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Abstract—We consider a population of dynamic agents, also
referred to as players. The state of each player evolves according
to a linear stochastic differential equation driven by a Brownian
motion and under the influence of a control and an adversarial
disturbance. Every player minimizes a cost functional which
involves quadratic terms on state and control plus a cross-
coupling mean-field term measuring the congestion resulting
from the collective behavior, which motivates the term “crowd-
averse”. Motivations for this model are analyzed and discussed
in three main contexts: a stock market application, a production
engineering example, and a dynamic demand management
problem in power systems. For the problem in its abstract
formulation, we illustrate the paradigm of robust mean-field
games. Main contributions involve first the formulation of the
problem as a robust mean-field game; second, the development
of a new approximate solution approach based on the extension
of the state space; third, a relaxation method to minimize the
approximation error. Further results are provided for the scalar
case, for which we establish performance bounds, and analyze
stochastic stability of both the microscopic and the macroscopic
dynamics.

I. INTRODUCTION

We illustrate the robust mean-field game approach on a
population of dynamic agents that wish to regulate their state
to zero. The robust approach is particularly useful to account
for model mis-specifications, uncertainties, or irrational be-
haviors on the part of the players. Each agent’s state evolves
according to a linear stochastic differential equation (SDE)
driven by a Brownian motion and under the influence of a
control and an adversarial disturbance. The control minimizes
a cost functional which involves quadratic terms on state
and control plus a cross-coupling mean-field term involving
the control of the single player and the mean control. The
mean state is referred to as common state. The structure
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of the cost functional, involving the common state in the
cross-term, has a straightforward interpretation in terms of
pricing and mechanism or incentive design. Justifications
for the model are provided in the context of three different
applications: stock market, production, and power systems. In
the latter example, for instance, the mean-field cross term is
useful as it allows the redistribution of the control load away
from peak “hours” thus reducing congestion, from which the
term “crowd-averse”. Indeed every player pays a cost from
controlling its own system when the population as a whole
has a high mean control.

We highlight three main contributions. First, we establish
a robust mean-field system for the considered game under
adversarial disturbances. The resulting solution is referred
to as worst-disturbance feedback mean-field equilibrium.
Second, we provide a new approximate solution to compute
such an equilibrium. The approach is based on the extension
of the state space in the same spirit as [?], [?]. The method
assumes that any player has an internal reference model for
the common state. The proposed method relies only on the
solution of a differential Riccati equation. Preliminarily to
the illustration of the method, we also investigate on the
solution of the Hamilton-Jacobi-Isaacs (HJI) equation under
the assumption that the time evolution of the common state
is given. We show that the problem reduces to solving three
matrix equations. The state space extension is a heuristic
method justified by bounded rationality and limited compu-
tation capabilities on the part of the players. The players
agree on the internal models and act based on the estimate
of the common state as obtained from the internal model. The
quality of the approximation method depends on the accuracy
of the internal reference model for the common state. Thus,
as third contribution, we study a relaxation method aiming
at minimizing the approximate error.

A few other contributions of the paper are obtained for the
scalar case. The first result describes performance bounds.
A second result establishes that the microscopic dynamics
is exponential asymptotic stable almost surely. A third result
shows that the macroscopic dynamics, involving the common
state, is exponentially asymptotic stable.

Mean-field games were formulated by Lasry and Lions
in [?] and independently by M.Y. Huang, P. E. Caines and
R. Malhamé in [?], [?]. The mean-field theory of dynamical
games is a modeling framework at the interface of differential
game theory, mathematical physics, and H∞-optimal control
that tries to capture the mutual influence between a crowd and
its individuals. Mean-field games arise in several application
domains such as economics, physics, biology, and network
engineering (see [?], [?], [?], [?], [?], [?], [?]).

From a mathematical point of view the mean-field ap-
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proach leads to a system of two PDEs. The first PDE is
the Hamilton-Jacobi-Bellman equation. The second PDE is
the Fokker-Planck equation which describes the density of
the players [?], [?]. Explicit solutions in terms of mean-field
equilibria are not common unless the problem has a linear-
quadratic structure, see [?], and are extended to more general
cases in [?]. In this sense, a variety of solution schemes
has been recently proposed based on discretization and/or
numerical approximations [?].

There has been substantial progress in the theory of weak
solutions [?] and classical solutions [?], [?] for mean-field
games. Robust mean-field games have been formulated in [?],
[?]. The connection between robustness and risk-sensitivity
is discussed in [?], [?]. Therein, an explicit solution in the
case of the affine-exponentiated-Gaussian mean-field game
is given. In this paper we provide an explicit approximate
solution under milder assumptions on the distribution, which
need not necessarily be Gaussian.

The paper is organized as follows. In Section ?? we formu-
late the problem. In Section ?? we provide some motivations.
In Section ?? we derive the mean-field game. In Section ??
we introduce the approximate solution approach. In Section
?? we deal with the minimization of the approximation
error. In Section ?? we provide additional results for the
scalar case. In Section ?? we carry out some numerical
studies. Finally in Section ?? we provide some conclusions.
Preliminary results of the work presented herein have been
published in [?].

Notation. We denote by (Ω,F ,P) a complete probability
space. We let B be a finite-dimensional Brownian motion
defined on this probability space. Let F = (Ft)t≥0 be
its natural filtration augmented by all the P−null sets (sets
of measure-zero with respect to P). We use ∂x and ∂2

xx to
denote the first and second partial derivatives with respect
to x, respectively. Given a vector x ∈ Rn and a matrix
Q ∈ Rn×n we denote by ‖x‖2Q the weighted two-norm
xTQx. The symbol Qi• denotes the ith row of a given matrix
Q. We denote by Diag(x) the diagonal matrix in Rn×n
whose entries in the main diagonal are the components of x.

II. PROBLEM SET-UP

In this section we first introduce the model considered and
then formulate the problem studied. Consider a game with an
infinite number of homogeneous players. For each player let
x0 ∈ Rn be its initial state, which is realized according to the
probability distribution m0. The state of the player at time
t, denoted by xt ∈ Rn, evolves according to a controlled
stochastic process over a finite horizon T > 0, i.e.

dxt = [Axt +But +Mζt]dt+ Σ(xt)dBt, (1)

where ut ∈ Rr is the control input, ζt ∈ Rw is an adversarial
disturbance, Bt ∈ Rn is an n-dimensional Brownian motion,
which is independent across its components, independent of
the initial state x0, and independent across players and time.
The matrices A ∈ Rn×n, B ∈ Rn×r , and M ∈ Rn×w, and
Σ(.) = Diag((σixi)i=1,...,n) ∈ Rn×n for given scalars σi,
all full column rank. For each player, the admissible controls
and disturbances are square integrable and are adapted to

the filtration generated by the initial states and the Brownian
motion, and possibly also adapted to some aggregate filtration
associated with other players’ dynamics.

To introduce a macroscopic description of the game,
consider probability density functions on the state, control
and disturbance spaces:

m : Rn × [0,+∞]→ [0,+∞], (x, t) 7→ m(x, t),∫
Rn m(x, t)dx = 1 for every t,
z : Rr × [0,+∞]→ [0,+∞], (u, t) 7→ z(u, t),∫
Rr z(u, t)du = 1 for every t.
z̃ : Rw × [0,+∞]→ [0,+∞], (ζ, t) 7→ z̃(ζ, t),∫
Rw z̃(ζ, t)dζ = 1 for every t.

In the following we use the compact notation mt = m(x, t).
At a given time t, function m(.) describes the density

of players in a given state x ∈ Rn, and z(.) describes the
density of players using a given control u ∈ Rr . Define the
mean state, control, and disturbance at time t as

m̄t :=
∫
Rn xm(x, t)dx, z̄t :=

∫
Rr uz(u, t)du,

ζ̄t :=
∫
Rw ζz̃(ζ, t)dζ.

The mean m̄t represents an aggregate or macroscopic de-
scription of the state of the system and therefore, henceforth,
we will refer to it as the common state.
Finally we introduce a cost functional with penalty on the
final state gT (·), stage cost function c(·), and quadratic
penalty on the unknown disturbance:

J(x0, ut, m̄t, ζt) = E
(
gT (xT )+∫ T

0
c(xt, ut, m̄t)dt− 1

2
γ2
∫ T

0
‖ζt‖2dt

)
.

(2)

Players wish to stabilize their states to zero, and therefore
we set the stage cost as follows:

c(xt, ut, m̄t) =
1

2

[
‖ut‖2R+S(m̄t) + ‖xt‖2Q

]
,

where, for given nonnegative scalar weights ĥi, i = 1, . . . , r,

S(m̄t) = Diag((ĥi|k̂i•m̄t|)i=1,...,r)

= Diag((ĥi|z̄t,i|)i=1,...,r),
(3)

for some k̂ ∈ Rr×n.
The term 1

2
‖xt‖2Q, with Q > 0, is the cost of a non-zero

state, and 1
2
‖ut‖2R, with R > 0, accounts for a penalty on

the control energy. The penalty on the final state gT (x) is, in
general, convex with minimum in zero, thus penalizing non-
zero states at the end of the horizon. Let us take for it the
expression gT (x) = 1

2
‖x‖2Φ, where Φ is a positive matrix.

The term 1
2
‖ut‖2S(m̄t)

represents a cross-term coupling
the control of each player and the common state of the
population. The common state is in turn related to the
mean control as explained next. By taking the mathematical
expectation of both sides of (??) we can derive the following
dynamics for the common state:

d

dt
m̄t = Am̄t +Bz̄t +Mζ̄t.

Considering a deterministic disturbance ζt, and using
indistinguishability, the mean of the average control solves
the equation:

z̄t = (BTB)−1
[
BT

(
d

dt
m̄t

)
−BTAm̄t −BTMζ̄t

]
.
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A relation between d
dt
m̄t and m̄t is yet to be introduced.

We will see that both d
dt
m̄t and ζ̄t can be approximated by

linear functions in m̄t and therefore we can rewrite

z̄t = k̂m̄t, (4)

for some k̂ ∈ Rr×n. This is useful in the definition of the cost
functional to reduce the number of independent variables,
in that we turn all functions of z̄t as functions explicitly
dependent on m̄t. The above preamble leads to the following
robust mean-field game problem.

Problem 1: (Robust mean-field problem) Let x0 be in-
dependent of B and with density m0(x). Let mt be the
mean-field trajectory. The robust mean-field problem in Rn
and (0, T ] is given by{

inf
{ut}t

sup
{ζt}t

J(x0, ut, m̄t, ζt)

dxt = [Axt +But +Mζt] dt + Σ(xt)dBt.

III. MOTIVATIONS

In this section we first motivate the role of the common
state in the cross-term and then we discuss three different
applications or extensions of the model introduced Section
??. It turns out that the structure of the cost functional
has a straightforward interpretation in terms of pricing and
mechanism, or incentive, design.

We first reframe the model within the context of stock
market literature. Here the continuous-time stochastic model
having the structure of a geometric Brownian motion finds
its natural collocation as a classical model for the random
stock price with specific volatility. This model is used in the
derivation of the well-know Black and Scholes equation, this
being a renowned model for the value of a European call
option [?]. The stock market model offers the opportunity
to indulge in the derivation and interpretation of the cross-
term in the objective function (??) as shadow price of a
global optimization problem solved by a regulatory author-
ity. Under this perspective, the problem takes a two-layer
or leader-follower hierarchical structure with a leader, the
regulatory agent setting the price, and multiple followers, the
players adapting their strategies to the new price. Two other
examples that accommodate well this hierarchical problem
are a production model and a power model. In the first
one, the regulatory authority is concerned with guaranteeing
that the total supply is equal to the total demand. In the
second example, the regulatory authority aims at stabilizing
the mains frequency in a population of thermostatically
controlled loads by using a dynamic demand management
policy.

In all of the above examples, the mean-field term can
be viewed as an incentive to encourage socially desirable
behavior on the part of the players.

A. Pricing

Consider a central planner that aims at solving the follow-
ing infinite horizon linear quadratic optimization problem

minπt
1
2

∫
(‖z̄t‖2Ξ + ‖πt‖2Π)dt

subject to ˙̄zt = πt,
(5)

where Ξ and Π are opportune positive definite matrices.
The term πt represents the pricing action. Thus the above
constraint models the influence of the pricing action on
the common state evolution. If the central planner adopts
a closed-loop state feedback control policy, we get

minφ̂
1
2

∫
(‖z̄t‖2Ξ + ‖φ̂z̄t‖2Π)dt

subject to ˙̄zt = φ̂z̄t.
(6)

In order to compute the optimal feedback control, let us
consider the Hamiltonian function

H(z̄t, λ) =
1

2

(
‖z̄t‖2Ξ + ‖φ̂z̄t‖2Π

)
+ λφ̂z̄t.

From Pontryagin maximum principle, we know that the co-
state λ satisfies the adjoint equation

λ̇ = −∂H(z̄t, λ)

∂z̄
= (Ξ + φ̂TΠφ̂)z̄t + λφ̂.

At the equilibrium, obtained by taking the LHS equal to
zero, we obtain for the adjoint equation

λ∞ =
∂v∞(z̄)

∂z̄
= φ̂−1(Ξ + φ̂TΠφ̂)z̄t.

Let us take h = 2φ̂−1(Ξ + φ̂TΠφ̂) and we have

λ∞ = 1
2
hz̄t = 1

2


ĥ1 . . . 0

. . .
. . .

...
. . . . . . ĥr


 z̄1

...
z̄r

 =


ĥ1z̄1

...
ĥr z̄r

 .
The significance of the above derivation is that the term

Diag((ĥi|k̂i•m̄t|)i=1,...,r) = Diag((ĥi|z̄t,i|)i=1,...,r) in
(??) represents the shadow price of the global constraint
z̄t = 0, namely, the price paid by the community due to the
violation of the constraint z̄t = 0, and which the regulatory
authority charges to the individuals in order to enforce the
satisfaction of the constraint.

B. Stock market model [?]

The most plausible interpretation of dynamics (??) lies in
a stock market context. This is a financial market involving
a risky asset, referred to as stock, and a risk-averse asset,
denoted as bond. A largely adopted dynamical model of the
price of the stock Ŝt is given by

dŜt = Ŝt[µdt+ σdBt],

where Bt is the standard one-dimensional Brownian motion,
and µ and σ are given constants. Let us also assume that the
bond price has a constant interest rate, denote it r̂, i.e.,

dBt = Bt[r̂dt].

For each time t, we denote by Xt the money invested in the
bond, Yt the investments in the stock, lt the rate of transfer
from the bond holdings to the stock, ωt the rate of opposite
transfers and ĉt the rate of consumption. The time evolution
of Xt and Yt is then given by

dXt = r̂Xtdt− ltdt+ ωtdt− ĉtdt
dYt = Yt[µdt+ σdBt] + ltdt− ωtdt.

(7)

Let the portfolio be obtained as sum of the invested money
in the bond and at the stock, namely

Zt = Xt + Yt,
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and denote the relative amount invested in the stock by

πt =
Yt
Zt
.

It can be shown that the time evolution of the portfolio
follows a stochastic differential equation in the form of a
geometric Brownian motion of type:

dZt = Zt[(r̂ + πt(µ− r̂))dt+ πtσdBt]− ĉtdt.

Note that the above has the same structure as (??) once we
take Zt represented by state xt, the consumption ĉt by the
control variable ut, and for the parameters we take A = r̂+
πt(µ− r̂). Here the central planner is a regulatory authority.
The cost functional (??) aims at incentivizing the players
to consume or spend the value of their portfolio within the
end of the game while at the same time regulatory decisions
apply taxes to consumption if the average consumption rate
exceeds a predefined target value.

C. Production [?], [?]

Suppose we have a continuum of producers with initial
reserve x0 distributed according to m0. Let the state be the
reserve of raw material or resource available at a given time.
Let the control be the production rate by a single producer
and the adversarial disturbance be a disturbance parameter
reflecting the taxation or inflation on the produced quantity.

A scalar version of equation (??) can be adapted to
describe the variation of the reserve at time t given the
current reserve and the consumed resource quantity:

dxt = [−ut + σζt]dt+ σxtdBt, (8)

where σ is a given scalar. The term σζt captures the
negative and uncertain influence of taxation, or inflation,
on the reserve. The stochastic term σxtdBt captures model
misspecification due to the fact that the estimation of the
reserves is not perfect or that reserves are random.

The cost functional, k̂m̄t is the sale price of the final
product and the cross-term is related to the income collected
from producing and selling the quantity ut; Q2 (xt)

2 accounts
for a production energy consumed, Q > 0 and Ru2

t is a
known linear taxation on production. The penalty on the final
state g(xT ) can be assumed quadratic in the reserve, so that
unexploited reserve at the end of the horizon is penalized.

Finally, the term σtζt is intended to capture the negative
and uncertain influence of taxation or inflation on the pro-
duction. The shadow price λ∞ = 1

2
hz̄t is obtained from a

global constraint on demand/supply equilibrium,∫
R
uz(u, t)du = Dt = 0.

In other words, around the equilibrium, when demand is
equal to supply, we assume inelastic demand and take the
mean demand equal to zero. Note that such a global balance
of demand and supply is particularly significant in the power
market [?].

As regards the cost functional (??), this involves a penalty
term on production rate, namely 1

2
Ru2

t and storage, 1
2
Qx2

t .
The additional cross-term 1

2
hz̄tu

2
t aims at penalizing pro-

duction when the total supply exceeds the total demand, and

vice versa, to encourage production in the opposite case. The
penalty on final state is a convex nonnegative penalty term
accounting for unexploited reserve at the end of the horizon.

The cost functional (??) can be modified in different ways
without compromising the results of this paper. A common
expression in production models with a large number of
producers [?], which finds it roots in the Cournot duopoly,
appears as

c(xt, ut, z̄t, ζt) = −h(z̄t, ζt)ut +
1

2

[
(b+ hz̄t)u

2
t + ax2

t

]
.

Here the cross-term h(z̄t, ζt) is the sale price of the manu-
factured product and thus h(z̄t, ζt)ut is the income collected
from producing and selling the quantity ut.

A slight change in the sign of the coefficients in (??),
and the dynamics mirrors a classical multi-retailer inventory
control equation describing the evolution of the inventory
over time [?]:

dxt = [ut − σζt]dt+ σxtdBt. (9)

In the above, the control is the reordered quantity and the
disturbance is the unknown market demand. A classical
scenario is where the transportation cost is shared among
all retailers who reorder at a given time instant. A certain
level of coordination of the retailers’ replenishment strategies
may lead to individual costs reduction. The cross mean-field
term in the objective function (??) accounts for the reduced
cost when orders are placed jointly. The other two terms are
the cost of reordering and the cost of inventory shortage or
inventory holding. We can generalize the framework to any
application where multiple players share a service facility
as airport facilities or telephone systems, drilling for oil,
cooperative farming, and fishing (see also the references on
cost-sharing games in [?])

D. Dynamic demand management [?], [?]

Players are electrical appliances, say for instance heating
or cooling appliances, and their state X(s) is the temperature
at time t ≤ s ≤ T , where [t, T ] is the time horizon
window. Each appliance can be in one of two modes, ON
or OFF , thus the control variable is a measurable function
of time πON (·) defined as s 7→ {0, 1} and such that
πON (s) = 1 means that, at time s, the appliance is set
to ON and πON (s) = 0 means that the appliance is set
to OFF . Dynamics (??) describes the time evolution of
the temperature of each appliance. To see this, consider
that when the appliance is ON the temperature decreases
exponentially up to a fixed lower temperature whereas in
OFF position the temperature increases exponentially up
to a higher temperature. Then, the temperature of each
appliance evolves according to the following differential
equations, for t < s < T :

X ′(s) =

{
−α(X(s)−XON ) if πON (s) = 1
−α(X(s)−XOFF ) if πON (s) = 0

, (10)

with initial state X(t) = x and where α > 0 is a given scalar
(the rate) and XON , XOFF are the steady-state temperatures
of the appliances when in state ON or OFF , respectively.
Here, considering a same rate for the two states has the only
meaning of simplifying future computations.
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Let us convexify the control set and consider the control of
a single agent as the probability of setting the appliance ON ,
thus we have u(t) ∈ U := [0, 1] where U is the control set. It
turns out that (??) can be rewritten in the form X ′ = f(X,u)
where f : R× U → R is the following affine dynamics:

{
X ′(s) = −αX(s) + σu(s) + c, s > t,
X(t) = x,

(11)

where x ∈ [XON , XOFF ], t ∈ [0, T ] are the initial state
and the initial time, respectively, σ := −α(XOFF −XON ),
c := αXOFF . For sake of simplicity and without loss of
generality we will take XOFF = −XON . Indeed, we can
always select lower and upper bounds of the temperature
symmetric with respect to xref . In addition, note that the
closed set [XON , XOFF ] is invariant and that the two
extremes are not reachable from any other interior point.
Hence, it is not restrictive to assume that no appliances have
the temperatures XON and XOFF .

Each controller is given a cost function that accounts for
i) the energy consumption, which is captured by the penalty
on the control, ii) the deviation of the mains frequency from
the nominal value, represented by the cross-term, and iii) the
deviation of the agent’s temperature from the reference value,
described by the penalty on the state. With respect to goal
ii), the cross mean-field term incentivizes the appliances to
switch to OFF if the mains frequency is below the nominal
value and to switch to ON if the mains frequency is above
the nominal value. This model is a simple one which can be
adapted to the case in which the deviation is on the power
rather than on the frequency.

IV. THE RESULTING MEAN-FIELD GAME

In this section we formulate the problem considered as
a robust mean-field game. To this purpose, let vt(xt) be
the (upper) value of the robust optimization problem under
worst-case disturbance starting at time t from state xt. The
next theorem provides the mean-field system associated to
the robust mean-field game introduced in Problem ??. The
proof, which is given in the appendix, makes use of the
definition of the Hamiltonian function, given by

H(xt, p, m̄t) = inf
ut

{
c(xt, ut, m̄t) + pT (Axt +But)

}
,

where p is the co-state, and of the robust Hamiltonian (see
[?, Chaps 4,8] and [?]), which is obtained as

H̃(xt, p, m̄t) = H(xt, p, m̄t) + sup
ζt

{
pTMζt−

1

2
γ2ζTt ζt

}
.

Theorem 1: The mean-field system associated to the ro-
bust mean-field game for the crowd-averse system is de-

scribed by the equations:

∂tvt + 1
2
(∂xvt)

T
[
−B(R+ S(m̄t))

−1BT

+ 1
γ2
MMT

]
∂xvt + (∂xvt)

TAxt

+ 1
2
xTt Qxt + 1

2

∑n
i=1 σ

2
i x

2
i ∂

2
xixivt = 0,

in Rn × [0, T [,

vT (x) = 1
2
xTΦx, in Rn,

∂tmt + ∂x
[
mt

(
Axt −B(R+ S(m̄t))

−1BT ∂xvt

+ 1
γ2
MMT ∂xvt

)]
− 1

2

∑n
i=1 ∂

2
xixi [σ

2
i x

2
imt] = 0,

in R× [0, T [,

m0(x) = d(x) in Rn ,

m̄t :=
∫
R xmtdx, in [0, T [,

(12)
Furthermore, the optimal control and worst disturbance are

u∗t = −(R+ S(m̄t))
−1BT ∂xvt, ζ∗t = 1

γ2
MT ∂xvt.

(13)
Proof: Given in the appendix. �

Any solution of the above system of equations is referred
to as worst-disturbance feedback mean-field equilibrium. The
significance of the above result is that to find the optimal
control input we need to solve the two coupled PDEs in (??)
in vt and mt with given boundary conditions. This is usually
done by iteratively solving the HJI equation for fixed mt and
by entering the optimal u∗t and ζ∗t obtained from (??) in the
FPK equation in (??), until a fixed point in vt and mt is
reached.

Since the Bellman equation depends explicitly on the
mean of the mean-field and not on the other moments, one
can reduce the mean-field system to a lower dimensional
system. The reduced mean-field system associated to the
robust mean-field game for the problem under study is (??)
complemented with the following additional equations{

d
dt
m̄t = Am̄t +Bū∗t +Mζ̄∗t , in [0, T [,

m̄0 =
∫
Rn xm0dx,

(14)

where
ū∗t :=

∫
R(−B(R+ S(m̄t))

−1BT ∂xvt)mtdx,
in [0, T [,

ζ̄∗t :=
∫
R( 1
γ2
MT ∂xvt)mtdx, in [0, T [,

(15)

and where ū∗t = z̄t is the mean of the optimal individual
state feedback control.

The resulting mean-field game maintains the same struc-
ture as in the deterministic case, but now both PDEs involve
the second order derivatives of the value function v(·) and
the density m(·) as shown in Table ??.

Because of the presence of the second derivatives, the
above game is called second-order mean-field game. The ad-
vection equation is now renamed Kolmogorov-Fokker-Planck
(KFP) equation.
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∂tvt + H̃(xt, ∂xvt, m̄t) + 1
2

∑n
i=1 σ

2
i x

2
i ∂

2
xixi

vt = 0,

vt

��

(HJB)-backward

∂tmt + ∂x
(
mt∂pH̃(x, ∂xvt,m)

)
− 1

2

∑n
i=1 ∂

2
xixi

[σ2
i x

2
imt] = 0

m̄t

UU

(Kolmogorov)-forward

TABLE I
STRUCTURE OF THE MEAN-FIELD GAME.

V. ON MEAN–FIELD EQUILIBRIA AND THEIR

APPROXIMATION

In this section, we introduce an approximate solution
approach based on a state-space extension and internal refer-
ence model. The approach does not require the existence of a
fixed-point for the system in Table ??. The approach provides
a description of the microscopic and macroscopic evolution
of the system when all players agree on modeling the
“environment” using the aforementioned reference models.
We then study equilibria and stability properties based on
such reference models.

A. Considerations on the parametrized HJI

We now investigate the solution of the HJI equation under
the assumption that the time evolution of the common state
is given. We show that the problem reduces to solving three
matrix equations. To see this, by isolating the HJI part of
(??) for fixed mt, for t ∈ [0, T ], we have

∂tvt + 1
2
(∂xvt)

T
[
−B(R+ S(m̄t))

−1BT

+ 1
γ2
MMT

]
∂xvt + (∂xvt)

TAxt + 1
2
xTt Qxt

+ 1
2

∑n
i=1 σ

2
i x

2
i ∂

2
xixivt = 0,

in R× [0, T [,

vT (x) = 1
2
xTΦx, in Rn.

(16)

Consider the following value function

vt(x) =
1

2
xTPtx+ Ψtx+ χt, (17)

so that (??) can be rewritten as

1
2
xT Ṗtx+ Ψ̇tx+ χ̇t

+(Ptx+ Ψt)
T
[
−B(R+ S(m̄t))

−1BT

+ 1
γ2
MMT

]
(Ptx+ Ψt) + (Ptx+ Ψt)

TAx

+ 1
2
xTt Qxt + 1

2

∑n
i=1 σ

2
i x

2
iPii(t) = 0 in R× [0, T [,

PT = Φ, ΨT = 0, χT = 0.

The boundary conditions are obtained by imposing that

vT (x) =
1

2
xTPTx+ ΨTx+ χT =

1

2
xTΦx.

Again, since this is an identity in x, it reduces to three

equations:

Ṗt + 2PTt

[
−B(R+ S(m̄t))

−1BT

+ 1
γ2
MMT

]
Pt + 2PTt A

+Q+ P̃t = 0 in [0, T [, PT = Φ,

Ψ̇t + PTt

[
−B(R+ S(m̄t))

−1BT + 1
γ2
MMT

]
Ψt

+ΨT
t

[
−B(R+ S(m̄t))

−1BT + 1
γ2
MMT

]
Pt

+ΨT
t A = 0 in [0, T [, ΨT = 0,

χ̇t + ΨT
t

[
−B(R+ S(m̄t))

−1BT

+ 1
γ2
MMT

]
Ψt = 0 in [0, T [, χT = 0,

(18)
where

P̃ = Diag((σ2
i Pii)i=1,...,n)

=


σ2

1P11 . . . 0

...
. . .

...
. . . . . . σ2

nPnn

 .
(19)

For the optimal control and worst-case disturbance we have{
u∗t (x) = (R+ S(m̄t))

−1BT (Ptx+ Ψt),
ζ∗t (x) = 1

γ2
MT (Ptx+ Ψt).

(20)

Existence of a solution for the equations (??) is guaranteed
under standard assumptions on convexity-concavity of the
value function with respect to the control and the disturbance
[?, Chap. 8]. This also justifies the choice of the quadratic
structure for the value function (??).

B. Internal reference model and state space extension

In this section, we study the problem in the extended
state space involving both the state of the player and the
average state distribution. The main idea is illustrated in
Fig. ??. In the mean-field system (??) the gradient ∂xvt is
parametrized in the average distribution m̄t, which evolves
according to a nonlinear differential equation. Then, we
replace the dynamics of m̄t with two linear dynamics on the
new variables m̂t and m̃t (dashed and dotted trajectories)
that upper and lower bound the nonlinear dynamics of m̄t

(solid). In the extended state space, the state variable evolves
according to the equations{

dxt = [Axt +But +Mζt]dt+ Σ(xt)dBt,
˙̄mt = Am̄t +Būt +Mζ̄t,

(21)
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−∂xvt m̂t

m̄t

m̃t

Fig. 1. Extended state space: the gradient ∂xvt depends on m̄t,
which is upper and lower bounded by m̂t (dashed) and m̃t (dotted)
respectively.

which can be rewritten in matrix form as[
dxt
dm̄t

]
=
(
A

[
xt
m̄t

]
+B

[
ut
ūt

]
+M

[
ζt
ζ̄t

])
dt+

[
Σ(xt)dBt

0

]
.

The main idea is that each player has an internal model for
the common state. In particular, each player approximates the
evolution of the common state through a dynamics of type{

d
dt
m̃t = Θtm̃t, for all t ∈ [0, T ],

m̃0 = m̄0.
(22)

Though this introduces an approximation, it must be said
that second-order systems are commonly used to approximate
higher-order dynamics.
By substituting the current average distribution m̄t by its
estimate m̃t, the problem at hand can be rewritten as

inf
{ut}t

sup
{ζt}t

∫ T

0

1

2

[
‖ut‖2R+S(m̃t) + ‖m̃t‖2Q̄

+
(
‖xt‖Q − γ2‖ζt‖2

)]
dt

[
dxt
dm̃t

]
=
([ A 0

0 Θt

] [
xt
m̃t

]
+

[
B
0

]
u∗t

+

[
M
0

]
ζ∗t

)
dt+

[
Σ(xt)dBt

0

]
,

for some positive definite matrix Q̄.
Reformulating the problem in terms of the extended state

Xt =
[
xTt m̃T

t

]T
,

yields the linear quadratic problem:

inf
{ũt}t

sup
{ζt}t

∫ T

0

[
1

2

(
XT
t Q̃Xt + R̃ũ2

t − Γ̃ζ2
t

)]
dt

dXt =
(
ÃXt + B̃ũt + Cζt

)
dt+DdBt,

where

Q̃ =

[
Q 0
0 Q̄

]
, R̃ = R+ S(m̃t), Γ̃ = γ2,

Ã =

[
A 0
0 Θt

]
, B̃ =

[
B
0

]
,

C =

[
M
0

]
, D =

[
Σ(xt)

0

]
.

The idea is therefore to consider a new value function
Vt(x, m̃) (in compact form Vt(X)) in the extended state
space which satisfies

∂tVt(X) +H(X, ∂XVt(X)) + 1
2

1
γ2
MMT |∂xVt(X)|2

+ 1
2

∑n
i=1 σ

2
i x

2
i ∂

2
xixiVt(X) = 0, in R2 × [0, T [,

VT (X) = g(x) in R2.

Assume that VT (X) is given by the quadratic form

Vt(X) =
1

2
[xTt m̃T

t ]

[
P11(t) P12(t)
P21(t) P22(t)

]
︸ ︷︷ ︸

Pt

[
xt
m̃t

]
,

where the matrix Pt is the solution of the differential Riccati
equation

Ṗt + PtÃ+ ÃTPt + Q̃

−2Pt(B̃R̃−1B̃T − CΓ̃−1CT )Pt +Wt = 0,
(18)

and where

B̃R̃−1B̃T − CΓ̃−1CT

=

[
B(R+ S(m̃t))

−1BT − 1
γ2
MMT 0

0 0

]
,

Wt =

[
P̃11(t) 0

0 0

]
.

Here P̃11(t) is as in (??).
Note that in the stationary case the above differential equation
simplifies to

PÃ+ ÃTP + Q̃− 2P(B̃R̃−1B̃T

−CΓ̃−1CT )P +W = 0.
(17)

The above algebraic Riccati equation is then associated to
the infinite horizon formulation of the game under study.
Back to the finite horizon game, let Pt be the solution of the
differential Riccati equation (??), then the optimal control is
given by

ũt = −R̃−1B̃TPtXt
= −(R+ S(m̄t))

−1[BT 0]

·
[
P11(t) P12(t)
P21(t) P22(t)

] [
xt
m̄t

]
= −(R+ S(m̄t))

−1BT

·(P11(t)xt + P12(t)m̄t),

(17)

and the worst-case disturbance is

ζ̃t = Γ̃−1CTPtXt

= 1
γ2

[ΣT 0]

[
P11(t) P12(t)
P21(t) P22(t)

] [
xt
m̄t

]
= 1

γ2
ΣT (P11(t)xt + P12(t)m̄t).

(17)

From (??) and (??), we can approximate the mean-field
equilibrium, which is captured by the evolution of m̄t over
the horizon (0, T ], as follows:
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d
dt
m̄t =

[
A+

(
−B(R+ S(m̄t))

−1BT + 1
γ2
MMT

)
·(P11(t) + P12(t))

]
m̄t t ∈ (0, T ], x0 ∈ R.

The equation above corresponds to saying that the mean
distribution converges to zero in absence of the stochastic
disturbances (the Brownian motion), under the assumption
that all the eigenvalues of the matrix

[
A +

(
− B(R +

S(m̄t))
−1BT + 1

γ2
MMT

)
(P11(t) +P12(t))

]
have strictly

negative real parts.

VI. MINIMIZING THE APPROXIMATION ERROR

In this section we introduce a relaxation method aiming
at minimizing the approximate error. Indeed, the quality
of the approximate problem solved in the previous section
depends on the accuracy of the internal reference model for
the common state (??).

Let us start by noting that the common state m̄t and its
approximation m̃t evolve according to

˙̄mt =
[
A+ (−B(R+ S(m̃t))

−1BT +
1

γ2
MMT )

·(P11(t) + P12(t))
]
m̄t, (16)

˙̃mt = Θtm̃t. (17)

Henceforth, for sake of conciseness, let us denote

Θ′ =
[
A+ (−B(R+ S(m̃t))

−1BT + 1
γ2
MMT )

·(P11(t) + P12(t))
]
.

Consequently, dynamics (??) can be rewritten in compact
form as

˙̄mt = Θ′tm̄t.

Dynamics (??) is obtained from averaging the optimal con-
trol (??) and worst-case disturbance (??) in order to obtain
ū∗t and ζ̄∗t , respectively. These values are then substituted in
the dynamics for the average distribution d

dt
m̄t = Am̄t +

Bū∗t + Σζ̄∗t . The best approximation, namely, the one with
the best bound, is given by the following least-square error
minimization

minΘ0,{ut}t∈[0,T ]

∫ T

0

[‖Θ′t −Θt‖2 + uTt ρut]dt

subject to Θ̇t = ut,
P11(t) + P12(t) from (??).

(16)

In other words, the functional (??) accounts for the approxi-
mation error using the internal model. Actually, the internal
model returns a predicted common state which differs from
the exact value.

Obviously, for ρ→∞ we force Θt to be constant and we
limit to consider the best constant value for Θ that minimizes
the least mean square error.

The least mean square problem (??) yields a gradient
algorithm based on the following update law for Θt(τ):

Θ̇t(τ) = k
([
A+ (−B(R+ S(m̃t))

−1BT + 1
γ2
MMT )

·(P11(t) + P12(t))
]
−Θt(τ)

)
,

where k is the update coefficient.
At the equilibrium Θ∗t , setting the LHS Θ̇t(τ) equal to

zero, the resulting solution is the least mean square solution,
namely the solution at minimum distance from

Θ∗t =
[
A+ (−B(R+ S(m̃t))

−1BT + 1
γ2
MMT )

·(P11(t) + P12(t))
]
.

If the least mean square error, i.e., the optimal cost of (??)
is null, then the solution is Θ∗t .

We are now interested in investigating conditions under
which the equilibrium point is asymptotically stable. This
implies that starting from any solution in a bounded neigh-
borhood of Θ∗t , the resulting solution converges asymptot-
ically to Θ∗t . For this to be true, for any Θ 6= Θ∗t in a
neighborhood of the equilibrium point, it must hold

∂
∂Θ

([
A+ (−B(R+ S(m̃t))

−1BT + 1
γ2
MMT )

·(P11(t) + P12(t))
]
−Θt(τ)

)
< 0.

Two main considerations arise. First, when the coefficient
tends to infinity, the RHS is negative since Θ′ is bounded.
Second, when the coefficient tends to zero, the RHS is
positive since Θ′ is bounded as well. Both considerations
can be schematically summarized as follows:

C1 Θt → ∞ the quantity Θ′ = −
[
A + (−Bb−1BT +

1
γ2
MMT )(P11(t) +P12(t))

]
is bounded and therefore

Θ̇ < 0
C2 Θt → 0 the quantity Θ′ = −

[
A + (−B(R +

S(m̃0))−1BT + 1
γ2
MMT )(P11(t) + P12(t))

]
is

bounded and positive and therefore Θ̇ > 0

Considerations C1 and C2 guarantee the existence and allow
the computation of a lower and a upper bound for the cost.

VII. SCALAR CASE

In this section we provide some results for the scalar
case. The first result describes performance bounds. The
second result establishes that the microscopic dynamics is
exponentially asymptotically stable almost surely. The third
result shows that the macroscopic dynamics is exponentially
asymptotically stable.

A. Performance bounds

Consider the scalar version of the dynamics (??):

dxt = [αxt + βut + µζt]dt+ σ(xt)dBt . (13)

In the scalar case Q ∈ R, Q̄ ∈ R, R = R and S(m̃t) =
ĥk̂m̃t = sm̃t ∈ R. From C1 and C2 we can deduce that
there exist two variables that approximate from above and
from below the evolution of the common state.

First, consider the following assumption.
Assumption 1: There exists θ and κ such that

κm̄t ≥
d

dt
m̄t = αm̄t+βū

∗
t+σζ̄

∗
t ≥ θm̄t, for all t ∈ [0, T ].
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Possible values for κ and θ are the one obtained with
maximal and minimal congestion, namely,

θ =
[
α+ (−β

2

R
+

σ2

2γ2
)(P11(t) + P12(t))

]
, (14)

κ =
[
α+ (− β2

R+ sm̄0
+

σ2

2γ2
)(P11(t) + P12(t))

]
. (15)

In other words, the main idea is to approximate the mean
distribution m̄t from below by m̃t and from above by m̂t.
To do this, we wish the following condition to hold:

m̃t ≤ m̄t ≤ m̂t, for all t ∈ [0, T ]. (15)

The above reasoning is particularly meaningful when σ = 0,
in which case we consider the following dynamics:

d
dt
m̄t =

(
α− 2β(P11+P12)

R+sm̄t

)
m̄t,

d
dt
m̃t =

(
α− 2β(P11+P12)

R

)
m̄t := −θtm̃t,

d
dt
m̂t =

(
α− 2β(P11+P12)

R+sm̂0

)
m̂t := −κm̂t,

m̄0 = m̂0 = m̃0.

(15)

In the above system of equations, we have set{
θt = −α+ 2β(P11+P12)

R
,

κ = −α+ 2β(P11+P12)
R+sm̂0

.
(15)

We are then in the position to establish the following result,
which provides a lower bound for the value function in (??)
when σ = 0.

Theorem 2: Let σ = 0. Then Vt(X) approximates v(x)
from below, i.e.,

Vt(X) ≤ vt(x), ∀X,x, t. (15)

Furthermore, the approximation error is upper bounded as
established by the inequality below

d
dt

(vt(x)− Vt(x))

≤ s
(

2β(P11+P12)
R

)2

m̄3
0

[
e−3κt − e(−θt−2κ)t

]
.

(15)

Proof: Given in the appendix. �

B. Exponential asymptotic stability of microscopic dynamics

The stochastic differential equation describing the closed-
loop system has an exponentially and asymptotically stable
equilibrium. To see this from (??)-(??) rewrite the dynamics
for xt in (??) as

dxt = [αxt + βu∗t + σζ∗t ] dt+ σxtdBt
=
[
αxt + (− 2β2

R+sm̄t
+ σ2

γ2
)(P11(t)xt + P12(t)m̄t)

]
dt

+σxtdBt t ∈ (0, T ], x0 ∈ R,

and consider the following assumption, ensuring that the evo-
lution of the state is bounded from above by an exponential
decay.

Assumption 2: There exists κ > 0 such that

−κxt ≥
[
α+ (− 2β2

R+sm̄t
+ σ2

γ2
)P11(t)

]
xt

+
[
(− 2β2

R+sm̄t
+ σ2

γ2
)P12(t)

]
m̄t.

(14)

The analysis is then performed within the framework of
stochastic stability theory [?]. To this end, consider the
infinitesimal generator

L =
1

2
σ2x2

t
d2

dx2
t

− κxt
d

dxt
, (15)

and the Lyapunov function V (x) = x2. The stochastic
derivative of V (x) is obtained by applying (??) to V (x),
which yields

LV (xt) = lim
dt→0

EV (xt+dt)− V (xt)

dt
= [σ2 − 2κ]x2

t .

Proposition 7.1: [[?]] Let Assumption ?? hold. If V (x) ≥
0, V (0) = 0 and LV (x) ≤ −ηV (x) on Q̂ε := {x : V (x) ≤
ε} for some η > 0 and for arbitrarily large ε, then the origin
is asymptotically stable “with probability one”, and

Px0

{
sup

T≤t<+∞
x2
t ≥ λ

}
≤ V (x0)e−ψT

λ

for some ψ > 0.

From Proposition ?? we have the following result, estab-
lishing exponential stochastic stability of the mean-field
equilibrium.

Corollary 7.1: Let Assumption ?? hold. If [σ2− 2κ] < 0
then lim

t→∞
xt = 0 almost surely and

Px0

{
sup

T≤t<+∞
x2
t ≥ λ

}
≤ V (x0)e−ψT

λ

for some ψ > 0.

C. Mean-field equilibrium for macroscopic dynamics

Let Assumption ?? hold. We can approximate the mean-
field equilibrium, which is captured by the evolution of m̄t

over the horizon (0, T ], as follows:

d
dt
m̄t ≤ −κm̄t, t ∈ (0, T ], m0 ∈ R× [0, T ],

which yields the upper bound for m̄t:

m̄t ≤ m̄0e
−κt, t ∈ (0, T ], x0 ∈ R.

Essentially, the inequality above describes converging linear
dynamics which upper bound the time evolution of m̄t, for
all t ∈ (0, T ]. As a result

d
dt
m̄t =

[
α+ (− 2β2

R+sm̄t
+ σ2

γ2
)(P11(t) + P12(t))

]
m̄t

t ∈ (0, T ], x0 ∈ R.

Actually, we can derive a differential equation describing
the evolution of the mean distribution which represents a
bound, namely{

m̄t = m̄0e
ρt

ρ = α+ (− 2β2

R+sm̄t
+ σ2

γ2
)(P11(t) + P12(t)).

The equation above corresponds to saying that the mean
distribution converges exponentially to zero in absence of
stochastic disturbances (the Brownian motion), under the
assumption that ρ is strictly negative.
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α β Q R θt Q̄ γ m̄0

0.1 2 2 1 10 0.1 1 80

TABLE II
SIMULATION PARAMETERS

VIII. NUMERICAL STUDIES

In this section we present numerical studies of the robust
mean-field game with dynamics (??). In particular, we study
in more detail the numerical example introduced in [?]. Af-
ter computing optimal controls and worst-case disturbances
using the heuristic method illustrated earlier, we simulate the
macroscopic evolution of the population of players. Consider
a system consisting of n = 103 indistinguishable players,
where each player seeks to minimize a cost functional of the
form (??) subject to an adversary disturbance. I.e. consider
Problem ??. Note that for this scalar problem we use the
same notation as in Section ??, i.e. S(m̃t) = sm̃t. An
approximate solution to the mean-field game is found using
the method introduced in Section ??. The matrix

P =

[
P11(m̄) 0

0 Q̄
4θt

]
,

with P11(m̄) =
√

(σ2 + 2α)2 + 8( β2

R+sm̄
− σ2

2γ2
)+σ2+2α,

is the positive definite solution to the algebraic Riccati
equation (??). The resulting control (??) and the disturbance
(??) are adopted using this solution. The set of states is
discretized and numerical results are obtained using the
algorithm in Table ??. The quantities σ(xt) and µ determine
the influence of the Brownian motion Bt and the disturbance
ζt, respectively. In this example consider the case in which
σ(xt) is constant, i.e. σ(xt) = σ and we set µ = σ.
Simulations have been run for two different values of σ,
namely σ0 = 0, σ1 = 0.1. The selection σ = σ0 corresponds
to the case in which there is no disturbance and dynamics
(??) is deterministic. The simulations have also been run for
two different values of s, namely s1 = 0.5 and s2 = 1.5.
Note that large values of s correspond to large penalties when
congestion occurs. The remainder of the parameters are as
shown in Table ??.

Figure ?? shows the time histories of the states of the
players with the weights s = s1 (top row) and s = s2

(bottom row) and the parameters σ = σ0 (left column) and
σ = σ1 (right column). Figure ?? shows the distribution, mt,
of the players’ states at different times for the four different
selections of parameters. The initial and final distributions
are indicated by the dashed and solid curves, respectively,
whereas the distribution at intermediate times are denoted by
the dotted curves. Figure ?? shows the time histories of the
mean, m̄t, (left) and the standard deviation (right) for s = s1

(top) and s = s2 (bottom). The solid curves correspond to
σ = σ1 whereas the dashed lines correspond to σ = σ0.

Note that in all four cases the players successfully drive
their states to zero. However, for a given value of the
parameter s, the convergence is fastest in the absence of noise
and disturbances, i.e. when σ = σ0. Figure ?? shows the
time histories of the control actions (??) of the players with

Input: Set of parameters as in Table ??.
Output: Distribution function mt, mean m̄t

and standard deviation std(mt).
1 : Initialize. Generate x0 given m̄0 and std(m0)
2 : for time t = 0, 1, . . . , T − 1 do
3 : if t > 0, then compute mt, m̄t, and std(mt)
4 : end if
5 : for player i = 1, . . . , n do
6 : Compute control ũ using current m̄t

7 : compute new state xt+1 by executing (??)
8 : end for
9 : end for
10 : STOP

TABLE III
SIMULATION ALGORITHM
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Fig. 2. Time histories of the state of each player. Top row: s = s1,
bottom row: s = s2, left column: σ = σ0, right column: σ = σ1.

s = s1 (top row) and s = s2 (bottom row), and σ = σ0 (left
column) and σ = σ1 (right column). For the case in which
σ = σ1, it is clear that when s = s1 is selected the players
put a larger effort at the beginning of the simulation than
when s = s2 is selected, and the same is true for σ = σ0.
Since s2 > s1, this implies that in the former case a larger
penalty is incurred when congestion occurs and therefore one
would expect the players to stall to avoid this, resulting in the
convergence to the zero equilibrium being somewhat slower.
The simulations are consistent with this, as for a given value
of σ it takes more time for the players to drive their states
to zero when the parameter s = s2 is selected in place of
s = s1.

IX. CONCLUDING REMARKS

We have illustrated robust mean-field games as a paradigm
for crowd-averse systems. We have discussed these systems
in the context of stock market, production engineering,
and dynamic demand management in power systems. We
have presented a new approximation method based on the
extension of the state space.
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Fig. 3. The initial (dashed line), final (solid line) and intermediate
(dotted lines) distribution, mt, of the states of the players. Top row:
s = s1, bottom row: s = s2, left column: σ = σ0, right column:
σ = σ1.
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Fig. 4. Time histories of the mean m̄t (left) and the standard
deviation (right) of the states of the players for s = s1 (left), s = s2
(right), σ = σ0 (dashed line) and σ = σ1 (solid line).

We can extend our study in at least three directions. These
include i) the extension of the approximation method to more
general cost functionals, ii) the study of the case with “local”
mean-field interactions rather than “global” as in the current
scenario, and iii) the analysis of crowd-seeking scenarios in
contrast to the crowd-averse cases analyzed in this paper.
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APPENDIX

Proof of Theorem ??.

We first prove condition (??). To this end write the
Hamiltonian as:

H(xt, ∂xvt,mt) = infu
{

1
2
(‖ut‖2R+S(m̄t)

+‖xt‖2Q) + ∂xvt(Axt +But)
}
.

(11)

Differentiating with respect to ut gives

(R+ S(m̄t))ut +BT ∂xvt = 0, (11)

which yields (??).
For the robust Hamiltonian we then have

H̃(xt, p, m̄t) = H(xt, p, m̄t) + sup
ζt

{
pTMζt −

1

2
γ2ζTt ζt

}
whose solution in terms of ζt is given by ζ∗t = 1

γ2
MT ∂xvt.

We now prove (??). Substituting the above expression for ζ∗t
back in the expression for the robust Hamiltonian we then
have

H̃(xt, p, m̄t) = H(xt, p, m̄t) + 1
2

1
γ2
∂xv

T
t MMT ∂xvt.

Then the mean-field system associated to the robust mean-
field game introduced in Problem ?? is given by

∂tvt +H(xt, ∂xvt, m̄t) + 1
2γ2

∂xv
T
t MMT ∂xvt

+ 1
2

∑n
i=1 σ

2
i x

2
i ∂

2
xixivt = 0, in Rn × [0, T [,

vT (x) = 1
2
xTΦx, in Rn,

∂tmt + ∂x (mt∂pH(x, ∂xvt,m))
+ 1
γ2
∂x(mtMMT ∂xvt)

− 1
2

∑n
i=1 ∂

2
xixi [σ

2
i x

2
imt] = 0, in Rn × [0, T [,

m0(x) = d(x) in Rn,
m̄t :=

∫
R xmtdx, in [0, T [,

(10)

where d(x) is the initial population state distribution and g
the terminal payoff.

First note that the second and last equations are the bound-
ary conditions and derive straightforwardly from Bellman
equations and the evolution of the state.

To prove the first equation, which is a PDE corresponding
to the HJI equation, replace u in the Hamiltonian (??) by its
expression (??), i.e.

H(xt, ∂xvt,mt) =
1

2
(‖u∗t ‖2R+S(m̄t) + ‖xt‖2Q)

+(∂xvt)
T (Axt +Bu∗t )

=
1

2

[
xTt Qxt + u∗

T

t

(
R+ S(m̄t)

)
u∗t

]
+(∂xvt)

TAxt + (∂xvt)
TBu∗t

= −1

2
(∂xvt)

T [B(R+ hz̄t)
−1BT ]∂xvt

+(∂xvt)
TAxt +

1

2
xTt Qxt.

Using the above expression of the Hamiltonian in the HJI
equation in (??), we obtain the HJI in (??).

To prove the third equation, which is a PDE representing
the FPK equation, we simply bring (??) into the FPK
equation in (??), and this concludes the proof.

Proof of Theorem ??.

Let us start by noting that, from convexity on m̄, we can
write the following HJI inequality as

∂tvt + c(xt, ũt, m̃t)− γ2ζ̃2
t + ∂xvt(αxt

+βũt + σζ̃t) + 1
2
σ2x2∂2

xxvt ≤ 0,
in R× [0, T [,
vT (x) = 1

2
Φx2, in R.

(10)

In other words

Ṽt(x) :=

∫ T

0

(c(xt, ũt, m̃t)− γ2ζ̃2
t )dt ≤ vt(x).

Then, for the approximation error we have

e(t) := vt(x)− Vt(X)

≤
∫ T

0
sũ2
τ (m̄τ − m̃τ )dτ

≤
∫ T

0
sũ2
τm̄0( m̂τ

m̄0
− m̃τ

m̄0
)dτ,

(10)

for any m̄t, m̃t, and m̂t satisfying (??). Now, from (??)-(??),
the above inequalities can be rewritten as

e(t) ≤
∫ t

0
sũ2
τm̄0

[
e−κτ − e−θtτ

]
dτ, (10)

from which, after differentiating with respect to t and sub-
stituting ũt with the expression in (??), we obtain

ė(t) ≤ s
(

2β(P11+P12)
b

m̃t

)2

m̄0

[
e−κτ − e−θtτ

]
≤ s
(

2β(P11+P12)
b

)2(
m̂t
m̄0

)2

m̄3
0

[
e−κτ − e−θtτ

]
≤ s
(

2β(P11+P12)
b

)2

m̄3
0

[
e−3κt − e(−θt−2κ)t

]
,

which proves the thesis.
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