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Abstract

In this work, a grain boundary formulation for intergranular and transgranular micro-cracking in

three-dimensional polycrystalline aggregates is presented. The formulation is based on the dis-

placement and stress boundary integral equations of solid mechanics and it has the advantage of

expressing the polycrystalline problem in terms of grain boundary variables only. The individual

grains within the polycrystalline morphology are modelled as generally anisotropic linear elastic

domains with random spatial orientation. Transgranular micro-cracking is assumed to occur along

specific cleavage planes, whose orientation in space within the grains depend upon the crystallo-

graphic lattice. Both intergranular and transgranular micro-cracking are modelled using suitably

defined cohesive laws, whose parameters characterise the behaviour of the two mechanisms. The

algorithm developed to track the inter/transgranular micro-cracking history is presented and dis-

cussed. Several numerical tests involving pseudo-3D and fully 3D morphologies are performed and

analysed. The presented numerical results show that the developed formulation is capable of track-

ing the initiation and evolution of both intergranular and transgranular cracking as well as their

competition, thus providing a useful tool for the study of damage micro-mechanics.
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1. Introduction

In the last few decades, thanks to remarkable advancements in microscopy technologies and high

performance computing (HPC), much interest and research have been focused on the study of ma-

terials at microscopic scales. Such interest is motivated by various considerations: a) macroscopic

properties of inherently heterogenous materials naturally depend on the features and interactions5

of elementary building blocks, or constituents; b) constitutive phenomenological models may some-

times be overly simplistic or inadequate to represent complex material behaviours, especially when

phenomena such as damage nucleation and evolution or phase transformations are present in the

considered loading conditions; c) the knowledge and control of microscopic features may help man-

ufacture materials with enhanced properties.10

Such motivations are expressed in the faceted body of investigations addressed at unveiling the

so called structure–property link for different classes of materials. In such context, computational

materials modelling has been assuming increasing importance and the development of more powerful

and accessible computational tools and facilities has allowed the inclusion, in various formulations, of

details of ever increasing complexity with a clear tendency towards the development of as realistic as15

possible virtual models. As a consequence, multi-scale materials modelling, which aims at bridging

different material scales, is today an established scientific paradigm [1].

Polycrystalline materials, which include the majority of metals and ceramics, with several engi-

neering applications, may exemplify the trends sketched above. Polycrystalline materials have been

intensely investigated and an increasing level of realism in their virtual modelling has materialised20

in the transition from two-dimensional (2D) to three-dimensional (3D) models [2], in the represen-

tation of more realistic grain morphologies [3], made possible by the use of 3D x-ray diffraction

micro-tomography [4], in the inclusion of more sophisticated constitutive behaviour for the grains

[5, 6] and more sophisticated damage and failure mechanisms [7].

The present paper focuses on modelling of intergranular and transgranular micro-cracking, which25

represent two of the main failure mechanisms in brittle polycrystalline materials. While intergran-

ular cracking denotes the failure of interfaces between contiguous grains, transgranular cracking

refers to the failure of individual bulk grains along specific crystallographic planes. The occurrence

of the two cracking modes is affected by several factors such as crystallographic lattice, temper-

ature and the presence of an aggressive environment [8, 9]. The crystallographic lattice plays a30

key role in determining a grain’s susceptibility to specific deformation and failure mechanisms. As
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an example, body-centered cubic (BCC) and hexagonal close packed (HCP) crystals usually show

ductile-to-brittle transition at decreasing temperatures [10, 11, 12], with inter- and transgranular

cracking resulting from the limited number of slip systems in these crystal lattices at low temper-

atures. On the other hand, although face-centered cubic (FCC) lattices generally favour ductile35

deformation over a wide range of temperatures as consequence of the large number of slip sys-

tems, the action of aggressive environments is well-known to induce grain boundary embrittlement

and therefore intergranular and transgranular fracture in naturally ductile materials [13, 14, 15]. At

room temperature, HPC ceramics, such as 6H silicon carbide (SiC), exhibit inter- and transgranular

brittle fracture [16].40

Several experimental and numerical studies have been devoted to understanding the complex

interaction between inter- and transgranular cracking and their relationship with the morphological,

physical and chemical properties of the polycrystalline microstructure. Due to its versatility, sev-

eral computational studies have been performed within the framework of the finite element method

(FEM), employing cohesive zone modelling to capture the damage and fracture propagation in45

polycrystalline materials exhibiting different constitutive behaviours and subjected to different en-

vironmental and loading conditions [17, 18, 19, 20, 21].

While in several studies cohesive elements have been extensively used around all the finite

elements, aiming at capturing as general as possible crack paths at the expenses of computational

effectiveness, Kraft and Molinari [22] developed a 2D FE model in which cohesive interfaces are50

selectively introduced on-the-fly along specific crystallographic planes within the crystals, based on

a suitable threshold condition on crystallographically resolved stresses, with suitable morphology

remeshing.

Transgranular polycrystalline fracture has also been studied using models based on different

approaches such as the extended finite element method [23, 24, 25], which allows for general crack55

propagation with limited remeshing only, peridynamics [26] or non-local lattice particle method [27].

Recently, Geraci and Aliabadi [28] presented an integral formulation based on the dual boundary

element method and the cohesive zone approach for inter- and transgranular cracking in 2D poly-

crystalline aggregates.

While several 2D models are present in the literature, few 3D models accounting for the interplay60

or competition between inter- and transgranular polycrystalline cracking mechanisms have been de-

veloped, due to increased geometrical and mechanical complexity and much higher computational
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requirements. However, the combined effect of inter- and transgranular cracking is an inherently

three-dimensional phenomenon, due to the crucial role played by the random crystallographic orien-

tation and therefore the potential cleavage planes within polycrystalline aggregates. Furthermore,65

as pointed out by some researchers [10, 11, 12], 2D model may not be able to fully capture the role

of grain boundary fracture in accommodating transgranular crack propagation through misaligned

adjacent grains.

Two- and three-dimensional polycrystalline morphologies with inter and transgranular cracking

and different constitutive behaviours have been recently studied by some authors using the phase70

field method [29, 30, 31, 32, 33, 34], which offers the advantage of modelling, with relative versatil-

ity, the evolution of interfaces representing phase transformations fronts and/or cracks within the

aggregate. Three-dimensional modelling of polycrystalline cleavage by cellular automata has also

been proposed [35, 36].

In this work, the boundary element method is combined with a cohesive zone approach for the75

study of three-dimensional polycrystalline morphologies undergoing both inter- and trans-granular

cracking. To the best of the authors’ knowledge, this is the first time a boundary element for-

mulation has been employed to simultaneously address inter and trans-granular cracking within

three-dimensional anisotropic crystal aggregates. The boundary element method has been success-

fully used to study intergranular failure of 2D [37] and 3D [38, 39, 40, 41] polycrystalline materials80

at the grain scale; the above grain-scale intergranular models have also been successfully employed

in a multi-scale framework [42, 43] for capturing material degradation initiation and evolution at

an engineering component level. A 2D model for inter- and transgranular micro-cracking has been

recently presented by Geraci and Aliabadi [28]. The boundary element approach allows expressing

the polycrystalline problem in terms of grain boundary variables only, thus facilitating the em-85

ployment of cohesive laws. Here, a new numerical scheme is developed to capture the inter- and

transgranular crack propagation in fully 3D polycrystalline materials. The paper is organised as

follows: Section 2 presents, after briefly recalling the polycrystalline governing boundary integral

equations, the cohesive zone approach employed in this work to model the competition between the

inter- and transgranular cracking mechanisms; Section 3 discusses the numerical discretisation of90

the boundary integral equations and the solution of the system of equations of the entire aggregate.

Particular emphasis is given to the proposed algorithm to track the nucleation of transgranular

micro-cracks within the considered polycrystalline morphologies; Section 4 presents the numerical
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results of inter- and transgranular micro-cracking in pseudo 3D and fully 3D polycrystalline mor-

phologies; Section 5 discusses some directions for further research while some conclusions are drawn95

in Section 6.

2. Grain boundary formulation for polycrystalline microstructures

The features of the grain boundary formulation for intergranular and transgranular micro-

cracking in 3D polycrystalline materials are presented in this section.

2.1. Microstructure generation100

A polycrystalline microstructure is an aggregate of randomly oriented crystals characterised by

their shape, orientation and generally anisotropic properties. The artificial microstructures analysed

in this study are represented as 3D Voronoi tessellations, which have been extensively used in the

literature as they may satisfactorily reproduce the main statistical features of real polycrystalline

aggregates [44, 45, 46, 47, 48].105

Voronoi tessellations can be generated using open source software packages such as Voro++

[49] (http://math.lbl.gov/voro++/) or Neper [48] (http://neper.sourceforge.net/); in the

present work, Voro++ has been employed both to generate the artificial microstructure and to handle

the introduction of transgranular interfaces. As an example, Fig. 1(a) shows a 100-grain hardcore

Voronoi tessellation within a cubic box.110

A tessellation is a collection of Ng grains. The volume occupied by the generic grain g, with

g = 1, . . . , Ng, is denoted by V g. Since Voronoi grains are convex polyhedrons bounded by flat

convex polygonal faces, the generic grain boundary is represented as Sg =
⋃Ng

f

f=1 F
gf , being F gf

the generic f -th face and Ng
f the number of faces of the grain g. Two neighbouring grains share

an interface, or grain boundary, which is characterised by its own mechanical properties, generally115

different from those of the two adjacent grains.

Within the polycrystalline microstructure, each grain is characterised by the random orientation

of its lattice, which determines its anisotropic mechanical behaviour and the inherently anisotropic

features of the cleavage failure mechanisms. In this study, a generic grain g is thus considered as

an anisotropic elastic domain, whose constitutive behaviour is expressed by σ gij = c gijklε
g
kl, where120

σ gij and ε gij are components of the second-order stress and strain tensors, respectively, and c gijkl are
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(a) (b)

Figure 1: (a) 100-grain polycrystalline aggregate generated by 100 seeds; (b) Representation of an individual grain

highlighting one of its faces in dark green (see electronic version of the manuscript for color interpretation) with the

attached local reference system x̃1-x̃2-x̃3.

components of the fourth-order elasticity tensor, i, j, k, l = 1, 2, 3 and repeated subscripts imply

summation.

By virtue of the integral representation, Section (2.2), the response of each grain can be written

in terms of displacements ugi and tractions tgi on its boundary Sg.125

2.2. Boundary integral equations

The displacement boundary integral equations (BIE) governing the behaviour of a generic grain

g within the aggregate are

c̃ gij(y)ũgj (y) +−
∫
Sg

T̃ g
ij (x,y)ũgj (x)dS(x) =

∫
Sg

Ũ g
ij (x,y)t̃ gj (x)dS(x), (1)

where y and x ∈ Sg represent the collocation and integration points, respectively, and c̃ gij(y)ũgj (y)

denote the free terms stemming from the boundary limiting process [50, 51].

At any internal point y ∈ V g of the grain g, the stress tensor σ gij(y) can be computed by suitably

taking the derivatives of Eq.(1) with respect to the components of y and using the constitutive

relations σ gij = c gijklε
g
kl. The following stress integral equations are obtained:

σ gij(y) +

∫
Sg

T̃ g
ijk(x,y)ũgk(x)dS(x) =

∫
Sg

Ũ g
ijk(x,y)t̃ gk (x)dS(x). (2)
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(a) (b)

Figure 2: (a) Detail of two contiguous grains of the tessellation of Fig. 1(a) showing their shared interface, which is

highlighted with dark green (see electronic version of the manuscript for color interpretation); (b) Potential cleavage

plane (in dark green) passing through the point y. The local reference system of the cleavage plane is denoted by

the unit normal m and by two mutually orthogonal unit vectors p and q.

In Eqs.(1–2), the tilde ( ·̃ ) represents components expressed in a surface local reference system.

In particular, ũgi and t̃ gi represent the boundary displacements and tractions, respectively, expressed

in a grain-face-attached local reference system; as an example, the local reference system attached

to the f -th face of one grain of the tessellation of Fig. 1(a) is showed in Fig. 1(b), where the

plane of the interface is indicated by x̃1-x̃2 and the normal direction is indicated by x̃3. Denoting

with Rgfij (x) the transformation matrix that links the global reference system to the local reference

system of the f -th face of the generic grain g at the point x, the local displacements ũgi (x) and

tractions t̃ gi (x) are obtained as

ũgi (x) = Rgfij (x)ugj (x), t̃ gi (x) = Rgfij (x)t gj (x). (3)

The kernels Ũ g
ij (x,y), T̃ g

ij (x,y), Ũ g
ijk(x,y) and T̃ g

ijk(x,y) can then be written as

Ũ g
ij (x,y) = U g

ik(x,y)Rgfjk (x), T̃ g
ij (x,y) = T g

ik(x,y)Rgfjk (x),

Ũ g
ijk(x,y) = U g

ijl(x,y)Rgfkl (x), T̃ g
ijk(x,y) = T g

ijl(x,y)Rgfkl (x),
(4)

where U g
ij (x,y), T g

ij (x,y), U g
ijk(x,y) and T g

ijk(x,y) are obtained from the Green’s functions of the

general anisotropic elastic problem and given in Appendix A for the sake of completeness. Similarly,130
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the coefficients c̃ gij(y) of the free terms are given by c̃ gij(y) = c gik(y)Rgfjk (y) where c gij(y) = 1
2δij for

all points y ∈ Sg on a smooth surface neighborhood.

2.3. Intergranular and transgranular cracking modelling

Although intergranular and transgranular cracking are two physically different processes, in the

present framework they are modelled employing analogous cohesive laws with different parameters,135

to account for the different energetic features of the two mechanisms. Cohesive zone modelling

[52, 53, 54, 55] has been widely used in finite element frameworks [56, 57, 58, 3] as well as boundary

element studies [37, 39, 40] to model fracture problems.

2.3.1. Intergranular and transgranular failure modes

Intergranular failures occur along the interfaces between contiguous grains, which are generated140

with the polycrystalline morphology and identify natural sites of crack initiation. Such interfaces

are retained during the loading history, even if no intergranular cracking initiates and in general

their properties may vary within the aggregate, i.e. the interface between two generic grains a and

b may differ from the interface between any other couple of grains c and d.

Transgranular failures, on the contrary, occur within the grains, over planes whose position and145

orientation in space are not a priori known. More specifically, different potential cleavage planes

are uniquely associated with the grain crystallographic lattice; however, a cleavage plane becomes

active, thus evolving into a transgranular crack surface, only if the corresponding resolved tractions

fulfil a defined threshold condition, as given by Eq.(7). In this case, a new flat cracking surface is

introduced within the grain, thus forming a new interface whose further evolution is governed by150

transgranular cohesive parameters. In this work, it is assumed that, once started, transgranular

failure evolves over a surface whose envelope lies over a plane; this assumption is justified by

experimental observations on several classes of metallic [59, 60, 12, 61] and ceramic materials [62].

It is worth noting that, once the damaging process is initiated, intergranular and transgranular

cracks are analogously treated from the algorithmic/computational point of view, differing only for155

the values of the cohesive parameters. For the sake of clarity, in this section, the grain boundary

quantities referring to an interface I gh between two different contiguous grains g and h are denoted

by the superscript gh. On the other hand, the quantities relating to a cleavage plane within the

grain g are denoted by the superscript g only, since they refer to the properties of the bulk grain g.

As an example, Fig. 2(a) shows a grain boundary interface between two adjacent grains, whereas160
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Fig. 2(b) shows a potential transgranular interface identified by a specific crystallographic plane

passing through the point y within a bulk grain.

2.3.2. Crack initiation criteria

In the intergranular case, the damage initiation is naturally expressed in terms of intergranular

tractions. Damage is initiated at the interface I gh when

τghe =

√〈
τghn
〉2

+

(
βgh

αgh
τghs

)2

> T ghmax, (5)

where τghe is an effective intergranular traction [37, 39], τghs =

√
(t̃gh1 )2 + (t̃gh2 )2 is the traction

along the sliding direction, τn = t̃gh3 is the traction along the normal direction and T ghmax is the165

intergranular cohesive strength, which may assume different values over different interfaces. αgh

and βgh are cohesive parameters weighting the relative influence of mode I and II cracking and are

also used in the cohesive laws given in Eqs.(9-10).

In the transgranular case, a similar initiation threshold is defined with reference to the potential

cleavage planes passing through the control points scattered within the grain volume. In particular,

for a generic control point y ∈ V g, the stress tensor σgij (y) is computed by using the stress boundary

integral equation, Eq.(2), and it is projected onto the potential cleavage planes to define the normal

τgn and tangential τgs =
√

(τgp )2 + (τgq )2 tractions, with

τgn = mg
i σ

g
ijm

g
j , τgp = pgi σ

g
ijm

g
j , τgq = qgi σ

g
ijm

g
j , (6)

where mg
i is the unit normal associated with the potential cleavage plane and pgi and qgi are two

mutually orthogonal directions lying on the plane itself, as shown in Fig. 2(b); These resolved

tractions then enter the definition of the effective traction τge used in the threshold criterion

τge =

√
〈τgn〉2 +

(
βg

αg
τgs

)2

> T gmax, (7)

where αg and βg are the values of the cohesive law coefficients characterising the cohesive behaviour

of the transgranular cracks and T gmax is the cleavage plane strength, which may assume different170

values for cleavage with different lattice orientations. At a specific load increment, the values of the

effective stress τge are computed for each potential cleavage plane at each control point and Eq.(7)

is assessed; in this way, the most loaded cleavage system is identified and a transgranular cohesive

interface is introduced into the grain as a flat surface extending up to the boundaries of the grain.
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2.3.3. Cohesive traction-separation laws175

When damage is initiated, a strong discontinuity is introduced in the model and extrinsic co-

hesive laws [54, 55] of the form

t̃ xi = Cij(d
∗) δũ xj (i = 1, 2, 3) (8)

are used to link the boundary traction components t̃ xi with the boundary displacements jump δũ xi

across the discontinuity where, consistently with the notation introduced in Eqs.(1-2) and Section

2.3.1, the tilde ( ·̃ ) denotes quantities expressed in the local reference systems and x = gh or x = g,

depending on whether an intergranular or transgranular discontinuities are being considered.

The constitutive constants Cij(d
∗) are given as a function of an irreversible damage parameter

d∗ = maxHd
{d} ∈ [0, 1] where Hd is the load history and d is a dimensionless effective opening

displacement defined as

d =

√〈
δũn
δucrn

〉2

+

(
β
δũs
δucrs

)2

, (9)

where δũs =
√
δũ21 + δũ22 and δũn = δũ3 are the sliding and normal displacement jumps, re-180

spectively, δucrs and δucrn are the corresponding critical values at which pure interface opening or

pure interface sliding failure occurs, β is a coefficient weighing the normal and sliding modes and

〈·〉 = max(0, ·) are Macauley brackets.

Assuming no coupling between normal opening and relative sliding and isotropic behaviour

with respect to sliding over the discontinuity surface, the constants Cij(d
∗) can be written as

Cij(d
∗) = diag{Cs(d∗), Cs(d∗), Cn(d∗)}, where [39]

Cs(d
∗) = α

Tmax

δucrs

1− d∗

d∗
, Cn(d∗) =

Tmax

δucrn

1− d∗

d∗
, (10)

where α is a constant chosen so as to ensure a desired ratio between mode II and mode I fracture

energies GII/GI . The cohesive law is fully defined by the cohesive strength Tmax, the fracture185

energy G and the relative contribution between opening and sliding failure modes. It is worth

noting that as long as the interface remains pristine with d∗ = 0, Eqs.(8) simply enforce zero

displacement jumps, δũxi = 0, and traction equilibrium. The interested reader is referred to Refs.

[39, 40] for further details about the considered traction-separation law in the context of the grain

boundary formulation for polycrystalline mechanics.190

It is noted here that both displacement jumps and tractions directly enter the formulation
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as primary variables whose values are determined coupling the displacements boundary integral

equations (1), written for each grain of the aggregate, with the interface equations.

2.3.4. Inter/transgranular mode competition

The competition between the inter- and transgranular modes of failure in polycrystalline ma-195

terials is modelled by considering suitable sets of parameters entering the corresponding cohesive

laws. Here it is assumed that the coefficients α and β and the ratio GII/GI do not differ between

the two mechanisms, i.e. αgh = αg = α, βgh = βg = β and GghII /G
gh
I = GgII/G

g
I ∀g = 1, . . . , Ng and

∀gh = 1, . . . , Ni, being Ng the number of grains and Ni the number of grain boundary interfaces.

However, different ratios between the mode I fracture energy GghI of the grain boundaries and the200

mode I fracture energy GgI of the cleavage planes are considered.

More specifically, considering that the work of separation can be written using the relation

GI = Tmaxδu
cr
n /2, it is observed that the ratio γG ≡ GgI/G

gh
I between the two aforementioned

fracture energies can be modified by changing Tmax and/or δucrn . In this work, to scale the fracture

energy GgI of the factor γG, i.e. GgI = γGG
gh
I , it is assumed that both the interface strength Tmax205

and the critical displacement δucrn in mode I are scaled by the same amount, i.e. T gmax =
√
γG ·T ghmax

and δucr,gn =
√
γG ·δucr,ghn . In the same way, it is possible to verify that the the critical displacement

δucrs in mode II is scaled by
√
γG, i.e. δucr,gs =

√
γG · δucr,ghs .

This is just a particular choice for weighting the two failure mechanisms in order to perform some

systematic parametric analysis, but other choices are possible; indeed, the model allows selecting210

completely unrelated cohesive laws for modelling the two mechanisms. The effect of such a selection

of the parameter γG on the cohesive law is represented in Fig. 3. Figure 3(a) represents the tangential

component τs as a function of (βδus/δu
cr
s ) and (δun/δu

cr
n ) whereas Fig. 3(b) represents the normal

component τn as a function of (βδus/δu
cr
s ) and (δun/δu

cr
n ) obtained using Eqs.(8) and (10). In the

figures, the red surfaces represent a reference cohesive law, e.g. that associated with the behaviour215

of the grain boundaries, whereas the blue surfaces represent a scaled cohesive law with γG < 1.

3. Numerical discretisation

Polycrystalline inter- and transgranular micro-cracking is numerically studied discretising Eqs.(1-

2). The boundary Sg of the generic grain g is subdivided into non-overlapping elements according

to the meshing strategy developed in Ref. [40], where triangular and quadrangular, continuous220
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(a) (b)

Figure 3: Schematic representation of the (a) tangential and (b) normal components of the two cohesive laws used

to model inter- and transgranular cracking. The red surfaces represent a reference cohesive law, whereas the blue

surfaces represent a scaled cohesive law with γG < 1 (the reader is referred to the electronic version of the paper for

color interpretation).

(a) (b)

Figure 4: (a) Mixed triangular/quadrangular surface mesh of the polycrystalline aggregate shown in Fig. 1(a). (b)

Detail of the surface mesh of the grains shown in Fig. 2. The small dots in the figures denote the position of the

collocation nodes.

12



(a) (b) (c)

Figure 5: Distribution of the control points (denoted by black dots) used to compute the stress tensor σij inside a

generic grain: (a) in this case, the centroid of the grain is chosen as control point; (b,c) distribution of the control

points for two different values of the volume mesh size vms.

and semi-discontinuous elements were used to reduce the computational cost of the polycrystalline

problems. The mesh size sms of the surface mesh is chosen so that the average element length le

is much smaller than the cohesive zone size Lcz, which can be estimated in terms of the material

fracture toughness and the interface strength [63, 57, 58]. Figure 4(a) shows the surface mesh of

the polycrystalline morphology in Fig. 1(a) and Fig. 4(b) shows the surface mesh of the two grains225

of Fig. 1. In the figures, the small dots denote the collocation points.

The discrete algebraic version of the displacement and stress boundary integral equations are

built using the assembly techniques of the standard boundary element method [51]. The boundary

displacements ui and tractions ti are approximated over each grain boundary mesh element using

linear triangular and quadrangular shape functions in conjunction with element’s nodal values. The

displacement BIEs (1) are then written for every collocation point y of the boundary mesh of each

grain and are numerically integrated leading to a linear system of the form

HgUg = GgT g, (11)

where the matrices Hg and Gg are obtained by integrating the product of the kernels T g
ij and

U g
ij , respectively, by the shape functions and the Jacobian over the surface mesh of the grain g,

and the vectors Ug and T g collect the nodal values of the boundary displacements and tractions,

respectively.230

Unlike the displacement BIE, which are evaluated on the boundary of the grains, the stress

boundary integral equations (2) are evaluated at selected internal control points. In the simplest
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case, the control point can be chosen as coincident with the centroid of the grain as shown in

Fig. 5(a). On the other hand, the control points can also be obtained by generating a volume

tetrahedral mesh of each grain and then selecting the the centroids of the tetrahedrons. The size of235

the mesh is controlled by an average volume mesh size vms, which can be adjusted independently

of the average surface mesh size. Figs. 5(b) and 5(c) show two different sets of control points for

two different values of the volume mesh size vms. In the figures, the control points are indicated by

the black dots.

Given the position of the volume control points, the stress tensor inside each grain is expressed

as a function of the boundary displacements and tractions by means of the following discretised

version of Eq.(2):

Σg = Gg
σT

g −Hg
σU

g, (12)

where the matrices Hg
σ and Gg

σ are obtained by integrating the product of the shape functions, the240

Jacobians and the kernels T g
ijk and U g

ijk, respectively, over the surface mesh of the grain g, and the

vectors Σg collects the components of the stress tensor σ gij at the volume control points. It is worth

noting that, if ngv is the number of control points for the grain g and the stress tensor is represented

in Voigt notation, the matrices Hg
σ and Gg

σ have 6ngc rows and 3ngs columns, being ngs the number

of collocation points of the grain g.245

3.1. Boundary conditions

Eq.(11) are reordered according to the unknown and known values of grain boundary displace-

ments and tractions [38, 39, 40]. The known values are given by the boundary conditions that are

enforced over the external faces of the aggregate and are usually expressed as a function of a load

factor λ governing the loading history. Eq.(11) can then be rewritten as

AgXg = CgY g(λ), (13)

where Xg and Y g collect the unknown and known values, respectively, of the boundary displace-

ments and tractions of the grain g and the matrices Ag and Cg collect suitably reordered columns

from the matrices Hg and Gg.

3.2. Polycrystalline system assembly250

The overall system of the polycrystalline aggregate is obtained by writing Eq.(13) for each grain

of the aggregate and enforcing the interface equations at the grain boundaries. The resulting system
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can be written as [40]

M(X, λ,H ) =

 AX −B(λ)

I(X,H )

 = 0, (14)

where

A =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 . . . ANg

 , B =



C1Y 1

C2Y 2

...

CNgY Ng


, X =



X1

X2

...

XNg


(15)

and I(X,H ) implements the interface equations, including continuity, cohesive, frictional con-

tact intergranular equations [39], which generally involve the grain boundaries displacements and

tractions and depend on the loading history H .

3.3. Polycrystalline system solution

The system of equations given in (14) must be solved at each load step of the loading history.255

However, unlike the previous studies [39, 40] on the intergranular fracture of polycrystalline mate-

rials, at each load step the occurrence of transgranular cracking is considered. The algorithm for

inter- and transgranular cracking in polycrystalline materials is detailed in the following section.

3.3.1. Representation of the polycrystalline morphology

The polycrystalline morphology is computed using the Voro++ software library. Voro++ stores260

each Voronoi cell as an irregular convex polyhedron, each with a unique numerical ID, and con-

taining information about vertex positions and edges. In addition, each face stores the ID of the

neighbouring grain that it touches.

When transgranular cracking occurs it is necessary to split a grain into two. As an example,

Fig. 6(a) shows a grain and its boundary mesh, and Fig. 6(b) shows a cleavage plane through265

the grain. The Voro++ library has a standard function that can recompute a polyhedron after

intersection with a half-space. To split the grain, it is copied into two, and half-space intersections

with opposite signs are applied to the two copies. After recomputing boundary meshes for the new

grain shapes, this results in Fig. 6(c).

In addition, for each grain face that was split in two, the corresponding face of the neighbouring270

grain is split into two faces by introducing an extra edge across it. The neighbour ID information

for the two new faces is updated to reference the IDs of the two new split grains. The Voro++ library
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was extended to perform this operation. The extension also works when a grain is successively split

multiple times, which requires multiple new edges to be introduced in the neighbouring grain faces.

3.3.2. Algorithm for inter- and transgranular cracking275

Figure 7 schematises the algorithm used in the present work to address inter- and transgranular

cracking in polycrystalline materials. At the beginning of the analysis, the load factor λ is initialised

to 0, the load step counter n is initialised to 1 and the remesh boolean variable is initialised to

false. The polycrystalline morphology is then generated and the properties of the constituent

grains and grain boundaries are loaded. The algorithm then enters the incremental loop that is280

governed by the counter n and can be described by the following steps:

1. At the beginning of the load step n, the load factor is incremented with the increment ∆λn

chosen based on the number of iterations needed to reach convergence at the previous load

step as in [39]. Moreover, the increment ∆λn is always bounded by a lower increment ∆λmin,

which is chosen to avoid stagnation of the solution and on the basis of the final value λf of285

the load factor.

2. If the analysis has just started, i.e. n = 1, or the remesh is true, the aggregate is discretised,

the boundary element matrices appearing in Eqs.(13) and (12) are computed and stored, the

overall element system given in (14 is then assembled and the remesh variable is set to false.

It is worth noting that if the algorithm reaches this step after trans-granular cracking has290

occurred, the previously computed boundary element matrices are discarded and the last

computed solution is mapped onto the new mesh.

3. At the n-th load step, the system of equation M(Xn, λn,H ) = 0, see Eq.(14), is solved [40].

The equilibrium solution Xn is obtained by employing the Newton–Raphson algorithm. It is

worth noting the system of equations given in (14) consists of a set of linear equations and a295

set of nonlinear equations represented by AX −B(λ) = 0 and I(X,H ) = 0, respectively.

As a consequence, the part of the Jacobian matrix of the system corresponding to the linear

set of equations is computed at the beginning of and kept fixed during the Newton–Raphson

search for the solution. On the other hand, the part of the Jacobian matrix of the system

corresponding to the nonlinear set of equations, i.e. the interface equations, are updated at300

each iteration of the Newton–Raphson algorithm on the basis of the interface status. In fact,
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during the Newton–Raphson search for the solution, the consistency of the grains interfaces

and their status, i.e. continuity, cohesive and/or frictional contact, is checked according to the

procedure described in Ref. [39]

Furthermore, since the Jacobian of the system is highly sparse, the library PARDISO [64,305

65, 66] (http://www.pardiso-project.org) combining both direct and iterative solution

methods is used as a solver. In particular, upon noting that between successive loading steps

and/or Newton–Raphson iterations the changes in the Jacobian matrix might be small, the

LU factorization at one step might be used for preconditioning the iterative solution of the

subsequent system of equations. In case that the iteration convergence is not reached, the310

solver automatically switches to the direct numerical factorization.

4. The values of the stress tensor σ gij at the control points of each grain of the aggregate is

computed by means of Eq.(12) and the possible occurrence of transgranular cracking is then

checked by comparing the local resolved cleavage stress τge , computed using Eq.(7), with the

local threshold value T gmax.315

5. If the cleavage threshold is overcome, a new cohesive interface must be introduced following

the procedure described in Section 3.3.1. It is worth noting that the transgranular threshold

condition may be achieved at multiple points within the morphology. However, since such a

solution represents a temporary solution that must be recomputed, only one transgranular

interface is introduced. Such interface is that corresponding to the highest value of the320

difference between the local resolved cleavage stress τge and the threshold value T gmax. The

cohesive properties are those corresponding to transgranular cracks and are in general different

from the cohesive properties at the grain boundaries. The cleavage of the grain and the

recomputation of the boundary meshes are performed as in Section 3.3.1. At this point, the

morphology has been modified and the boolean variable remesh is set to true. The flow goes325

back to step 2 in order to find the equilibrium solution of the new aggregate for the same load

factor λn.

It is worth noting that the algorithm keeps adding transgranular interfaces as long as the

local value of the local resolved cleavage stress τge is above T gmax. The next loading step is

considered only when at all control points of the morphology τge is below T gmax.330
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(a) (b) (c)

Figure 6: (a) Boundary mesh of a grain at the point of undergoing cleavage cracking; (b) cleavage plane (in darker

green) that needs to be introduced into the grain; (c) mesh of the two child grains originated from the grain in figure

(a).

6. If no transgranular cracks are introduced, the current load factor λn is compared to the final

load factor λf and either the next load step is considered or the analysis is terminated.
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4. Computational tests

In this study, polycrystalline SiC aggregates with hexagonal crystal lattice are considered. For

hexagonal 6H SiC polytypes, the preferred cleavage plane is the basal plane [31] identified by335

(0001) Miller indices. The elastic properties of the crystals and the cohesive properties of the grain

boundaries and the cleavage planes are listed in Table 1. In the table, the fracture toughness ratio

γG is varied during the analyses to weigh the effect of inter- and transgranular failure mechanisms

in polycrystalline SiC aggregates.

In this section, two sets of tests are discussed. First, the consistency of the proposed numerical340

scheme is assessed by studying the inter- and transgranular response of pseudo-3D morphologies

with columnar grains. Then, the scheme is employed to investigate the inter- and transgranular

response of fully 3D morphologies under different loading conditions and different values of the

fracture toughness ratio γG.

4.1. Pseudo-3D (columnar) morphologies345

Figure 8 shows a pseudo-3D 50-grain morphology with ASTM grain size G = 12, subject to

tensile strain and in presence of an initial crack originating on the left wall of the aggregate. A

uniform displacement u3 = λ/2 and u3 = −λ/2 is prescribed on the top and bottom faces whereas

on the lateral surfaces the boundary conditions are set to uini = 0 being ni the unit normal of the

surfaces. No shear traction act on the external walls. For this set of tests, the morphology shown350

in Fig. 8 has been meshed using three different mesh sizes sms shown in Fig. 9. Following [38],

the surface mesh size sms is controlled by means of a density mesh parameter dm defined in terms

of the average length of the grain edges. Figure 9 also shows the position of the volume control

points computed as the centroids of a tetrahedral volume mesh with a volume mesh size equal to

vms = 2 µm.355

In this set of pseudo-3D tests, the fracture toughness ratio γG is set to γG = 1/4. Figure 10

shows the curves of macroscopic stress Σ33 versus load factor λ for the different mesh sizes. The

figures show that the macroscopic curves satisfactorily overlap and the difference in the maximum

computed stress of the two fine meshes is around 2%. Moreover, the three different meshes predict

the same micro-crack pattern, which is shown in Fig. 11 for different values of the load factor.360

More specifically, Fig. 11(a) shows the occurrence of the first transgranular crack at the tip of

the pre-existing crack; Fig. 11(b) and 11(c) show the crack pattern at two consecutive load steps;
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λ0 ← 0, n← 1, remesh← false

Initial morphology:

• load polycrystalline morphology;

• load grains and grain boundaries properties;

Update load factor: λn ← λn−1 + ∆λn

(n = 1) ∨ (remesh)

• compute the mesh;

• compute the boundary element matrices;

• enforce boundary and interface conditions;

• assemble the overall system;

• remesh← false;

Solve system: M(Xn, λn,H ) = 0

Compute internal stresses: Eqs.(12) and (7)

Transgranular cracks?

• perform grains cut;

• remesh← true;

λn ≥ λfn← n+ 1

End

yes

no

yes

no

no
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Figure 7: Flow chart of the algorithm for inter- and transgranular cracking
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Table 1: Elastic and cohesive properties of SiC polycrystalline aggregates.

Domain Property Component Value

Bulk crystals

Elastic constants [109 N/m2]

c1111, c2222 502

c3333 565

c1122 95

c1133, c2233 96

c2323, c1313 169

c1212 (c1111 − c1122)/2

Grain boundaries Interface strength [MPa] T ghmax 500

Cohesive law constants [-]
αgh 1

βgh
√

2

Critical displacements jumps [µm]
δucr,ghn 7.8089 · 10−2

δucr,ghs 1.5618 · 10−1

Cleavage planes Interface strength [MPa] T gmax
√
γG · T ghmax

Cohesive law constants [-]
αg αgh

βg βgh

Critical displacements jumps [µm]
δucr,gn

√
γG · δucr,ghn

δucr,gs
√
γG · δucr,ghs

Fig. 11(b) shows the damage distribution at the maximum value of the computed macroscopic stress

Σ33 whereas, as softening initiates, it is interesting to note that the next equilibrium condition is

found after the transgranular crack propagates through three consecutive grains; Fig. 11(d) shows365

how the crack switches from transgranular to intergranular mode due to the local orientation of the

grains, see Fig. 8; eventually, Fig. 11(e) shows the fully developed crack path.

The fully developed crack path is also shown in Fig. 12(a), where the grains are coloured

according to their susceptibility to transgranular cracking. Such transgranular susceptibility index

is computed using the relation

TG(θ) =

∣∣∣∣θ − π/2π/2

∣∣∣∣ , (16)

where θ−π/2 represents the difference between the local grain orientation θ and the loading direction
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Figure 8: 50-grain pseudo-3D (columnar) morphology with ASTM grain size G = 12 subject to prescribed values of

vertical displacements u3 on top and bottom faces. The colormap indicates the orientation of the grains with respect

to the loading x2 axis. The initial crack on the left face of the aggregate is circled and highlighted in red (the reader

is referred to the electronic version of the paper for color interpretation).

π/2. Similarly, Fig. 12(b) shows the effect of changing the orientation of one grain on the final

crack pattern. In particular, changing the orientation of the grain circled in Fig. 12 has the effect370

of impeding the transgranular crack propagation and it modified the final crack pattern.

4.2. 3D morphologies

The first set of tests are carried out to assess the effect of the mesh size on the inter- and

transgranular crack propagation in fully 3D polycrystalline morphologies. Figure 13(a) shows a 3D

50-grain cubic morphology with ASTM grain size G = 12 subject to tensile strain and in presence375

of an initial crack, which is highlighted in red in the figure. Similarly to the pseudo-3D tests, a

uniform displacement u3 = λ/2 and u3 = −λ/2 is prescribed on the top and bottom faces whereas,

on the lateral surfaces, the boundary conditions are set to uini = 0. The external shear traction

are zero everywhere.

The three different meshes and the volume control points are reported in Figs. 13(b-c). The380

fracture toughness ratio γG is set to γG = 1/4. Figure 14(a) shows the curves of macroscopic

stress Σ33 as a function of the load factor λ and the different mesh sizes. The figure shows that

the macroscopic curves corresponding to sms = 3 µm and sms = 2 µm satisfactorily overlap. The

crack pattern at the last computed step is shown in Fig. 14(b) in which, once again, the grains are
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(a) (b) (c)

Figure 9: Three different meshes of the morphology shown in Fig. 8: (a) sms = 4 µm, (b) sms = 2 µm, (c)

sms = 1 µm.
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Figure 10: Macroscopic stress averages Σ33 as a function of the load factor λ and the different mesh sizes.
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Figure 11: Micro-cracking patterns of the 50-grain morphology shown in Fig. 8 at different values of the load factor

λ. The colormap denotes the damage level of the inter- and transgranular interfaces (the reader is referred to the

electronic version of the paper for color interpretation).
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(a) (b)

Figure 12: (a) Fully developed micro-cracking pattern in the 50-grain morphology in Fig. 8; (b) Final micro-cracking

pattern of the 50-grain morphology shown in Fig. 8; the circled grain has been rotated to impede the transgranular

crack propagation and modify the final crack pattern. The colormap indicates the grain susceptibility to transgranular

cracking.

coloured according to their susceptibility to transgranular cracking. In this case, the angle θ used385

to compute transgranular susceptibility index TG(θ) is the second angle of the three Euler angles

defining the grains’ orientation according to the ZXZ convention. The mesh size sms = 3 µm is then

used to perform the tests that are discussed next, as it represents a satisfactory tradeoff between

solution accuracy and number of degrees of freedom.

The same test is then performed on a 100-grain morphology with ASTM grain size G = 12 with390

a pre-existing crack. The morphology, the initial crack and the prescribed boundary conditions are

reported in Fig. 15(a). In order to investigate the effect of the fracture toughness ratio γG on the

macroscopic stress curve, on the micro-crack patterns and micro-damage distribution, the micro-

cracking response is computed for two values of the fracture toughness ratio, namely γG = 1/4 and

γG = 1.395

Figure 15(b) shows the macroscopic stress response as a function of the load factor λ and the

two values of the fracture toughness ratio γG. As expected, the fracture toughness ratio γG strongly

influences the macroscopic stress curve by inducing a drop of the maximum macroscopic stress as

it decreases. Figure 16 reports the cracked morphology for the two considered cases at different
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(a) (b)

(c) (d)

Figure 13: (a) 50-grain fully 3D polycrystalline morphology with ASTM grain size G = 12 subject to prescribed

values of vertical displacements u3 on top and bottom faces. The morphology is also subject to presence of a pre-

existing intergranular crack that is highlighted in the figure as a red surface. (b-d) Three different meshes of the

morphology of Fig. 13(a): (b) sms = 4 µm, (c) sms = 3 µm, (d) sms = 2 µm. In the figures, the black dots denote

the volume control points.
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Figure 14: (a) Macroscopic stress average Σ33 as a function of the load factor λ and the different mesh sizes; (b)

Final micro-cracking pattern. The colormap indicates the grain susceptibility to transgranular cracking.

levels of the load factor λ. More specifically, Fig. 16(a) corresponds to γG = 1/4 whereas Fig. 16(b)400

corresponds to γG = 1. In both figures, the left column show an external view of the morphology

at the selected values of the load factor, whereas the right column shows a cut-out view of the

morphology at the same load steps, which better highlights the micro-crack propagation through

the morphology. In fact, upon colouring the grains according to their susceptibility to transgranular

cracking and comparing the internal and the external views, it is observed that the crack propagates405

as intergranular along the grain boundaries of those grains that are not favourably oriented and as

transgranular through those grains that are more susceptible to cleavage micro-cracking.

What discussed above is common between the analyses corresponding to γG = 1/4 and γG = 1.

The main difference between the two analyses can be found in the crack patterns and in particular

in the damage distribution. In fact, by looking at the first row of Figs. 16(a,b) and Figs. 17(a,b),410

it is possible to see that, for the same load factor, in the morphology with γG = 1/4 the damage

has already developed and two transgranular cracks have been introduced whereas, besides the area

close to the initial crack tip, the morphology with γG = 1 is almost damage-free.

As soon as the load factor reaches the value λ = 0.0350, corresponding to the maximum level

of macroscopic stress obtained with γG = 1 in Fig. 15(b) and corresponding to the second row415
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Figure 15: (a) 100-grain fully 3D polycrystalline morphology with ASTM grain size G = 12 subject to prescribed

value of vertical displacements u3 on top and bottom faces. The morphology is also subject to presence of a pre-

existing intergranular crack that is indicated in the figure by a red surface. (b) Macroscopic stress average Σ33 as a

function of the load factor λ and two different values of the fracture toughness ratio γG.

of Figs. 16(a,b) and Figs. 17(a,b), the crack has fully propagated through the morphology for

both values of γG. However, for γG = 1/4 the grains that favour the transgranular cracking get

cut just one time, whereas for γG = 1 the same grains are cut multiple times. This is due to

the morphological constraints of the internal grains in combination with the higher level of stress

that needs to be reached in order to induce transgranular damage when γG = 1. Moreover, it is420

interesting to note that, in Fig. 17(a), the transgranular cracks can be easily distinguished from the

intergranular cracks by their higher level of damage for the same load factor as they can withstand

a lower level of stress. On the other hand, the damage distribution shown in Fig. 17(b) is almost

uniform among the inter- and transgranular cracks. At this point, the softening has initiated and

the damage accumulates over a crack envelope that is well defined.425

In the last set of tests, 100-grain 3D cubic morphologies are subject to micro-cracking without

pre-existing damage/crack. The boundary conditions are the same as those in the previous 3D

tests, i.e. the morphologies are subject to prescribed value of vertical displacement u3 on the top

and bottom faces of the aggregates, see Fig. 18(a) whereas, on the lateral faces, the normal displace-

ment is set to zero; along the remaining directions, the faces of the aggregates are traction-free.430
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(a) γG = 1/4 (b) γG = 1

Figure 16: Micro-cracking patterns of the 100-grain morphology shown in Fig. 15(a) at different values of the load

factor λ. (a) γG = 1/4 and (b) γG = 1. In both figures, the left column corresponds to an external view of the

morphology whereas the right column corresponds to a cut-out view of the morphology showing the transgranular

crack envelope. The colormap indicates the grain susceptibility to transgranular cracking.
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(a) γG = 1/4 (b) γG = 1

Figure 17: Damage patterns of the 100-grain morphology shown in Fig. 15(a) at different values of the load factor λ,

for fracture toughness ratios of (a) γG = 1/4 and (b) γG = 1. The colormap denotes the damage level of the inter-

and transgranular interfaces (the reader is referred to the electronic version of the paper for colour interpretation).
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Figure 18(b) shows the macroscopic stress Σ33 as a function of the load factor λ for four differ-

ent polycrystalline morphologies and for a value of the fracture toughness ratio γG = 1. The four

cracked morphologies at a load factor λ = 0.08 are shown in Fig. 19. The morphologies are coloured

according to the grains’ susceptibility to transgranular cracking and it can be noted that some suit-

ably oriented grains experience transgranular cracking during the loading history. However, those435

micro-cracks do not lead to the generation of the macro-crack of the whole morphology. In fact,

the crack pattern of the morphology shown in Fig. 19(a) consists of intergranular micro-cracks only,

whereas the damage crack patterns of the morphologies shown in Fig. 19(b), 19(c) and 19(d) are

shown in Figs. 20(b), 20(c) and 20(d), respectively. In Fig. 20, the hatched transgranular interfaces

are those participating in the generation of the macroscopic crack of the entire morphology. Con-440

sistently with the damage distribution reported in Fig. 17(b), the damage level of the morphologies

shown in Fig. 20 is almost uniform among inter- and transgranular cracks and mainly depends on

the relative orientation between the loading direction and the cracked interfaces.

The same tests have been performed on the morphology shown in Fig. 18(a) for different values

of the fracture toughness ratio γG, namely γG = ∞, γG = 1 and γG = 1/4. Figure 21 shows445

the macroscopic stress Σ33 as a function of the load factor λ and the selected values of γG. The

macroscopic stress curve obtained with γG = ∞ coincides to a purely intergranular failure and

the corresponding damage crack pattern is shown in Fig. 22(a). It is interesting to note that the

peak value of the macroscopic stress Σ33 does not considerably change between the macro curves

corresponding γG =∞ and γG = 1. This is an expected result within the proposed model since, for450

γG = 1, the cleavage planes represent additional and potential fracture surfaces that do not differ

from the grain boundaries in terms of fracture behaviour. On the other hand, reducing the value

of γG forces the activation of more transgranular surfaces, which fail at a lower level of stress thus

inducing a lower peak value in the macroscopic stress Σ33. Reducing the value of γG also influences

the damage crack patterns of the considered morphology. Figure 22(b) and 22(c) show the damage455

crack patterns at a load factor λ = 0.08. Once again, the transgranular cracks are hatched and it

is possible to notice that the number of transgranular cracks corresponding to γG = 1/4 is higher

than the number of transgranular cracks corresponding to γG = 1.
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Figure 18: (a) 100-grain fully 3D polycrystalline morphology with ASTM grain size G = 12 subject to prescribed

values of vertical displacements u3 on top and bottom faces. (b) Macroscopic stress average Σ33 of the four considered

morphologies as a function of the load factor λ.

4.3. Grain boundary accommodation

To conclude the results section, it is worth noting that the developed model naturally captures460

the grain boundary accommodation mechanism, which is a typical phenomenon experimentally ob-

served in the fracture surfaces of polycrystalline aggregates undergoing inter- and transgranular

failure [10, 11, 12]. The grain boundary accommodation refers to the initiation and evolution of

intergranular damage accompanying the grain-to-grain migration of transgranular cracking over

contiguous grains with misaligned crystallographic cleavage systems. From a computational point465

of view, this mechanism can only be captured by a fully 3D model, as simple 2D models may

allow for purely transgranular crack propagation through generally misaligned grains. Within the

developed framework, the grain boundary accommodation mechanism naturally occurs in all the

presented results, see e.g. Figs. 16, 20 and 22.

5. Discussion and further developments470

Several modelling and computational aspects have been addressed in the present work.

The polycrystalline morphologies are generated using the Voronoi tessellation algorithm through

the software library Voro++ [49]. The inherent statistical variability of polycrystalline morphologies
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(a) (b)

(c) (d)

Figure 19: Micro-cracking patterns of the four considered 100-grain morphologies at the load factor λ = 0.08. The

colormap indicates the grain susceptibility to transgranular cracking.
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(b)

(c)

(d)

Figure 20: Figs. (b), (c) and (d) show the damage crack patterns of the morphologies shown in Figs. 19(b), 19(c)

and 19(d), respectively. The images on the right show show the top view of the damage crack patterns of the figures

on the left. In the figures, the transgranular cracks hatched. The colormap denotes the damage level of the inter-

and transgranular interfaces (for color interpretation, the reader is referred to the electronic version of the paper).
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Figure 21: Macroscopic stress average Σ33 of the morphology shown in Fig. 18(a) as a function of the load factor λ

and for different values of the fracture toughness ratio γG.

poses a considerable challenge to the generality and robustness of the splitting/remeshing algorithm.

Voro++ has been purposely modified to split and remesh the grains undergoing transgranular failure475

and the developed algorithm has proved satisfactorily effective and robust.

A development of the proposed model could involve the use of more realistic micro-morphologies,

e.g. provided by experimental observations, similar to those used by other authors [3]. The use of

more realistic grain representations is possible within the present framework, but it would require

a more complex data structure to handle morphology. Moreover, the grains are here modelled480

as generally anisotropic linear elastic domains: further studies could include the combination of

inter and transgranular cracking with other deformation and damage mechanisms such as crystals

plasticity [32] or stress corrosion cracking [18, 3].

The presented results shows that the proposed scheme is able to account for the competition

between intergranular and transgranular failure mechanisms and naturally captures and reproduces485

the grain boundary accommodation occurring in presence of transgranular micro-cracking within

polycrystalline aggregates. Additionally, the results show that, by suitably tuning the values of

the parameters governing the two fracture mechanisms, it is possible to represent different cracking

scenarios in terms of inter/transgranular micro-cracking ratios. However a study of the statistical

representativity of the micro-cracking response of polycrystalline aggregates subject to inter- and490

transgranular cracking goes beyond the scope of this paper and a more rigorous investigation of

the effects of the micro-mechanics parameters on the averaged macroscopic variables is left for
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(a)

(b)

(c)

Figure 22: Damage crack patterns of the morphology shown in Figs. 18(a) for fracture toughness ratios of (a) γG = ∞,

(b) γG = 1, and (c) γG = 1/4. The images on the right show the top view of the damage crack patterns of the

figures on the left. In the figures, the transgranular cracks are hatched. The colormap denotes the damage level of

the inter- and transgranular interfaces (to interpret the colours, the reader is referred to the electronic version of the

paper). 36



further investigation. To this purpose, the development of computation strategies enabling the

analysis of higher numbers of grains could be of relevant interest; the use of fast iterative solvers in

conjunction with special matrix formats, i.e. fast multipoles [67] or hierarchical matrices [68, 69, 70],495

could enhance the storage memory and computational time requirements of the implementation.

6. Conclusions

A numerical formulation for intergranular and transgranular micro-cracking in fully 3D poly-

crystalline materials has been developed, implemented and tested. The competition between inter-

and transgranular cracking in three-dimensional anisotropic crystal aggregates has been modelled500

for the first time in a cohesive grain-boundary framework. Transgranular failure is captured by

computing the stress in the interior of the grains and by introducing cohesive cleavage interfaces

within the failing grains according to a specific threshold condition. A robust remeshing strategy,

taking into account the statistical variability of the polycrystalline morphology, has been developed

and implemented, to handle the transgranular grains splitting and propagation. The competition505

between inter- and transgranular failures has been investigated by varying the fracture energy ratio

between the two mechanisms and exploring the effect on both the macro-stress strain curves and the

micro-cracking envelope. It has also been shown that the model naturally captures the intergran-

ular grain boundary accommodation to transgranular fracture, which is a phenomenon typically

observed in polycrystalline aggregates subjected to inter- and transgranular fracture. The method510

expresses the polycrystalline problem in terms of grain boundary variables only, thus reducing the

computational cost of the simulations. The developed formulation and the implemented code may

offer a valuable tool in the study of polycrystalline micro-mechanics.
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Appendix A. Anisotropic Green’s functions

The 3D Green’s functions Gij(x,y) for anisotropic elasticity are obtained as the solutions of the

following problem

cikjl
∂2Gpj
∂xk∂xl

(x,y) + δpiδ(x− y) = 0 (A.1)

where y and x denote the collocation and observation points, respectively, cijkl is the anisotropic

fourth-order elasticity tensor, δpi denotes the Kronecker delta and δ(x−y) the Dirac delta function.

By applying the Fourier transform with respect to the variable x to Eq.(A.1) and following the

approach proposed in Ref. [71], the Green’s functionsGij(x,y) and their derivatives can be obtained

in terms of spherical harmonics using

∂(I)Gij

∂r
(α1)
1 ∂r

(α2)
2 ∂r

(α3)
3

(r) =
1

4πrI+1

∞∑
`∈L

P I` (0)
∑̀
m=−`

G̃`,mij,(α1,α2,α3)
Y m` (r̂), (A.2)

where r ≡ x − y, r =
√
rkrk, r̂ = r/r; I = α1 + α2 + α3 denotes the order of derivation and L is

the set of positive even (odd) integers when I is even (odd). P I` (0) is the `-th associated Legendre

polynomials of degree I evaluated at 0 and Y m` (r̂) is the spherical harmonic of order ` and degree

m. The coefficients G̃`,mij,(α1,α2,α3)
of the series are computed using the integral over the unit sphere

S1,

G̃`,mij,(α1,α2,α3)
=

∫
S1

(ξ̂1)α1(ξ̂2)α2(ξ̂3)α3G̃ij(ξ̂)Ȳ
m
` (ξ̂)dS(ξ̂), (A.3)

where G̃ij(ξ) = [cikjlξkξl]
−1

and Ȳ m` the complex conjugate of Y m` . The reader is referred to Ref.

[71] for further details about the spherical harmonics expansions of the fundamental solutions.

The kernels Uij(x,y), Tij(x,y), Uijk(x,y) and Tijk(x,y) appearing in Eqs.(1) and (2) are then

computed as [41]

Uij(x,y) = Gij(x,y), Tij(x,y) = nk(x)cjkpq
∂Gip
∂xq

(x,y), (A.4a)

Uijk(x,y) = cijpq
Gpk
∂yq

(x,y), Tijk(x,y) = nl(x)cijrscklpq
∂2Grs
∂xq∂ys

(x,y), (A.4b)

where n(x) = {ni(x)} is the outward unit vector normal to the boundary at the point x.520
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