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INTRODUCTION TO STRAND 1 

LEARNING SCIENCE: CONCEPTUAL UNDERSTANDING 

Strand 1 focussed on Learning Science: conceptual understanding; within this strand, the 
research studies essentially address the process of learning science to develop understanding.  

A central focus by all the researchers grouped under this strand is that learning science 
necessitates understanding science and this requires the comprehension of many ideas. As 
Bransford, Brown and Cocking (2000) point out: Learning with understanding suppose not to 
emphasize memory as often have been the case but to be able to use knowledge in different 
contexts and relate them. We have to take into account that a usable knowledge is not a mere 
list of disconnected facts. It needs connected and organized ideas around important nuclear 
concepts or models.  

Therefore, researchers that have submitted their work on Strand 1 are aware that not only the 
facts are important in order to think and solve problems, but that students also (a) need to 
grasp how science has interpreted such facts and has built coherent models, and (b) have to 
insert the new knowledge into their pre-existing system of ideas and concepts. 

So, as learning scientific concepts is not an easy process and as many teachers have 
experienced difficulties in this area, there has been much research devoted to addressing this 
problem, as shown by the large number of papers submitted to Strand 1. Also, the research 
shows different approaches to addressing this problem of learning with/for understanding.  

Previous research in the 1980s and 1990s showed how students’ conceptual difficulties were 
built on previous conceptions, e.g. compiled in the ICPE book: Connecting Research in 
Physics Education with Teacher Education (1997). This research was useful to identify the 
obstacles that must be overcome in student learning of the main topics in school curricula. 
Currently, however, the analysis of student’s difficulties for conceptual understanding takes 
on new perspectives. Now, we find research studies to determine student difficulties in topics 
addressed at higher educational levels such as: Quantum, Relativity, Astronomy, Mechanistic-
chemistry, etc. Genetics and Theory of Evolution are also recurring subjects of attention, 
often related with personal beliefs. 

Building on previous research, the current research reported goes beyond identifying gaps in 
students’ conceptual knowledge and conceptual errors, but aims to propose and evaluate 
teaching strategies that should enable teaching towards conceptual understanding.  To this 
end, different “Learning progressions” have been presented in this Strand 1 to trace students’ 
ideas (for example: E. Osman, L. Wang, H. Hamdan, G. Ampatzidis, etc).  Other studies in 
this Strand suggest that an understanding of the microscopic view of structure of matter can 
be a good teaching strategy (J.P. Burde, W. Wu, etc.) or that student use of modelling to 
connect ideas and learn (e.g. C. Fazio, A. C. Dindar,) give rise to in-depth learning. 

We also highlight the research evaluating various strategies and resources that have been 
studied to help the process of modelling, such as: 

(a) Use of conceptual maps as a teaching-learning strategy (for example, R. Grobler, 
F. Lombard) 

(b) Solve problems in different contexts (A. Ferreira) 
(c) Propose Peer discussions (C. Wagner) 
(d) Use of educational games, ICTs, etc. (A. Guerra, A. Almeida) 
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It is also noted that there are a number of research papers dealing with the process of learning 
as influenced by the social and cultural conditions of students and their beliefs about their 
environment (for example, J. Weber, V. Vieira). 

Finally, we should remark that the research papers under Strand 1 have two characteristics:  

(a) The specific concepts to be learnt or the models to be built are clearly defined in all 
the studies. That is, there are no pedagogical or general reflections applicable in all. 
They are focused on particular specific scientific topics. 

(b) A qualitative methodology is most frequently used in order to collect and analyse 
the data. This provides a rich data set that helps researchers to understand in depth 
what happens along the process of building conceptual models, rather than merely 
counting the frequency of some particular conceptual construction. 

 Odilla Finlayson and Roser Pinto 
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USING CLUSTER ANALYSIS TO STUDY THE MODELING 
ABILITIES OF ENGINEERING UNDERGRADUATE 

STUDENTS: A CASE STUDY 
Claudio Fazio1, Onofrio R. Battaglia1, Benedetto di Paola2 & Dominique Persano Adorno1. 
1 Gruppo di Ricerca in Didattica della Fisica, Università di Palermo, Italy 
2 Gruppo di Ricerca sull'Insegnamento delle Matematiche, Università di Palermo, Italy 
 
Abstract: In this contribution we discuss the application of a quantitative, non-hierarchical 
clustering method to make sense of the answers that 120 engineering undergraduates students 
at the University of Palermo, Italy, gave to four open-ended questions on the meaning of the 
modeling processes in Science. We will show that the use of non-hierarchical analysis allows 
us to easily separate students into groups that can be recognized and characterized by 
common traits in students’ answers without any prior knowledge on the part of the researcher 
of what form those groups would take (unbiased classification). 

Keywords: Cluster Analysis; Physics Education Research; Modeling 

 
INTRODUCTION 
Extensive qualitative research involving open answer questionnaires has provided 
instructors/teachers with tools to investigate their students’ conceptual knowledge of various 
fields of physics. Some of these studies examined the consistency of students’ answers in a 
variety of situations. Others looked at problems where the underlying physical systems are 
similar from the point of view of an expert. In recent years, some papers have tried to develop 
more detailed models of the consistency of students’ reasoning, or to subdivide a sample of 
students into intellectually similar subgroups. Bao and Redish (2006) introduced model 
analysis as a framework for exploring the structure of the consistency of the application of 
student knowledge, by separating a group of students into intellectually similar subgroups. 
The problem of taking a set of data and separating it into subgroups where the elements of 
each subgroup are more similar to each other than they are to elements not in the subgroup 
has been extensively studied through the statistical method of Cluster Analysis (ClA). ClA 
can separate students into groups that can be recognized and characterized by common traits 
in their answers, without any prior knowledge of what form those groups would take 
(unbiased classification).ClA, introduced in Psychology by R.C. Tyron in 1939, has been the 
subject of research since the beginning of the 1960s, with its first systematic use by Sokal e 
Sneath in 1963. The application of techniques related to ClA is common in many fields, 
including Information Technology, Biology, Medicine, Archeology, Econophysics and 
Market Research. For example, in market research it is important to classify the key elements 
of the decision-making processes of business strategies as the characteristics, needs and 
behavior of buyers. These techniques allow the researcher to locate subsets or clusters within 
a set of objects of any nature. These have a strong tendency to be homogeneous “in some 
sense”. The results of the analysis should reveal a high homogeneity within the group (intra-
cluster), and high heterogeneity between groups (inter-clusters), in line with the criteria 
chosen. 
In the literature concerning research in education, some studies using ClA methods are found. 
They group and characterize student responses by using open-ended questionnaires 
(Wittmann & Scherr, 2002; Fazio et al., 2012; Fazio et al., 2013) or multiple-choice tests 
(Ding & Beichner, 2009). A recent paper (Stewart et al., 2012) analyses the evolution of 
student responses to seven contextually different versions of two Force Concept Inventory 
questions, by using a model analysis for the state of student knowledge and ClA methods to 
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characterize the distribution of students’ answers. This paper shows that ClA methods are an 
effective way to examine the structure of student understanding and can produce significant 
subgroups of a data sample. The authors conclude that the ClA method is an effective 
mechanism for extracting the underlying subgroups in student data and that additional insight 
may be gained from a careful, qualitative analysis of clustering results. In fact, each cluster is 
characterized by means of a careful reading of the typical trends in the answers of the 
individuals that are part of the cluster. It is well known that there are inherent difficulties in 
the classification of student responses in the studies mainly involving open-ended 
questionnaires. In fact, the problem of quantifying qualitative data has been widely discussed 
in the literature for many years (Green, 2001), and it has been pointed out that, very often, a 
small or even unconscious researcher bias means that the categories picked out tend to find 
those groups of students that the researcher is already looking for. A recent paper (Hammer & 
Berland, 2014) points out that researchers “should not treat coding results as data but rather as 
tabulations of claims about data and that it is important to discuss the rates and substance of 
disagreements among coders” and proposes guidelines for the presentation of research that 
quantifies qualitative data. Another paper (Chi, 1997) discussed the need to describe the 
process of developing a coding scheme, by outlining that in the process of quantifying 
qualitative data, data means the qualitative records supplied by students and not the result of 
the coding scheme. If we call these records “raw data” we have to take into account that the 
data being quantitatively analyzed, which is obtained through the process of data reduction 
(Hammer & Berland, 2014) contained in the coding scheme, is biased by the subjective 
interpretation of researchers. It is important for this to be taken into account in the 
interpretation of the results of the subsequent quantitative analysis. 
In this paper we start from a description of the data coding needed in ClA, in order to discuss 
the meanings and the limits of the interpretation of quantitative results. Then a method 
commonly used in ClA is described and the variables and parameters involved are outlined 
and criticized. The application of this method to the analysis of data from an open-ended 
questionnaire administered to a sample of university students and the related quantitative 
results is presented. In the last section we discuss the meaning of our results for the physics 
education researcher and outline some points of strength and limits. 
 
METHODS 
Data setting 
Research in education that uses open-ended questions and is aimed at quantifying qualitative 
data usually involves the development of coding procedures. This requires an accurate 
reading of student answers in order to reveal (and then examine) patterns and trends, and to 
find common themes emerging from them. These themes are then developed in a number of 
categories, which can be considered the typical “answering strategies” put into action by the 
N students tackling the questionnaire items. Therefore, it is possible to summarize the whole 
set of answers given to the questionnaire into a limited number, M, of answering strategies, 
making the subsequent analysis easier. Through coding and categorization we produce a set of 
M data (the answering strategies) for each of the sample subjects (the N students doing the 
questionnaire). As a consequence, each subject, i, can be identified by an array, ai, composed 
of M components 1 and 0, where 1 means that the subject used a given answering strategy to 
respond to an item, and 0 means that he/she did not use it. Then, a M x N binary matrix (the 
“matrix of answers”) modeled on the one shown in Table 1, is built. The columns in it show 
the N student arrays, ai, and the rows represent the M components of each array, i.e. the M 
answering strategies. 
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Table 1. Matrix of data: the N students are indicated as S1, S2, …,SN., and the M 
answering strategies as AS1, AS2, …, ASM. 

Strategy Student 
 S1 S2 … SN 
AS1 1 0 … 0 
AS2 1 0 … 1 
… 0 … … … 
ASM 0 1 … 0 

For example, let us say that student S1 used answering strategies AS1, AS2 and AS5 to respond 
to the questionnaire questions. Therefore, S1 column in Table 1 will contain the binary digit 1 
in the three cells corresponding to these strategies, while all the other cells will be filled with 
0.The matrix depicted in Table 1 contains all the information to describe the sample behavior 
with respect to the questionnaire items. However, it needs some elaboration in order to make 
this information understandable. ClA classifies subset behaviors in different groups (the 
clusters). These groups can be analyzed in order to deduce their distinctive characteristics and 
point out similarities and differences among them. ClA requires the definition of new 
quantities that are used to build the grouping, like the “similarity” or “distance” indexes. 
These indexes are defined by starting from the M x N binary matrix discussed above.In the 
literature the similarity between two elementsi and j of the sample is often expressed by 
taking into account the distance, dij, between them (which actually expresses their 
“dissimilarity”, in the sense that a higher value of distance involves a lower similarity). The 
distance index can be defined by starting from the Pearson’s correlation coefficient. It allows 
the researcher to study the correlation between elementsi and j if the related variables 
describing them are numerical. If these variables are non-numerical variables (as in our case, 
where we are dealing with the arrays ai and aj containing the binary coding of the answers of 
elementsi and j, respectively), we propose a modified form of the Pearson’s correlation 
coefficient, Rmod, similar to that defined by Tumminello et al. (2011) as, 
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where p(ai) and p(aj) are the number of properties of ai  and aj explicitly present in our 
elements (i.e. the numbers of 1's in the arrays ai and aj, respectively), M is the total number of 
properties to study (in our case, the possible answering strategies) and p(ai�aj) is the number 
of properties common to both elements, i and j (the common number of 1's in the arrays ai and 
aj). By following eq. (1) it is possible to find for each student, i, the N-1 correlation 
coefficients Rmod between him/her and the others students (and the correlation coefficient with 
him/herself, that is, clearly, 1). All these correlation coefficients can be placed in a N x N 
matrix that contains the information we need to discuss the mutual relationships between our 
students. The similarity between subjects i and j can be defined by choosing a type of metric 
to calculate the distance dij. Such a choice is often complex and depends on many factors. If 
we want two subjects, represented by arrays ai and aj and negatively correlated, to be more 
dissimilar than two positively correlated subjects (as is often advisable in research in 
education), a possible definition of the distance between ai and aj, making use of the modified 
correlation coefficient, Rmod(ai, aj), is: 

                                                  
� �� �mod2 1 ,ij i jd R a a �

                ( 2 ) 
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This function defines a Euclidean metric (Gower, 1966), which is required in order to use it 
for the following calculations. A distance dij between two students equal to zero means that 
they are completely similar, while a distance dij = 2 shows that the students are completely 
dissimilar. By following eq. (2) we can, then build a new N x N matrix , D, containing all the 
utual distances between the students. The main diagonal of D is composed by 0s (the distance 
between a student and him/herself is zero). Moreover,  D  is symmetrical with respect to the 
main diagonal. 
 
Clustering technique 
In this paper we use a technique known as Non-Hierarchical Clustering (NH-ClA), that 
basically allows us to partition the data space into a structure known as a Voronoi diagram (a 
number of regions including subsets of similar data). Among the many NH-ClA algorithms, 
we use here the k-means, which was first proposed by MacQueen (MacQueen, 1967). In this 
method, the final result is a bi-dimensional Cartesian plane containing points that represent 
the students of the sample placed in the graph according to their mutual distances. As said 
before, for each student, i, we know N distances. It is, then, necessary to define a procedure to 
find two Cartesian coordinates for each student, starting from these N distances. This 
procedure consists in a linear transformation between a N-dimensional vector  space and a 2-
dimensional one and it is well known in the specialized literature as multidimensional scaling 
(Borg & Groenen, 1997). The starting point is the choice of the number of clusters one wants 
to populate and of an equal number of “seed points”, randomly selected in the bi-dimensional 
Cartesian plane representing the data. The subjects are then grouped on the basis of the 
minimum distance between them and the seed points. Starting from an initial classification, 
subjects are transferred from one cluster to another or swapped with subjects from other 
clusters, until no further improvement can be made. The subjects belonging to a given cluster 
are used to find a new point, representing the average position of their spatial distribution. 
This is done for each cluster and the resulting points are called the cluster centroids. This 
process is repeated and ends when the new centroids coincide with the old ones. The spatial 
distribution of the set elements is represented in a two-dimensional Euclidean space, creating 
what is known as the k-means graph (see Figure 2). 
NH-ClA has some points of weakness and here we will describe how it is possible to 
overcome them. The first involves the a-priori choice of the initial positions of the centroids. 
This can usually be resolved by repeating the clustering procedure for several values of the 
initial conditions and selecting those that lead to the minimum values of the distances between 
each centroid and the cluster elements. Furthermore, at the beginning of the procedure, it is 
necessary to arbitrarily define the number of clusters. A method widely used to decide if the 
number of clusters, q, initially used to perform the calculations is the one that best fits the 
sample element distribution is the calculation of the so-called Silhouette Function, S. 
(Rouseeuw, 1987).  
Several values of the function S are calculated once a value of the number of clusters, q, is 
fixed:  
� the individual value, Sk,i(q), with k=1, 2,..q, for each student, i, of the sample. It gives a 

measure of how similar student iis to the other students in its own cluster Clk, when 
compared to students in other clusters. It ranges from -1 to +1; a value near +1 indicates 
that student i is well-matched to its own cluster, and poorly-matched to neighboring 
clusters. If most students have a high silhouette value, then the clustering solution is 
appropriate. If many students have a low or negative silhouette value, then the clustering 
solution could have either too many or too few clusters (i.e. the chosen number, q, of 
clusters should be modified). 

� The average silhouette value in cluster Clk, < Sk(q)>, with k=1, 2,..q. It gives the average 
value of Sk,i(q), calculated on all the students belonging to cluster Clk  and it is  a measure 
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of the density of the cluster. Large values of  < Sk(q)>  are to be related to cluster 
elements being tightly arranged in the cluster k, and vice versa (Rouseeuw, 1987).  

� The total average silhouette value, < S(q)> for the chosen partition in q clusters. It  gives 
the average value of Sk,i(q), calculated on all the students belonging to the sample. Large 
values of < S(q)> are to be related to well defined clusters (Rouseeuw, 1987). It is, 
therefore, possible to perform several repetitions of the cluster calculations (with different 
values of q) and to choose the number of clusters, q, that gives the maximum value of 
<S(q)>. 

Once the appropriate partition of data in q clusters  Clk (with k = 1,..q) has been obtained, as 
well as  their related centroids, Ck, (i.e. the coordinates in the 2-dimensional space of the q 
points that represent the average positions of the cluster spatial distributions), it is possible to 
transform such coordinates in terms of the same variables that represent the students in the 
plane. In particular, for each centroid, Ck, we find an array bk with the same number M of 
components of the array, ai, that identifies a generic real student i, (i.e. the number M of 
answering strategies to the questionnaire) and composed, as ai, by 0 and 1 values.  bk  can be 
considered as the array representing a virtual student in cluster Clk. By  considering the 
meaning of cluster Clk  centroid, we could use the answering strategies contained in array bk 
to make sense of the features of the clusterreal students. 
A remarkable feature of array bk, that can validate our idea to use the centroid to characterize 
the features of the cluster Clk real students, is that it contains 1 values exactly in 
correspondence to the answering strategies most frequently given by students belonging to 
Clk. In fact, since a centroid is defined as the geometric point that minimizes the sum of the 
distances between it and all the cluster elements, by minimizing this sum the correlation 
coefficients between the cluster elements and the centroid are maximized and this happens 
when each centroid has the largest number of common strategies with all the students that are 
part of its cluster. 
It is worth noting that if some answering strategies are only slightly more frequent than the 
other ones all those with similar frequencies should be also considered. In order to analyze 
how well each centroid characterizes its own cluster Clk, we propose a coefficient, rk, defined 
as the centroid reliability, that relates the cluster density to its dimension. It is calculated as 
follows: 

( ) 1
1 ( )

k
k

k k

S qr
S q n

¢ ²
 

� ¢ ²
      (3) 

where nk  is the number of students contained in cluster Clk  and < Sk(q)> is the average value 
of the S-function on the same cluster. High values of rk indicate that the centroid characterizes 
well the cluster, as this happens for dense clusters or for clusters with a low number of 
students. In fact, considering two equally dense clusters, the one with a lower number of 
students involves smaller cluster dimensions, i.e. a lower variability of student properties. 
 
Example of quantitative study 
In this section we analyze the answer strategies to an open-ended questionnaire supplied by a 
sample of university students, using the techniques discussed above. 
 
The questionnaire and the sample 
The questionnaire is made up of four-items that focus on an understanding of the modeling 
concept (see Appendix). They are part of a more complex questionnaire, which has already 
been used, in previous research (Fazio et al., 2012). The selected four items refer to: I) the 
definition of a physics model, II) the subjects’ beliefs about the representational modes of 
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physics models, III) the main characteristics of models and IV) the student's beliefs about the 
modeling process. The questionnaire was administered to 124 freshmen of the Information 
Technology and Telecommunications Engineering Degree Course at the University of 
Palermo, during the first semester of the academic year 2013/2014. The students were given 
the questionnaire during the first lesson of general physics, before any discussion on the 
model concept had started. 
 
Categorization of student answers 
After the questionnaire had been submitted to our student sample, three researchers 
independently read the students’ answers in order to identify the main characteristics of the 
different student records (the raw data). Then, they agreed to construct a coding scheme 
through the identification of keywords that were relevant for an understanding of these 
records. During the first meeting, the selected keywords were compared and contrasted, and 
then grouped into categories based on epistemological and linguistic similarities (for example, 
students that defined models as simple phenomena or experiments or reproductions of an 
object on a small scale have been put on the same category since the three definitions have 
been intended as giving a ontological reality to models.). These categories were also re-
analyzed through the researchers’ interactions with the data, and taking into account the 
existing literature about models and modeling (Grosslight et al., 1991; Van Driel & Verloop, 
1999, Treagust et al., 2002; Pluta et al., 2011). As a third step, the researchers read the student 
records again and applied the new coding scheme, by assigning each student to a given 
category for each question. Given the inevitable subjectivity of the researchers’ 
interpretations, the three lists were compared and contrasted in order to get to single agreed 
list. The inter-rater reliability of the analysis was good. Discordances between researcher lists 
were usually a consequence of the different personal decisions of the researchers to divide the 
student answers into a more or less restricted number of typologies. In some cases, 
discordances were due to different researcher interpretations of student statements. This 
happened 14 times when comparing tables of researchers 1 and 2, 9 times for researchers 2 
and 3, and 12 times for researchers 1 and 3. Hence we obtained very good percentages of 
accordance (97%, or higher) between the analysis tables of each researcher pair. When a 
consensus was not obtained, the student answer was classified in the category “statement not 
understandable”. 
It is worth noting that very often the researchers’ discussions while assigning each student to 
a given category produced a more refined definition of these categories. The complete list of 
20 categories shared by researchers with respect to the four questions can be seen in 
Appendix A. As a result of the coding and categorization, we obtain a matrix like the one 
depicted in Table 1, where N = 124 and M = 20. This matrix of data represents a set of 
properties (the categories to which student answers have been assigned) for each subject (the 
student being analyzed).  
 
RESULTS 
All the clustering calculations were made using a custom software, written in C language. The 
graphical representations of clusters in both cases were obtained using the well-known 
MATLAB software. 
In order to define the number q of clusters that best partitions our sample, the mean value of 
S-function, <S(q)>, has been calculated for different numbers of clusters, from 2 to 10 (see 
Figure 1). The figure shows that the best partition of our sample is achieved by choosing four 
clusters, where <S(q)> has its maximum. The obtained value <S(4)> = 0.62 indicates that a 
reasonable cluster structure has been found (Struyf et al., 1997). 
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Figure 1. Average Silhouette values for different cluster partitions of our sample. 

 
Figure 2 shows the representation of this partition in a 2-dimensional graph. The four clusters 
show a partition of our sample into groups made up of different numbers of students (see 
Table 2) 

 

Figure 2. K-means graph. Each point in this Cartesian plane represents a student. Points 
labeled C1, C2, C3, C4 are the centroids. 
 
The four clusters Clk (k=1,…,4) can be  characterized by their related centroids, Ck. They are 
the four points in the graph whose arrays, bk, contain the answering strategies most frequently 
applied by students  in the related clusters (see Table 2). The codesused refer to the answering 
strategies for the questionnaire items described in Appendix A. Table 2 also showsthe number 
of students in each cluster, the mean values of the S-function <Sk(4)> (k=1,..,4) for the four 
clusters andthe normalized reliability index rk

norm of their centroids (in order to have 
comparable reliability values rk, they have been normalized (rk

norm= [(rk - <rk>]/V(rk), where 
<rk> and V(rk) are the mean value and the variance, respectively). 

Table 2. An overview of the obtained results  
Cluster centroid C1 C2 C3 C4 

bk  
(Most frequently 
given answers) 

1C, 2B, 3A, 
4A  

1B, 2B, 3E, 
4A 

1B, 2C, 3B, 
4A 

1C, 2C, 3B, 
4B 

Number of students 63 19 18 24 
<Sk(4)>  0.60  0.62 0.75 0.56 

rk
norm  -0.92  -0.02 1.4 -0.46 
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We can see (from the value of <Sk(4)>) that cluster Cl3 is denser than the others, and Cl4 is 
the most spread out. Furthermore,  the values of  rk

norm   show  that  centroid C3  best 
represents its cluster, whereas centroid C1 is the least representative and characterizes less 
well the cluster. 
 
DISCUSSION AND CONCLUSIONS 
The four questions in our questionnaire mainly refer to: I) the definition of a physics model, 
II) the subjects’ beliefs about ways of representing physics models, III) the main 
characteristics of models and IV) the subjects' beliefs about the modeling process. We have 
classified student answers into categories, also called answering strategies, that explain 
student reasoning strategies. Looking at our results, the four clusters identified are 
characterized by the related centroids and each centroid is represented by one array bk, which 
describes the different answering strategies categorized for each question. These strategies are 
defined as follows: b1: (1C, 2B, 3A, 4A), b2: (1B, 2B, 3E, 4A), b3: (1B, 2C, 3B, 4A), b4: (1C, 
2C, 3B, 4B), where the codes in brackets refer to the questionnaire answer strategies reported 
in the Appendix. We have already pointed out that the array describing the cluster centroid 
describes to the answers most frequently given by the students in the cluster, and in this sense 
we can identify at what frequency each answering strategy is shared by the cluster students. 
In particular, cluster Cl4 is mainly composed of students that use higher level answering 
strategies to deal with the concepts in the questionnaire. In fact, these students recognize that 
a model is a mental representation of a real object or phenomenon,which takes into account 
the characteristics that are significant for the modeler (1C). They also think that modelsare 
creations of human thought and their creation comes from continuous interaction with the 
“real” external world and from its simplification (2C) and that a modelmust highlight the 
variables that are relevant for the description and/or explanation of the phenomenon 
analyzed (or the object studied) and their relationships (3B). The modeling process is seen as 
a construction where the model can still contain errors or uncertainty connected with the 
possibility (or ability) to carefully reproduce the characteristicswe are interested in (4B). It is 
worth noting that only 19% of the students belong to cluster Cl4  and show an informed view 
of physics models. Such low percentages are also found in the literature (Grosslight et al., 
1991; Treagust et al., 2002),  although quantitative comparisons cannot be performed, given 
the differences in the analyzed samples. 
Students in cluster Cl2 show the weakest understanding of the model concept. They refer to a 
model as a simple phenomenon or the exemplification of aphenomenon through an 
experiment or a reduced scale reproduction of an object(1B), and believe that models are 
simple creations of human thought like mathematical formulas, or physics laws and/or they 
are what we call theories or scientific method (2B), and give answers regarding the main 
characteristics of a model that are confused and unclear  (3E). For these students every 
natural phenomenon can be simplified in order to be referred to a given model (4A). 
Cl2  students can be reported to the level II modelers based on the classification scheme 
developed by Grosslight et al. (1991). Level II modelers see models as representations of real-
world objects or events and not as representations of ideas about real-world objects or events. 
They also see the use of different models as that of capturing different spatio-temporal views 
of the object rather than different theoretical views. Similar results have been obtained in 
other studies, as for example paper Treagust et al. (2002), that found a significant group of 
students with a narrow and naïve understanding of the concept of model as an exact replica: 
the scale replica, a precise representation, which has accuracy and detail; and the imprecise 
representation, which doesn’t have the accuracy or detail, and may be nothing like the object, 
but can provide insight into why and how something works the way it does. Some  studies 
involving teacher conception of scientific models (Justi& Van Driel, 2005; Danusso et al., 
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2010) report conceptions related to such realistic view, mainly where teachers focus on the 
role of models as examples of objects/processes or their simplifications. To sum up, we can 
say that the students in cluster Cl4  seem to share many conceptions connected with an 
epistemological constructivist view (Treagust et al., 2002). Students in cluster Cl2, on the 
other hand, often held beliefs that correspond with a “naïve realist” epistemology, i. e. they 
usually considered models to be exact copies of reality, albeit on a different scale, or 
simplified representations (Treagust et al., 2002). 
Students in clusters Cl1 and Cl3 do not show a full coherence in their answers, although in 
different ways. Cl3  students seem to share with Cl2 students the ideas concerning the 
definition of physics models and the modeling process, but they also share their beliefs about 
the function as well as the characteristics of physics models with the students from cluster Cl4. 
In fact, they state that physics defines models as a simple phenomenon or the exemplification 
of a phenomenon through an experiment or a reduced scale reproduction of an object (1B). 
However, they also say that they are creations of human thought and their creation comes 
from continuous interaction with the “real” external world and from its simplification  (2C). 
Furthermore, they seem to share the idea that in a modeling process it is important to 
highlight the variables that are relevant for the description and/or explanation of the 
phenomenon being analyzed (or the subject being studied) and their relationships (3B) and 
that every natural phenomenon can be simplified in order to be referred to a given model 
(4A). Such conception of physics model can be reported to literature findings (Fazio et al., 
2013; Hrepic et al., 2005) that analyze students’ reasoning in different fields and define some 
kinds of reasoning as ‘‘hybrid models’’ (Ding & Beichner, 2009) or ‘‘synthetic models’’ 
(Justi & Gilbert, 2002), by referring to composite mental models that unify different features 
of initial spontaneous models and scientifically accepted models.  Research reveals (Bao & 
Redish, 2006; Hrepic et al., 2005) that a student can use different mental models in response 
to a set of situations or problems considered equivalent by an expert.  In particular, Bao and 
Redish (2006) developed a way to deal with these composite mental models  and  define 
students’ model states that can change with specific contextual features in different equivalent 
questions. Our data point out that such inconsistency is deployed in the elicitation of model 
constituents as well as of  functions and characteristic of the modeling process. 
Students in cluster Cl1 share the idea that a model is a mental representation aimed at 
describing a real object or a phenomenon, which takes into account the characteristics that 
are significant for the modeler (1C). However, they also think that models are simple 
creations of human thought, like mathematical formulas or physics laws, and/or they are what 
we call theories or scientific method (2B). These ideas are not completely consistent with the 
characteristics assigned to the model or with the students’ ideas about the modeling process. 
In fact they declare that a model must contain all the rules or all the laws for a simplified 
description of reality and/or it must account for all the features of reality (3A) and that every 
natural phenomenon can be simplified in order to be referred to a given model (4A). Their 
focus on the process of “simplification” is also made explicit in the examples they report in 
order the explain their sentences. For example, for many of such students “the motion without 
friction is a model as well as the perfect gas (not the motion with friction or real gases". 
On the other hand, it must be taken into account that the value of the reliability, rk

norm, of the 
C1 centroid is the lowest, showing that array b1 is not very significant in representing the 
answering strategies of thecluster students. Also, looking in detail at b1 array, the answering 
strategies are not easily understandable from the point of view of consistency and although  
they represent the answers most commonly given by Cl1  students, these do not have very 
high frequencies. For example, no more than 38% is assigned to category 1C. Other answers 
were also given by a large number of students; for example answering strategy 1B (A physics 
model is a simple phenomenon or the exemplification of a phenomenon through an 
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experiment or a reduced scale reproduction of an object) was selected by 30% of Cl1 
students.  In our opinion, this may show that a substructure is present in cluster Cl1, and this 
should be analyzed through different analysis methods, like, for example Hierarchical Cluster 
Analysis (Everit et al., 2011), that can point out a higher number of clusters and help to make 
sense of them. 
In conclusion, in this paper, we discussed the problem of quantifying qualitative data in order 
to analyze how to identify groups with common behavior, ideas, beliefs and conceptual 
understanding in a sample of students. We presented a method of cluster analysis and 
analyzed definitions, variables and algorithms in detail, in order to understand the possibilities 
offered by such a method and its limits. We gave an example of their application in order to 
demonstrate the necessary approximations and the different ways of interpreting results. The 
example is an analysis of the answers to a questionnaire given to a sample of university 
students. It is worth remembering that data that are quantitatively analyzed are the results of a 
categorization of raw data (the individual student answers) and this reduction of the initial 
data can be subject to errors, which obviously influences the final evaluation and the inference 
about the reasoning strategies supporting students’ answers. Such errors can only be reduced 
(through a clear process of coding and subsequent categorization) and not eliminated, and this 
must be taken into account when we try to infer typical students’ reasoning strategies. 
Looking at the meaning of the concept of a physics model as understood by the students in 
our sample, our results are consistent with those described in the literature, which illustrate a 
continuum of ideas/beliefs ranging from naive conceptions to constructivist ones (Grosslight 
et al., 1991; Van Driel & Verloop, 1999, Treagust et al., 2002; Pluta et al., 2011) . Our 
analysis gives details of student conceptions about the function of a physics model and its 
properties, by identifying features of intermediate conceptions as well as groups of students 
sharing such conceptions, in a continuum of this type. Furthermore, the results of this study 
provide important hints and insights for teaching methods that may improve students’ model-
based reasoning, and provide teachers with information about their students’ level of 
understanding, with which they can make instructional decisions. 
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APPENDIX. QUESTIONNAIRE AND ANSWERING STRATEGIES 
Q1. The term “model” is very common in scientific disciplines, but what actually is the 

meaning of “model” in physics? 
1A) A set of variables or rules or laws or experiments and observations that simplify reality 

and represent it in a reduced scale. 
1B) A simple phenomenon or the exemplification of a phenomenon through an experiment or 

a reduced scale reproduction of an object.  
1C) A mental representation aimed at describing a real object or a phenomenon, which takes 

into account the characteristics significant for the modeler. 
1D) A simplified representation describing a phenomenon aimed at the understanding of its 

mechanisms of functioning (or at explaining it or at making prediction). 
1E) No answer or not understandable answer 

Q2. Are the models creations of human thought or do they already exist in nature? 
2A) Models really exist and are simple, real life situations or simple experiments and humans 

try to understand them, sometimes only imperfectly. 
2B) Models are simple creations of human thought like mathematical formulas, or physics 

laws and/or they are what we call theories or scientific method. 
2C) Models are creations of human thought and their creation comes from continuous 

interaction with the ‘‘real’’ external world and from its simplification. 
2D) Models are creations of human thought aimed at explaining natural phenomena and 

making predictions. 
2E) No answer or not understandable answer 

Q3. What are the main characteristics of a physical model?  
3A) It must contain all the rules or all the laws for a simplified description of reality and/or it 

must account for all the features of reality. 
3B) It must highlight the variables that are relevant for the description and/or explanation of 

the phenomenon analyzed (or the object studied) and their relationships. 
3C) Their characteristics can classify models as descriptive or explicative or interpretative. 
3D) Their main characteristics are simplicity and/or uniqueness and/or comprehensibility. 
3E)  No answer or not understandable answer. 

Q4. Is it possible to build a model for each natural phenomenon?  
4A) Yes, every natural phenomenon can be simplified in order to be referred to a given 

model. 
4B) Yes, but the model can still contain errors or uncertainty connected with the possibility 

(or ability) of carefully reproducing the characteristics we are interested. 
4C) No. There are phenomena that cannot be described or explained with a model and/or that 

cannot be defined in terms of precise physical quantities. 
4D) No. There are phenomena that have not been still explained and these, perhaps, will be in 

the future. 
4E) No answer or answer not understandable 
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