗k in the mean-field system (9) we obtain

∂tvk(x, t) +H(x, p̃, ρk) +
1

2γ2
(∂xvk(x, t))

2 +
σ2

2
∂2
xxvk(x, t) = 0, in R× [0, T [,

vk(x, T ) = Ψ(ρk(T ), x) in R,
∂tmk(x, t) + ∂x

(
mk(x, t)∂p̃H(x, p̃, ρk)

)
+ 1
γ2
∂x

(
mk(x, t)∂xvk(x, t)

)
− σ2

2
∂2
xxmk(x, t) = 0, in R× [0, T [,

mk(x, 0) = mk0(x) in R,
mk(t) :=

∫
R xmk(x, t)dx, ρk =

∑
j∈N(k)mj(t)

|N(k)| .

(12)
We are now ready to specialize the results obtained above to the case of a
multi-population with affine dynamics as in Problem 1.

Theorem 1. Problem 1 admits the robust mean-field game reformulation

∂tvk(x, t) +
(
− 1

2c
+ 1

2γ2

)
|∂xvk(x, t)|2

+1
2
a(ρk(t)− x)2 + 1

2
σ2∂2

xxvk(x, t) = 0, in R× [0, T [,
vk(x, T ) = Ψ(ρk(T ), x), in R,
∂tmk(x, t) +

(
1

2γ2
− 1

2c

)
∂x

(
mk∂xvk

)
− 1

2
σ2∂2

xxmk(x, t) = 0,

mk(x, 0) = mk0(x) in R,
mk(t) :=

∫
R xmk(x, t)dx, ρk =

∑
j∈N(k)mj(t)

|N(k)| .

(13)

Furthermore, the optimal control and worst-case disturbance are

u∗k(x, t) = −1
c
∂xvk(x, t), w∗k(x, t) = 1

γ2
∂xvk(x, t). (14)

The significance of the above result is that to find the optimal control
input we need to solve the two coupled PDEs in (13) in v and m with given
boundary conditions (the second and fourth conditions).

Remark 1. Sufficient conditions for the existence of a classical solution for
(13)-(14) are discussed in Theorem 2.6 in [10] and also in Theorem 1 and
2 in [4]. Such conditions are based on the following assumptions, which are
verified in our problem formulation. The initial measure mk0(.) is absolutely
continuous with a continuous density function with finite second moment,
and the terminal penalty Ψ(.) is smooth, bounded and Lipschitz continuous.
In addition, the running cost g(.) is convex in uk(.) and concave in the dis-
turbance wk(.). The drift is linear and hence Lipschitz continuous.
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5. Mean-field equilibrium

This section investigates the solution of the HJI equation under the as-
sumption that the time evolution of the common state is given. We show
that the problem reduces to solving three matrix equations. In the limit case
in which T →∞ the macroscopic dynamics is a typical consenus dynamics.

Given ρk(t), for t ∈ [0, T ], consider the problem

min
u(·)

max
w(·)

E
∫ T

0

[
g(X(t), ρk(t), u(t))− γ2

2
w(t)2

]
dt

subject to dX(t) = (u(t) + w(t))dt+ σdB(t), t > 0.
(15)

The next result provides mean-field equilibrium control and disturbances.

Theorem 2. (Worst-case mean-field equilibrium) A mean-field equi-
librium for (13) is as follows: For all k ∈ {1, 2, . . . , p}

vk(x, t) = 1
2
φ(t)x2 + h(t)x+ χ(t),

ṁk(t) = (− 1
c1

+ 1
γ2

)(φ(t)mk(t) + h(t)),
(16)

where

φ̇(t) +
(
− 1
c1

+ 1
γ2

)
φ(t)2 + a = 0 in [0, T [, φ(T ) = S,

ḣ(t) +
(
− 1
c1

+ 1
γ2

)
φ(t)h(t)− aρk(t) = 0 in [0, T [, h(T ) = −Sρk(T ),

χ̇(t) +
(
− 1

2c1
+ 1

2γ2

)
h(t)2 + 1

2
aρk(t)

2 + 1
2
σ2φ(t) = 0

in [0, T [, χ(T ) = 1
2
Sρ2

k(T ).

(17)

The corresponding mean-field equilibrium control and disturbance are

u∗(X, t) = − 1
c1

(φ(t)X + h(t)), w∗(X, t) = 1
γ2

(φ(t)X + h(t)). (18)

Furthermore, for T →∞, set m = (m1,m2, . . . ,mp)
T . Then

ṁ(t) = −Lm(t), (19)

where L = [Lkj] is the graph-Laplacian defined as follows:

Lkj =


φ( 1

c1
− 1

γ2
) j = k,

−φ( 1
c1
− 1

γ2
) 1
|N(k)| j ∈ N(k), j 6= k,

0 otherwise.

(20)
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The relevance of the above result is that (17) can be solved in closed form.
We henceforth refer to m as the vector of aggregate states.

Remark 2. Theorem 2 synthesizes the claim that synchronization can be ob-
tained as a byproduct of strategic thinking, prediction and local interactions.
Actually, dynamics (19) is a consensus dynamics and as such it guarantees
synchronization. Dynamics (19) is a direct consequence of (18) and it is not
obtained by pre-programming the agents to adopt a specific behavior. Further-
more, the control and disturbance in (18) are based on φ(t) and h(t) obtained
from the final value problem (17). This requires prediction on future values of
φ(t) and h(t). By Local interaction we refer to the use of neighbor relations
in (20) to calculate mk(t) for the kth population. �

The next result investigates the speed of convergence of dynamics (19)
and uses and adapt some results from [12]. Let λ2(φ) be the second smallest
eigenvalue of the graph-Laplacian matrix L. We write λ2(φ) to stress the
dependency of the eigenvalue on the solution φ of the differential Riccati
equation (17) and the corresponding algebraic Riccati equation obtained from
it by considering the stationary case. Introduce now the disagreement vector

ξ = m− η1, (21)

for any η ∈ R and where 1 is a vector of 1s, and the disagreement function

ν(ξ) = ξT ξ. (22)

Corollary 1. (Performance of synchronization) Let λ2(φ) be the sec-
ond smallest eigenvalue of the Laplacian L and let a disagreement function
ν(ξ) be defined as in (21)-(22). Then the disagreement function satisfies

ν̇(ξ(t)) ≤ −2λ2(φ)ν(t). (23)

The above result states that consensus is reached exponentially fast and
with a speed which is lower bounded by the second smallest eigenvalue λ2(φ).

Note that by substituting the mean-field equilibrium strategies u∗ =
− 1
c1

(φ(t)X + h(t)) and w∗ = 1
γ2

(φ(t)X + h(t)) as given in (18) in the open-

loop microscopic dynamics dX(t) = (u(t) + w(t))dt + σdB(t) as defined in
(15), the closed-loop microscopic dynamics is

dX(t) =
(
− 1
c1

+ 1
γ2

)(
φ(t)X(t) + h(t)

)
dt+ σdB(t), t > 0. (24)
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set/parameters n xmin xmax dt std(m0) T m0 σ θ θ̃ θ̂

1st set 103 −50 50 1 15 30 0 1 0.3 0.25 0.9

2nd set 103 −50 50 1 15 50 0 1 0.5 0.1, 0.35, 0.55 0.9

3rd set 103 −50 50 1 15 50 0 1,5,9 0.5 0.25 0.9

Table 1: Simulation parameters.

Let V (X(t)) = dist(X(t),X ), where dist(X(t),X ) denotes the Euclidean
distance of X(t) from the set X . The next result establishes a condition under
which the above dynamics converges asymptotically to the set of equilibrium
points in a stochastic sense [11].

Corollary 2. (2nd-moment stability) Let a compact set M ⊂ R2 be
given. Suppose that for all X 6∈ M

∂XV (X, t)T
(
− 1
c1

+ 1
γ2

)(
φ(t)X(t) + h(t)

)
< −1

2
σ2∂xxV (X, t). (25)

Then the dynamics (24) is a stochastic process with 2nd moment bounded.

6. Simulation example

The parameters of the simulation studies are summarized in Table 1. The
numerical studies have been conducted considering a thousand of players, five
populations, and a discretized set of states X from xmin = −50 to xmax = 50.
Graph G is a chain, see Fig. 3. The step size is dt = 1 and the horizon is
T = 30 in the first set of simulations and T = 50 in the other two sets.

The evolution of the state of each single player is

X(t+ 1) = X(t) + ξ̂(ρk −X) + σ rand[−1, 1]. (26)

Note that the above is a discretized version of (24). The initial state x
is randomly extracted as explained in the following. Also we consider a
discretized version of the second-order consensus dynamics by setting

m = (m1, . . . ,m5, ṁ1, . . . , ṁ5)T .
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We assume that the control and disturbance enter in the right-hand-side of
a second-order linear differential equation. Using the compact notation

µ•1(t) =
(
m1(t), . . . ,m5(t)

)T
, µ•2(t) =

(
ṁ1(t), . . . , ṁ5(t)

)T
,

the dynamics has the form of the second-order consensus dynamics:[
µ•1(t)
µ•2(t)

]
=

[
I I

−θL −θ̃(L+ θ̂I) + I

] [
µ•1(t− 1)
µ•2(t− 1)

]
t = 1, 2, . . . , T ;

(27)
µ•1(0) = (m1(0), . . . ,m5(0))T , µ•2(t) = (ṁ1(t), . . . , ṁ5(t))T = (0, . . . , 0)T ,

and where L is the normalized (one for the entries on the main diagonal, and
the reciprocal of the degree of node i for each adjacent node of i in the ith
row) Laplacian matrix of the communication graph G = (N,E). The elastic
and damping coefficients θ, θ̂ and θ̃ are as in Table 1.

We assume m0 to be Gaussian with mean m0 equal to 0. The standard
deviation std(m0) is set to 15. Then, the initial state x in (26) is obtained
from a random realization with density distribution law m0.

Figure 4 shows the time history of the microscopic evolution of each
agent’s state. Two phenomena can be observed at two different time-scale.
First, on a fast time-scale, agents in each single population k ∈ {1, . . . , 5}
synchronize to the local aggregate state ρk. Second, on a slower time-scale,
local aggregate states synchronize via second-order consensus dynamics. This
explains the inter-cluster oscillations clearly shown in the time plot.

In a second set of simulations we investigate the role of the elastic and
damping coefficients θ, θ̂ and θ̃. In particular, we simulate three different sce-
narios corresponding to an increasing damping coefficient θ̃ = 0.1, 0.35, 0.55.
To investigate how the system responds to periodic impulsive perturbations,
we reset the state to the initial value every 10 time units. The resulting time
plot is displayed in Fig. 5. On the left column we have the time plot of the
microscopic dynamics while on the right column we have the time plot of the
standard deviation. The damping effect is visually clear from top to bottom
in the plots of the left column.

A third set of simulations highlights the effects of the Brownian motion.
Here we consider three scenarios associated to three different values of the
parameter σ = 1, 2, 3. The resulting time plot is displayed in Fig. 6, where
we have the time plot of the microscopic dynamics on the left column and the
time plot of the standard deviation on the right column. As in the previous
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Figure 3: A thousand of players split into five populations with chain interaction topology.
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Figure 4: Inter-cluster oscillations due to local interactions via second-order consensus.

case, we reset the state to the initial value every 10 time units. A higher
coefficient σ results in a higher tolerance in the synchronization dynamics.
This is clear by looking at the plots from top to bottom in the left column.
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Figure 5: Inter-cluster oscillations: the influence of the damping coefficient in the second-
order consensus. The plots display the time on the x-axis and the angles (left), and the
standard deviation (right) on the y-axis.

7. Conclusions

This paper has studied synchronization via robust mean-field games. We
have shown that in less prescriptive environments, where individuals’ behav-
iors are not pre-programmed, synchronization may arise as an outcome of
strategic thinking, prediction, and local interactions. We have also shown
multi-scale phenomena involving fast local synchronization and slow inter-
cluster oscillations. Future directions of research involve i) stability analysis
under general topologies, ii) the extension of the framework to other coupling
effects, and iii) the specialization of the model to electricity pricing.

Appendix

Proof of Theorem 1

To prove (14) let the Hamiltonian and robust Hamiltonian be:

H(x, ∂xvk(x, t), ρk) = inf
u

{1

2

[
a(ρk − x)2 + cu2

]
+ ∂xvk(x, t)u

}
= 0,

H̃(x, ∂xvk(x, t),m) = H(x, ∂xvk(x, t), ρk) + sup
w

{
∂xvk(x, t)w −

1

2
γ2w2

}
.
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Figure 6: Inter-cluster oscillations: the influence of the Brownian motion coefficient σ. The
plots display the time on the x-axis and the rotors’ power angles (left), and the standard
deviation (right) on the y-axis.

Differentiating with respect to u and w we obtain (14). To derive (13) note
that the second and fourth equations are the boundary conditions and derive
from the HJI equation and the evolution of the law of states.

To obtain the first equation, which is a PDE corresponding to the HJI,
replace u∗k appearing in the Hamiltonian (28) by its expression in (14):

H(x, ∂xvk(x, t), ρk) =
1

2
a(ρk − x)2 − 1

2c

(
∂xvk(x, t)

)2

.

Using the above expression of the Hamiltonian in the HJI equation in (12),
we obtain the HJI in (13).

To obtain the third equation, which is a PDE representing the FPK equa-
tion, we simply plug (14) into the FPK in (12), and this concludes the proof.
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Proof of Theorem 2

Isolating the HJI part of (13) for fixed ρk, we have

∂tvk(x, t) +
(
− 1

2c1
+ 1

2γ2

)
|∂xvk(x, t)|2

+1
2
a(ρk(t)− x)2 + 1

2
σ2∂2

xxvk(x, t) = 0, in R× [0, T [,
vk(x, T ) = Ψ(ρk(T ), x), in R.

(28)

Consider the value function

vk(x, t) =
1

2
φ(t)x2 + h(t)x+ χ(t),

so that (28) can be rewritten as

1
2
φ̇(t)x2 + ḣ(t)x+ χ̇(t) +

(
− 1

2c1
+ 1

2γ2

)
[φ(t)2x2 + h(t)2

+2φ(t)h(t)x] + 1
2
a(ρk(t)

2 + x2 − 2ρk(t)x) + 1
2
σ2φ(t) = 0 in R× [0, T [,

φ(T ) = S, h(T ) = −Sρk(T ), χ(T ) = 1
2
Sρk(T )2.

Since this is an identity in x, it reduces to three equations:

φ̇(t) +
(
− 1
c1

+ 1
γ2

)
φ(t)2 + a = 0 in [0, T [, φ(T ) = S,

ḣ(t) +
(
− 1

2c1
+ 1

2γ2

)
2φ(t)h(t)− aρk(t) = 0

in [0, T [, h(T ) = −Sρk(T ),

χ̇(t) +
(
− 1

2c1
+ 1

2γ2

)
h(t)2 + 1

2
aρk(t)

2

+1
2
σ2φ(t) = 0 in [0, T [, χ(T ) = 1

2
Sρk(T )2.

(29)

For the mean-field equilibrium control and worst-case disturbance we have

u∗(x, t) = − 1
c1

(φ(t)x+ h(t)), w∗(x, t) = 1
γ2

(φ(t)x+ h(t)). (30)

By averaging the above expressions and substituting in d
dt
mk(t) = uk(t) +

wk(t) we obtain ṁ(t) = (− 1
c1

+ 1
γ2

)(φ(t)mk(t) + h(t)) as in (16). In the

stationary case, i.e. T →∞, we obtain from (29)(
− 1
c1

+ 1
γ2

)
φ2 + a = 0,(

− 1
c1

+ 1
γ2

)
φh− aρk = 0,(

− 1
c1

+ 1
γ2

)
h2 + aρ2

k + σ2φ = 0.
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Solving for φ and h yields

h = 1

φ
(
− 1
c1

+ 1
γ2

)aρk = φ

φ2
(
− 1
c1

+ 1
γ2

)aρk = −φρk.

Substituting in (30), control and disturbance take the form

u∗(x, t) = 1
c1
φ(ρk − x), w∗(x, t) = − 1

γ2
(ρk − x).

Then, mean states of neighbor populations follow the local interaction rule

d
dt
mk(t) = uk(t) + wk(t) = φ( 1

c1
− 1

γ2
)(
∑
j∈N(k)mj(t)

|N(k)| −mk(t))

= φ( 1
c1
− 1

γ2
) 1
|N(k)|(

∑
j∈N(k)(mj(t)−mk(t))).

In other words, local interaction involves a local averaging (the term including
the Laplacian defined below) and a local adjustment. For the vector of
aggregate states m = (m1,m2, . . . ,mp)

T , we have the consensus dynamics
ṁ(t) = −Lm(t), where L is the Laplacian matrix defined as

Lkj =


φ( 1

c1
− 1

γ2
) j = k,

−φ( 1
c1
− 1

γ2
) 1
|N(k)| j ∈ N(k), j 6= k,

0 otherwise.

Proof of Corollary 1

Since G = (V,E) is a balanced graph (or undirected graph), we have that
the second smallest eigenvalue λ2(φ) is defined by

min
1T ξ

ξTLξ

ξT ξ
= λ2(φ).

The above implies that ξTLξ ≥ λ2(φ)‖ξ‖2. Then

ν̇(ξ(t)) = −2ξTLξ ≤ −2λ2(φ)ξT ξ ≤ −2λ2(φ)ν(t).

Proof of Corollary 2

LetX(t) be a solution of (24) with initial valueX(0) 6∈ X . Set t = {inf t >
0|X(t) ∈ X} ≤ ∞ and let V (X(t)) = dist(X(t),X ). For all t ∈ [0, t]

V (X(t+ dt))− V (X(t)) = ‖X(t) + dX(t)− ΠX (X(t))‖ − ‖X(t)− ΠX (X(t))‖
= 1
‖X(t)+dX(t)−ΠX (X(t))‖‖X(t) + dX(t)− ΠX (X(t))‖2

− 1
‖X(t)−ΠX (X(t))‖‖X(t)− ΠX (X(t))‖2.
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From the definition of infinitesimal generator

LV (X(t)) = limdt→0
EV (X(t+dt))−V (X(t))

dt

= limdt→0
1
dt

[
E
(

1
‖X(t)+dX(t)−ΠX (X(t))‖‖X(t) + dX(t)

−ΠX (X(t))‖2
)
− 1
‖X(t)−ΠX (X(t))‖‖X(t)− ΠX (X(t))‖2

]
≤ 1
‖X(t)−ΠX (X(t))‖

[
∂XV (X, t)T

(
− 1
c1

+ 1
γ2

)(
φ(t)X(t) + h(t)

))
+ 1

2
σ2∂xxV (X, t)

]
.

From (25) the above implies that LV (X(t)) < 0, for all X(t) 6∈ M.
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