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Distributed n-player approachability and consensus
in coalitional games
Dario Bauso and Giuseppe Notarstefano

Abstract—We study a distributed allocation process where,
at each time, every player i) proposes a new bid based on
the average utilities produced up to that time, ii) adjusts such
allocations based on the inputs received from its neighbors, and
iii) generates and allocates new utilities. The average allocations
evolve according to a doubly (over time and space) averaging
algorithm. We study conditions under which the average allo-
cations reach consensus to any point within a predefined target
set even in the presence of adversarial disturbances. Motivations
arise in the context of coalitional games with transferable utilities
(TU) where the target set is any set of allocations that makes
the grand coalition stable.

I. INTRODUCTION

We consider a two-step distributed allocation process
where, at every time, the players first adjust their average
allocation vectors based on the inputs received from their
neighbor players and second generate a new utility and
allocate it. The time-averaged allocations evolve according
to a doubly (over time and space) averaging dynamics. The
goal is to let all allocations reach consensus to any value in
a predefined target set even in the presence of adversarial
disturbances.
Motivations. The problem arises in the context of dynamic
coalitional games with Transferable Utilities (TU games) [?].
A coalitional TU game consists in a set of players, who can
form coalitions, and a characteristic function that provides a
value for each coalition. The predefined set introduced above
can be thought of as (but it is not limited to) the core of the
game. This is the set of imputations under which no coalition
has a value greater than the sum of its players’ payoffs. By
payoff we mean the share allocated to the player. Therefore,
no coalition has incentives to leave the grand coalition and
receive a larger payoff.
Highlights of contributions. We analyze conditions under
which the average allocations: (i) approach a given target
set (Theorem 1), (ii) reach consensus, in which case we
also compute the consensus value (Theorem 2), and (iii)
are robust against disturbances (Theorem 3). Validation of
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such conditions implies the solution of a quadratic program
(projection on a convex set) and a feasibility linear program
(find at least a feasible solution of a set of inequalities).
Related literature. TU games were first introduced by von
Neumann and Morgenstern [?]. Here, a main issue is to
study whether the core is an “approachable” set, and which
allocation processes can lead to stable payoff allocations in
that set. Approachability theory was developed by Blackwell
in the early ’56 in [?], and is captured in the well-known
Blackwell’s Theorem. The geometric (approachability) prin-
ciple upon which the Blackwell’s Theorem is built, is used
in several application domains such as allocation processes
([?], Section 3.2), regret minimization ([?], Equation C.1),
and machine learning (see [?] Section 2).

The discrete-time dynamics considered in this paper in-
volves a distributed averaging process (see, e.g., [?] and
references therein) and this is an element in common with
distributed multi-agent optimization [?], [?], [?], [?], [?], [?].

This paper is organized as follows. In Section, II, we for-
mulate the problem and discuss motivations and assumptions.
In Section III, we illustrate the main results. In Section IV we
provide a numerical study. Finally, in Section V, we provide
concluding remarks and future directions.
Notation. For a vector x, we use xj or [x]j to denote its
jth component. We let x′ denote the transpose of a vector
x, and ‖x‖ denote its Euclidean norm. An n × n matrix
A is row-stochastic if the matrix has nonnegative entries aij
and

∑n
j=1 a

i
j = 1 for all i = 1, . . . , n. For a matrix A,

we use aij to denote its ijth entry. A matrix A is doubly
stochastic if both A and its transpose A′ are row-stochastic.
We use |S| for the cardinality of a given finite set S. We
write PX [x] to denote the projection of a vector x on a
set X , and we write dist(x,X) for the distance from x to
X , i.e., PX [x] = arg miny∈X ‖x − y‖ and dist(x,X) =
‖x − PX [x]‖, respectively. Given a function of time x(·) :
N → R, we denote by x̄(t) its average up to time t, i.e.,
x̄(t) := 1

t

∑t
τ=1 x(τ).

II. DISTRIBUTED UTILITY ALLOCATION ALGORITHM

Every player in a set N = {1, . . . , n} proposes a distribu-
tion of the utilities which is given by the average allocation
vector x̂i(t + 1) ∈ Rn. The jth component of x̂i(t + 1)
defines the share that player i would allocate to player j
on average up to time t + 1. At every time, each player
first adjusts its average allocation vector based on the inputs
received from its neighbor players and then generates a new
allocation vector xi(t+ 1).

Let a communication graph G(t) = (N, E(t)) be given. A
link (j, i) ∈ E(t) exists if player j is a neighbor of player i
at time t. Each player adjusts its average allocation vector
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so that the new current average allocation, we call it space
average and denote it by wi(t), is in the convex hull of its
neighbors’ average allocations, i.e.,

wi(t) =

n∑
j=1

aij(t)x̂j(t), (1)

where ai = (ai1, . . . , a
i
n)′ is a vector of nonnegative weights

consistent with the sparsity of G, i.e., aij(t) 6= 0 if and only
if (j, i) ∈ E(t). Thus, the time-averaged allocation x̂i(t)
evolves according to

x̂i(t+ 1) =
t

t+ 1

[
n∑
j=1

aij(t)x̂j(t)

]
+

1

t+ 1
xi(t+ 1)

=
t

t+ 1
wi(t) +

1

t+ 1
xi(t+ 1).

(2)

Problem. Our goal is to study under what conditions the
average allocation vectors converge to a unique value lying
in a predefined target set X: for all i, j ∈ N ,

x̂i(t) = x̂j(t) ∈ X, for t→∞.

A. Main assumptions

Following [?] (see also [?]) we can make the following
assumptions on the information structure. Let A(t) be the
weight matrix with entries aij(t).

Assumption 1. Each matrix A(t) is doubly stochastic with
positive diagonal. Furthermore, there exists a scalar α > 0
such that aij(t) ≥ α whenever aij(t) > 0.

In addition to this, the union of the graphs G(t) over a
period of time is assumed to be connected.

Assumption 2. There exists an integer Q ≥ 1 such that the
graph

(
N,
⋃(t+1)Q−1
τ=tQ E(τ)

)
is strongly connected for every

t ≥ 0.

It is worth noting that the joint strong connectivity is the
weakest possible assumption to guarantee persistent circula-
tion of the information through the graph.

The above assumptions imply that the weights of the
communication graph are determined exogenously but ac-
cordingly to some predefined rules.

The following assumption characterizes the target set X .

Assumption 3. The target set X is nonempty, convex and
compact.

Finally, the next assumption indicates how the new utility
vector has to be generated in order to obtain approachability,
i.e., convergence of the average allocations to the target set.

Assumption 4. For each i ∈ N the new utility vector is
bounded, i.e., there exists L > 0 s.t. ∀t ≥ 0 ‖xi(t+1)‖ ≤ L,
and satisfies the following inequality,

(wi(t)− PX [wi(t)])
′ (xi(t+ 1)− PX [wi(t)]) ≤ 0.

From a geometric standpoint, Assumption 4 requires that,
given the two half-spaces identified by the supporting hy-
perplane of X through PX [wi(t)], the new utility vector
xi(t+ 1) lies in the half-space not containing wi(t).

wi(t)

x̂i(t + 1)

xi(t + 1)

X

H−

H+

PX(wi(t))

Fig. 1. Approachability principle.

B. Motivating example: coalitional game

The set X introduced above can be thought of as the core
of TU game. A coalitional TU game is defined by a pair
< N, η >, where N = {1, . . . , n} is a set of players and η :
2N → R a function defined for each coalition S ⊆ N (S ∈
2N ). The function η determines the value η(S) assigned to
each coalition S ⊂ N , with η(∅) = 0. We let ηS be the
value η(S) of the characteristic function η associated with a
nonempty coalition S ⊆ N . Given a TU game < N, η >,
let C(η) be the core of the game,

C(η) =

{
x ∈ Rn

∣∣∣ ∑
j∈N

[x]j = ηN ,

∑
j∈S

[x]j ≥ ηS for all nonempty S ⊂ N

}
.

Essentially, the core of the game is the set of all allocations
that make the grand coalition stable with respect to all
subcoalitions. Condition

∑
j∈N [x]j = ηN is also called

efficiency condition. Condition
∑
j∈S [x]j ≥ ηS for all

nonempty S ⊂ N is referred to as “stability with respect
to subcoalitions”, since it guarantees that the total amount
given to the members of a coalition exceeds the value of the
coalition itself.

Consistently with Assumptions 3, a common assumption
in TU games is that the core set is nonempty, convex and
bounded, and the utilities generated at each time are bounded,
[?], [?]. The core set is usually assumed to be known by
the players. Whenever the core set is empty and not known
by all the players, the grand coalition is not stable and the
players tend to form sub-coalitions according to more or
less complex bargaining processes. Coalition formation [?]
is a separate and independent body of literature, which is
far from the scope of this paper. Further, in approachability
theory, given a two-player repeated game with vector payoffs,
a condition similar to the ones stated in Assumptions 4
and 5, is used to prove that a given set is approachable by
player 1, independently of the strategy used by player 2. Such
condition have also been shown to be sufficient condition
for the existence of attractors in nonlinear analysis and in
the theory on differential inclusion (see also [?], Corollary
5.1). We borrow such a condition for design purposes. In
other words we wish to design our distributed algorithm in
order to let the players reach consensus. This is in accordance
with the idea of mechanism design, where a central planner
designs incentives for the player to cooperate.
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III. MAIN RESULTS

Next, we provide the main results of the paper. Namely,
we prove that the average allocations: (i) approach the set
X (Theorem 1), (ii) reach consensus (Theorem 2), and (iii)
are robust against disturbances (Theorem 3). To improve
the readability of the paper all the proofs are collected in
Appendix section at the end of the paper.

A. Approachability and consensus

Before stating the first theorem, we need to introduce
two lemmas. The first lemma establishes that the space
averaging step in (2) reduces the total distance (i.e. the sum
of distances) of the average allocations from the set X .

Lemma 1. Let Assumption 1 hold. Then the total distance
from X decreases when replacing the allocations x̂i(t) by
their space averages wi(t), i.e.,

n∑
i=1

dist(wi(t), X) ≤
n∑
i=1

dist(x̂i(t), X).

Proof. See the Appendix for a proof. �

Observing that the distance of a point from a convex set
is equal to the distance from its projection (which is by
definition smaller than the distance from any other point in
the set) and using (2) and (1), it holds

dist(x̂i(t+ 1), X)2 = ‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2

≤ ‖x̂i(t+ 1)− PX [wi(t)]‖2

=

∥∥∥∥ t

t+ 1
(wi(t)− PX [wi(t)])

+
1

t+ 1
(xi(t+ 1)− PX [wi(t)])

∥∥∥∥2

=

(
t

t+ 1

)2

‖wi(t)− PX [wi(t)]‖2

+

(
1

t+ 1

)2

‖xi(t+ 1)− PX [wi(t)]‖2

+
2t

(t+ 1)2
(wi(t)− PX [wi(t)])

′(xi(t+ 1)− PX [wi(t)]).

(3)

We are now ready to state the first main result.

Theorem 1. Let Assumptions 1-4 hold. Then all average
allocations approach set X , i.e.,

lim
t→∞

n∑
i=1

dist(x̂i(t), X) = 0.

Proof. See the Appendix for a proof. �

The proof of Theorem 1 is constructive in the sense that
it provides also a guideline on how to select the new iterate
so that the conditions in Assumption 4 are satisfied. In par-
ticular, the new iterate is obtained by projecting the current
point on the approachable set, by identyifing the supporting
hyperplane and by selecting a point on the opposite half-
space than the one containing the current point. All steps
involve solving convex programs or linear inequalities. s

Next, let us introduce the barycenter of the average allo-
cations and the utility vectors respectively

x̂b(t) :=
1

n

n∑
i=1

x̂i(t) and xb(t) :=
1

n

n∑
i=1

xi(t).

Consistently, let us denote by x̄b(t) the time average of the
barycenter, i.e.

x̄b(t) =
1

t+ 1

t∑
τ=0

xb(τ).

The following lemma establishes that the barycenter of the
average allocations evolves as the time average x̄b(t) of the
barycenter of the utility vectors generated by the players.

Lemma 2. The barycenter of the local allocations x̂b(t) co-
incides at each time t with the time-average of the barycenter
of the generated utility vectors x̄b(t).

Proof. See the Appendix for a proof. �

The following theorem establishes that all allocations
converge to x̄b(t), which in the limit must belong to X
according to Theorem 1.

Theorem 2. (Consensus to the barycenter time-average) Let
Assumptions 1-4 hold. Then, all players reach consensus
on the time-average of the barycenter of the utility vectors
generated by each player, x̄b(t), i.e.,

lim
t→∞

‖x̂i(t)− x̄b(t)‖ = 0 ∀i = 1, . . . , n.

Proof. See the Appendix for a proof. �

Summarizing the two main results, we have proven that
the players’ allocations converge asymptotically to the time-
average of the barycenter of the generated utility vectors and
that this vector lies in the core of the game.

B. Adversarial disturbance

Here we analyze the case where, for each player i ∈ N ,
the input xi(·) is the payoff of a repeated two-player game
between player i (Player i1) and an (external) adversary
(Player i2). With some slight abuse of notation, we denote
S1 and S2 the finite set of actions of players i1 and i2
respectively.

The instantaneous payoff xi(t) at time t is given by a
function φi : S1 × S2 → Rn as follows:

xi(t) = φ(j(t), k(t)),

where j(t) ∈ S1 and k(t) ∈ S2. We extend xi to the set of
mixed actions pairs, ∆(S1) ×∆(S2), in a bilinear fashion.
In particular, for every pair of mixed strategies (p(t), q(t)) ∈
∆(S1)×∆(S2) for player i1 and i2 at time t, the expected
payoff is

Exi(t) =
∑
j∈S1

∑
k∈S2

pj(t)qk(t)φ(j, k).

For simplicity the one-shot vector-payoff game (S1, S2, xi)
is denoted by Gi.

Let λ ∈ Rn. Denote by 〈λ,Gi〉 the zero-sum one-shot
game whose set of players and their action sets are as in the
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game Gi, and the payoff that player 2 pays to player 1 is
λ′φ(j, k) for every (j, k) ∈ S1 × S2.

The resulting zero-sum game is described by the matrix

Φλ = [λ′φ(j, k)]j∈S1,k∈S2 .

As a zero-sum one-shot game, the game 〈λ,Gi〉 has a value,
denoted by

vλ := min
p∈∆S1

max
q∈∆S2

p′Φλq = max
q∈∆S2

min
p∈∆S1

p′Φλq.

For every mixed action p ∈ ∆(S1) denote D1(p) the set
of all payoffs that might be realized when player i1 plays
the mixed action p:

D1(p) = {xi(p, q) : q ∈ ∆(S2)}.

If vλ ≥ 0 (resp. vλ > 0), then there is a mixed action
p ∈ ∆(S1) such that D1(p) is a subset of the closed half-
space {x ∈ Rn : λ′x ≥ 0} (respectively half-space {x ∈
Rm : λ′x > 0}).

Let us adapt Assumption 4 to the worst-case setting
introduced in this section.

Assumption 5. For any wi(t) ∈ Rn, there exists a mixed
strategy p(t + 1) ∈ ∆(S1) for Player i1 such that, for all
mixed strategy q(t+1) ∈ ∆(S2) of Player i2, the new utility
vector is bounded, i.e. there exists L > 0 s.t. ∀t ≥ 0 ‖xi(t+
1)‖ ≤ L, and satisfies

(wi(t)− PX [wi(t)])
′ (Exi(t+ 1)− PX [wi(t)]) ≤ 0,

where Exi(t+1) =
∑
j∈S1

∑
k∈S2

pj(t+1)qk(t+1)φ(j, k).

The above condition is among the foundations of ap-
proachability theory as it guarantees that the average payoff
1
T

∑T−1
t=0 xi(t) converges almost surely to X (see, e.g., [?]

and also [?], chapter 7). Here we adapt the above condition
to the multi-agent and distributed scenario under study.

Corollary III.1 (see [?], Corollary 2). Any convex set X ⊂
Rn is approachable if and only if vλ < 0 for any λ ∈ Rn.

Next we show that if the approachability condition ex-
pressed above holds true, then dist(x̂i, X) tends to zero for
any X . We write w.p.1 to mean “with probability 1”.

Theorem 3. Let Assumptions 1-3 and 5 hold. Then all
average allocations approach set X , i.e.,

lim
t→∞

n∑
i=1

dist(x̂i(t), X) = 0, w.p.1.

We conclude this section by observing that Theorem 2
still holds and therefore all players’ average allocations reach
consensus on the time-average of the barycenter of the utility
vectors generated by each player.

IV. SIMULATIONS

We illustrate the results in a game with four players, N =
{1, . . . , 4}, communicating according to a fixed undirected
cycle graph. That is, G(t) = (N, E) where E = {(i, j) | j =
i+ 1, i ∈ {1, . . . n− 1} or (i, j) = (n, 1)}.

We set η{1} = . . . = η{4} = 2, η{1,2} = 5, η{3,4} = 5,
η{1,2,3} = 7 and ηN = 10 (ηS is the value of coalition S).1

1The values that are not specified are assumed to be irrelevant for
the core definition. For example η{2,3} ≤ 4.

That is, each player expects to receive at least a utility of 2
which is its own value. But, for example, players 1 and 2
expect to be more valuable if they form a coalition as well as
3 and 4. Consistently, the core of the game is the polyhedral
set given by

C(η) =
{
x ∈ R4

∣∣∣x1 + x2 + x3 + x4 = 10,

x1 + x2 + x3 ≥ 7, x1 + x2 ≥ 5,

x3 + x4 ≥ 5, x1 ≥ 2, . . . , x4 ≥ 2
}
.

We initialize the assignments assuming that each player
allocates to itself the entire utility. That is, denoting bi ∈ Rn
the i-th canonical vector (so that, e.g., b1 = [1 0 . . . 0]′), we
set x̂i(0) = 10 bi for all i ∈ {1, . . . , n}. At every iteration
t ∈ N, each player chooses the new utility vector xi(t+1) ac-
cording to the approachability principle. In particular, we set
xi(t+1) = PX [wi(t)]+α (PX [wi(t)]−wi(t))+v>, where
α is a random number uniformly distributed in [0, 1] and v⊥

a random vector belonging to the hyperplane orthogonal to
the vector wi(t)−PX [wi(t)] with coordinates (with respect
to the basis vectors) uniformly chosen in [0, 1]. The temporal
evolution of the local average allocation vectors is depicted in
Figure 2. As expected the local average allocations converge
to the same average assignment which is the point of the
core [2 3 2.5 2.5]′.
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Fig. 2. Local average allocation vectors (first 50 time-instants)

V. CONCLUSIONS

We have analyzed convergence conditions of a distributed
allocation process arising in the context of TU games. Future
directions include the extension of our results to population
games with mean-field interactions, and averaging algorithms
driven by Brownian motions.

APPENDIX

Proof of Lemma 1

By convexity of the distance function dist(·, X) and from
(1) we have

dist(wi(t), X) ≤
n∑
j=1

aij(t)dist(x̂j(t), X).
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Summing over i = 1, . . . , n both sides of the above inequal-
ity we obtain

n∑
i=1

dist(wi(t), X) ≤
n∑
i=1

n∑
j=1

aij(t)dist(x̂j(t), X)

=

n∑
j=1

(
n∑
i=1

aij(t)

)
dist(x̂j(t), X) =

n∑
j=1

dist(x̂j(t), X),

where the last equality follows from the stochasticity of A(t)
in Assumption 1. This concludes the proof.

Proof of Theorem 1

Recall from (3) that

‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2 ≤(
t

t+ 1

)2

‖wi(t)− PX [wi(t)]‖2

+

(
1

t+ 1

)2

‖xi(t+ 1)− PX [wi(t)]‖2

+2
t

(t+ 1)2
(wi(t)− PX [wi(t)])

′(xi(t+ 1)− PX [wi(t)]).

From Lemma 1 and rearranging the above inequality, we
have

n∑
i=1

[
(t+ 1)2‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2

−t2‖x̂i(t)− PX [x̂i(t)]‖2
]

≤
n∑
i=1

[
‖xi(t+ 1)− PX [wi(t)]‖2

+2t(wi(t)− PX [wi(t)])
′(xi(t+ 1)− PX [wi(t)])

]
≤

n∑
i=1

‖xi(t+ 1)− PX [wi(t)]‖2,

where the last inequality is due to Assumption 4. The right
hand side

∑n
i=1 ‖xi(t+1)−PX [wi(t)]‖2 is bounded (from

Assumption 3 and the boundedness of xi(t + 1)) by some
M > 0. Summing over t = 0, . . . , τ − 1, and noting that∑τ−1
t=0 g(t+1)−g(t) = g(τ) with g(t) =

∑n
i=1 t

2‖x̂i(t)−
PX [x̂i(t)]‖2, we obtain

n∑
i=1

τ2‖x̂i(τ)− PX [x̂i(τ)]‖2 ≤Mτ,

from which ‖x̂i(τ) − PX [x̂i(τ)]‖2 ≤ M
τ

, and therefore
limτ→∞ ‖x̂i(τ) − PX [x̂i(τ)]‖2 = 0, which concludes the
proof.

Proof of Lemma 2

To prove the statement observe that x̄b(0) = x̂b(0) =
xb(0). Thus, we prove that x̄b(t) and x̂b(t) satisfy the same
dynamics. By definition of time-average, x̄b(t) satisfies the
dynamics

x̄b(t+ 1) =
t

t+ 1
x̄b(t) +

1

t+ 1
xb(t+ 1). (4)

The dynamics of x̂b(t) is

1

n

n∑
i=1

x̂i(t+ 1) =
1

n

[ t

t+ 1

n∑
i=1

n∑
j=1

aij(t)x̂j(t)

+
1

t+ 1

n∑
i=1

xi(t+ 1)
]
.

Exchanging the sum signs

x̂b(t+ 1) =
1

n

t

t+ 1

n∑
j=1

n∑
i=1

aij(t)x̂j(t) +
1

t+ 1
xb(t+ 1),

and, by Assumption 1 (A(t) is doubly stochastic),

x̂b(t+ 1) =
1

n

t

t+ 1

n∑
j=1

x̂j(t) +
1

t+ 1
xb(t+ 1)

=
t

t+ 1
x̂b(t) +

1

t+ 1
xb(t+ 1),

which is the same dynamics as (4), thus concluding the proof.

Proof of Theorem 2

Using the previous lemma we can show that x̂i(t) con-
verges to x̂b(t). Let us introduce the error of the average al-
location x̂i(t) from the barycenter, i.e. êi(t) = x̂i(t)−x̂b(t).
The error dynamics is given by

êi(t+ 1) =
t

t+ 1

[
n∑
j=1

aij(t)êj(t) +

n∑
j=1

aij x̂b(t)

]

+
1

t+ 1
ei(t+ 1) +

1

t+ 1
xb(t+ 1)

− t

t+ 1
x̂b(t)−

1

t+ 1
xb(t+ 1),

where ei(t) = xi(t)− xb(t). Thus

êi(t+ 1) =
t

t+ 1

( n∑
j=1

aij(t)êj(t)
)

+
1

t+ 1
ei(t+ 1).

Multiplying both sides by (t + 1) and taking t inside the
sum,

(t+ 1)êi(t+ 1) =

n∑
j=1

aij(t)têj(t) + ei(t+ 1).

Defining ẑi(t) = t êi(t), we have

ẑi(t+ 1) =

n∑
j=1

aij(t)ẑj(t) + ei(t+ 1).

In vector form the above equation turns to be

ẑ(t+ 1) =
(
A(t)⊗ In

)
ẑ(t) + e(t+ 1), (5)

with ẑ(t) = [z1(t) . . . zn(t)]′, e(t) = [e1(t) . . . en(t)]′,
In the identity matrix of dimension n and ⊗ the Kronecker
product. Notice that denoting [ẑ]` =

[
[ẑ1]` . . . [ẑn]`

]
and

[e]` =
[
[e1]` . . . [en]`

]
, ` ∈ {1, . . . , n}, the dynamics of

each [ẑ]` is given by

[ẑ]`(t+ 1) = A(t)[ẑ]`(t) + [e]`(t+ 1). (6)

Thus, we can simply work on each component separately.
With a slight abuse of notation, we neglect the subscript of
[ẑ]` and [e]`, and write ẑ(t) and e(t).
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It is worth noting that the driven system (6), and so (5),
is not bounded-input-bounded-state stable (when a general
input signal is allowed). That is, for general initial condition
and input signal the state trajectory may diverge. We show
that for the special initial condition (ẑ(t) = 0 by construc-
tion) and class of input signals (1′e(t+1) = 0 by definition)
under consideration, the state trajectories of (5) are bounded.

First, let us observe that, multiplying both sides of (5) by
the vector 1′ = [1 . . . 1], we get

1′ẑ(t+ 1) = 1′A(t)ẑ(t) + 1′e(t+ 1)

= 1′ẑ(t).
(7)

Since ẑ(0) = 0 by construction, it holds 1′ẑ(t) = 0 for all
t ∈ N. That is, ẑ(t) is orthogonal to the vector 1 for all t.

Next, we show that the trajectory ẑ(·) is bounded. Fol-
lowing [?], let P ∈ R(n−1)×n be a matrix defining an
orthogonal projection on the space orthogonal to span{1}.
It holds that P1 = 0 and ‖Px‖2 = ‖x‖2 if x′1 = 0. Thus,
from equation (7) we have that ‖P ẑ(t)‖2 = ‖ẑ(t)‖2 for all
t. Therefore, proving boundedness of ẑ(·) is equivalent to
showing that P ẑ(·) is bounded. For a given P , associated to
any A(t) satisfying Assumption 1, there exists Ā(t) satisfy-
ing PA(t) = Ā(t)P . Multiplying both sides of equation (5)
by P , we get

P ẑ(t+ 1) = PA(t)ẑ(t) + Pe(t+ 1)

= Ā(t)P ẑ(t) + Pe(t+ 1).
(8)

Under Assumptions 1 and 2, the undriven dynamics y(t +
1) = Ā(t)y(t) is uniformly exponentially stable, i.e.,
||y(t)|| < Cρt||y(0)|| with C and ρ < 1 independent of
y(0) and depending only on n, Q and α (see Theorem 9.2
and Corollary 9.1 in [?]). Thus, the state trajectories of (8) are
bounded for any bounded signal Pe(t+ 1) with 1′e(t) = 0.
Since 1′e(t) = 0 for all t, we have ‖Pe(t)‖2 = ‖e(t)‖2 for
all t, which is bounded. The proof follows from noting that
‖P ẑ(t)‖2 = ‖ẑ(t)‖2 and that ẑ(t) = tê(t).

Proof of Theorem 3

From (3), invoking Lemma 1 and using Assumption 5 we
have

n∑
i=1

[
(t+ 1)2‖x̂i(t+ 1)− PX [x̂i(t+ 1)]‖2

−t2‖x̂i(t)− PX [x̂i(t)]‖2
]

≤
n∑
i=1

[
‖xi(t+ 1)− PX [wi(t)]‖2

+2t(wi(t)− PX [wi(t)])
′(xi(t+ 1)− Exi(t+ 1))

]
.

Summing over t = 0, . . . , τ − 1, and noting that ‖xi(t +
1)−PX [wi(t)]‖ is upper bounded (from Assumption 3 and
the boundedness of xi(t+ 1)) by some M > 0, we obtain

n∑
i=1

‖x̂i(τ)− PX [x̂i(τ)]‖2

≤ M

τ
+

1

τ

τ−1∑
t=0

n∑
i=1

Ki
t‖xi(t+ 1)− Exi(t+ 1)‖,

where Ki
t = 1

τ
2t‖wi(t)− PX [wi(t)]‖. Now, using ‖xi(t+

1)‖ ≤ L ∀t ≥ 0 from Assumption 5 and from (2) and
(1) we have that wi(t) is bounded which in turn implies
that ‖wi(t) − PX [wi(t)]‖ is bounded. Then, the second
term in the right-hand side is an average of bounded zero-
mean martingale differences, and therefore the Hoeffding-
Azuma inequality (together with the Borel-Cantelli lemma)
immediately implies that

lim
τ→∞

n∑
i=0

‖x̂i(τ)− PX [x̂i(τ)]‖2 = 0

which concludes the proof.


