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Abstract— This paper addresses convergence and equilibrium
properties of game theoretic learning algorithms in robot popu-
lations using simple and broadly applicable reward/cost models
of cooperation between robotic agents. Regret based methods
of robot learning to cooperate are joined with relevant results
of midfield game theory to achieve results on asymptotic second
moment boundedness in the variation of cooperative behaviour.
A second result proves worst case stability of behaviours holds
asymptotically and the results are illustrated in simulation.

I. INTRODUCTION

Learning of cooperative behaviour in multi-agent systems
and robots is an actively researched area where there are few
unifying themes today. This paper is looking convergence
of population behaviour and learning in a relatively simple
game theoretic framework where robotic agents are awarded
for cooperating with others and also pay costs for coopera-
tion. Related research is wide and diverse. [1] investigated
probabilistic convergence of joint actions in discrete and con-
tinuous strategy potential games under the log-linear learning
algorithm. [2] present a cooperative learning algorithm to
accommodate for the individualistic Q-Learning as well as
the collaborative advice sharing, resulting in an approach
where a multi-robot team can improve cooperation and also
enhance individual performance concurrently.

[3] discusses how multiple robots can emerge cooperative
behaviours through co-evolutionary processes in an actor-
critic architecture as an integration of local predictive models
and vector-valued reward functions. [4] propose a framework
for addressing sensor and actuator failure tolerances by incor-
porating a learning-based supervisor synthesis approach and
control reconfiguration mechanism in multi-agent systems.
[5] presents a method for two wheeled mobile robots to
navigate in unknown environments while learning to carry
an object together. In their navigation leader robot and
a follower robot cooperatively perform obstacle boundary
following or target seeking (TS) to reach a target location.
In [6] a dynamic neural network model was used in an exper-
iment of robots learning to make them cooperate with others
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under potential unpredictability of the others’ behaviours.
[7] addresses the problem of robot learning cooperative
behaviour in an interactive task with a human - they use
probabilistic learning of dynamical system models to encode
the robot’s motion along the task.

[8] addresses the complexity of decentralised learning of
behaviours by proposing time-sharing tracking framework in
which a joint-state best-response Q-learning method serves
as the primary algorithm to adapt to the cooperating robots’
policies where agents learn the optimal cooperative policy
eventually - as illustrated in simulation examples. In [9] a top
down and iterative approach is proposed following a divide-
and-conquer where a multi-agent system is modelled as a
concurrent discrete-event system defined by a collection of
finite automata that interact with each other.

This paper considers a simple cost-benefits model of coop-
eration between robotic agents where results from midfield
game theory can be utilised. We prove that there are regret
based [10], [11] strategies of learning to cooperate with
other agents which leads to convergence to an equilibrium
of cooperative behaviour.

The next section outlines some scenarios to motivate
our problem through examples where robot cooperation
is evidently useful and also defines the basic cost-reward
model. Section 3 introduces the agent cooperation problem
in its most general form where probabilities of creating and
dropping cooperation and evolution of agents’ cooperation
levels are discussed. Section 4 contains the main results in
Theorem 1 on second moment boundedness and Theorem
2 on worst-case stability cooperative behaviours. Sections 5
and 6 presents simulations and conclude the paper, respec-
tively.

II. SOME PROBLEMS IN COOPERATIVE ROBOTICS

This section introduces some novel models of robot col-
laboration for which the cooperation paradigm of the theory
presented in this paper can be applied.

A. Assistive observation relay

A large group of robots is collecting a set of small moving
objects (animals or useful materials) in an environment.
The robots have limited sensing capability of vision with
55o angle of view with 3 cameras which are best used to
observe a scene at a distance of about d > 5 meters. Area
coverage of the cameras is very poor to enable a robot to
its own vicinity at once, while another robot can observe a
robots whole environment from a distance of about d using
a mono camera (the robot can only see a small section of
its own immediate environment around it). Also the robot



has difficulty to observe its own body if it is covered by the
moving objects (for instance pollution). Robots can help each
other in such a situation to deal with the moving objects by
collecting them (killing them or wiping them clean if they
are pollution phenomena).

This is not unlike when friends observe each other’s cloth-
ing and adjust a collar or a misaligned tie. This is cooperation
among humans to help each other to look good. Lack of
cooperation can leave them sometime not looking the best,
hence friendship pays off in many ways. When our robots
deal with a persistent set of reoccurring pollutants to be
collected the benefits of cooperation in sharing observations
is immediate.

We can assume that robot’s arms are independently oper-
ated from its observation cameras. A robot i observing the
body and environment of another robot j costs cxi in terms
of observation made and imaging relayed to j at modelling
quality level xi. Vice versa, robot j can observe robot i
and relay the information to it at modelling quality level xi.
Assuming that the benefits for the control system of each
robot i (for catching the moving objects) are proportional
by a factor b to the quality of model xj relayed by another
robot, it follows that robot i benefits by bxj .

B. Clearing an area by robots

Consider that a set of robots in a large industrial site need
to clear an area from various objects which can weigh mul-
tiple of the carrying capability of a single robot. Whenever
they cooperated in carrying an object in pairs, three working
together or four of them, their cost of contribution will
proportionally depend on their weight carrying capability xj
which is proportional to their energy consumption by a factor
of c . On the other hand, each time a heavy object is carried
(which they were not able to carry themselves) they get a
contribution measured by bxi by each collaborating partner.
In this model the benefit for each robot in cooperation is then
approximately proportional to the total weight of the object
carried, with a proportionality factor b.

C. Cooperation in model predictive control

In some environmental control problems, robots may need
to coordinate precise movements to handle objects. An
obvious choice for real time control of their movements is
distributed model predictive control (DMPC). In DMPC, the
overall system is controlled by a number of independent
but interacting controllers or control agents, which share
information (predictions) in order to achieve coordinated
control [12]. For example, consider the simple scenario
where a linear time-invariant system[

z+
1

z+
2

]
= A

[
z1

z2

]
+B

[
u1

u2

]
is to be controlled by two distributed control agents, such
that constraints z ∈ Z, u ∈ U are met. The non-cooperative
optimal control problem for agent i ∈ {1, 2} is

V 0
i (zi;uj) = min

ui

{
Vi(zi,ui) : ui ∈ Ui(zi;uj)

}

where Vi is a finite-horizon cost function, ui is the predicted
sequence of controls, and Ui is a feasible set defined by the
dynamical model and the constraints. The problem is coupled
because the subsystems i = 1, 2 may be dynamically coupled
(via off-diagonal terms in A, B) or share constraints. Hence,
the feasible set Ui – and the optimal cost V 0

i – depends on
the current plan of the other agent, uj .

A non-cooperative approach here is known to lead to
optimized controls that are not Pareto efficient [13] with
respect to a system-wide cost

V1(z1,u1) + V2(z2,u2),

Therefore, in cooperative approaches [14]–[16], each agent
attempts to optimize the system-wide cost rather than just its
own cost, by minimizing

(1− xi)Vi(zi,ui) + xiVj(zj ,uj).

The scalar xi denotes the level of cooperation: with xi = 0
the agent is non-cooperative, while xi = 1 results in entirely
altruistic behaviour. Situations exist for both dynamically
coupled systems [13] and dynamically decoupled systems
with coupled constraints [16] such that

V1(u∗1) > V1(u0
1)

and V2(u∗2) < V2(u0
2)

but V1(u∗1) + V2(u∗1) < V1(u0
1) + V2(u0

1),

where (u0
1,u

0
2) are the solutions obtained from the non-

cooperative MPC optimizations, and (u∗1,u
∗
2) are those from

cooperative MPC. Thus, the cost to agent 1 here is

V1(u∗1)− V1(u0
1)

while the benefit to agent 2 is

V2(u0
2)− V2(u∗2).

Therefore, in adopting a cooperative objective, a control
agent may sacrifice his own minimal cost for the benefit
of the overall system.

D. Cooperation of autonomous cars

Consider the case of autonomous cars move along a road.
The behaviour of the cars, the safe distance they keep from
the car ahead and behind, can vary. This can be seen as
the case where xi represents the behaviour of each car. A
cooperative car with xi = 1, will show “polite” behaviour
with respect to the vehicle in front as it will keep a safe
distance. On the other hand a non-cooperative car with
xi = 0 will leave a minimum distance to the car in front. In
addition, each individual car would like to adapt its behaviour
according to the behaviour of other cars as drivers do.

In [17] and [18] a model predictive control approach
was used to update vehicle velocities by optimising a cost
function, using the optimal velocity model. The cost function
to update the velocity of vehicle i has been defined as



follows, given that vehicles j and k are ahead and behind,
respectively.

L(y, v, u) = wv(vi(t)− Vd)2 + wuu
2
i

+wfg
2(yj(t), yi(t), vj(t)) + ws(t)S

2
err(t)

(1)
where yi(t) and yj(t) denote the position of vehicles i
and j, vi(t) and vj(t) denote their velocities, ui is the
control cost of vehicle i’s velocity update. The cost term
g(yj(t), yi(t), vj(t)) is defined as: g(yj(t), yi(t), vj(t)) =
κ(V1 + V2 tanh[C1(yi − yj − lm) − C2] − vj), with κ, V1,
V2, C1 and C2 being constants and lm is the minimum
allowable distance between vehicles i and j. wv , wu and
wf are constant weights, ws(t) is a time varying weight and
Serr(t) = S0 + thvi(t)− (yk − yi), is the penalty cost that
takes into account the distance with vehicle k, th and S0

are constants. The first term of the cost function represents
the cost of not moving with the desired velocity Vd, the
second term is the cost of updating the velocity, the third
and forth terms represent the costs of changing the distance
with vehicle j and k, respectively.

Based on the cooperation level of xi of vehicle i, the
weights of (1) can change in order to take into account the
behaviour of i. Thus (1) can be written as:

L(y, v, u) = (1− xi)(vi(t)− Vd)2 + wuu
2
i

+xig
2(yj(t), yi(t), vj(t)) + xiS

2
err(t)

(2)
A cooperative vehicle i will have small cost for not following
its desired velocity, Vd, when the cost for having smaller
distance than the desired one with the other vehicles, will be
the most important factors in the optimisation process of (2).
On the other hand the first term will be the most important
term in the optimisation process of a non-cooperative vehicle.

Another approach that is widely used to describe traffic is
based on cellular automata. A popular model that describes
traffic in motorways using cellular automata is the Nagel-
Schrekenberg model [19]. In [19] the area of interest was
divided in cells of 7.5 meters width, and each vehicle’s
velocity, vi, which denotes the number of cells that a vehicle
will move, is an integer between zero and vmax. Then the
following rules are applying in order to update a vehicle’s
velocity at time t, vti :

• vti = min(vt−1
i +1, vmax) if there are vt−1

i +1 or vmax
unoccupied cells in front of vehicle i

• vti = vp if there are only vp, vp ≤ vt−1
i + 1 unoccupied

cells in front of vehicle i
• vti = max(vt−1

i − 1, 0) with probability p

where p is a small probability under which some unex-
pected slowdown of the vehicles can occur.

The Nagel-Schrekenberg model can be extended in order
to take into account the coordination levels of the vehicles
as follows:

1) Each vehicle i at time t computes the distance it wants
to keep from the next vehicle j as di,j = bxidminc

2) Update vehicle i’s velocity as follows:

• vti = min(vt−1
i + 1, vmax), if vehicle j, is either

vmax+di,j or vt−1
i +1+di,j cells away, otherwise

• vti = vd where vd = nttot − di,j , and nttot are the
total number of empty cells in front of vehicle i,
otherwise

• vti = max(vt−1
i − 1, 0) with probability p.

where dmin is the minimum safe distance, minimum number
of cells, a cooperative vehicle wants to have from the other
vehicles

E. Cost and reward model

There is a common model for all the above examples. For
simplicity and to be able to treat the problem analytically,
the success (or reward) of a node i at time t is measured
by

−deg[vi]
tcxti + b

∑
j∈N t

i

xtj (3)

where N t
i = {j ∈ I : wij > 0}, is the set of robotic

agents cooperating with agent i or neighbours of agent i
hereafter, deg[vi]

t = |N t
i | is the cardinality of N t

i , and b,
c are constants with b > c the benefit (reward) and cost
coefficients.

III. PROBLEM STATEMENT

Cooperative robotics can find inspiration from the results
in the evolution theory of cooperative networks. In [20] the
evolution of networks in terms of cooperative behaviour and
connections among the nodes has been studied. In particular
the evolution of networks has been addressed, which start
from a single node and expand up to Ntot nodes under
assumptions that the nodes behaviour and tendency to create
new links is based on the Simultaneous Emergence and
Evolution (SEE) model.

Robotic swarms dealing with the environment can benefit
from cooperative behaviour: they can create new links of
cooperation with other robots to improve what they can
achieve. They can benefit from cooperation and overall the
price they pay for cooperation can be outweighed by the
benefits they receive. The advantage of SEE against other
alternatives, such as the one in [21], is that SEE takes
into account also the behavioural properties of other robotic
nodes.

In this article a new model is proposed, equally applicable
to abstract nodes, not only robots but any kind of agents,
physical or non-physical on networks or in physical envi-
ronments, which extend SEE in order to take into account
past interactions and the probability to drop an existing
connection or create a new link. In contrast to SEE, the focus
is placed on the evolution of connections and behaviour of
networks with constant upper limit of the number of nodes
Ntot.

Similarly to prior work on SEE [20], we consider networks
which can be represented as graphs, G(V,W), where V =
{v1, . . . , vNtot

}, is a non-empty set, which contains the
nodes of the network, and W is the adjacency matrix with



entries wij . We consider undirected graphs, therefore W is
a symmetric matrix, wij = wji with wij defined as:

wij =

{
1 if nodes i and j are connected
0 otherwise

In the case that the network evolves over time then W
depends on time and will be denoted by Wt with entries
wtij .

The creation or the drop of a cooperative link and the
choices made for the best coordination level, can be cast
as a game, where nodes are the players and their action is
the cooperation level and creation or the drop of a link. In
particular, Continuous Action Iterative Prisoners’ Dilemma
(CAIPD) [22] can be used in order to define this process. In
CAIPD a cooperative node has to pay a cost c and the benefit
of his neighbour node will be b. Thus a node that chooses to
defect, pays no cost but can be benefited by connecting to
its cooperative neighbours. Thus in CAIPD each node i at
iteration t has chosen a cooperation level xti (indicating the
degree of involvement in all cooperation of node i at time
t, which proportionately measures the cost and benefits of
cooperation with cost coefficients c and benefit coefficient
b), which results in a vector of cooperation levels xt =(
xt1, . . . , xNt

tot

)T
. In particular ∀i ∈ I = {1, 2, . . . , Ntot},

0 ≤ xti < 1, with xti = 0 denoting a purely defecting node
and xti = 1 denoting a purely cooperative node. The success
of a node i at time t is measured by its fitness f ti (x) as:

f ti (x
t) = −deg[vi]

tcxti + b
∑
j∈N t

i

xtj (4)

where N t
i = {j ∈ I : wij > 0}, is the set of neighbour

nodes of node i, deg[vi]
t = |N t

i | is the cardinality of N t
i ,

and b, c are constants with b > c.

A. Probability to create or drop a link

In this subsection we define the probability that a node
creates or drops a link according to our proposed model,
which are introduced in terms of regret learning. Each node
will maintain a history of regret that they had either because
they didn’t create or they didn’t drop a link with other nodes.
Hence we assume that the nodes are able to assess the cost
and benefits of hypothetical cooperation with nodes they had
not been not yet connected with. In particular, the regret of
a node i not to connect with node j when t iterations of
CAIPD had been played, Rt+1

i (ai,c(j)), is defined as:

Rt+1
i (ai,c(j)) = w̃tij(

1
t (f

t+1
i,c (xt)− f ti (xt))

+(1− 1
t )R

t
i(ai,c(j)))

(5)

where w̃tij =

{
1 if nodes i and j are not connected
0 otherwise ,

f ti,c(x
t−1
c ) is the fitness of player/node i when the new node

is added in N t−1
i , and α̃1.

The probability then node i will create a link with a node
j can be computed using (5) as follows:

pt+1
ijc =

eβR
t+1
i (ai,c(j))∑

j̃∈N t
ic
eβR

t+1
i (ai,c(j̃))

(6)

where N t
ic = {j ∈ I : wtij = 0}, is the set of nodes that is

not connected with node i and β is a learning rate.
Similarly the regret of a node i keeping a connection

with node j when t iterations of CAIPD have been played,
Rt+1
i (ai,d(j)), is defined as:

Rt+1
i (ai,d(j)) = wtij(

1
t (f

t+1
i/j,d(x

t
d)− f

t+1
i/j (xt))

+(1− 1
t )R

t
i(ai,d(j)))

(7)

where f t+1
i,d (xtd) is the fitness of player i when j is removed

from N t−1
i .

The probability of node i dropping the link with a node j
will be defined as:

pijd =
eβR

t
i(ai,d(j))∑

j̄∈N t
i
eβR

t
i(ai,d(j̄))

(8)

where β is a learning rate.

B. Evolution of nodes’ cooperation levels

In [20] the updates of the nodes’ coordination level were
based on the tendency each node has, because of (4), to align
with the the coordination levels of its neighbour nodes. More
formally the change in cooperation level in SEE model for
an agent i is computed as:

ẋti =
1

deg[vi]t

Ntot∑
j=1

ptij(x
t
j − xti)

 (9)

where ptij is defined as ptij = 1

1+e
ft
j
(xt)−ft

i
(xt)

.
A direct extension of the SEE model (9), is to take also

into account the evolution in the hypothetical cooperation
levels which are due to the nodes which node i want to be
connected or want to drop its existing links. Thus the updates
the change in cooperation level for an agent i is computed
as:

ẋti = 1
deg[vi]t

(∑Ntot

j=1 p
t
ij(x

t
j − xti)

)
+κ1

(∑Ntot

j=1 p
t
ijc(x

t
j − xti)

)
−κ2

(∑Ntot

j=1 p
t
ijd(x

t
j − xti)

) (10)

where κ1 and κ2 are constants. The first term of (10) is the
same as in (9), the second term represents the hypothetical
cooperation level which is due to the nodes which node
i want to be connected with. Finally the third term, is
represents the tendency of agent i to deviate from the
coordination level of the agents which he wants to drop links
with.

The proposed model for the evolution of cooperation level,
in matrix form can be written as:

ẋt = DtLtxt + (κ1L̃
t − κ2L̄

t)xt (11)

where ẋt and xt are Ntot × 1 vectors, Dt is a diagonal
Ntot × Ntot matrix, with Dt[i, i] = 1

deg[vi]t
and Lt L̃t and

L̄t are Ntot×Ntot stochastic matrices which are defined as:
• Lt[i, i] =

∑
j∈N t ptij and Lt[i, j] = −ptij

• L̃t[i, i] =
∑
j∈N t ptijc and Lt[i, j] = −ptijc

• L̄t[i, i] =
∑
j∈N t ptijd and Lt[i, j] = −ptijd



Note here that if only the first term of the model will
be considered, ẋt = DtLtxt, this is the evolution of
coordination levels in SEE model.

SEE and (11) are deterministic models. In order to take
into account that new connections and link drops are not
occurred deterministically, the following stochastic version
of (11) can be used:

ẋt = DtLtxt + κ3ε. (12)

where κ3 = t3/2(κ1L̃
t − κ2L̄

t)x and each element of ε is
defined as ε[i] ∼ N(0, 1). Note here that the disturbances
that are introduced are increasing over the time. In order to
bound the effects of disturbances we will set kappa1 and κ2

to be equal to 1
t .

IV. MAIN RESULTS

A. Stochastic approach

Based on the above result, let us now substitute the
expression of the mean-field equilibrium strategy u∗ =
−R−1BT [PX+ Ψ] as in (??) in the open-loop microscopic
dynamics dX(t) = (AX(t) +Bu(t) +C)dt+ ΣdB(t) given
in (??) so to obtain the closed-loop microscopic dynamics

dxti = [DtLt]i·x
tdt+ σdBt (13)

Now, let X be the set of equilibrium points for (13),
namely, the set of X such that

X = {x ∈??|[DtLt]i·x = 0}

and let V (xt) = dist(xt,X ).1 The next result establishes
a condition under which the above dynamics converges
asymptotically to the set of equilibrium points.

Theorem 1: (2nd moment boundedness) Let a compact
set M⊂ R2 be given. Suppose that for all x 6∈ M

∂xV (x)T
(

[DtLt]i·x
)
< − 1

2σ
2(x)∂xxV (x) (14)

then dynamics (13) is a stochastic process with 2nd
moment bounded.

Proof:
Let xt be a solution of dynamics (13) with initial value

x0 6∈ X . Set t = {inf t > 0|xt ∈ X} ≤ ∞ and let V (xt) =
dist(xt,X ). For all t ∈ [0, t] 2

V (xt+dt)− V (xt) = ‖xt+dt −ΠX (xt)‖ − ‖xt −ΠX (xt)‖

= ‖xt + dxt −ΠX (xt)‖ − ‖xt −ΠX (xt)‖

= 1
‖xt+dxt−ΠX (xt)‖‖x

t + dxt −ΠX (xt)‖2−

1
‖xt−ΠX (xt)‖‖x

t −ΠX (xt)‖2.

1define distance
2Define projection

From the definition of infinitesimal generator

LV (xt) = limdt→0
EV (xt+dt)−V (xt)

dt

= limdt→0
1
dt

[
E
(

1
‖xt+dxt−ΠX (xt)‖‖x

t + dxt −ΠX (xt)‖2
)

− 1
‖xt−ΠX (xt)‖‖x

t −ΠX (xt)‖2
]

≤ 1
‖xt−ΠX (xt)‖

[
∂xV (xt)T

(
[DtLt]i·x

t
)

+ 1
2σ

2(xt)
]
.

From (14) the above implies that LV (xt) < 0, for all
xt 6∈ M and this concludes our proof.

B. Worst-case approach

Let us note that by substituting the mean-field equilibrium
strategies u∗ = −R−1BT [PX+Ψ] and w∗ = 1

γ2D
T [PX+

Ψ] as given in (??) in the open-loop microscopic dynamics
Ẋ(t) = AX(t) + Bu(t) + C + Dw as defined in (??), the
closed-loop microscopic dynamics is

ẋti = [DtLt]i·x
t + k1[L̃t]i·x

t + k2[L̄t]i·x
t (15)

Now, let X be the set of equilibrium points for (??),
namely, the set of X such that

X = {x ∈??|[DtLt]i·x
t + k1[L̃t]i·x

t + k2[L̄t]i·x
t = 0},

and let V (xt) = dist(xt,X ). The next result establishes
a condition under which the above dynamics converges
asymptotically to the set of equilibrium points.

Theorem 2: (worst-case stability) If it holds

∂xV (xt)T
(

[DtLt]i·x
t + k1[L̃t]i·x

t + k2[L̄t]i·x
t
)

< −‖xt −ΠX (xt)‖2
(16)

then dynamics (15) is asymptotically stable, namely,
limt→∞ dist(xt,X ) = 0.

Proof: Let xt be a solution of dynamics (15) with initial
value x0 6= X . Set t = {inf t > 0|xt ∈ X} ≤ ∞ and let
V (xt) = dist(xt,X ). For all t ∈ [0, t]

V (xt+dt)− V (xt) = ‖xt+dt −ΠX (xt)‖ − ‖xt −ΠX (xt)‖

= ‖xt + dxt −ΠX (xt)‖ − ‖xt −ΠX (xt)‖

= 1
‖xt+dxt−ΠX (xt)‖‖x

t + dxt −ΠX (xt)‖2

− 1
‖xt−ΠX (xt)‖‖x

t −ΠX (xt)‖2.

From the definition of infinitesimal generator

V̇ (xt) = limdt→0
V (xt+dt)−V (xt)

dt

= limdt→0
1
dt

[
1

‖xt+dxt−ΠX (xt)‖‖x
t + dxt −ΠX (xt)‖2

≤ 1
‖xt−ΠX (xt)‖

[
∂xV (xt)T

(
[DtLt]i·x

t

+k1[L̃t]i·x
t + k2[L̄t]i·x

t
)
≤ 0

which implies LV (xt) < 0, for all xt 6= X and this
concludes our proof.



Fig. 1. Average variance of 100 simulation instances

Figure 1 shows the evolution of the variance of the model
in 12, for 100 simulation instances of networks with 1000
nodes. Therein the variance is not only constant but also
tends to zero as the number of iterations increases.

V. SIMULATION RESULTS

This section is divided in three parts. The first part
illustrates the results of sample network when is generated
either by SEE model, the deterministic model in (11), or by
the stochastic model in (12). The second part present the
average results in the cooperation level of each node of 100
network instances. Finally the third part contains simulation
results and comparisons of the cooperation level and the
distance between cars in a simulation scenario of cooperative
autonomous cars moving in a heavy traffic road. In all parts
we followed [20] and set the parameters for all models of
cooperation level update to b = 4, c = 1 and β = 1.

A. Sample networks

In this section numerical results of a sampled network
for the SEE model and the two models we propose, are
presented. The results of the three models are present for a
network evolution case where 1000 nodes, uniformly chosen
initial cooperation level in the interval 0 ≤ xi ≤ 1, and initial
degree of each node 10.

In all figures the top left plot depicts the clusters of coordi-
nation level in the last iteration of the evolution process, the
evolution of the coordination level of all nodes as a function
of time is depicted in the top right plots. The histogram
on the bottom left depicts the distribution of the number
connections between the nodes. Finally the bottom right plot
depicts the variance of the cooperation level.

As it is depicted in Figures 2,3 and 4 the variance of
the three coordination level vanishes very fast in all three
models. On the other hand there are difference in the all
the measures we report. In particular we can see that in
the SEE model rang of the coordination levels among the
nodes have greater range than the other two models, with
the deterministic model in (11) having the smallest range.
This is also depicted in the histogram of the clusters of
coordination levels of these three Figures. In addition the
number of clusters significantly differs between the SEE and
the other two models, since in the two models we propose

Fig. 2. Results for the SEE model.

Fig. 3. Results for the deterministic model in 11

Fig. 4. Results for the deterministic model in 12



Fig. 5. Number of connections levels of 100 simulation instances of SEE
model

Fig. 6. Number of connections levels of 100 simulation instances of the
model in (11)

there is a node that has significantly more connections than
the others.

B. Results of 100 simulation instances.

This section illustrates the average results for 100 instance
of network structures. In each instance a network of 1000
nodes was considered, with uniformly chosen initial cooper-
ation levels in the interval 0 ≤ xi ≤ 1, and initial degree of
each node 10.

Histograms 5, 6 and 7 depict the number of connections
that was observed in each of the 100 networks simulated.
The models in (11) and (12) in all simulations appear to
generate a cluster of few nodes with significantly more
connections than the majority of the nodes. The range of

Fig. 7. Number of connections levels of 100 simulation instances of the
model in 12

Fig. 8. Average coordination level of the three models as a function of
time.

the number of connections in these two models is from 70
to 500 connections. On the other hand in the SEE model less
nodes appear with the maximum number of connections to
be less than 130 nodes. This difference is due to the different
definitions of the probability to create links between the two
proposed models and SEE model. Additionally the number
of the links that was dropped in each instance didn’t affect
the nodes with the high connectivity in the two proposed
models.

Figure 8 depicts the average coordination level of the three
models. The two deterministic models, SEE and (11) had
similar behaviour, with both models having a coordination
level around 0.5. On the other hand the coordination level
of the stochastic model after 50 iterations increased to 0.8.

C. Cooperative autonomous cars in heavy traffic

The optimal velocity model [17] and the Nagel-
Schrekenberg model [19] are studying the changes in traffic
flow in congested roads. In this article these two models
in conjunction with models of network evolution in order to
study the impact of coordination level in vehicles’ behaviour,
i.e. their average velocity and their coordination levels. In
order to use the network evolution models each vehicle is
assumed to be a node in the network and spatial restrictions
are imposed to the nodes that can be connected. Thus a
vehicle can influence with its behaviour, coordination level,
only the vehicles that its near to it.

We will use two variants of the single lane congested
road that used in both [17] and [19], to take into account
the continuous and discrete nature of the velocities in each
case. In the first variance we will place 100 vehicles in a
single lane road, with the distances between vehicles to be
uniformly chosen from the interval [1, 30] meters. The initial
velocities of the cars were also chosen uniformly from the
interval (0, 30] m/s. Each vehicle i adjusts its coordination
levels xi, based on the coordination levels of the vehicles
in a range of 30 meters in front and behind it. Note that
it is not necessary that a vehicle will be “connected”, i.e.
will take into account, with all the vehicles in its range.
In order to define the cooperation levels of each vehicle
the following two variables are introduced di,j and dmin
which denote the distance between vehicle i and j and the
minimum safe distance when a vehicle is fully cooperative.



SEE Model in (11) Model in (12)
Average Velocity 24.12 m/s 25.1077m/s 25.022m/s

Standard error 0.0259 0.0316 0.0413

TABLE I
AVERAGE VELOCITY OF EACH AUTONOMOUS VEHICLE AND ITS

CORRESPONDING STANDARD ERROR FOR THE THREE MODELS, WHEN

THE OPTIMAL VELOCITY MODEL IS USED.

Fig. 9. Clusters of coordination level for the SEE model

The coordination level of a vehicle i can be defined then as
xi =

di,j
dmin

, where di,j is the distance of vehicle i from the
vehicle in front of it and dmin = 30 meters. If di,j > 30
meters or there is no vehicle in front of vehicle i, then xi = 1.
The cost function in (2) can be used in order to update the
velocities. The range of the control function, acceleration is
defined as −umax ≤ ui ≤ umax, with umax = 3.75 m/s2

and th = 1.8 seconds.
Table I illustrates the average velocity of a car for each

of the three coordination models that were tested. When the
deterministic model in (11) the maximum average velocity
observed. This can be explained by its coordination levels,
Figure 10, that had concentrated in the area of 0.5. When the
other two models are considered their range of coordination
level, Figures 9 and 10, was wider than the one in Figure
10. This can be explained by the spatial restrictions that
are imposed and limits the number of possible vehicles that
can be “connected” and therefore influence other vehicles
behaviour.

In the second variant the single lane was discretised in
cells of 7.5 meters, with each cell being occupied by one
vehicle at each time. Similarly to the continuous case 100
vehicles were used, with the distances between vehicles to
be uniformly chosen from the interval [0, 4] cells. The initial
velocities of the cars were also chosen uniformly from the
interval [1, 3] cells per time instance. Each vehicle i adjusts
its coordination levels xi, based on the coordination levels
of the vehicles in a range of 4 cells in front and behind it.

ovmm1.png

Fig. 10. Clusters of coordination level for the model in (11)

Fig. 11. Clusters of coordination level for the model in (12)

SEE Model in (11) Model in (12)
Average Velocity 18.9847 m/s 19.152m/s 19.41m/s

Standard error 0.1725 0.2550 0.2175

TABLE II
AVERAGE VELOCITY OF EACH AUTONOMOUS VEHICLE AND ITS

CORRESPONDING STANDARD ERROR FOR THE THREE MODELS, WHEN

NAGEL-SCHREKENBERG MODEL IS USED.

again it is not necessary that a vehicle will be “connected”
with all the vehicles in its range. The coordination level of a
vehicle i can be defined then as xi =

di,j
dmin

, where di,j is the
distance of vehicle i from the vehicle in front of it, number of
empty cells in front of it times7.5, and dmin = 30 meters. If
di,j > 30 meters or there is no vehicle in front of vehicle i,
then xi = 1. Then the variant of Nagel-Schrekenberg model
presented in Section II-D can be used to update vehicles’
velocities.

Similarly to the results of the optimal velocity model’s, as
it is shown in Table II, the absolute difference in the average
velocity between the three models are small, but when the
two proposed models are used we observe an improvement
in average velocity.

Histograms 12, 13 and 14 depict the cluster of coordina-
tion levels that created over the 100 simulation instances and
the average number of vehicles that belong to each cluster.
The coordination level for the SEE model has smallest range
than the proposed ones. The difference from the optimal
velocity model can be explained from the extra restriction
in the coordination levels which is now a discrete variable.

VI. CONCLUSIONS AND FUTURE WORK

In this article two variants of the SEE model for network
evolution were presented. A feature of these variants that is
absent of SEE model is the ability to drop links as well.
In both variants regret based learning was used in order to
define the probability to create a new link or drop an existing
one. The second order convergence of the stochastic model
was shown. Simulations were employed in order to study the
properties of the proposed models. In addition simulations
in order to identify the effect of the proposed models in the
velocity of autonomous cars were employed.

In future work the effects that various parameters can have
to the proposed variants of SEE will be studied. Additionally



Fig. 12. Clusters of coordination level for the SEE model

Fig. 13. Clusters of coordination level for the model in (11)

more complicated traffic models wil be considered in order
to take into account multiple lanes or junctions.
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