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Abstract. In this paper we deal with interval multimeasures. We show

some Radon-Nikodým theorems for such multimeasures using multival-
ued Henstock or Henstock-Kurzweil-Pettis derivatives. We do not use

the separability assumption in the results.

1. Introduction.

One of the most fascinating problems arising when we deal with multimea-
sures is the represention of a multimeasure as an integral, i.e. the existence
of a Radon-Nikodým derivative.

Several papers concerning this question appeared since the 1970’s where pi-
oneering results have been established amongst others by Artstein [1], Costé
[6], Costé and Pallu de la Barrière [7]. These papers deal with countably addi-
tive multimeasures and use classical notions of integral existing in literature.

In the 1990’s other results dealing with finitely additive multimeasures
have been obtained by A. Martellotti, K. Musia l and A. R. Sambucini (see
[15, 16]). In particular, they have been extended the trattation beyond the
Banach spaces (in particular, to locally convex spaces), but also in this case
classical integrals are used for the representation.

In general the results existing in literature use multimeasures defined on a
σ-algebra. Moreover, most of them uses the separability assumption.

In this paper we deal with the Radon-Nikodým problem for multimeasures
defined on the family I of all non trivial closed subintervals of [0, 1] and con-
sequently we look for Radon-Nikodým derivatives of Henstock type. This is
the first paper where that problem has been undertaken.

The Henstock integral has been introduced in the 1960’s independently
by Henstock [11] and Kurzweil [14], by a simple modification of Riemann’s
method. It is a non absolutely convergent integral more general than Lebesgue’s
one, integrates all derivatives and its primitive is a finitely additive interval
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function.
Our starting point is the remarkable recent article of B. Cascales, V. Kadets

and J. Rodŕıguez [5], where they obtain two Radon-Nikodým theorems for
countably additive multimeasures without any separability assumption.

Here we go on in such kind of investigation and we consider finitely additive
multimeasures defined on I, taking convex compact values or convex weakly
compact values, in an arbitrary Banach space X.

The paper is organized as follows. In Section 2 we give necessary notations,
definitions and preliminaries.

In Section 3 we extend to the multivalued case the notion of variational
measure already known for vector valued interval measure. This measure is a
useful tool for our investigation.

In Section 4 we prove the main results. In the convex compact case we
obtain a Radon-Nikodým theorem for dominated interval multimeasures (see
Theorem 4.2) that improves Theorem 3.1 of [5]. To get our goal we use an
extension of a finitely additive multimeasure to a countably additive multi-
measure defined in the σ-algebra of the Borel subsets of [0, 1] (see Proposition
4.1).

In the more general context of convex weakly compact valued multimea-
sures we find an HKP -integrable derivative under the hypothesis of absolute
continuity for the associated variational measure (see Theorem 4.6). Also in
such a case we do not require the separability of the target Banach space X,
but we assume that X possesses the Radon-Nikodým property (shortly RNP).

2. Notations and preliminary definitions.

Let [0, 1] be the unit interval of the real line, endowed with the usual topology
and the Lebesgue measure λ. We denote by L the family of all measurable
subsets of [0, 1], by A the ring generated by the subintervals [a, b) ⊆ [0, 1] and
by I the family of all non trivial subintervals of [0, 1].
A partition in [0, 1] is a finite collection of pairs {(Ij , tj)}qj=1, where I1, . . . , Iq
are non-overlapping subintervals of [0, 1] and t1, . . . , tq ∈ [0, 1]. Given a subset
E of [0, 1], we say that the partition {(Ij , tj)}qj=1 is anchored on E if tj ∈ E
for each j = 1, . . . , q. If

⋃q
j=1 Ij = [0, 1], we say that {(Ij , tj)}qj=1 is a partition

of [0, 1].
A gauge on B ⊂ [0, 1] is a positive function on B. Given a gauge δ, we say
that a partition {(Ij , tj)}qj=1 is δ-fine if Ij ⊂ (tj − δ(tj), tj + δ(tj)) for every
j = 1, . . . , q.
Let denote by X a real Banach space, with dual X∗. The closed unit ball of
X (resp. X∗) is denoted by B(X) (resp. B(X∗)).

Definition 2.1. A function f : [0, 1] → X is said to be Henstock integrable
(or simply H-integrable) on [0, 1] if there exists x ∈ X with the following
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property: for every ε > 0 there exists a gauge δ on [0, 1] such that∣∣∣∣∣∣
∣∣∣∣∣∣
q∑
j=1

f(tj)|Ij | − x

∣∣∣∣∣∣
∣∣∣∣∣∣ < ε,

for every δ-fine partition {(Ij , tj)}qj=1 of [0, 1].

We call x the Henstock integral of f on [0, 1] and we set (H)
∫ 1

0
f dλ := x.

It is well known that if f : [0, 1] → X is Henstock integrable on [0, 1] and
I ∈ I, also the function fχI is Henstock integrable on [0, 1] [19, Theorem
3.3.4]. We say in such a case that f is Henstock integrable on I. If X = R,
then f is said to be Henstock-Kurzweil integrable or simply HK-integrable on

[0, 1] and we denote by (HK)
∫ 1

0
f dλ the corresponding interval.

Definition 2.2. A function f : [0, 1]→ X is said to be scalarly HK-integrable
(resp. scalarly integrable) if for every x∗ ∈ X∗ the real function 〈x∗, f(·)〉 is
HK -integrable (resp. integrable).
A scalarly HK -integrable (resp. scalarly integrable) function f : [0, 1] → X
is said to be Henstock-Kurzweil-Pettis integrable or simply HKP-integrable
(resp. Pettis integrable) on [0, 1] if for every interval I ∈ I (resp. for every
E ∈ L), there exists xI ∈ X (resp. xE ∈ X) such that

〈x∗, xI〉 = (HK)

∫
I

〈x∗, f〉 dλ, for every x∗ ∈ X∗(
resp. 〈x∗, xE〉 =

∫
E

〈x∗, f〉 dλ, for every x∗ ∈ X∗
)
.

We call xI (resp. xE) the HKP-integral of f on I (resp. Pettis integral of f
on E) and we write (HKP )

∫
I
f dλ := xI (resp. (P )

∫
E
f dλ := xE).

For more details about vector valued functions see [8], [18] or [19].
The class of all non-empty subsets of X is 2X . By cl(X), cc(X), cbc(X),
ck(X), cwk(X) we denote respectively the subfamilies of 2X of all closed,
closed convex, closed convex bounded, convex compact and convex weakly
compact subsets of X.
For every C ∈ 2X , the support function of C is denoted by s(·, C) and defined
on X∗ by s(x∗, C) := sup{〈x∗, x〉 : x ∈ C}, for each x∗ ∈ X∗.
We denote by dH the Hausdorff distance in 2X :

dH(C,C ′) := max{e(C,C ′), e(C ′, C)}, C, C ′ ∈ 2X ,

where e(C,C ′) = sup{d(x,C ′) : x ∈ C} is the excess of C over C ′, while
d(x,C) = inf{||x − y|| : y ∈ C} is the distance of x from C. For A ∈ 2X , we
set ||A|| := sup{||x|| : x ∈ A} and we call it the radius of A.
A map F : [0, 1]→ cl(X) is called a multifunction. A function f : [0, 1]→ X
is called a selection of F if for every t ∈ [0, 1] one has f(t) ∈ F (t).
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A multifunction F is said to be scalarly integrable (resp. scalarly HK-integrable)
if for every x∗ ∈ X∗ the map s(x∗, F (·)) is integrable (resp. HK -integrable).
More information concerning Pettis integrability of multifunctions can be
found in [17].

Definition 2.3. A multifunction F : [0, 1]→ cbc(X)(ck(X), cwk(X)) is said
to be Henstock-Kurzweil-Pettis integrable or simply HKP-integrable (resp.
Pettis integrable) in cbc(X)(ck(X), cwk(X)) if F is scalarly HK -integrabile
(resp. scalarly integrable) and for every interval I ∈ I (resp. for every E ∈ L),
there exists CI ∈ cbc(X)(ck(X), cwk(X)) (resp. CE ∈ cbc(X)(ck(X), cwk(X)))
such that

s(x∗, CI) = (HK)

∫
I

s(x∗, F ) dλ, for every x∗ ∈ X∗(
resp. s(x∗, CE) =

∫
E

s(x∗, F ) dλ for every x∗ ∈ X∗
)
.

We call CI (resp. CE) the HKP-integral of F over I (resp. Pettis integral of
F over E) and we set (HKP )

∫
I
F dλ := CI (resp. (P )

∫
E
F dλ := CE).

More information concerning Pettis integrability of multifunctions can be
found in [17].

Definition 2.4. A multifunction F : [0, 1]→ cbc(X)(ck(X), cwk(X)) is said
to be Henstock integrable if there exists W ∈ cbc(X)(ck(X), cwk(X)) with the
following property: for every ε > 0 there exists a gauge δ on [0, 1] such that
for every δ-fine partition {(Ij , tj)}pj=1 of [0, 1] we have

dH

W, p∑
j=1

F (tj)|Ij |

 < ε.

W is called the Henstock integral of F and we write (H)
∫
I
F dλ := W .

A multifunction M : L → cl(X) is said to be a dH-multimeasure if for every
sequence (An)n≥1 ⊂ L of pairwise disjoint sets with A =

⋃
n≥1An, we have

dH(M(A),
∑n
k=1M(Ak))→ 0 as n→ +∞.

A multifunction M : L → cl(X) is said to be a weak multimeasure or simply a
multimeasure if for every x∗ ∈ X∗, the map A 7→ s(x∗,M(A)) is a real valued
measure.
It is known that every cl(X)-valued dH -multimeasure is a multimeasure (see
[13, Proposition 8.4.7]).
The two notions coincide whenever the multimeasure takes its values in cwk(X)
(see [13, Theorem 8.4.10]).
We say that the multimeasure M : L → 2X is λ-continuous and we write
M << λ, if λ(A) = 0 yields M(A) = {0}.
Given a multimeasure M : L → 2X , a vector measure m : Σ → X such that
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m(A) ∈M(A) for every A ∈ L is called a selection of M .
Moreover, the variation of M is the extended non-negative function |M | whose
value on a set A ∈ L is given by

|M |(A) := sup
∑
i

||M(Ai)||,

where the supremum is taken over all finite partitions (Ai)i of A in L.
If |M |([0, 1]) < +∞, then M is called of finite variation.
If there exists a sequence (An)n ⊂ L of pairwise disjoint sets covering [0, 1]
and such that |M |(An) < +∞ for every n, then M is called of σ-finite varia-
tion

3. Interval multimeasures and their selections. Variational
measures.

We start with the following definitions.

Definition 3.1. An interval multifunction Φ : I → cwk(X) is said to be
finitely additive if for every non-overlapping intervals I1, I2 ∈ I such that
I1 ∪ I2 ∈ I we have Φ(I1 ∪ I2) = Φ(I1) + Φ(I2).

Remark 3.2. The primitives of Henstock or Henstock-Kurzweil-Pettis inte-
grable multifunctions are interval multimeasures. Moreover, it is known that
if F : [0, 1] → cwk(X) is Pettis integrable in cwk(X), then its primitive is
σ-additive (see [18]). If we set Φ(I) := ν(I), I ∈ I, then Φ is an interval
multimeasure.

Definition 3.3. A multifunction Ψ : A → cwk(X) is said to be a finitely
additive multimeasure if for every A1, A2 ∈ A whose interiors are disjoint we
have Ψ(A1 ∪A2) = Ψ(A1) + Ψ(A2).

Remark 3.4. In the following we identify a finitely additive interval multi-
function Φ : I → cwk(X) with the finitely additive multimeasure Ψ : A →
cwk(X) defined by Ψ(A) :=

∑q
j=1 Φ(Ij), where A =

⋃q
j=1 Ij and I1, . . . , Iq

are pairwise disjoint subintervals of [0, 1]. We use a similar identification for
the corresponding selections.
Hence we call interval multimeasure every finitely additive interval multifunc-
tion and interval measure every finitely additive interval function.
Moreover, we observe that if Φ : I → cwk(X) is an interval multimeasure,
then for every x∗ ∈ X∗, s(x∗,Φ(·)) is a real-valued interval measure.
An interval measure φ : I → X is said to be a selection of an interval multi-
measure Φ if φ(I) ∈ Φ(I) for every I ∈ I.
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We recall that for ∅ 6= K ⊂ X, an element x ∈ K is called an exposed point
of K if there exists x∗ ∈ X∗ such that 〈x∗, x〉 > 〈x∗, y〉 for every y ∈ K \ {x};
an exposed point x of K is called a strongly exposed point of K if for every
(xn)n ⊂ K with 〈x∗, xn〉 → 〈x∗, x〉, then ||xn − x|| → 0, where x∗ is the
functional that exposes x. We denote by exp(K) (resp. str exp(K)) the set
of the exposed points (resp. strongly exposed points) of K.
It is known that if K ∈ ck(X) (resp. K ∈ cwk(X)), then exp(K) 6= ∅ (resp.
str exp(K) 6= ∅) and K = co(exp(K)) (resp. K = co(str exp(K))) (see [4,
Theorem 3.6.1]).
The following result is well known in case of countably additive multimeasures
(see [12]). We omit its proof, since it is very similar to that in [12, Proposition
2.1].

Proposition 3.5. Let Φ : I → ck(X) be an interval multimeasure. If x0 ∈
exp(Φ([0, 1])) then there exists a selection φ : I → X of Φ such that φ([0, 1]) =
x0 and φ(I) ∈ exp(Φ(I)) for every I ∈ I.

With similar argument, we obtain

Proposition 3.6. Let Φ : I → cwk(X) be an interval multimeasure. If
x0 ∈ str exp(Φ([0, 1])) then there exists a selection φ : I → X of Φ such that
φ([0, 1]) = x0 and φ(I) ∈ str exp(Φ(I)) for every I ∈ I.

Now we extend the notion of variational measure to additive interval multi-
measures (cf. [2] or [9]). This notion is a useful tool to study the primitives
of real valued or, more in general, vector valued integrable functions.
Given an interval multimeasure Φ : I → cwk(X), a gauge δ and a set
E ⊂ [0, 1], we define

V ar(Φ, δ, E) = sup


p∑
j=1

||Φ(Ij)|| : {(Ij , tj)}pj=1 δ-fine partition anchored on E

 .

Then we set

VΦ(E) := inf {V ar(Φ, δ, E) : δ gauge on E} .

VΦ is called the variational measure generated by Φ.

Remark 3.7. If Φ is an interval multimeasure, then VΦ is the variational
measure generated by the single valued map R ◦ Φ, where R : cwk(X) →
l∞(B(X∗)) is the R̊adstrom Embedding defined by R(C) := s(·, C), for C ∈
cwk(X). In fact, for I ∈ I we obtain:

||R(Φ(I))||l∞ = ||s(·,Φ(I))||l∞ = sup
x∗∈B(X∗)

|s(x∗,Φ(I))|

= sup
x∗∈B(X∗)

|s(x∗,Φ(I))− s(x∗, {0})| = dH(Φ(I), {0}) = ||Φ(I)||.
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Consequently, V ar(Φ, δ, E) = V ar(R(Φ), δ, E) for any gauge δ and any set
E ⊂ [0, 1], and VΦ(E) = VR◦Φ(E) for any set E ⊂ [0, 1].
Therefore, as in the X-valued case, VΦ is a metric outer measure on [0, 1] (see
[2]) and a measure over all Borel sets of [0, 1].

We say that the variational measure VΦ is σ-finite if there exists a sequence
of (pairwise disjoint) sets (En)n≥1 covering [0, 1] and such that VΦ(En) <∞,
for every n ≥ 1. Moreover, we say that VΦ is absolutely continuous with
respect to λ (or λ-continuous) and we write VΦ << λ if for every E ∈ L with
λ(E) = 0 we have VΦ(E) = 0.

Remark 3.8. Taking into account that VΦ = VR◦Φ and using [2, Corollary
2.3], we have σ-finiteness of every λ-continuous variational measure.

4. Main Results.

4.1. The ck(X) case. We start by proving an extension result.

Proposition 4.1. Let Φ : I → ck(X) be an interval multimeasure such that
there exists a set Q ∈ ck(X) with Φ(I) ⊆ |I|Q for every I ∈ I.
Then Φ can be extended to a multimeasure M : σ(A) → ck(X) such that
M(B) ⊆ λ(B)Q for every B ∈ σ(A).

Proof. We observe that for every x∗ ∈ X∗, s(x∗,Φ) is a real-valued measure
and

−s(−x∗, Q)|I| ≤ s(x∗,Φ(I)) ≤ s(x∗, Q)|I|, for every I ∈ I.

Fix x∗ ∈ X∗. Then s(x∗,Φ) can be extended to A, the ring generated by I.
Hence for every A ∈ A,

−s(−x∗, Q)λ(A) ≤ s(x∗,Φ(A)) ≤ λ(A)s(x∗, Q).

Conesquently

|s(x∗,Φ(A))| ≤ |s(x∗, Q)|λ(A) + |s(−x∗, Q)|λ(A).

Since A 7→ λ(A)s(x∗, Q) is σ-additive on A and bounded, s(x∗,Φ(·)) can be
extended to a measure µx∗ : σ(A) → R, where σ(A) consists of all Borel
subsets of [0, 1].
Now let B ∈ σ(A) and consider a sequence (An)n ⊂ A such that λ(B4An)→
0. We prove that (Φ(An))n is a Cauchy sequence in (ck(X), dH).
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In fact, for every natural numbers n,m, we have

dH(Φ(An),Φ(Am)) = sup
x∗∈B(X∗)

|s(x∗,Φ(An))− s(x∗,Φ(Am))|

= sup
x∗∈B(X∗)

|s(x∗,Φ(An \Am))− s(x∗,Φ(Am \An))|

≤ sup
x∗∈B(X∗)

|s(x∗,Φ(An \Am))|+ sup
x∗∈B(X∗)

|s(x∗,Φ(Am \An))|

≤ 2 sup
x∗∈B(X∗)

|s(x∗, Q)|λ(An \Am) + 2 sup
x∗∈B(X∗)

|s(x∗, Q)|λ(Am \An)

= kλ(An \Am) + kλ(Am \An) = kλ(An 4Am),

where k = 2||Q||.
Since λ(An 4 Am) → 0, also dH(Φ(An),Φ(Am)) → 0. Since (ck(X), dH) is
a complete metric space, we obtain that (Φ(An))n is dH -convergent to an
element of ck(X).
At this point let us define M(B) := (dH) limn Φ(An) for B ∈ σ(A). The
multifunction M is well defined. In fact, if (A′n) ⊂ A is another sequence such
that λ(A′n 4B)→ 0, then also λ(A′n 4An)→ 0. Consequently,

dH(Φ(A′n),Φ(An)) ≤ kλ(A′n 4An)→ 0.

Thus
(dH) lim

n
Φn(A′n) = (dH) lim

n
Φn(An).

Moreover, M is ck(X)-valued and is an extension of Φ to σ(A).
We claim that s(x∗,M) = µx∗ for every x∗ ∈ X∗. In fact, let fix x∗ ∈ X∗.
It follows from the definition of M that for every B ∈ σ(A) s(x∗,Φ(An)) →
s(x∗,M(B)), where (An)n is one of the above considerated sequence.
On the other hand,

|µx∗(B)− s(x∗,Φ(An))| = |µx∗(B)− µx∗(An)|
= |µx∗(B \An)− µx∗(An \B)| ≤ |µx∗(B \An)|+ |µx∗(An \B)|
≤ kλ(B 4An)→ 0,

for every B ∈ σ(A).
Hence s(x∗,M(B)) = µx∗(B) for every B ∈ σ(A).
Therefore for each x∗ ∈ X∗ s(x∗,M) is a measure. Since M is ck(X)-valued,
we have that M is a multimeasure (see [13, Theorem 8.4.10]).
Finally for each B ∈ σ(A) and each x∗ ∈ X∗

s(x∗,M(B)) = µx∗(B) ≤ s(x∗, Q)λ(B) = s(x∗, λ(B)Q).

Therefore M(B) ⊆ λ(B)Q for each B ∈ σ(A). �

The following result improves [5, Theorem 3.1] valid for dominated convex
compact valued multimeasures that can be representated by Pettis integrable
multifunctions. More precisely we show that a Pettis integrable density can
be obtained even considering dominated interval multimeasures.
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Theorem 4.2. Let Φ : I → ck(X) be an interval multimeasure such that
there exists a set Q ∈ ck(X) with Φ(I) ⊆ |I|Q for every I ∈ I. Then there
exists a multifunction F : [0, 1]→ ck(X) Pettis integrable in ck(X) such that:

(i) for every finitely additive selection φ of Φ there exists a Pettis inte-
grable selection f of F with φ(I) = (P )

∫
I
f(t) dt for all I ∈ I;

(ii) Φ(I) = (P )
∫
I
F dλ for all I ∈ I.

Proof. By Proposition 4.1, Φ can be extended to a multimeasure M : σ(A)→
ck(X) such that M(B) ⊆ λ(B)Q for every B ∈ σ(A). Therefore by of [5,
Theorem 3.1] there exists a Pettis integrable multifunction F : [0, 1]→ ck(X)
such that

(i) for each countably additive selection m of M , there exists a Pettis
integrable selection f of F with m(B) = (P )

∫
B
f dλ, for each B ∈

σ(A),
(ii) M(B) = (P )

∫
B
F dλ

We conclude that F satisfies the required properties. �

One can assume on Theorem 4.2 that for each t ∈ [0, 1] there exist Qt ∈ ck(X)
and δt > 0 such that Φ(I) ⊆ Qt|I| for every interval I containing t with
|I| < δt. But a simple topological argument shows that these assumptions
imply that [0, 1] is a finite union of non-overlapping closed intervals in each
of which the assumptions of Theorem 4.2 are fulfilled.

Proposition 4.3. Let Φ : I → ck(X) be an interval multimeasure such
that VΦ << λ. Assume that there exists a sequence (In)n of non-overlapping
intervals such that λ([0, 1] \

⋃
n In) = 0 and for each natural number n there

exists a compact set Qn ⊂ X with the property that Φ(I) ⊆ |I|Qn for all
subinterval I of In.
Then Φ is the primitive of a ck(X)-valued multifunction HKP-integrable in
ck(X).

Proof. By Theorem 4.2, for each n there exists a multifunction Gn : In →
ck(X), Pettis integrable in ck(X), such that

Φ(I) = (P )

∫
I

Gn dλ, for each interval I ⊆ In.

Let us consider now the multifunction G : [0, 1] → ck(X) defined as G(t) :=∑
nGn(t).

Since VΦ << λ, we have also Vs(x∗,Φ) << λ for every x∗ ∈ X∗. Therefore by
[3, Theorem 3] for every x∗ ∈ X∗ there exists gx∗ ∈ HK([0, 1]) such that

s(x∗,Φ(I)) = (HK)

∫
I

gx∗ dλ, for all I ∈ I.
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Fix x∗ ∈ X∗. For each n and each interval I ⊂ In we have

s(x∗,Φ(I)) = (HK)

∫
I

gx∗ dλ.

But for the same n and I we have also

s(x∗,Φ(I)) = (HK)

∫
I

s(x∗, Gn) dλ.

Therefore we obtain (HK)
∫
I
s(x∗, Gn) dλ = (HK)

∫
I
gx∗ dλ for each n and

each interval I ⊂ In. It follows by [10, Theorem 9.12] that for every n,
s(x∗, Gn) = gx∗ almost everywhere on In (and the exceptional set depends
only on x∗).
By the definition of G we have that s(x∗, G) = gx∗ almost everywhere on [0, 1]
(and the exceptional set depends only on x∗). Therefore, by [10, Theorem
9.10] s(x∗, G) is HK -integrable. Since x∗ is arbitrary, then G is scalarly HK -
integrable.
Finally, if I ∈ I and x∗ ∈ X∗, we have

s(x∗,Φ(I)) = (HK)

∫
I

gx∗ dλ = (HK)

∫
I

s(x∗, G) dλ.

We conclude that G is HKP -integrable in ck(X) and that Φ is its HKP -
primitive. �

4.2. The cwk(X) case. Now we are going to consider the more general case
of cwk(X)-valued multifunctions.

Proposition 4.4. Let Φ : I → cwk(X) be an interval multimeasure such
that VΦ << λ. Assume that s(x∗,Φ(I)) ≥ 0 for every x∗ ∈ X∗ and for every
I ∈ I. Then Φ can be extended to a σ-additive multimeasure M : L → cwk(X)
of σ-finite variation and with M << λ.

Proof. Since VΦ << λ, we have also Vs(x∗,Φ) << λ for each x∗ ∈ X∗. By [3,
Theorem 3], for every x∗ ∈ X∗ there exists gx∗ ∈ HK([0, 1]) such that

s(x∗,Φ(I)) = (HK)

∫
I

gx∗ dλ, for every I ∈ I.

Since s(x∗,Φ) ≥ 0, it follows by [10, Theorem 9.12] that gx∗ ≥ 0 almost
everywhere on [0, 1]. By [10, Theorem 9.13], gx∗ is Lebesgue integrable for
every x∗ ∈ X∗ . Moreover, Vs(x∗,Φ) is a measure over all Borel sets of [0, 1].

By [9, Theorem 2] Vs(x∗,Φ)(B) =
∫
B
gx∗ dλ for every B ∈ σ(A). Now let us

consider the family

B :=

{
B ∈ σ(A) : ∃CB ∈ cwk(X) such that ∀x∗ ∈ X∗, s(x∗, CB) =

∫
B

gx∗ dλ

}
.

Notice that for every B ∈ B, s(x∗, CB) ≤
∫ 1

0
gx∗ dλ = s(x∗,Φ([0, 1])) for every

x∗ ∈ X∗. Hence CB ⊆ Φ([0, 1]) for every B ∈ B.
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It is clear that B contains A. We claim that B is a monotone class. In fact,
let (Bn)n be a monotone increasing sequence of B and let CBn ∈ cwk(X)
such that s(x∗, CBn) =

∫
Bn

gx∗ dλ for every x∗ ∈ X∗. By the Monotone Con-

vergence Theorem (see [10, Theorem 3.21]) limn

∫
Bn

gx∗ dλ =
∫⋃

n Bn
gx∗ dλ.

Moreover, also (CBn
)n is a monotone increasing sequence, in fact, for every n

and every x∗ ∈ X∗, s(x∗, CBn) =
∫
Bn

gx∗ dλ ≤
∫
Bn+1

gx∗ dλ = s(x∗, CBn+1).

Hence CBn
⊆ CBn+1

for every n.

Consequently, limn s(x
∗, CBn) = s(x∗,

⋃
n CBn) = s(x∗,

⋃
n CBn). In fact, the

first equality follows from the fact that limn s(x
∗, CBn

) = supn s(x
∗, CBn

) =
s(x∗,

⋃
n CBn

), the second equality is a property of the support function.

Since
⋃
n CBn ⊆ Φ([0, 1]) ∈ cwk(X), we have

⋃
n CBn ∈ cwk(X). Hence

s(x∗,
⋃
n CBn

) =
∫⋃

n Bn
gx∗ dλ and therefore

⋃
nBn ∈ B.

Let (Bn)n be a monotone decreasing sequence of B, and let CBn
∈ cwk(X)

such that s(x∗, CBn) =
∫
Bn

gx∗ dλ for every x∗ ∈ X∗. Clearly limn

∫
Bn

gx∗ dλ =∫⋂
n Bn

gx∗ dλ. Moreover, also (CBn
)n is a monotone decreasing sequence.

Thus limn s(x
∗, CBn) = s(x∗,

⋂
n CBn) = s(x∗,

⋂
n CBn). Moreover,

⋂
n CBn ∈

cwk(X), because
⋂
n CBn

⊆ Φ([0, 1]) ∈ cwk(X). Hence s(x∗,
⋂
n CBn

) =∫⋂
n Bn

gx∗ dλ for every x∗ ∈ X∗. Therefore
⋂
nBn ∈ B.

By the Monotone Class Theorem (see [20, p. 15]), B contains the smallest
σ-algebra containing A. Hence B = σ(A).
Let us define M : σ(A)→ cwk(X) as follows: M(B) = CB , B ∈ σ(A).
M is a multimeasure, because for every x∗ ∈ X∗, s(x∗,M(·)) is a Lebesgue
integral. Since M is cwk(X)-valued, M is also a dH -multimeasure.
We prove that M << λ. In fact, if B ∈ σ(A) and λ(B) = 0, then for
every x∗ ∈ X∗, s(x∗,M(B)) =

∫
B
gx∗ dλ = 0. Consequently, ||M(B)|| =

supx∗∈B(X∗) |s(x∗,M(B))| = 0, hence M(B) = {0}.
It remains to prove that M is of σ-finite variation. Since VΦ << λ, we
have that VΦ is σ-finite. Let (Bn)n ⊆ σ(A) be a partition of [0, 1] such that
VΦ(Bn) < +∞ for every n. Fix n and let {Bn,1, . . . , Bn,k} ⊆ σ(A) be a par-
tition of Bn. Then for every x∗ ∈ B(X∗) and every j = 1, . . . , k we obtain
s(x∗,M(Bn,j)) = Vs(x∗,Φ)(Bn,j) ≤ VΦ(Bn,j). Hence for every j = 1, . . . , k,

||M(Bn,j)|| ≤ VΦ(Bn,j) and therefore
∑k
j=1 ||M(Bn,j)|| ≤ VΦ(Bn). Finally,

|M |(Bn) ≤ VΦ(Bn) < +∞.
Since M << λ, we can extend M to L, because any measurable set is the
union of a Borel set and a set of zero Lebesgue measure. The proof is com-
plete. �

Remark 4.5. The condition s(x∗,Φ(I)) ≥ 0 for every x∗ ∈ X∗ and every
I ∈ I implies that 0 ∈ Φ(I) for every I ∈ I.
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Theorem 4.6. Let X be a Banach space with the RNP and let Φ : I →
cwk(X) be an interval multimeasure such that VΦ << λ. Then Φ admits a
cbc(X)-valued density F which is HKP-integrable in cwk(X).

Proof. Let us consider first the case when s(x∗,Φ) ≥ 0 for every x∗ ∈ X∗. By
Proposition 4.4, Φ can be extended to a σ-additive multimeasure M : L →
cwk(X) such that M is of σ-finite variation and M << λ.
Let (An)n be a sequence of pairwise disjoint sets of L such that

⋃
nAn = [0, 1]

and |M |(An) < +∞ for all n. Let us denote by Mn the restriction of M to all
measurable subsets of An. EachMn is a cwk(X)-valued (hence cbc(X)-valued)
multimeasure of finite variation. Moreover, since M << λ, also Mn << λ,
for all n.
Since X has the RNP, by [5, Theorem 4.1] we have that, for all n, Mn has a
density Fn : An → cbc(X) which is Pettis integrable in cbc(X).
Now let us define the multifunction F : [0, 1]→ cbc(X) as follows:

F (t) := Fn(t), if t ∈ An.
We check that F is scalarly integrable. Let us fix x∗ ∈ X∗. Since M is
cwk(X)-valued, s(x∗,M) is a positive (by construction) real-valued measure
absolutely continuous with respect to λ. Therefore by the classic Radon-
Nikodým Theorem, there exists hx∗ ∈ L1([0, 1]) such that

s(x∗,M(A)) =

∫
A

hx∗ dλ, for every A ∈ L.

Moreover, for each n, Fn is a Pettis integrable density of Mn, hence

s(x∗,Mn(A)) =

∫
A

s(x∗, Fn) dλ, for every A ∈ L, A ⊆ An.

It follows that for every n, s(x∗, Fn) = hx∗ almost everywhere on An (and the
exceptional set depends only on x∗).
By the definition of F we have also that s(x∗, F ) = hx∗ (and the exceptional
set depends only on x∗). Therefore s(x∗, F ) is integrable. Since x∗ is arbitrary,
then F is scalarly integrable.
Finally we observe that for every A ∈ L and every x∗ ∈ X∗,

s(x∗,M(A)) =

∫
A

hx∗ dλ =

∫
A

s(x∗, F ) dλ.

Therefore F is a Pettis integrable (in cwk(X)) density of M . In particular,

Φ(I) = (P )

∫
I

F dλ, for every I ∈ I.

In the general case, let φ be a finitely additive selection of Φ (existing by
Proposition 3.5) and let consider Ψ := Φ− φ. It is clear that s(x∗,Ψ) ≥ 0 for
every x∗ ∈ X∗. We have also that VΨ << λ, since VΦ << λ and Vφ << λ.
Consequently, Ψ has a density G : [0, 1]→ cbc(X) Pettis integrable in cwk(X).
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Since X has the RNP, by [2, Theorem 3.6] φ has a variationally Henstock
integrable (and then Henstock integrable) density f : [0, 1] → X (see [2] or
[19] for the definition of variational Henstock integral).
Now let us consider the multifunction F := G + f . Clearly F is cbc(X)-
valued. Moreover, s(x∗, F ) = s(x∗, G) + 〈x∗, f〉, for every x∗ ∈ X∗. Since
each s(x∗, G) is Lebesgue integrable and each 〈x∗, f〉 is HK-integrable, also
s(x∗, F ) is HK-integrable. Hence F is scalarly HK-integrable.
Finally for every x∗ ∈ X∗ and for every I ∈ I we have

s(x∗,Φ(I)) = s(x∗,Ψ(I)) + 〈x∗, φ(I)〉

=

∫
I

s(x∗, G) dλ+ (HK)

∫
I

〈x∗, f〉 dλ = (HK)

∫
I

s(x∗, F ) dλ.

We conclude that F is HKP -integrable in cbc(X) and

Φ(I) = (HKP )

∫
I

F dλ, for every I ∈ I

. �

Remark 4.7. In general, under the hypothesis of Theorem 4.6, the density
of Φ is only cbc(X) and not cwk(X)-valued, as the following example shows
(see [6, Exemple 2]).
LetX be the space l1 and let (en)n≥0 be the canonical base of l1. Let (αkn)n,k≥0

be a sequence of real numbers such that

∑
n≥0

|αkn| = 1 for every k ≥ 0 and
∑
k≥0

∑
n≥0

|αkn|2
 1

2

< +∞.

Let (rn)n≥0 be the sequence of the Rademacher functions. For k ≥ 0 and
t ∈ [0, 1], set σk(t) := (αknrn(t))n≥0 ∈ l1. Now let define F (t) := co{σk(t) :
k ≥ 0}, t ∈ [0, 1]. Then, the cbc(l1)-valued multifunction F is Pettis integrable
in cwk(l1), but F (t) /∈ cwk(l1) a.e.

Remark 4.8. If the Banach space is the real line, then cbc(R) = ck(R) =
cwk(R) and the Henstock integrability coincides with the Henstock-Kurzweil-
Pettis integrability. Let us give in such a case a simple proof of Theorem 4.6,
using properties of the real line.

Proof of Theorem 4.6 for X = R. Since Φ is ck(R)-valued, Φ(I) is a closed
bounded interval of the real line for all I ∈ I.
Let us consider the real functions ϕ,ψ : I → R defined respectively by
ϕ(I) := min Φ(I) and ψ(I) := max Φ(I).
Of course, ϕ and ψ are selections of Φ. Since VΦ << λ, we have Vϕ << λ and
Vψ << λ. So by [2, Theorem 3.6], ϕ and ψ are differentiable almost every-
where in [0, 1] and there exist f, g ∈ HK([0, 1]) such that ϕ(I) = (HK)

∫
I
f dλ
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and ψ(I) = (HK)
∫
I
g dλ for each I ∈ I. Moreover, ϕ′ = f and ψ′ = g a.e.

Since ϕ ≤ ψ, we have (HK)
∫
I
f dλ ≤ (HK)

∫
I
g dλ for all I ∈ I. Conse-

quently, f ≤ g a.e.
Now let consider the multifunction F defined by

F (t) :=

{
[f(t), g(t)] if f(t) ≤ g(t)

{0} elsewhere.

It is clear that F is ck(R)-valued. Let γ be a selection of Φ. Since VΦ << λ,
also Vγ << λ. Therefore by [3, Theorem 3], γ is differentiable almost every-
where in [0, 1] and there exists h ∈ HK([0, 1]) such that γ(I) = (HK)

∫
I
h dλ.

Moreover, γ′ = h a.e.
Since ϕ ≤ γ ≤ ψ, then we get also that f ≤ h ≤ g a.e. Consequently,
h(t) ∈ F (t) for almost every t ∈ [0, 1]. So, changing eventually the values in
a negligible set, we have that h is a selection of F .
Since f, g ∈ HK([0, 1]), for each ε > 0, there exists a gauge δ on [0, 1] such
that ∣∣∣∣∣∣(HK)

∫ 1

0

f dλ−
p∑
j=1

f(tj)|Ij |

∣∣∣∣∣∣ < ε/2

and ∣∣∣∣∣∣(HK)

∫ 1

0

g dλ−
p∑
j=1

g(tj)|Ij |

∣∣∣∣∣∣ < ε/2,

for every δ-fine partition {(Ij , tj)}pj=1 of [0, 1]. Thus

dH

Φ([0, 1]),

p∑
j=1

F (tj)|Ij |


= dH

[(HK)

∫ 1

0

f dλ, (HK)

∫ 1

0

g dλ

]
,

 p∑
j=1

f(tj)|Ij |,
p∑
j=1

g(tj)|Ij |


≤

∣∣∣∣∣∣(HK)

∫ 1

0

f dλ−
p∑
j=1

f(tj)|Ij |

∣∣∣∣∣∣+

∣∣∣∣∣∣(HK)

∫ 1

0

g dλ−
p∑
j=1

g(tj)|Ij |

∣∣∣∣∣∣ < ε,

for every δ-fine partition {(Ij , tj)}pj=1 of [0, 1]. Therefore F is Henstock inte-

grable and (H)
∫ 1

0
F dλ = Φ([0, 1]).

Finally, using Hausdorff distance we infer for each I ∈ I,

dH

(
Φ(I), (H)

∫
I

F dλ

)
≤
∣∣∣∣ϕ(I)− (HK)

∫
I

f dλ

∣∣∣∣+∣∣∣∣ψ(I)− (HK)

∫
I

g dλ

∣∣∣∣ = 0.

Hence Φ(I) = (H)
∫
I
F dλ for every I ∈ I and the proof is over. �
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In [21] it has been proved the following result.

Theorem 4.9. Let X be a separable Banach space with the RNP. Assume
that also X∗ has the RNP. Let M be a cwk(X)-valued multimeasure of σ-
finite variation and such that M << λ. Then M admits a unique density
F : [0, 1]→ cwk(X) which is Pettis integrable in cwk(X).

Under the same assumptions for the Banach space X, by previous theorem
we have the following result for interval multimeasures.

Theorem 4.10. Let X be a separable Banach space with the RNP. Assume
that also X∗ has the RNP. Let Φ : I → cwk(X) be an interval multimeasure
such that VΦ << λ. Then Φ admits a cwk(X)-valued density F which is
HKP-integrable in cwk(X).

Proof. First let us consider the particular case when s(x∗,Φ) ≥ 0 for every
x∗ ∈ X∗. By Proposition 4.4, Φ can be extended to a σ-additive multimeasure
M : L → cwk(X) such that M is of σ-finite variation and M << λ. By
hypothesis, X is separable, has the RNP and also its dual X∗ has the RNP.
Therefore by Theorem 4.9, M has a density F : [0, 1] → cwk(X) which is
Pettis integrable in cwk(X). Consequently, we have

Φ(I) = (P )

∫
I

F dλ, for every I ∈ I.

In the general case, let φ be a finitely additive selection of Φ and let consider
Ψ := Φ − φ. It is clear that s(x∗,Ψ) ≥ 0 for every x∗ ∈ X∗. We have also
that VΨ << λ, since VΦ << λ and Vφ << λ. Consequently, Ψ has a density
G : [0, 1] → cwk(X) Pettis integrable in cwk(X). By [2, Theorem 3.6] φ has
a variationally Henstock (then a Henstock) integrable density f : [0, 1] → X
(see [2] or [19] for the definition of variational Henstock integral).
Now let consider the multifunction F := G+ f . Clearly F is cwk(X)-valued.
Moreover, it is easy to check that s(x∗, F ) = s(x∗, G) + 〈x∗, f〉, for every
x∗ ∈ X∗. Since each s(x∗, G) is Lebesgue integrable and each 〈x∗, f〉 is HK-
integrable, also s(x∗, F ) isHK-integrable. Hence F is scalarlyHK-integrable.
Finally for every x∗ ∈ X∗ we have

s(x∗,Φ(I)) = s(x∗,Ψ(I)) + 〈x∗, φ(I)〉

=

∫
I

s(x∗, G) dλ+ (HK)

∫
I

〈x∗, f〉 dλ = (HK)

∫
I

s(x∗, F ) dλ,

for every I ∈ I. We conclude that F is HKP -integrable in cwk(X) and

Φ(I) = (HKP )

∫
I

F dλ, for every I ∈ I.

�
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