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Abstract This paper provides a mean-field game theoretic model of the bandwagon effect in social networks.
This effect can be observed whenever individuals tend to align their own opinions to a mainstream opinion.
The contribution is three-fold. First, we describe the opinion propagation as a mean-field game with local
interactions. Second, we establish mean-field equilibrium strategies in the case where the mainstream opinion
is constant. Such strategies are shown to have a threshold structure. Third, we extend the use of threshold
strategies to the case of time-varying mainstream opinion and study the evolution of the macroscopic system.

1 Introduction

In the last years, there were many examples of situations where social networks had an effect on political
and socio-economic events. Thus a rigorous study of the mutual influence between individuals’ opinions and
population’s mainstream opinion has attracted attention of scientists in different disciplines such as engineering,
economics, finance and game theory, just to name a few.

A common observation is that in most cases opinions evolve following so-called averaging processes [3,5,11,
20,16,24]. It has been shown, in [10], that when agents have local interactions, that is, agents talk only with
those “who think similarly” (in the parlance of social science this is called homophily), the macroscopic behavior
yields clusters of opinions, representing separate groups, parties, or communities. On the other hand, when the
interaction is global, that is, every agent interacts with all the other agents, the opinions may converge to a
unique consensus-value, see, e.g., Result 1 in [16]. The literature offers a variety of Lagrangian and Eulerian
models to model opinion dynamics [1]. Within the framework of the Eulerian approach, this paper provides a
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R. Pesenti is with the Dipartimento di Management, Università “Ca’Foscari” Venezia, Cannaregio I-30121 Venezia, Italy
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mean-field game theoretic perspective on the problem. We focus on the bandwagon effect, that is the situation
in which the tendency of “any individual adopting an opinion increases with the proportion of those who have
already done so” [12]. We show that the presence of an activation cost attenuates the bandwagon effect as the
agents face a trade-off between maintaining their opinion (and paying for “thinking differently”) and tracking
the mainstream opinion at a given cost. Specifically, we show that the agents, whose opinion is far from the
mainstream one, may be still willing to change their opinions toward this latter opinion; on the contrary the
agents, whose opinions are already close to the mainstream one, may consider not worth facing the activation
cost to get closer to that target.

Note that a mean-field game model arises as the cost of each agent depends also on the mode (the mainstream)
of the actual distribution of the agents, which, in turns depends on the optimal choices of the agents.

In the context of opinion dynamics, an Eulerian description is used when the focus is on how the distribution
of the players over a set of n opinions X = {xi : i = 1, . . . , n} evolves over time and, hence, a vector function
m(.) = {mi(.) : i = 1, . . . , n} is to be determined, where mi(.) : [t, T ] → [0, 1] indicates the percentage mi(s)
of the players whose opinion is xi at time s ∈ [t, T ]. An Eulerian description can be associated to a network of
opinions G = (X,A1, A2). The network G includes a node for each opinion xi and has two sets A1 and A2 of
arcs. The set A1 includes an arc (xi, xj) if the players with opinion xi may change their opinion into xj and
vice versa. The set A2 includes an arc (xi, xj) if the players with opinion xi may be influenced in changing their
opinion by the presence of players with opinion xj and vice versa. Weight coefficients may be associated to the
arcs in A2. The weight h(xi, xj) measures the influence of players with opinion xj on the players with opinion
xi and vice versa.

Figure 1 depicts three opinion networks of respectively 4, 8, 16 opinions. The arcs in A1 are drawn in the
upper part of the figure, while the arcs in A2 are shown in the lower part. The weights of the arcs in A2 are
represented by a different width of the arcs. Specifically, the networks in Fig. 1 model situations in which the
players change their opinion gradually, they move at most from an opinion to the closest one at each time
instant, and are homophile, namely they put a larger weight on the players with an opinion close to theirs.

Fig. 1 Examples of three opinion networks of respectively 4, 8, 16 opinions.

The problem dealt with in this paper considers the asymptotic limit situation when the set of opinions X
can be seen as the union of continuous intervals of smaller and smaller length. This problem can be cast within
the area of mean-field game theory. One aspect that the game at hand shares with many other models available
in the literature is the “crowd-seeking” attitude of the players. Indeed, while targeting a common value, in the
specific case this is the mainstream opinion, the players move toward states characterized by a higher density of
opinions. In some cases, at the end of the horizon we may also note that opinions concentrate in one point thus
generating a Dirac impulse in the plot of the density function. However, two elements distinguish the game at
hand from other classical models available in the literature. First, the target value is the mode of the density
distribution, and as such it results from every player searching the maximum in a suitable neighborhood of their
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opinion. As a consequence of such a local maximization procedure, the time evolution of the target (the mode
computed locally by each player) is in general nonlinear and may also be discontinuous. This is in contrast
with most literature which usually considers the local mean rather than the mode which results in a smooth
trajectory for the target. A second distinction is in the structure of the cost function. This involves a fixed cost
on control which makes the problem highly nonlinear. Other works of the authors feature fixed costs in the
context of decision making with large number of players [9,23]. We deal with this issue using an approach based
on the partition of the horizon window in two parts (one when the control is non-null and the other when the
control is null). This is only possible under certain conditions which we will analyze and highlight throughout
the paper.

Description of the contents. Initially, we provide a mean-field game type model that describes the opinion
propagation under local interaction (Section 2).

As in a standard mean-field game, under the assumption of a population of infinitely many homogeneous
agents/players, we are interested in determining the agents’ optimal strategies as functions of their state, possibly
of the time, and of the macroscopic behavior of the whole population. Such optimal strategies have to induce a
so-called mean-field equilibrium. In a mean-field equilibrium no player can benefit from a unilateral deviation
similarly to the definition of Nash equilibrium strategies in noncooperative n-player games [7].

The classical structure of mean-field games consists of two partial differential equations (PDEs), that define
the necessary optimality/equilibrium conditions. The first PDE is the Hamilton-Jacobi-Bellman equation (HJB),
which returns the optimal individual response to the population mean-field behavior. The second PDE is the
Fokker-Planck equation (FP) (just a transport equation in the deterministic case, as in the present paper) which
describes the density evolution of the players as a result of the implementation of the individually optimal
strategies.

Unfortunately, given the structure of the agents’ cost considered in this paper (which takes into account an
activation cost and the mode of the population’s density function, see below for definitions and comments), the
derivation of the corresponding couple HJB-FP equations seems to be not immediate (and also not tractable
with standard techniques for uniqueness and regularity). Indeed, up to our knowledge, there are not similar
cases studied in the literature.

Hence, our approach consists in three steps.

First step. We show the optimality of a given class of strategies (threshold ones) under specific conditions
on the population distribution. More specifically, we show that, supposing the mainstream to be constant, each
agent, also due to the presence of the activation cost, will implement a so-called “non-idle” strategy, that is, a
control that can switch from non-null to null only but not vice-versa. Moreover, such strategies are also shown
to be “threshold strategies”, that is, the control is non-null only if the target point (the mainstream opinion) is
sufficiently far from the current opinion. This corresponds to saying that for a control to be non-null the distance
between the mainstream and the player’s opinion must be greater than a given time-varying threshold. The
search for the optimal control strategies, conducted in this step, builds upon the notion of dominance. A strategy
is dominated if there exists at least one other better strategy in the sense that the value of the cost function
associated to this latter strategy is strictly less than the one associated to the former strategy. Obviously, a
dominated solution is not optimal and can be excluded from the search of the optimum. By analogy, a solution
for which no strictly better solution exists will be called non-dominated.

Second step. Our interest is in the particular mean-field equilibria for which the distribution of the population
remains constant (see the end of the next session for a detailed definition). The threshold strategies of the
previous step are then mean-field equilibrium strategies for any initial distribution of the population for which
the corresponding mode, when supposed constant, induces an optimal threshold strategy with control always
null. This means that no one of the agents is worth changing its state, hence nothing moves and we get an
equilibrium. We exhibit some of such initial distributions. Moreover, we also analyze the case where the agents
have a distorted perception of the mode.

Third step. In the previous step, we presented situations in which threshold strategies are optimal and
establish a mean-field equilibrium. Here, we argue that these strategies, even if they are not optimal, are of
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interest even in some more general contexts. Specifically, the can be implemented by players with bounded
rationality and who use myopic descriptive models of the “world”. This means that, at each time instant, they
make a decision assuming that the population macroscopic behavior will freeze from that time instant on.

In this situation, for some initial distributions, we describe the possible time evolution of the population
distribution in terms of weak solutions of the associated FP equations (the transport equation). Due to the
threshold feature of the optimal control, the proposed solution of the equation may immediately present dis-
continuities which also evolve in time. This is a common feature of the theory of scalar conservation laws,
however, we point out that in our case the situation is quite different. Indeed, such discontinuities derive from
the presence of the threshold which evolves in the opposite direction with respect to the flow of the agents,
whereas in the classical theory of shocks for scalar conservation laws, the discontinuities and the flow evolve in
the same direction. This seems to be an interesting feature of this equation which may deserve a deeper study.
Finally, we investigate some convergence results.

Related literature on mean-field games. The theory of mean-field games originates in the paper by Lasry
and Lions [22] and independently in that of M.Y. Huang, P. E. Caines and R. Malhamé [17–19]. This the-
ory studies interactions between indistinguishable individuals and the population around them. Among the
foundations of the theory is the assumption that the population influences the individuals’ strategies through
mean-field parameters. Several application domains such as economics, physics, biology, and network engineer-
ing accommodate mean-field game theoretic models (see [2,15,21,28]). For instance: in multi-inventory systems
mean field games may be useful to capture coordination of reordering policies when set up costs depend on
the number of active players, the latter being all those who place joint-orders to a warehouse [23]; decision
problems with mean-field coupling terms have also been formalized and studied in [9]; applications to power
grids management are recently studied in [4].

The literature provides explicit solutions in the case of linear-quadratic structure, see [6]. In most other cases,
a variety of solution schemes have been proposed which make use of discretization techniques and numerical
approximations [2]. Robustness and risk-sensitivity are also open lines of research as evidenced in [8,27]. We
refer the reader to [14] for a recent survey.

We finally observe that, in the different case of the presence of a stochastic noise in the dynamics, some
partial results were already published in [26].

2 The game

Consider a population of homogeneous players, each one characterized by an opinion x(s) ∈ R at time s ∈ [0, T ],
where [0, T ] is the time horizon window.

The control variable is a measurable function of time u(·), s 7→ u(s) ∈ R and establishes the rate of variation
of the player’s opinion. It turns out that, for a fixed initial time t ∈ [0, T ] and initial status x ∈ R the opinion
dynamics can be written in the form

{
x′(s) = u(s), s ∈ [t, T ],
x(t) = x0.

(1)

Consider a probability density, in the most favorable case given by a function m : R × [t, T ] → R, (x, s) 7→
m(x, s), representing the percentage of players in state x at time s, which satisfies

∫
Rm(x, s)dx = 1 for every

s ∈ [t, T ]. Let us also denote the mainstream opinion at time s (i.e. the mode of the distribution) as m(s) =
arg maxy{m(y, s)}, or, more generally the mainstream opinion as perceived by a player in state x at time s, as
m[x](s) = arg maxy{h(|x − y|)m(y, s)}. The latter, as formally defined in the following section, is a distorted
mode, as perceived by the players that use a function h(.) to weigh the other opinions based on a distance
measure defined in the space of opinions.
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The objective of a player with opinion x is to adjust its opinion based on the (possibly perceived) mainstream
opinion m[x](s). In other words, a player feels more and more rewarded when its and the mainstream opinion
get closer and closer. Then, we assume that the players

consider a running cost g : R3 → [0,+∞), (x,m, u) 7→ g(x,m, u) of the form:

g(x,m, u) =
1

2

[
q
(
m− x

)2

+ ru2

]
+Kδ(u), (2)

where q, r and K are constant positive values; and δ : R→ {0, 1} is defined as

δ(u) =

{
0 if u = 0

1 otherwise
. (3)

When m represents the (perceived) mainstream opinion by an agent with opinion x, then the running cost
g(·) given by (2)-(3) penalizes the square deviation of the player’s opinion from the mainstream opinion and
involves also a penalty term on the energy of control (a quick change of opinion has a greater cost than a slow
change), and a fixed cost on control. The latter term captures the level of stubbornness of the players, in that
a greater fixed cost increases the inertia of the players, namely, the tendency to maintain their original opinion
in spite of the different inputs received from everybody else with a different opinion in the population.

At the end of the horizon, every player pays a quantity that equals the square deviation of its opinion from
the mainstream. This is modeled by a terminal penalty Ψ : R2 → [0,+∞), (m,x) 7→ Ψ(m,x) of the form

Ψ(m,x) =
1

2
S
(
m− x

)2

, (4)

where S is scalar and positive.

The problem in its generic form is the following:

Problem 1 Given a finite horizon T > 0, an initial distribution of opinions m0, a running cost g as in (2), a
final cost Ψ as in (4), and given the dynamics for x(·) as in (1), minimize over U the following cost functional,

J(x0, t, u(·)) =

∫ T

t

g(x(s),m[x(s)](s), u(s))ds+ Ψ(m[x(T )](T ), x(T )) (5)

where m[x(·)](·) as time-dependent function is the evolution of the mainstream opinion as a function of the
players’ strategies and U is the set of all measurable functions from [t, T ] to R.

In the above problem, the players show a crowd-seeking behavior in that they target a common value, the
mainstream opinion. While doing this, the players move toward states characterized by a higher density of
opinions. This may result in a Dirac impulse, a concentration of opinions in one point of the opinion space,
at the end of the game. In this respect, a first issue is that the considered target value or mainstream opinion
is the mode of the density distribution which must be computed via local maximization on the part of each
player. This implies that the mainstream opinion is, in general, discontinuous in time and space. A second
challenging aspect is that the cost functional includes a fixed cost on control which makes our problem different
from classical linear quadratic ones.

In general, one would like to use tools from dynamic programming, such as the Hamilton-Jacobi-Bellman
equation. However, we highlight next a few issues. First, besides the already mentioned possible discontinuity
in time, the mainstream may not be well defined when the maximum of the density function m is reached in
more than one point; in such a case it is not immediate to detect which value to insert in the costs g and Ψ .
In addition, when the density function is a discontinuous function, it is not clear what is the mode of it. For
example, if the maximum of m is a point x where m has a large negative “jump”, may such x be considered as
the mode? To deal with the above issues, in the following, we provide an ad-hoc definition of mode.

For a further clarification of the language used in the sequel of the paper, hereinafter, we give the following
definition.
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Definition 1

– a player is active (inactive) if its control is non-null (null)

– a control u is non-null (null) in a interval [t1, t2] ⊆ [t, T ] if
∫ t2
t1
δ(u)dτ = t2 − t1, i.e. if it is non-null almost

everywhere (
∫ t2
t1
δ(u)dτ = 0, i.e. if it is null almost everywhere), that is, if the measure of the set in which

u = 0 (u 6= 0) in [t1, t2] is zero
– a control u is non-idle if there are not two intervals [t̂1, t̂2], [t1, t2] ⊂ [t, T ] such that t̂2 ≤ t1 and u is null in

[t̂1, t̂2] and non-null in [t1, t2]. A player using non-idle control is i) always active, ii) always inactive or iii)
first active and then inactive. In no case a player can switch from being inactive to active. We call switching
time instant the time when a player turns to be inactive, with the understanding that if the player is always
active as in case i) then ŝ = t; if the player is always inactive as in case ii) then ŝ = T ; and finally, if the
player is first active and then inactive as in case iii) then ŝ = inf{s ∈ [t, T ] : u(s) = 0}

– In contrast, we call idle all the policies that do not match the above criterion, i.e., policies that admit a
switch from a null to a non-null control.

– a control ua is dominated by ub, for a given pair (x0, t) ∈ R× [0, T ], if

J(x0, t, u
a)− J(x0, t, u

b) > 0

– a control u is optimal, for a given pair (x0, t) ∈ R× [0, T ], if it is not dominated
– a strategy u (i.e. a control in a feedback form) induces an equilibrium at time t if it is optimal for any x0

in the support of m(x, t) = m0(x) and if its application by the agents implies that m(x, s) = m0(x) for all
t ≤ s ≤ T , i.e. the distriubtion remains constant (and so its mode too.). Specifically, we say that the couple
(u,m0) defines an equilibrium.

We stress that the above definition delimits the scope of this work. Specifically, it indicates the particular
kind of equilibrium that we consider. This kind of equilibrium requires that the population distribution remains
constant over time. As we pointed out in the introduction, more general equilibria may possibly exist that just
require that no player can benefit from a unilateral deviation from its current behavior.

3 Constant mainstream and global interaction

In this section, we assume that the mainstream opinion is constant all over the horizon window. This allows us
to introduce the notion of threshold strategy which will play a role throughout the paper. This situation is of
particular interest for two reasons. On the one hand, it allows to identify the structure of an equilibrium policy.
Indeed, in equilibrium the population distribution m(., .) remains constant over time by definition and then also
the mainstream opinion perceived by the agents. On the other hand, in the second part of this work, we will
study the consequences of applying such threshold strategies to a more general setting, where the perceived
mainstream is possibly time-varying.

Assuming a time-invariant mainstream implies the equality m(·) = m, where m is constant. We are then
interested in determining the solution of the following auxiliary problem.

Problem 2 Considering a dynamics for x as in (1), minimize over U the following cost functional

J(x(t), t, u(·)) =

∫ T

t

(
1

2
q
(
m− x

)2

+
1

2
ru2 +Kδ(u)

)
ds+

1

2
S
(
m− x(T )

)2

. (6)

Note that Problem 2 would be a classical linear quadratic tracking problem with constant reference signal,
were it not for the presence of the fixed cost Kδ(u). In order to restrict the set of candidate optimal control
strategies, in the following we introduce some additional properties that characterize a non-dominated solution.
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3.1 Properties of non-dominated control

There are control policies that can immediately be labeled as non optimal as they are trivially dominated. These
policies include any control ua non-null in a measurable interval [t1, t2] ⊆ [t, T ] that induces a trajectory such

that
(
m − x(t1)

)2

≤
(
m − x(t2)

)2

. Actually, such a control would induce a fixed cost Kδ(ua) in addition to

an increased cost derived from pushing the player’s state away from the target m̄. Control policies that are not
trivially dominated are called non-trivially dominated.

A second class of policies that do not fit in the set of optimal solutions involves all policies that are idle.
Actually, the following lemma proves that a control that is idle is dominated.

Lemma 1 Consider a non-trivially dominated control u ∈ U . If u is idle then u is dominated.

Proof This proof is based on a direct comparison of the cost induced by u with the cost of another solution,
say ub. If u is idle then there exist three time instants t1, t1 +∆t and t2, with t ≤ t1 < t1 +∆t < t2 ≤ T such
that [t1, t1 + ∆t] and [t1 + ∆t, t2] are intervals and u is null in [t1, t1 + ∆t] and is non-null in [t1 + ∆t, t2]. We
prove that u is dominated by a control ub defined as follows:

ub(t) =


u(t), t 6∈ [t1, t2]

u(t+∆t), t ∈ [t1, t2 −∆t)
0, t ∈ [t2 −∆t, t2]

.

Under both controls u and ub, the player state evolves so that x(t1) =
∫ t1
t
u(τ)dτ + x0 =

∫ t1
t
ub(τ)dτ + x0, and

x(t2) =
∫ t2
t
u(τ)dτ + x0 =

∫ t2
t
ub(τ)dτ + x0. Consequently, the costs induced by the two controls are equal for

0 ≤ t ≤ t1 and t2 ≤ t ≤ T , as in such intervals the two controls assume the same values and induce the same
states for the player.

Then consider the interval [t1, t2] , the cost paid by u is∫ t1+∆t

t1

1

2
q
(
m− x(t1)

)2

dt+

∫ t2

t1+∆t

1

2
q
(
m− x(t)

)2

dt+

∫ t2

t1+∆t

1

2
ru(t)2dt+

∫ t2

t1+∆t

Kdt.

Differently, the cost paid by ub is (here xb(·) is the trajectory under the control ub)∫ t2−∆t

t1

1

2
q
(
m− xb(t)

)2

dt+

∫ t2

t2−∆t

1

2
q
(
m− x(t2)

)2

dt+

∫ t2−∆t

t1

1

2
ru(t+∆t)2dt+

∫ t2−∆t

t1

Kdt.

Now, by the almost obvious equalities
∫ t2
t1+∆t

Kdt =
∫ t2−∆t
t1

Kdt,
∫ t2
t1+∆t

1
2ru(t)2dt =

∫ t2−∆t
t1

1
2ru(t+∆t)2dt,

and
∫ t2
t1+∆t

1
2q
(
m− x(t)

)2

dt =
∫ t2−∆t
t1

1
2q
(
m− xb(t)

)2

dt, we get that

J(x0, t, u)− J(x0, t, u
b) =

1

2
q

((
m− x(t1)

)2

−
(
m− x(t2)

)2
)
∆t > 0,

which is positive, as u is non-trivially dominated. Hence, J(x0, t, u) > J(x0, t, u
b), which proves the lemma.

�

Consider, for each t̂ ∈ [t, T ], the following cost functional, which is defined as in (6) but only on control strategies
with switching time t̂, namely, a control strategy characterized by a non-null control only up to time t̂, after
which the control is set to zero:

Ĵ(x0, t, t̂, u(·)) =

∫ t̂

t

(
1

2
q
(
m− x(τ)

)2

+
1

2
ru(τ)2 +K

)
dτ +

1

2
(S + q(T − t̂))

(
m− x(t̂)

)2

. (7)
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Due to the quadratic structure of (7), there always exists a unique optimal solution in U × [t, T ] for the problem
Ĵ∗(x0, t̂) = min(u,t̂)∈U×[t,T ]{Ĵ(x0, t, t̂, u(·)) s.t. ẋ = u}.

In the light of these considerations, and from Lemma 1, we have the following theorem.

Theorem 1 (Threshold optimal policy) Given (x0, t), there is a unique solution

(u∗, t̂∗) = arg min
(u,t̂)∈U×[t,T ]

Ĵ(x0, t, t̂, u(·))

where the control u∗ is given by (in a form depending on s and on the actual state x(s)):

u∗[(x0, t)](s) =

{
a[(x0, t)](s)(m̄− x(s)) for t ≤ s < t̂∗

0 for t̂∗ ≤ s < T ,
(8)

where a[(x0, t)] : [t, T ) → [0,+∞) is a non negative time-varying function strictly decreasing in [t, t̂∗] whose
structure depends on the initial choice (x0, t). Furthermore, given Problem 2, no control in U dominates u∗,
that is Problem 2 has an optimal control which is non-idle.

In addition, there exists a time-varying threshold function λ : [t, T ) → R such that u∗[(x0, t)](s) can be
rewritten as time-varying state-feedback strategy

u∗[φ(x(s), s), t](s) =

{
0 if |m− x(s)| ≤ λ(s),

a[φ(x(s), s), t](s)(m̄− x(s)) 6= 0 otherwise,
(9)

where φ : R× [t, T ]→ R is a function that, given a time s and a state x(s), returns the unique initial state x0

from which we can reach x(s) at time s.

Function λ(·) is increasing in time and equal to

λ(s) =

√
2Kr

q(T − s) + S
, t ≤ s ≤ T. (10)

Proof We determine the unique solution of problem Ĵ∗(x0, t) = min(u,t̂)∈U×[t,T ]{Ĵ(x0, t, t̂, u(·)) s.t. ẋ = u},
where Ĵ(·) is defined as in (7), through the application of the maximum principle that leads to the following
conditions:

ẋ(s) = u(s) (11a)

ξ̇(s) = q(x(s)− m̄) (11b)

ξ(s) = −ru(s) (11c)

x(t) = x0 (11d)

ξ(t̂∗) = −(S + q(T − t̂∗))(x(t̂∗)− m̄) (11e)

1

2
ru2(t̂∗) = K (11f)

where ξ(s) represents the generic player costate.

The structure of the optimal control as in (8) is a straightforward consequence of the solution of the con-
ditions (11a) - (11e). The existence of function φ(·) is a consequence of the uniqueness of the optimal control.
Indeed, this property implies that a state x(s) can be reached at time s starting from a unique initial state x0

at time t if the optimal control is applied.

Finally, we observe that through conditions (11c), (11e) and (11f), we have an expression for the player state

x(t̂∗), where t̂∗ is the switching time. In particular, we obtain |x(t̂∗)− m̄| =
√

2Kr
q(T−t̂∗)+S and, hence (9) and (10).

�
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Figure 2 depicts a qualitative plot of the state trajectories and of the threshold function for the optimal
control strategy given in (8).

Note that if |m− x0| ≤
√

2Kr
q(T )+S then the corresponding control strategy yields controls constantly null over

the horizon. On the other hand, if |m − x(T )| >
√

2Kr
S then the corresponding control strategy yields controls

constantly non-null over the horizon.

Fig. 2 Example of possible state trajectories for different initial states x(t) and of the threshold function λ(s).

Remark 1 Theorem 1 states that the presence of an activation cost attenuates the bandwagon effect and for-
malizes in which way the attenuation operates:

– the control policy (9) indicates that the players who draw their opinion toward the mainstream opinion, are
those whose opinions are away from the mainstream by more than the value indicated by the threshold;
differently, the players, whose opinions differ from the mainstream of a value smaller than or equal to that
of the threshold, do not pay the activation cost and keep their opinion fixed.

– the structure (10) of threshold λ(.) indicates that the smaller the activation cost the smaller the attenuation
of the bandwagon effect. The attenuation disappears when the activation cost is null.

In the following section we will also provide some sufficient condition under which the bandwagon effect disap-
pears due to the presence of a high activation cost.

4 Threshold policy and local interactions

In the previous section we focused on individually optimal strategies. That is, we proved that equilibrium
strategies are threshold ones exploiting the fact that the mainstream opinion m(·) is constant and equal to a
given value m. In this section, we focus on the macroscopic system described by the “population distribution”.
We first present some sufficient conditions that help to identify initial distributions that together with the
threshold policy derived in the previous section define an equilibrium. After doing this, we study the problem
faced by partially rational players that are not able to determine an optimal strategy. Specifically, we consider
the case in which the players, given the results for the constant mainstream opinion case, behave myopically
and make decisions freezing all future values of the mainstream opinion to the last available measured value. In
other words, at each time instant, the players act as if the current mainstream opinion would remain constant
all over the rest of the horizon window.

In the sequel we make the following assumptions.
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Assumptions 1

1. The density function m is continuous on its support.
2. The mainstream opinion as perceived by a player in state x(s) at time s is a (distorted) mode defined as

m[x(s)](s) = arg maxy{h(|x(s)− y|)m(y, s)}, where m(y, s) is the density of the players’ states in y at time
s and h : [0,+∞)→ [0,+∞) is a continuous fading function, non-increasing such that h(0) = 1. In presence
of multiple distorted modes function arg(·) returns the distorted mode closest to x(s). In presence of two
closest distorted modes equidistant from x(s) function arg(·) returns the closest distorted mode on the left
of x(s).

3. The players implement a threshold strategy as in (9)

u∗(x(s)) =

{
0 if |m[x(s)](s)− x(s)| ≤ λ(s),

a(s)(m[x(s)](s)− x(s)) 6= 0 otherwise.
(12)

in spite of the possible time-varying nature of m(·). In particular, as λ(s) > 0 for t ≤ s ≤ T , u∗(x(s)) switches
abruptly to 0 when there exists ε > 0 such that m[x(τ)](τ) 6= x(τ) for s − ε ≤ τ < s and m[x(s)](s) = x(s)
so that

m(x(s), s) ≤ sup
s−ε≤τ<s

{h(|x(τ)−m[x(τ)](τ)|)m(m[x(τ)](τ), τ)}. (13)

Under the above assumption we are interested in studying the game evolution. To this end, we preliminarily
determine under what initial opinion density distribution functions the controls, given by the threshold strategy,
are null for all the players, i.e., u∗(x(s)) = 0 for all x(s) belonging to the support, supp(m(., s)), of m(., s).
Hereafter, we refer to such distributions as Null Control Inducing (NCI) distributions.

4.1 Null Control Inducing distributions

Lemma 2 Let a threshold strategy (9) be implemented and Assumptions 1 hold. An initial distribution m0 is
NCI iff

∀x ∈ supp(m0(.)) ∃y : |y − x| ≤ λ(t), m0(y)h(|y − x|) ≥ m0(z)h(|z − x|),∀z. (14)

Proof By definition of threshold strategy (9), u∗(x, t) = 0 iff |m0[x] − x| ≤ λ(t). Since m0(y)h(|y − x|) ≥
m0(z)h(|z − x|) for all z then we have y = m0[x] and |y − x| ≤ λ(t) and the lemma is proved.

�

We can restate the above lemma saying that m0 is NCI, if each player with opinion x thinks that the
mainstream opinion is within It(x), where It(x) is the neighborhood of x with radius λ(t). Then, it is immediate
to verify that the uniform distribution is NCI as well as, the limit case of a distribution with a single point mass
(a Dirac impulse in a single point). In the former case each player considers its opinion the mainstream one. In
the latter case all the players’ opinions have a same value.

Remark 2 The interest in NCI distributions is given by the fact that, together with a threshold strategy (12),
they define an equilibrium (see Definition 1). Indeed, being u∗(x(s)) = 0 for all x(s) in the support of m(., s),
then m(., s), and hence its (distorted) mode m̄ too, remains constant in time and, by the result of the previous
section, the threshold strategy is then optimal. We recall that the value of λ(s) in (12) is independent of m̄(s)
and increases over time for t ≤ s ≤ T .

Hence, in this particular case, we almost recover the usually fixed-point definition of an equilibrium for a
mean-field game, that is: the pair (givenu∗,m0) given by a the threshold strategy and a NCI distribution is a
fixed point solution of the following system
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min
u

∫ T

t

g(x(s),m[x(s)](s), u(s))ds+ Ψ(m[x(T )](T ), x(T ))

∂tm = −∂x(mu∗) = 0 t ≤ s ≤ T
m(x, t) = m0(x)

Here, we said ”we almost recover” because we do not write the HJB equation synthesizing u∗, but we replace
it by the minization problem, satisfied by u∗. Moreover, the transport equation (with null right-hand side by
the nature of u∗), is the natural transport equation satisfied by the distribution of agents moving subject to the
dynamics in (1) with u∗ as control. Note that in this case, such partial differential equation is easily deduced
by the vanishing of u∗, however, even for rather general discontinuous u∗, we can deduce the equation just by
a conservation of mass principle, which only involves integrabilty of the functions (and indeed the equation is
also called a conservation law). Obviously in such a more general case, the partial differential equation must be
suitably interpreted in a weak sense. We are going to use such a weak sense in the next paragraph 4.2

In the following, we introduce some particular non trivial NCI distributions, in presence of fading functions
of the following types:

– piecewise linear: h(q) = max{1− αq, 0}, with α > 0;
– exponential: h(q) = e−αq, with α > 0;

– Gaussian: h(q) = e−αq
2/2, with α > 0.

We will show that m is NCI if it is either sufficiently smooth or sufficiently “peaky”.

4.1.1 Lipschitz m0(x) function

Let m0(x) have a compact support supp(m0(.)) ⊂ R and be such that infx∈supp(m0(.)){m0(x)} > ε > 0 for
a suitable ε and |m0(y) − m0(x)| ≤ L|x − y|, for some positive constant L, in supp(m0(.)), i.e., m0(x) is a
Lipschitz function in supp(m0(.)). Then, if h(·) is piecewise linear, m0(x) is NCI if α ≥ L

infx∈supp(m0(.)){m0(x)} .

Under the above hypotheses, condition (14) holds for y = x, i.e., each player considers its opinion the
mainstream one. Indeed, for y = x, |y − x| ≤ λ(t) trivially holds, and the second condition can be rewritten as

m0(x) ≥ m0(z)h(|z − x|), ∀z. (15)

The above condition is trivially true for all z 6∈ supp(m0(.)) or such that h(|z − x|) = 0. Differently for
z ∈ supp(m0(.)) and such that h(|z− x|) > 0, that is h(|z− x|) = 1−α|z− x| the following argument holds. As
m0(x) is a Lipschitz function in supp(m0(.)), we have m0(x) ≥ m0(z) − L|z − x|. Hence, (15) certainly holds
because m0(z)− L|z − x| ≥ m0(z)h(|z − x|). Indeed, for all z ∈ supp(m0(.)) and such that h(|z − x|) > 0,

α ≥ L

infx∈supp(m0(.)){m0(x)}
⇒ m0(z)α ≥ L ⇒

m0(z)α|z − x| ≥ L|z − x| ⇔
m0(z)− L|z − x| ≥ m0(z)−m0(z)α|z − x| = m0(z)h(|z − x|)

4.1.2 Lipschitz log(m0(x)) function

Let log(m0(x)) be a Lipschitz function, i.e., | log(m0(y))− log(m0(x))| ≤ L|x− y|, on the support of m0. Note
that this fact implies that m0 is strictly positive in all its support. If h(·) is piecewise linear or exponential,



12 Fabio Bagagiolo et al.

then m0(x) is NCI if α ≥ L. Indeed, under these hypotheses, for any x ∈ supp(m0(.)), condition (14) holds for
y = x. In fact, (15) certainly holds for z 6∈ supp(m0(, )), but it also holds for z ∈ supp(m0(.)) because

| log(m0(x))− log(m0(z))| ≤ L|x− z| ⇒ m0(x) ≥ m0(z)e−L|z−x| (16)

and m0(z)e−L|z−x| ≥ m0(z)h(|z−x|). Indeed, the latter condition is trivially true for h(|z−x|) = 0. Differently,
for h(|z − x|) > 0, we have that

L ≤ α ⇒ e−L|z−x| ≥ 1− α|z − x| and e−L|z−x| ≥ e−α|z−x| ⇒
e−L|z−x| ≥ h(|z − x|) ⇒ m0(z)e−L|z−x| ≥ m0(z)h(|z − x|)

Now, if log(m0(x)) is a Lipschitz function and differentiable, then distribution m0(x) is NCI also if h(q) is a

Gaussian kernel and L ≤ αλ(t) as, for all x, we have m0[x] = argmax{m0(y)e−α(x−y)2/2} ∈ It(x). Indeed, we
have

∂m0(y)e−α(x−y)2/2

∂y
= e−α(x−y)2/2(m′0(y) + α(x− y)m0(y)) = 0 ⇔ m′0(y) + α(x− y)m0(y) = 0.

Hence, ŷ = m0[x] is such that
m′0(ŷ)
m0(ŷ) = α(ŷ − x)

As log(m0(x)) is a Lipschitz function, we have
∣∣∣m′0(y)
m0(y)

∣∣∣ ≤ L for all y. Hence, y ∈ It(x) if |ŷ − x| ≤ L
α ≤ λ(t).

4.1.3 “Peaky” m0(x) function

Let m0(x) be defined on a bounded support and characterized by a set Γ = {x1, x2, . . . , xn : x1 < x2 < . . . < xn}
of n local maxima such that:
i) each xk ∈ Γ is an absolute maximum of function m0(x)h(|x − xk|), that is, each player in xk feels itself a
leader and considers its opinion the mainstream one;
ii) for all x ∈ ∂It(xk), m0[x] 6∈ It(xk) \ ∂It(xk), for all xk ∈ Γ , that is, each player on the frontier of It(x

k)
thinks that the mainstream opinion is not in It(x

k);
iii)
⋃
xk∈Γ It(x

k) ⊇ [x0, xn+1], where [x0, xn+1], with x0 ≤ x1 and xn+1 ≥ xn is the minimum interval including
the support set of m0(x), that is, the neighborhoods of the leaders cover all the possible opinions.
We have that m0(x) is NCI if log h(·) is sublinear, that is, for any p, q ≥ 0 h(p+ q) ≤ h(p)h(q).

To prove such a result we need to show that the following critical properties hold true:

– first critical property : if x ∈ [xk, xk+1] then m0[x] ∈ [xk, xk+1].
– second critical property : if x ∈ [xk, xk+1], then either both x and m0[x] are in It(x

k) or both of them are in
It(x

k+1).

If both properties hold, we have that if x ∈ [xk, xk+1] then |m0[x] − x| ≤ λ(t), as assumption iii) implies that
xk+1−xk ≤ 2λ(t) and It(x

k) (respectively It(x
k+1)) has radius λ(t) and is centered in xk (respectively is xk+1).

Consequently, if both such properties hold, condition (14) holds true as well since, from assumption iii), all x
in the support of m0(x) belong to some interval [xk, xk+1]. Hence m0(x) is NCI.

To prove the first critical property, we observe that, given x ∈ [xk, xk+1], if y = m0[x] < xk were true,
then it would hold m0(y)h(|y − x|) > m0(xk)h(|xk − x|) in contradiction with m0(y)h(|y − x|) ≤ m0(y)h(|y −
xk|)h(|xk−x|) ≤ m0(xk)h(|xk−x|), where the first inequality holds for the logarithmic sublinearity of h(·) and
the second inequality for assumption i). Symmetric argument applies to y > xk+1.

To prove the second critical property, we observe that x ∈ [xk, xk+1] implies that either

1. x ∈ It(xk) \ It(xk+1) or
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2. x ∈ It(xk) ∩ It(xk+1) or
3. x ∈ It(xk+1) \ It(xk).

If condition 2) holds the property is proved since the first critical property implies m0[x] ∈ It(xk) ∪ It(xk+1).
Condition 3) is symmetrical to condition 1), so we need to verify the second critical property only when the
latter condition holds.

Let z be the only element on the frontier of It(x
k+1) in [xk, xk+1] (if z does not exist, that is if It(x

k+1)
contains [xk, xk+1], then the thesis is straightforward), ẑ = m0[z], x̂ = m0[x]. By assumption ii) we have
xk ≤ ẑ ≤ z. If condition 1) holds then xk ≤ x < z and we have to prove that also xk ≤ x̂ ≤ z is true. We prove
the latter inequalities by contradiction, i.e., assuming that z ≤ x̂ ≤ xk+1.

By definition of ẑ we have

m0(ẑ)h(|z − ẑ|) ≥ m0(x̂)h(|x̂− z|).

If xk ≤ ẑ ≤ x and z ≤ x̂ ≤ xk+1, we also have

m0(ẑ)h(|x− ẑ|) ≥ m0(ẑ)h(|z − ẑ|) ≥ m0(x̂)h(|x̂− z|) ≥ m0(x̂)h(|x̂− x|)

in contradiction with the definition of x̂ that implies m0(ẑ)h(|x− ẑ|) < m0(x̂)h(|x̂− x|).

The proof is complete if also xk ≤ x < ẑ and z ≤ x̂ ≤ xk+1 lead to a contradiction. Specifically, under these
conditions, we can write

m0(ẑ)h(|ẑ − x|) ≥ m0(ẑ)h(|ẑ − x|)h(|z − ẑ|) ≥
≥ m0(x̂)h(|x̂− z|)h(|ẑ − x|) ≥ m0(x̂)h(|x̂− z|+ |ẑ − x|) ≥ m0(x̂)h(|x̂− x|),

where the first inequality holds as h(|z − ẑ|) ≤ 1, the second inequality holds by definition of ẑ, the third
inequality holds by logarithmic sublinearity of the fading function, finally the forth inequality holds since h(q)
is non-increasing for q ≥ 0 and |x̂− x| = |x̂− z|+ |z − ẑ|+ |ẑ − x| ≥ |x̂− z|+ |ẑ − x|. Again, the above chain of
inequalities is in contradiction with the definition of x̂ that implies m0(ẑ)h(|ẑ − x|) < m0(x̂)h(|x̂− x|).

We conclude this section observing that piecewise linear, exponential and Gaussian fading functions are
examples of logarithmic sublinear functions. We also observe that the above theorem can be trivially generalized
to any time instant different from the initial one.

4.2 Game evolution

In general we cannot prove that a threshold strategy (12) is either optimal or leads to an equilibrium. In
this section, we provide some results about the evolution of the distribution m(., .) over the interval of time
t ≤ s ≤ T , when players apply such a threshold strategy in presence of a non-NCI initial distribution. We
consider just a simple initial distribution of opinions with just one leading opinion that may represent an initial
virgin state which has never experienced evolution. Our aim is to show how threshold strategies may introduce
particular “pathological” behavior in the evolution of the distribution m(., .). Specifically, even distribution
initially smooth may evolve to include many discontinuous points.

From a technical point of view it is worth mentioning that in this section we derive some property of the
population distribution having fixed the players’ strategies, whereas in Section 3 we derived some property of
the players’ strategies having fixed the statistics of interest of the population distribution. Note that, while
in Section 3 we dealt with an optimal control problem, we now deal with the problem of individuating weak
solutions of a transport PDE in this section, (see also Remark 2 for the meaning of the transport equation).

We suppose that the following assumptions hold.
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Assumptions 2 At the initial time t the distribution m(x, t) = m0(x) with support supp(m0(.)) ⊆ R is

1. a differentiable function in supp(m0(.)) with no point mass;
2. a weakly unimodal function in supp(m0(.)).

We define m0(·) as weakly unimodal, if there exists a value x̄ for which m0(·) is not decreasing for any x ≤ x̄
and not increasing for any x ≥ x̄. For the ease of illustration, we also assume that x̄ is the only solution of
x̄ = arg max{m0(x)}. However, our arguments trivially generalize if arg max{m0(x)} define an interval.

We recall that Is(x) = {y : |y − x| ≤ λ(s)} is the neighborhood of radius λ(s) of the state x.

Theorem 2 Under Assumptions 1 and 2 the following facts hold:

1. x̄ = arg max{m(x, s)} for t ≤ s ≤ T ;
2. u∗[x](τ) = 0 for all t ≤ s ≤ τ ≤ T for all x ∈ Is(x̄);
3. ∂xu

∗[x](s)|x=x̄ = 0.

Proof We observe that, if x̄ = arg max{m(x, s)} for some s, then the players apply u∗[x](s) = 0 for all x ∈ Is(x̄),
Indeed, for all x ∈ Is(x̄) we have that m̄[x](s) ∈ Is(x) as

m(y, s)h(|y − x|) ≤ m(x̄, s)h(|x̄− x|) ≤ m(m̄[x](s), s)h(|m̄[x](s)− x|), ∀y 6∈ Is(x).

Specifically, the first inequality holds due to the maximality of x̄ with respect to m(., s) and as |x̄ − x| ≤
λ(s) ≤ |y − x|. The second inequality holds due to the maximality of m̄[x](s) with respect to m(., s)h(| · −x|)
that in turn implies ∂xu

∗[x](s)|x=x̄ = 0.

As u∗[x](s) = 0 in a neighborhood of x̄, specifically for all x ∈ Is(x̄) for t ≤ s ≤ T , we have that dx(s) = 0
for x(s) ∈ Is(x̄), hence ∂tm(x̄, s) = 0 which in turn implies m(x̄, s) = m0(x̄). Then, from the latter result we
obtain what follows. First, condition 1), namely, x̄ = arg max{m(x, s)} for t ≤ s ≤ T , is a straightforward
consequence of Assumptions 1.2, and more specifically of (13) that prevents any x(s) 6= x̄ to be associated with
m(x(s), s) ≥ m(x̄, s) = m0(x̄) for t ≤ s ≤ T . Second, condition 2), namely, u∗[x](τ) = 0 for all t ≤ s ≤ τ ≤ T
for all x ∈ Is(x̄), holds since Is(x̄) ⊆ Iτ (x̄) if t ≤ s ≤ τ ≤ T . Third, condition 3), namely, ∂xu

∗[x](s)|x=x̄ = 0
holds as Is(x̄) is a neighborhood of x̄.

�

In addition, in the general case, m(., .) can present discontinuities even if m0(.) is continuous. To this end,
let us consider the situation in which h(.) = 1 for all x ∈ R. From Assumption 2.1, we can describe m(., .) in
terms of weak solutions of the following problem:

∂tm = −∂x(mu∗)

m(x, t) = m0(x) ∀x ∈ supp(m0(.)). (17)

We recall that, in this setting, “weak solution” means that
∫ ∫

mϕt + (u∗m)ϕxdxds +
∫
m0ϕ(·, t)dx = 0 for

all C1 test functions ϕ with compact support. We also recall (see, e.g., [25]) that when the domain is divided
in two parts by a regular curve s 7→ γ(s) = x, and when m is of class C1 in every one of the two parts, and
separately in both parts satisfies the transport problem (17), then, in the whole domain, m is a “weak solution”
if and only if the possible jump discontinuities of m and of mu∗, say [m] and [mu∗], on the curve γ satisfy the
so-called Rankine-Hugoniot condition: γ′(s)[m(γ(s), s)] = [(mu∗)(γ(s), s))].

We will study m(x, s) for x ≥ x̄ as symmetrical arguments hold for x ≤ x̄.

Let us introduce the following notation:
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– T̃ = sup{s : t ≤ s ≤ T, m̄[x](s) = x̄, x ≥ x̄}
– û[x](s) = a(s)(x̄− x) for t ≤ s ≤ T̃ , that is, û can be seen as a “prolongation” of u∗ (defined in the first line

of (8)) as û = u∗ where u∗ 6= 0
– m̂(x, s) the solution of the PDE

∂tm̂ = −∂x(m̂û), m̂(x, t) = m0(x)), (18)

that is, m̂ is the solution of the transportation equation when the control û is implemented

We are then in the condition to state the following theorem.

Theorem 3 For t ≤ s ≤ T̃ and for x ≥ x̄

m(x, s) =

{
m̂(x, s) for t ≤ s < sx

min{m̂(x, sx)− m̂(x,sx)û(x,sx)
λ′(sx) ,m0(x̄)} for sx ≤ s ≤ T̃

(19)

is a weak solution of equation (17) with possibly a jump discontinuity at (x, sx), where

sx =


t if x ≤ x̄+ λ(0),

ŝ : λ(ŝ) = x if x̄+ λ(0) < x ≤ x̄+ λ(T̃ ),

T̃ if x > x̄+ λ(T̃ ),

(20)

and m̂ is the solution of (18).

Proof We initially observe that solution (19) is equal to m(x, t) for all x ∈ It(x̄). In addition, solution (19) is

equal to m̂(x, t) for x > x̄+λ(T̃ ). For the remaining points, if m̂(x, sx)− m̂(x,sx)û(x,sx)
λ′(sx) < m0(x̄), this theorem is

an immediate consequence of the Rankine-Hugoniot Theorem (see, e.g., [25] p.79). Indeed, we note that all the
conditions of the Rankine-Hugoniot Theorem are satisfied. Specifically, for t ≤ s ≤ T̃ and for each x, m1(x, s) =

m̂(x, s) and m2(x, s) = m̂(x, sx)− m̂(x,sx)û(x,sx)
λ′(sx) = const are classical solutions of problem (17) respectively for

t ≤ s < sx and for sx < s ≤ T̃ . Both m1() and m2() are differentiable where defined. In addition, (20) defines
a monotonic curve that divides the open right quadrant (x, s) for x ≥ x̄ and s ≥ t in two pieces lying to the
right and to the left of the curve. Finally, lim(y,s)→(x,s+x ) u

∗[y](s)m2(y, s) − lim(y,s)→(x,sx)− u
∗[y](s)m1(y, s) =

λ′(sx)(∆m)(x, sx), where (∆m)(x, sx) is the “jump” that (19) shows in each (x, sx). (See Figure 3.)

Consider now m̂(x, sx)− m̂(x,sx)û(x,sx)
λ′(sx) ≥ m0(x̄). The condition m(x, sx) = l < m0(x̄) cannot realize as it is

in contradiction with the fact that one can define a control u◦ such that u∗[x](s) < u◦[x](s) < 0 for t ≤ s ≤ T̃
and x ≥ x̄+λ(T̃ ) which induces a value l < m(x, sx) < m0(x̄). In plain words, one can find a less intense control
that induces a greater jump. A value m(x, sx) ≥ m0(x̄) implies sx = T̃ , then the Rankine-Hugoniot Theorem
does not apply and, on the contrary, any value m(x, sx) ≥ m0(x̄), and hence m(x, sx) = m0(x̄), corresponds to
a weak solution for problem (17). Indeed, m1(x, s) = m̂(x, s) is a classical solution for t ≤ s < sx whereas the
interval [sx, T̃ ] has a null measure. This latter condition holds even in the pathological situation in which the
interval [t, sx) is empty.

�

It is worth noting that in the above theorem the choice of setting m(x, sx) = m0(x̄) when m̂(x, sx) −
m̂(x,sx)û(x,sx)

λ′(sx) > m0(x̄) needs a stronger justification. To this purpose, it is worth noting that such a choice is

coherent with the fact that the control applied by a player with state equal to x drops abruptly to 0 when x
becomes an absolute maximum.

The iterative application of the above theorem allows to describe m(x, s) for all x and for all t ≤ s ≤ T in
terms of the composition of successive weak solutions of (17) as described in the following three-step recursive
procedure. In this context, we define F (s) = {x ≥ x̄ : m(x, τ) = m(x, s), τ ≥ s} as the set of the states x for
which the value of m(x, τ) does not change from s on.
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1. We know that m(x, s), as defined in (19), is a weak solution of (17) t ≤ s ≤ T̃ . Then, F (t) ⊇ It(x̄) provided
that max{m(x, s); s ≥ t} = m0(x̄). If T̃ = T the problem is solved otherwise, if T̃ < T , we must define
m(x, s) for T̃ ≤ s ≤ T and we go to the next step.

2. We observe that, if T̃ < T , m(x̄ + λ(T̃ ), T̃ ) = m(x̄, t) must hold, as, for all x > x̄ + λ(T̃ ), m(x̄, T̃ ) is
certainly less than m(x̄, t) since ∂sm̂(x, s) ≤ 0 for all x > x̄ and t ≤ s ≤ T̃ . This fact in turn implies that
m̄[x][T̃ ] = x̄+ λ(T̃ ) for all x ≥ x̄+ λ(T̃ ) and hence m(x, s) = m(x, T̃ ) for T̃ < s ≤ T and x ∈ IT̃ (x̄+ λ(T̃ )).

Then F (s) ⊇ F (t) ∪ IT̃ (x̄ + λ(T̃ )) will also hold provided that max{m(x, s); s ≥ T̃} = m0(x̄). For the

definition of m(x, s) for s > T̃ and x > x̄+ 2λ(T̃ ) we go to the next step.
3. We recursively repeat the above steps after having applied at each recursion the arguments of Theorem 3

by renominating x̄+ λ(T̃ ) with x̄ and T̃ with t.

We first note that the above procedure defines a weak solution whose maximum value is always m0(x̄).
Hence the recursive inclusion F (s) ⊇ F (t) ∪ IT̃ (x̄ + λ(T̃ )) always holds. Then, let us denote by T̃k the value

of T̃ at the end of the k-recursion of the above procedure and set T̃0 = t. The above recursive procedure

surely terminates in a number of steps less than or equal to |supp(m0(.))|
λ(t) if the measure of supp(m0(.)) is finite

since supp(m0(.)) ⊇ supp(m(., s)) for t ≤ s ≤ T̃ and since at the end of the generic k recursion we have that
F (T̃s) ⊇ {x : x̄ ≤ x ≤ x̄+ kλ(t)}.

If there exists no finite value R such that B(0, R) ⊇ supp(m0(.)), then we can have at most a countable
number of values of T̃k, some of which may also coincide. A particular pathological situation is the one in which

m̂(x, t)− m̂(x,t)û(x,t)
λ′(t) = m0(x)− m0(x)û(x,t)

λ′(t) ≥ m0(x̄) for all x ∈ supp(m0(.)) = R. In this case the application of

the above algorithm leads to the following weak solution with a countable number of discontinuous points:

m(x, s) =

{
m0(x) for all x 6= ±kλ(t) with k ∈ N
m0(x̄) for all x = ±kλ(t) with k ∈ N

for t < s ≤ T . (21)

Remark 3 Equation (17) is a discontinuous scalar conservation law in the unknown m, where the discontinuity
is due to the discontinuity of u∗ with respect to x (it suddenly becomes equal to 0 whenever x is suitably near
to the mode of m (threshold policy)). This fact brings several problems in order to define what a solution is
and further to give some uniqueness results. Here we only comment some facts.

First of all, as explained in Theorem 3, and qualitatively shown in Figure 3 (1), the solution is expected to
be discontinuous. This is indeed a common feature of (even continuous) scalar conservation laws. In our case,
however, we have a discontinuity threshold (λ(·)) which is moving in the opposite direction with respect to the
transportation given by the field f(m) := u∗m, and hence we do not recover the standard concept of “shock” for
conservation laws (as, for example in the case of the Riemann problem (see [25])). Moreover, the discontinuity
curve is not generated by the solution (as it is the case when we have a shock in a continuous scalar law), but
instead it is a discontinuity in the coefficient u∗ of the equation.

In general, the Rankine-Hugoniot condition does not guarantee the uniqueness of the solution. One usually
adds the so-called Lax-shock condition which, in the scalar case, requires that the characteristics impinge on
the discontinuity curve, which is not our case, where instead (see Figure 3 (3)), the characteristics cross the
discontinuity curve. Indeed, if we search for a solution satisfying the usual Lax-shock condition, then we should
arrive at a discontinuity line non-consistent with the definition of u∗. This is also the reason why, in the
characteristics portrait Figure 3 (3) we explicitly require to consider a jump in the solution when crossing the
discontinuity line (as given in (19)). This seems to be the unique way to define a weak solution of (17). Also
note that we have another discontinuity curve: the vertical line γ(s) = λ(0) (see Figure 3(1)). This is because
at the point (λ(0), 0) the solution immediately shows a discontinuity. However, for this curve, the derivative
(with respect to s) is zero and u∗ is also zero on both sides. Hence, the Rankine-Hugoniot condition is trivially
satisfied.

The above discussion refers to the case when the jump across the discontinuity curve is such that the new
value of m remains lower than the maximum m0(x) of the initial distribution, and so the mode does not change.
Indeed, in this case, even if m is discontinuous, we do not have any problem in defining x as the mode of m(·, s)
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Fig. 3 From top to bottom: 1) the filled curve represents the initial distribution m0 at the initial time, here assumed t = 0; the
point-dashed curve represents a qualitative modification of the profile of the solution at time s when m(x, sx) < m0(x) for all x; 2)
a possible representation of the solution m in the case as in (21), as well as in the case of constant threshold λ(s) ≡ λ; 3) qualitative
representation of the characteristics for the solution in the previous case 1); in particular, the solution is subject to a jump (here
generically indicated by ∆m) when crossing the discontinuity curve (λ(s), s).

too. This is because a natural generalization of the concept of mode, as the point where the maximum is reached,
is the one for which the mode of an integrable function f is the point x where limε→0+(1/ε)

∫ x+ε

x−ε f(ξ)dξ has
the maximum value.

Now, we consider the case where the discontinuity threshold is constant λ(s) ≡ λ, and then the discontinuity
curve in the plane (x, s) should be a vertical line (however, this case is also quite similar to the case explained
before (and in) (21).) Let us focus only on the first quadrant of Figure 3 (2). All the agents in [0, λ] do not move,
and the agents immediately to the right of λ start to move left. Now, the threshold is not moving right, as in the
previous case, and hence, in principle, such agents do arrive at the value λ. However, if some of them arrive at
λ then, in x = λ we immediately get a delta function. Using the control u∗, this is impossible. Indeed any delta
function has a weight much larger than any other value of the continuous part of m (see the possible generalized
definition of mode as before), and hence, whenever the delta function arises, then it is immediately recognized
as the mainstream and no other agents can reach it anymore. In conclusion a delta function cannot arise. The
only possibility is then that all agents do not move, which implies that the solution satisfies m(x, s) = m0(x)
for all (x, s). But, for making this consistent with the definition of u∗ (which in this case must be equal to zero
everywhere), the only possibility is that the agents recognize the mainstream as a position sufficiently close to
theirs (by no more than λ). To this end, we have to consider a function as in Figure 3 (2), where the mode is
still considered as the point where the maximum is reached, even if such a procedure is almost meaningless, due
to isolated discontinuities and because of the fact that a single point has zero density. However, the function in
Figure 3 (2) satisfies the equality m(x, s) = m0(x) for all s and for almost every x, and so, in any Lp spac es
they are exactly the same function.
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Also note that the situation in Figure 3 (2) cannot be recovered as limit of the picture (1) as well as of the
characteristic picture (3), when the moving threshold λ(·) tends to become constant (and so the discontinuity
line tends to become vertical). Indeed, in such a limit procedure, λ′(·) tends to become zero and hence the jump
tends to become larger and larger and the new values of m, after crossing the discontinuity line, are no more
smaller then m0(x).

Further studies of this kind of discontinuous conservation law, in connection with some possible weaker
definition of the mode, are left for future studies.

5 Conclusions and future directions

Well-established phenomena in social networks, which also characterize the bulk of the literature on opinion
dynamics, are the “bandwagon effect” and the so-called “homophily”. The bandwagon effect consists in all
players seeking to align their opinions to the mainstream opinion, this being the opinion shared by the majority.
On the other hand, homophily consists in every player interacting only with those whose opinion is not too distant
from its own. This paper has shown how mean-field game theory can successfully accommodate both phenomena.
Individuals act in a competitive scenario modeled as a game with a large number of players. Consequently the
propagation of the opinions is a process resulting from all players adopting equilibrium strategies. To capture
stubbornness on the part of the players, we have considered an additional fixed cost in the cost functional. This
has lead us to the notion of threshold strategy, consisting in every single player changing its opinion only if the
mainstream opinion is significantly different. The work has shed light on the implications that such a threshold
strategy has on the macroscopic time evolution of the density distribution of the opinion within the population.

This study is part of the current research activity on opinion dynamics conducted by the authors. Future
directions involve the analysis of scenarios where the players present different opinion changing rates, as it
is often observed in real cases. Such a complex scenario can be dealt with considering a multi-population
game. Another challenge is represented by more sophisticated interrelation between the control and the opinion
variation. It may happen that the control has no direct effect on the variation of the opinion and this results
in a highly nonlinear controlled dynamics. We aim at extending the results provided in this paper to such a
complex scenario. Finally, we will argue on the importance of game theory as a design tool. If the current study
uses such a theory to explain observed phenomena, it is our belief that the role of game theory can go much
further, providing tools for the analysis and design of information mechanisms leading to pre-specified opinion
distributions. The analysis of the “strategic thinking” which characterizes the modern media will be our starting
point.
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