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Preface

Why this book now?
A key direction for research in systems and control involves engineering systems. These
are highly distributed collective systems with humans in the loop. Highly distributed
means that decisions, information, and objectives are distributed throughout the system.
Humans in the loop implies that the players, have bounded rationality and limited compu-
tation capabilities. In addition, decisions may also be influenced by societal and cultural
habits. Engineering systems emphasize the potential of control and games beyond tradi-
tional applications.

The reason why I chose to write this book now is that, within the realm of engineer-
ing systems, a key point is the use of game theory to design incentives to obtain socially
desirable behaviors on the part of the players. As an example, in demand side management,
an increase of the electricity price on the part of the network operator may induce a
change in the consumption patterns on the part the prosumers (producers-consumers). In
opinion dynamics, sophisticated marketing campaigns may influence the market share as-
suming that the customers are susceptible players sharing opinions with their neighbors.
In pedestrian flow, informing the pedestrians on the congestion at different locations may
lead to a better redistribution of the traffic. These are only some of the applications
discussed in this book.

In this context, game theory offers a rich set of model elements, solution concepts, and
evolutionary notions. The model elements are the players, the action sets and the payoffs;
the solution concepts include the Nash equilibrium, the Stackelberg equilibrium, Pareto
and social optimality; evolutionary notions shed light on the fact that equilibria are rele-
vant only if the players can converge to such solutions in a dynamic setting. Evolutionary
notions essentially turn the game into a kind of dynamic feedback system.

However, a game theory model is more than just a dynamic feedback system as each
player learns the environment, which in turn learns the player and so forth. Such a
coupled learning introduces a higher level of difficulty to the feedback structure.

A large portion of this book is dedicated to games with a large number of players. Here
each player uses an aggregate description of the environment based on a distribution
function on actions or states, which is the main idea in a mean-field game. Thus, in most
examples the game is a mapping from distributions (congestion levels) to payoffs (think
of the replicator dynamics).

If a game is a mapping from congestion levels to payoffs, the evolution model is a dy-
namic model that operates in the opposite direction: it maps flows of payoffs to flows of
congestion levels. Here, systems and control theory provides a set of sophisticated stabiliz-
ability tools to design self-organizing and resilient systems characterized by cooperation
and competition. This book will mainly use the Lyapunov approach both in a determin-

xvii
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istic and stochastic setting.

Goal of this book
This book’s goal is to bring together game theory and systems and control theory in
the unconventional framework of engineering systems. The goal of Part I is to cover
the foundations of the theory of noncooperative and cooperative games, both static and
dynamic. Part I also highlights new trends in cooperative differential games, learning,
approachability (games with vector payoffs) and mean-field games (large number of ho-
mogeneous players). The treatment emphasizes theoretical foundations, mathematical
tools, modeling, and equilibrium notions in different environments.

The goal of Part II is to illustrate stylized models of engineered and societal situa-
tions. These models aim at providing fundamental insights on several aspects including
the individuals’ strategic behaviors, scalability and stability of the collective behavior, as
well as the influence of heterogeneity and local interactions. Other relevant issues dis-
cussed throughout the book are uncertainty and model misspecification. Remarkably,
the framework of robust mean-field games is developed with an eye to grand engineering
challenges such as resilience and big-data.

What this book is not
This book is not an encyclopedia of game theory, and the material covered reflects my
personal taste. More importantly, this book is not a collection of takeaway models and
solutions to specific applications. These models need not be interpreted literally but are
guidelines towards a better understanding and an efficient design of collective systems.

Structure of this book
This book is organized in two parts. Part I follows [24] and goes from Chap. 1 to 12.
Chapters 1 to 4 review the foundations of noncooperative games. Chapters 5-6 deal with
cooperative games. Chapter 7 surveys evolutionary games. Chapter 8 analyzes the repli-
cator dynamics and provides a brief overview of learning in games. Chapter 9 deals with
differential games. Chapter 10 discusses stochastic games. Chapter 11 pinpoints basics
and trends in games with vector payoffs, such as approachability and attainability. Chap-
ter 12 provides an overview of mean-field games.

Part II builds upon articles of the author and goes from Chaps. 13 to 21. In partic-
ular, under the umbrella of power systems, Chaps. 14-15 analyze demand side manage-
ment and synchronization of power generators, respectively. Within the realm of socio-
physical systems, Chap. 13 discusses consensus in multi-agents systems, and Chaps 16-
18 illustrate in order: opinion dynamics, bargaining, and pedestrian flow applications.
Within the context of production/distribution systems, Chaps 19-21 deal with supply-
chain, population of producers and cyber-physical systems.

At the end of each chapter a section entitled “Notes and references” acknowledges the
work on which the chapter is based and related works.

Audience
The primary audience is students, practitioners, and researchers in different areas of En-
gineering such as Industrial, Aeronautical, Manufacturing, Civil, Mechanical, and Elec-
trical Engineering. However, the topic interests also scientists in Computer Science, Eco-



Preface xix

nomics, Physics and Biology. Young researchers may benefit from reading Part II. The
comprehensive reference list enables further research. The book is self-contained and
makes the path from undergraduate students to young researchers short.

Using this book in courses
This book can be used as textbook especially Part I. This part covers material that can be
taught in first-year graduate courses. I use a tutorial style to illustrate the major points so
that the reader can quickly grasp the basics of each concept.

Part I assembles the material of three graduate courses given at the Department of
Mathematics of the University of Trento, at the Department of Engineering Science of
the University of Oxford, and at the Department of Electrical and Electronic Engineering
of Imperial College, in 2013. The material has also been used for the short course given
at the Bertinoro International Spring School 2015 held in Bertinoro, Forlì, Italy.

The book can also be used for an undergraduate course. To this purpose, the book is
complemented with Appendix sections on mathematical review, optimization, Lyapunov
stability, basics of probability theory, and stochastic stability theory. Part II shows a
number of simulation algorithms and numerical examples that may help improve the
coding skills of the students. The software used for the simulations is MATLAB. Prior
knowledge includes the material discussed in the Appendix sections.

Notation
We use the following abbreviations and symbols throughout the book.

! set of real numbers
!n n-dimensional vector space over !
!+ set of nonnegative real numbers
xT transpose of a vector x
AT transpose of a matrix A

xi or [x]i ith coordinate component of a vector x
ai j or [A]i j or ai

j
i j th entry of a given matrix A

x < y (x ≤ y) xi < yi (xi ≤ yi ) for all coordinate indices i of two vectors x and y
[ξ ]+ positive part of real ξ ∈!
∥x∥ Euclidean norm of a vector x
∥x∥2

A
weighted two-norm xT Ax of given vector x ∈!n and matrix a ∈!n×n

∆n simplex in !n

ΠX [x] projection of a vector x on a set X , i.e., ΠX [x] = arg miny∈X ∥x − y∥
dist(x,X ) distance from vector x to set X , i.e., dist(x,X ) = ∥x−ΠX [x]∥

U ⊂ S U is a proper subset of S
|S| cardinality of a given finite set S
∂x first partial derivative with respect to x or gradient with respect to x

∇x or ∇ gradient
∂ 2

x x
second derivative with respect to x

∇2 Hessian matrix
" expectation
# probability

m̄(.) mean of a given density function m(.)
s t d (m(.)) standard deviation of a given density function m(.)
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objective functions in differential and mean-field games.

More recently, the approximation technique based on state space extension to com-
pute mean-field equilibria has resulted from the fruitful interactions with Alessandro As-
tolfi and Thulasi Mylvaganam during my sabbatical at Imperial College London in 2013.
The collaboration with Antonis Papachristodoulou and Xuan Zhang has inspired the
pedestrian flow model in Chap. 18. My special thanks to Xuan who has contributed the
simulations in Chap. 18. I really enjoyed sharing thoughts with Mark Cannon and the
resulting ideas combining games and receding horizon are discussed in Chap. 16 in the
context of opinion dynamics. The collaborations with Antonis, Xuan, and Mark have
started during my sabbatical period in Oxford in 2013.

Many thanks are due to the several PhD students, postdocs, and fellows who have
attended the courses and have contributed to the improvement of the material with their
comments and questions.

Finally, I would like to thank Claudia for her enormous support and for sharing the
ups and downs with me.

I hope you will enjoy reading the book as much as I did writing it!

To the loving memory of my parents.
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[175] A. NEDIĆ AND A. OZDAGLAR, Distributed subgradient methods for multi-agent optimiza-
tion, IEEE Transactions on Automatic Control, 54 (2009), pp. 48–61. (Cited on pp. 57,
64)



Bibliography 143
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and dominant strategies, 12
and evolutionarily stable

strategies, 72
and iterated dominance

algorithm, 14
and mean-field equilibrium,

126
and saddle-point, 19
asymptotic stability, 81
closed-loop strategy, 92
computation, 11, 27, 35
dynamic programming, 43
Equilibrium point theorem,

11
existence, 10
in continuous infinite game,

11
in Coordination game, 15
in Cournot duopoly, 13
in evolutionary game, 69
in extensive game, 9
in Hawk and Dove game, 16
in mixed strategy, 35
in Prisoner’s dilemma, 8
in Stag-Hunt game, 16
in the Battle of the Sexes, 15
open-loop strategy, 91
original paper, 17
payoff dominant, 41
refinement, 41
risk dominant, 42
stationary solution, 81
strategy in differential game,

87
subgame perfect, 43
worst-case disturbance

feedback, 135, 139
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neighbor-graph, see graph
network flow

and attainability, 112
control problem, 111

network frequency, see mains
frequency

networks, 17
communication, 4, 100, 105
in opinion dynamics, 51
social, 4

non-expansive projection, 57
nonanticipative strategy, 114
nucleolus, 66

computation, 67

open-loop strategy, 90
operations research games, 53
optimal control, 87
optimal planning problem, see

planning problem
optimization, 3

mathematical, 116
of functionals, 115

Pareto optimality, 47
curve computation, 59
in the Coordination game,

49
curve in differential games,

59
in coalitional TU games, 56
in the Hawk and Dove

game, 49
patient play, 99
payoff dominance, 41
permutation game, 54
persuaders, see stubborn players
planning problem, 65
plurality, 41, 47, 52
polarization, 41, 47, 52
Pontryagin Maximum Principle,

9, 88
population

of thermostatically
controlled loads, 18

Preface, ix
Principle of Optimality, 89
Prisoner’s dilemma, 6

as evolutionary game, 70
dominant strategy in the, 12
historical notes, 17
in coalitional form, 51
Nash equilibrium, 8
Pareto optimal solutions in

the, 48

repeated game and tree
representation, 7

Stackelberg equilibrium in
the, 45

probability density, 123
probability distribution, 122
probability measure, 121

Borel, 122
probability space, 121

Borel, 122
probability theory, 121
projected game, 116

in opinion dynamics, 47
in pedestrian flow, 70

pure strategy, 10, 20
in stochastic games, 98

quadratic programming, 117

random variable, 122
receding horizon, 3, 7

in opinion dynamics, 45
regret learning, 111
reinforcement learning, 85
replicator dynamics, 79
Riccati differential equation, 94
risk dominance, 41
robust mean-field game, 132
Rock-Paper-Scissors game, 77
row-stochastic matrix, 113

saddle point
graphical resolution, 27

saddle-point, 19
existence of, 21

scalability
demand side management,

15
in cyber-physical systems,

102
Shapley value, 63

in supply-chain, 86
shortsighted, see myopic
social optimality, 41

in multi-inventory systems,
59

stability
for a population of

producers, 95
in cyber-physical systems,

102, 107
in demand side

management, 22
in opinion dynamics, 49
in pedestrian flow, 72

stabilizing control policy, 84
Stackelberg equilibrium

in the Coordination game,
49

Stag-Hunt game, 16
learning in the, 83
Nash equilibrium, 16
payoff dominant solutions

in the, 42
risk dominant solutions in

the, 42
state space extension, 69, 85, 105
stochastic matrix, 57, 60, 113

in bargaining, 57, 59
in opinion dynamics, 46

stochastic stability, 96, 107, 125
strategic behavior

demand side management,
15

in opinion dynamics, 42
in smart grids, 25

stubborn players, 41, 53
subadditive games, 57
subgame perfectness, 41
superadditive games, 57
supply-chain, 79
swing equation, 25, 27
synchronization of power

generators, 29
system frequency, see mains

frequency

TCLs, see thermostatically
controlled loads

team theory, 3
thermostatically controlled loads,

15
transferable utility, see coalitional

games
transient stability, 26
transport equation, see advection

equation
TU games, see coalitional games
two-point boundary value

problem, 88
Typewriter Game, see

Coordination game

UAVs, see unmanned aerial
vehicles

uncoupled dynamics, 83
uniform equilibrium, 104
unknown but bounded, 79, 80,

90, 112
unmanned aerial vehicles, 11
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value, 101
of projected game, 116

value function, 90, 125

Wardrop equilibrium, 67
weakly acyclic games, 85

worst-case disturbance feedback
mean-field
equilibrium, 139

for the synchronization of
power generators, 32

in cyber-physical systems,
105

zero-sum games, 19
zero-sum stochastic games, 101


