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The in silico principal properties (PPs) of ionic liquids (ILs), derived by

means of the VolSurf+ approach, were used to develop a Partial Least

Squares (PLS) model able to find a quantitative correlation among IL

descriptors (accounting for both cationic and anionic structural

features) and heat capacity values, providing affordable predictions

validated by experimental Cp measurements for an external set of ILs.

In silico predictions allowed the selection of a limited number of

structurally different ILs with similarCp values, providing the possibility

to select an optimal IL according to efficiency, as well as to environ-

mental and economic sustainability. The present general procedure,

using readily available descriptors for above 8000 ILs and adopting an

accessible statistical procedure such as PLS, could be extended to

other QSPR models.
Introduction

Ionic liquids (ILs) are a group of organic salts that have
low melting points (usually dened as below 373 K), formed
of an organic cation and an inorganic or organic anion.1 In
the last few decades ILs have attracted the attention of both
the scientic and the industrial communities due to their
high versatility, deriving from the large number of combi-
nations of cations and anions which determines the prop-
erties of the resulting IL. This makes it possible to tune their
physicochemical properties allowing the design and/or the
synthesis of ILs for specic applications in various elds of
technology, such as solvents,2,3 absorption media for gas
separations,4,5 catalysts6–8 heat transfer uids and working
uids in electrochemical applications (batteries, solar
cells).9–11
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Heat capacity is a fundamental thermodynamic property of
liquids needed to estimate heating and cooling requirements as
well as heat-storage capacity of a material. Therefore it is an
important parameter to verify the applicability of a liquid in
heat-exchanger equipments. Heat-transfer uids have a large
number of industrial and consumer applications ranging from
refrigeration at low temperatures to solar energy collection and
storage at high temperatures. Heat capacities are also involved
in the estimation of the temperature dependence of some
thermodynamic properties of chemical compounds, such as
entropy, enthalpy and Gibbs energy.

At present, the most exhaustive collection of IL heat capac-
ities is the IL Thermo database,12 containing available literature
data. However for most ILs these values are still lacking.
Moreover heat capacity data show a high degree of uncertainty,
depending on the analytical method used, on the experimental
apparatus precision and on the presence of impurities. Pau-
lechka collected and critically reviewed experimental data on
heat capacity of room-temperature ionic liquids in the liquid
state (102 aprotic ILs from 63 literature references)13, pointing
out that the purity of the ionic liquid can dramatically affect its
properties. This has been specically demonstrated for ILs
containing water or halide impurities.14

The huge number of combinations of cations and anions
determine the physicochemical ILs properties whose knowledge
is required to establish Quantitative Structure Property Rela-
tionships (QSPR) models aimed at an “intelligent” selection of
ionic liquids for specic purposes.

In the present approach the prediction of IL heat capacity is
based on in silico structural descriptors calculated adopting an
approach called VolSurf+15,16 using information coded into 3D
GRID molecular interaction elds.17–20 The VolSurf+ procedure
has been successfully applied to study the biological behaviour
of organic molecules, e.g. structure–permeation relationships,15

antitumour activities,21–23 phospholipidosis induction24 and
recently to predict the aquatic toxicity of ionic liquids.25,26 Vol-
Surf+ descriptors take into account several cationic IL structural
features such as heterocyclic aromatic and non-aromatic cores,
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Fig. 1 (a) VIP values bar plot; (b) PLS loading weights plot.

Fig. 2 Predicted vs. experimental literature data.
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alkyl chain length, presence of oxygen atoms in the substituents
as well as the properties of various inorganic and organic
anions. Recently the VolSurf+ descriptors (128 for cations and
65 for anions) were compacted into a smaller number of IL
descriptors, the so called Principal Properties (PPs, 5 for cations
and 4 for anions). PPs, being orthogonal to each other, are
highly informative variables for experimental design, main-
taining most of the original matrix information, in this case the
in silico properties for 218 heterocyclic cations and 38 organic
and inorganic anionic counterparts of ionic liquids.27 IL PPs
provided satisfactory QSPR models for IPC-81 cell line toxicity
and acetylcholinesterase inhibition.27

Various approaches to computational chemistry used with
ILs have been recently reviewed28 and the utility of combining
computational and experimental approaches has been recog-
nized. The above updated review conrms that themethodology
adopted in the present communication was not previously
applied in the ionic liquids eld.

In the present work we intend to test the potentialities of the
in silico ILs PPs to develop a Partial Least Squares (PLS) model
able to quantitatively correlate the above descriptors to heat
capacity to predict the heat capacity at constant pressure (Cp) for
a large number of commonly used ILs with the aim to full the
requirements of the REACH (registration, evaluation, author-
isation and restriction of chemicals) regulation by establishing
priorities in planning the synthesis of new ILs for industrial
applications.

Results and discussion

Heat capacity data, collected from the available literature,12,13

expressed as J (K�1 mol�1) were available for 65 ILs. These ILs
(Table S1†) exhibit different structural features such as aromatic
and non-aromatic heterocyclic cationic scaffolds (imidazo-
liums, pyridinium, piperidinium and pyrrolidinium), different
length and presence of heteroatoms in the side chain as well as
wide range of anions (halides, uoborates, sulphonates and
organic anions). The PLS analysis29 was carried out using a 65 �
9 descriptor matrix (Table S1†) including 65 ILs and 9 variables
(5 cation and 4 anion PPs27) and the IL heat capacity as the y
response. The analysis provided an excellent 2 PLS orthogonal
components model (see Table S2†) explaining 91.9% of y vari-
ance (Q2 ¼ 0.807) where the 1st PLS component explains already
77.9% of y variance (Q2 ¼ 0.709).

In Fig. 1a the VIP (Variable Importance on the Projection)
values bar plot is reported. VIP values give an indication (in
absolute values) of what variables in the X block (PPs of ILs) are
relevant to determine the dependent variable (ILs heat
capacity). This plot shows that the response is affected by both
cationic and anionic principal properties. In detail, the PLS
loading weights plot (Fig. 1b) shows that the most important
principal property is the anionic PP3� which lies in the same
quadrant and therefore contributes positively to Cp (i.e. the
higher PP3�, the higher Cp) whereas cationic PP1+, being in the
opposite quadrant of the plot, provides a negative contribution.
PP5+ and PP4� follow in order of importance. The physico-
chemical meaning of each single ILs PP has been
36086 | RSC Adv., 2016, 6, 36085–36089
commented.27 In the present case the PP1+ negative contribution
means that a large cationic structure (wide surface, large
volume and exibility) together with hydrophobic surface and
high molecular weight determine an increase in Cp values. On
the other hand, a more water soluble cation is responsible for
the decrease of Cp. The cationic PP5+ refers to the H-bonding
ability: a cation able to interact as donor contributes to
increase the Cp value, and vice versa. Anion PPs have a high
effect on the response, in particular anionic PP3� and PP4�, both
positively contributing to the Cp value. Consequently large
surface and volume, high hydrophilicity and polarizability
(related to high positive PP3� values) and the unbalance between
hydrophobic areas and the anions barycentre (referring to
positive PP4�), contribute to the increase of Cp. On the other
hand, anions with strong H-bonding ability (high negative PP3�)
result in lower Cp values.
This journal is © The Royal Society of Chemistry 2016



Scheme 1 ILs structures used as validation set.

Scheme 2 Ionic liquids with predicted Cp > 700 J (K�1 mol�1). ILs with
DModX higher than 1.60 in red.
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It is worth mentioning that the present QSPR approach is
able to provide an estimate of the importance and an inter-
pretation of physico-chemical parameters in relation to Cp

considering simultaneous variations in both the cation
(heterocyclic core, side chain length, presence of oxygen atoms
in the side chain) and the anion structural features.

The plot of predicted vs. experimental literature data is re-
ported in Fig. 2 (see also Table S1†) where a good agreement
between experimental and predicted values can be observed.
This correlation can be considered as very good, taking into
account the intrinsic variability of heat capacity data reported in
the literature, strongly affected by errors due to different
apparatus and analytical methods used in the Cp determination
and to the presence of impurity in the ILs. Modelling of a series
of ILs derivative thermodynamic properties including heat
capacity by means of ePC-SAFT theoretical model has recently
been reported30 and percentage prediction errors lower than
20% were claimed to be much better than those previously re-
ported in the literature. The correlation reported in Fig. 2,
including a much higher number of ILs with four aromatic and
non-aromatic cationic heterocyclic cores and a wide variety of
inorganic and organic anions, points out a signicant
improvement of the PLS model prediction ability.

In order to validate the above model an external set of 7 ILs
(Scheme 1) was used, and Cp values were measured experi-
mentally by Differential Scanning Calorimetry (DSC, see also
ESI†). Table 1 points out a good agreement between
Table 1 Experimental and predicted Cp values for test set ILs

Entry
Cp (liter.)a

J (K�1 mol�1)
Cp (exp.)b

J (K�1 mol�1)
Cp (pred.)
J (K�1 mol�1)

183 437.4 459.1
184 370.5 413.0
196 429.8 452.0 440.8
331c 414.0 424.1 409.0
336 407.6 409.2
511 383.2 360.0 392.3
512 400.1 420.3
513 481.0 470.6

a From ref. 13. b This work. c The Cp value for this learning set IL was
measured to test the reliability of the adopted experimental procedure.

This journal is © The Royal Society of Chemistry 2016
experimental and predicted Cp values for the test set of the 7 ILs,
thus conrming that the PLS approach represents a valid tool to
predict heat capacity starting from PP in silico structural
descriptors.

In PLS Q2 estimates the predictive power of the model,
however a further internal validation tool, the so-called
response permutation testing,31 can be adopted to assess the
statistical signicance of the predictions. The resulting
permutation plot (Fig. S1 in ESI†) clearly excludes tting of
random response data.31

The reliability of the PLS model suggested that predictions
could be extended to a higher number of commonly used ILs
(the same set of 520 arbitrarily chosen in ref. 27) also reported in
Table S1.† However, the prediction ability for a high number of
ILs is different for each single IL. Guidance on the “goodness”
of the prediction can be evaluated by DModX values, the model
residuals in the X matrix, which give an estimate of the simi-
larity of a new observation to the training set observation.
Predictions for ILs exhibiting DModX values higher than 1.60 in
Table S1† should be regarded with caution,32 the higher DModX
the lower the prediction reliability.

In Fig. 2 a single IL (IL 517, 1-methyl-3-octadecylimidazolium
1,1,1-triuoro-N-[(triuoromethyl)sulfonyl] methanesulfonamide)
exhibits an extraordinary high experimental Cp value, above 1000 J
(K�1 mol�1), in agreement with the PLS model prediction, while
very few ILs can be found in the range 700–1000 J (K�1 mol�1).
Predictions in Table S1† for as many as 16 ILs lie in the above
range, in particular IL 419 (1,3-didecyl-2-methylimidazolium 1,1,1-
triuoro-N-[(triuoromethyl)sulfonyl] methanesulfonamide)
exhibits a predicted Cp value comparable with that of IL 517. It is
RSC Adv., 2016, 6, 36085–36089 | 36087
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worth mentioning that this set includes ILs with different
aromatic (imidazolium, pyridinium) and non-aromatic (pyrroli-
dinium) cationic scaffolds, side chains containing oxygen atoms,
chlorides, sulfonates and sulfates, uorine organic anions etc.
(Scheme 2). Table S1† provides in silico opportunities for the
selection of a limited number of ILs with comparable heat
capacity efficiency. ILs reported in Scheme 2 can be considered as
alternative candidates for experimental Cp measurements when
a high Cp value is desired.

Those exhibiting in Table S1† DModX values lower than 1.60
should be preferred to those (indicated in red in Scheme 2) with
a lower prediction reliability.
Experimental
Computational methods

The partial least squares projections to latent structures (PLS)29

chemometric tool, available in the SIMCA Soware package
(SIMCA 13.0.3),31 was adopted. Details on the PLS procedure are
reported in ESI.†
Test set ILs structures

The structures of test set ILs used for experimental determina-
tions of heat capacities are reported in Scheme 1. Some of them
were purchased (ILs 183, 184 and 336), the others synthesized in
our laboratory (ILs 196, 331, 512, 513). Experimental details are
reported in ESI.†
Heat capacity measurements

The heat capacities were measured over the temperature
ranging from 303 to 353 K at atmospheric pressure condition by
means of DSC analysis. Water was used as standard to check the
heat capacity measurements according to the method reported
by Chiu et al.33 Experimental details are reported as ESI.†
Conclusions

A PLS model was able to correlate principal properties of
cationic and anionic counterparts of ILs27 with heat capacity
and to predict Cp values for a large number of ILs. In silico
predictions may lead to the selection of a limited number of
structurally different ILs for industrial experimental design
requiring high Cp values, providing the possibility to select an
optimal IL according not only to an efficiency criterion but also
to synthetic affordability, environmental sustainability and
economic considerations. The present procedure, using readily
available descriptors for above 8000 ILs and adopting an
accessible statistical procedure such as PLS, could be easily
extended to the development of QSPR models for the prediction
of other ILs physico-chemical properties providing new tools to
the wide scientic community interested in the design of ILs for
specic industrial applications.
36088 | RSC Adv., 2016, 6, 36085–36089
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