
Dear Author,

Here are the proofs of your article.

• You can submit your corrections online, via e-mail or by fax.

• For online submission please insert your corrections in the online correction form. Always
indicate the line number to which the correction refers.

• You can also insert your corrections in the proof PDF and email the annotated PDF.

• For fax submission, please ensure that your corrections are clearly legible. Use a fine black
pen and write the correction in the margin, not too close to the edge of the page.

• Remember to note the journal title, article number, and your name when sending your
response via e-mail or fax.

• Check the metadata sheet to make sure that the header information, especially author names
and the corresponding affiliations are correctly shown.

• Check the questions that may have arisen during copy editing and insert your answers/
corrections.

• Check that the text is complete and that all figures, tables and their legends are included. Also
check the accuracy of special characters, equations, and electronic supplementary material if
applicable. If necessary refer to the Edited manuscript.

• The publication of inaccurate data such as dosages and units can have serious consequences.
Please take particular care that all such details are correct.

• Please do not make changes that involve only matters of style. We have generally introduced
forms that follow the journal’s style.
Substantial changes in content, e.g., new results, corrected values, title and authorship are not
allowed without the approval of the responsible editor. In such a case, please contact the
Editorial Office and return his/her consent together with the proof.

• If we do not receive your corrections within 48 hours, we will send you a reminder.

• Your article will be published Online First approximately one week after receipt of your
corrected proofs. This is the official first publication citable with the DOI. Further changes
are, therefore, not possible.

• The printed version will follow in a forthcoming issue.

Please note
After online publication, subscribers (personal/institutional) to this journal will have access to the
complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free
alert service. For registration and further information go to: http://www.link.springer.com.
Due to the electronic nature of the procedure, the manuscript and the original figures will only be
returned to you on special request. When you return your corrections, please inform us if you would
like to have these documents returned.

http://www.link.springer.com


Metadata of the article that will be visualized in
OnlineFirst

ArticleTitle Relations among Gauge and Pettis integrals for cwk(X)-valued multifunctions
Article Sub-Title

Article CopyRight Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg
(This will be the copyright line in the final PDF)

Journal Name Annali di Matematica Pura ed Applicata (1923 -)

Corresponding Author Family Name Piazza
Particle Di
Given Name L.
Suffix

Division Department of Mathematics

Organization University of Palermo

Address Via Archirafi 34, 90123, Palermo, Italy

Phone

Fax

Email luisa.dipiazza@unipa.it

URL

ORCID http://orcid.org/0000-0002-9283-5157

Author Family Name Candeloro
Particle

Given Name D.
Suffix

Division

Organization Department of Mathematics and Computer Sciences

Address 06123, Perugia, Italy

Phone

Fax

Email domenico.candeloro@unipg.it

URL

ORCID http://orcid.org/0000-0003-0526-5334

Author Family Name Musiał
Particle

Given Name K.
Suffix

Division Institute of Mathematics

Organization Wrocław University

Address Pl. Grunwaldzki 2/4, 50-384, Wrocław, Poland

Phone

Fax

Email kazimierz.musial@math.uni.wroc.pl

URL



ORCID http://orcid.org/0000-0002-6443-2043

Author Family Name Sambucini
Particle

Given Name A. R.
Suffix

Division

Organization Department of Mathematics and Computer Sciences

Address 06123, Perugia, Italy

Phone

Fax

Email anna.sambucini@unipg.it

URL

ORCID http://orcid.org/0000-0003-0161-8729

Schedule

Received 28 March 2017

Revised

Accepted 23 May 2017

Abstract The aim of this paper is to study relationships among “gauge integrals” (Henstock, Mc Shane, Birkhoff)
and Pettis integral of multifunctions whose values are weakly compact and convex subsets of a general
Banach space, not necessarily separable. For this purpose, we prove the existence of variationally Henstock
integrable selections for variationally Henstock integrable multifunctions. Using this and other known
results concerning the existence of selections integrable in the same sense as the corresponding
multifunctions, we obtain three decomposition theorems (Theorems 3.2, 4.2, 5.3). As applications of such
decompositions, we deduce characterizations of Henstock (Theorem 3.3) and  (Theorem 4.3) integrable
multifunctions, together with an extension of a well-known theorem of Fremlin [22, Theorem 8].

Keywords (separated by '-') Multifunction - Gauge integral - Decomposition theorem for multifunction - Pettis integral - Selection
Mathematics Subject
Classification (separated by
'-')

28B20 - 26E25 - 26A39 - 28B05 - 46G10 - 54C60 - 54C65

Footnote Information This research was partially supported by Grant Prot. N. U2016/0000807 of GNAMPA - INDAM (Italy), by
University of Perugia—Department of Mathematics and Computer Sciences and by University of Palermo.
These results were obtained during the visit of the third author to the Dept. of Mathematics and Computer
Sciences of the University of Perugia (Italy) as a visiting professor.



un
co

rr
ec

te
d

pr
oo

f

Annali di Matematica
DOI 10.1007/s10231-017-0674-z

Relations among Gauge and Pettis integrals

for cwk(X)-valued multifunctions

D. Candeloro1
· L. Di Piazza2

· K. Musiał3 ·

A. R. Sambucini1

Received: 28 March 2017 / Accepted: 23 May 2017
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg 2017

Abstract The aim of this paper is to study relationships among “gauge integrals” (Henstock,1

Mc Shane, Birkhoff) and Pettis integral of multifunctions whose values are weakly compact2

and convex subsets of a general Banach space, not necessarily separable. For this purpose, we 13

prove the existence of variationally Henstock integrable selections for variationally Henstock4

integrable multifunctions. Using this and other known results concerning the existence of5

selections integrable in the same sense as the corresponding multifunctions, we obtain three6
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1 Introduction15

A large amount of work about measurable and integrable multifunctions was done in the16

last decades. Some pioneering and highly influential ideas and notions around the matter17

were inspired by problems arising in Control Theory and Mathematical Economics. But the18

topic is interesting also from the point of view of measure and integration theory, as showed19

in the papers [2,3,8,9,11,12,18–20,29,31–34,37,38]. In particular, comparison of different20

generalizations of Lebesgue integral is, in our opinion, one of the milestones of the modern21

theory of integration. Inspired by [6,7,10,12,13,19,24,39], we continue in this paper the22

study on this subject and we examine relationship among “gauge integrals” (Henstock, Mc23

Shane, Birkhoff) and Pettis integral of multifunctions whose values are weakly compact and24

convex subsets of a general Banach space, not necessarily separable.25

The name “gauge integrals” refers to integrals defined through partitions controlled by a26

positive function, traditionally named gauge. J. Kurzweil in 1957 and then R. Henstock in27

1963 were the first who introduced a definition of a gauge integral for real-valued functions,28

called now the Henstock–Kurzweil integral. Its generalization to vector-valued functions or29

to multivalued functions is called in the literature the Henstock integral. In the family of30

the gauge integrals, there is also the McShane integral and the versions of the Henstock31

and the McShane integrals when only measurable gauges are allowed (H and M integrals,32

respectively), and the variational Henstock and the variational McShane integrals. Moreover33

according to [41] and [39, Remark 1], the Birkhoff integral is a gauge integral too and it turns34

out to be equivalent to the M integral.35

The main results of the paper are the existence of variationally Henstock integrable selec-36

tions (Theorem 5.1), which solves the problem of the existence of variationally Henstock37

integrable selection for a cwk(X)-valued variationally Henstock integrable multifunction (38

[6, Question 3.11]) and three decomposition theorems (Theorems 3.2, 4.2, 5.3). The first one39

says that each Henstock integrable multifunction is the sum of a McShane integrable mul-40

tifunction and a Henstock integrable function. The second one describes each H-integrable41

multifunction as the sum of a Birkhoff integrable multifunction and an H-integrable func-42

tion, and the third one proves that each variationally Henstock integrable multifunction is43

the sum of a variationally Henstock integrable selection of the multifunction and a Birkhoff44

integrable multifunction that is also variationally Henstock integrable. As applications of45

such decomposition results, characterizations of Henstock (Theorem 3.3) and H (Theorem46

4.3) integrable multifunctions are presented as extensions of the result given by Fremlin, in47

the remarkable paper [22, Theorem 8], and of more recent results given in [6,19].2 48

Finally, we want to point out that in order to obtain the decomposition theorems and also49

the extension of the Fremlin result is not enough simply to apply the embedding theorem of50

Rådström, but more sophisticated techniques are required.51

2 Preliminary facts52

Let [0, 1] ⊂ R be endowed with the usual topology and Lebesgue measure λ. The family53

of all Lebesgue measurable subsets of [0, 1] is denoted by L, while I is the collection of all54

closed subintervals of [0, 1]. If I ∈ I, then its Lebesgue measure will be denoted by |I |.55
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Relations among Gauge and Pettis integrals for cwk(X)-valued…

A finite partition P in [0, 1] is a collection {(I 1, t1), . . . , (I m, tm)}, where I 1, . . . , I m56

are nonoverlapping (i.e., the intersection of two intervals is at most a singleton) closed57

subintervals of [0, 1], t i is a point of [0, 1], i = 1, . . . , m. If ∪m
i=1 I i = [0, 1], then P is a58

partition of [0, 1].59

If ti ∈ I i , i = 1, . . . , m, we say that P is a Perron partition of [0, 1].60

A countable partition (An)n of [0, 1] in L is a collection of pairwise disjoint L-measurable61

sets such that ∪n An = [0, 1]; we admit empty sets.62

A gauge on [0, 1] is any strictly positive map on [0, 1]. Given a gauge δ, we say that a63

partition {(I 1, t1), . . . , (I m, tm)} is δ-fine if I i ⊂ (t i − δ(t i ), t i + δ(t i )), i = 1, . . . , m. Πδ64

and Π P
δ are the families of δ-fine partitions, and δ-fine Perron partitions of [0, 1], respectively.65

X is an arbitrary Banach space with its dual X∗. The closed unit ball of X∗ is denoted by66

BX∗ . As usual cwk(X) denotes the family of all nonempty convex weakly compact subsets of67

X ; on this hyperspace, the usual Minkowski addition and the multiplication by positive scalars68

are considered, together with the Hausdorff distance d H . Moreover, ‖A‖ := sup{‖x‖: x ∈69

A}. The support function s:X∗ × cwk(X) → R is defined by s(x∗, C) := sup{〈x∗, x〉: x ∈70

C}.71

Definition 2.1 A map Γ : [0, 1] → cwk(X) is called a multifunction. Γ is simple if there72

exists a finite collection {A1, ..., Ap} of measurable pairwise disjoint subsets of [0, 1] such73

that Γ is constant on each A j .74

A map Γ : I → cwk(X) is called an interval multifunction. A multifunction Γ : [0, 1] →75

cwk(X) is said to be scalarly measurable if for every x∗ ∈ X∗, the map s(x∗, Γ (·)) is76

measurable.77

Γ is said to be Bochner measurable if there exists a sequence of simple multifunctions78

Γn : [0, 1] → cwk(X) such that limn→∞ dH (Γn(t), Γ (t)) = 0 for almost all t ∈ [0, 1].79

It is well known that Bochner measurability of a cwk(X)-valued multifunction yields its80

scalar measurability. The reverse implication in general fails, even if X is separable (see [6,81

p. 295 and Example 3.8] ).82

If a multifunction is a function, then we use the traditional name of strong measurability83

instead of Bochner measurability.84

A function f :[0, 1] → X is called a selection of Γ if f (t) ∈ Γ (t), for every t ∈ [0, 1].85

Definition 2.2 A multifunction Γ : [0, 1] → cwk(X) is said to be Birkhoff integrable on86

[0, 1], if there exists a set ΦΓ ([0, 1]) ∈ cwk(X) with the following property: For every87

ε > 0, there is a countable partition P0 of [0, 1] in L such that for every countable partition88

P = (An)n of [0, 1] in L finer than P0 and any choice T = {tn : tn ∈ An , n ∈ N}, the series89
∑

n λ(An)Γ (tn) is unconditionally convergent (in the sense of the Hausdorff metric) and90

d H

(

ΦΓ ([0, 1]),
∑

n

Γ (tn)λ(An)

)

< ε . (1)91

(see for example [11, Proposition 2.6]).92

Definition 2.3 A multifunction Γ : [0, 1] → cwk(X) is said to be Henstock (resp. McShane)93

integrable on [0, 1], if there exists ΦΓ ([0, 1]) ∈ cwk(X) with the property that for every94

ε > 0 there exists a gauge δ on [0, 1] such that for each {(I 1, t1), . . . , (I p, t p)} ∈ Π P
δ (resp.95

∈ Πδ) we have96

d H

(

ΦΓ ([0, 1]),

p
∑

i=1

Γ (t i )|I i |

)

< ε . (2)97
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Γ is said to be Henstock (resp. McShane) integrable on I ∈ I (E ∈ L) if Γ 1I (Γ 1E ) is98

integrable on [0, 1] in the corresponding sense.99

In case the multifunction is a single-valued function, and X is the real line, the corre-100

sponding integral is called Henstock–Kurzweil integral (or HK-integral) and it is denoted by101

the symbol (H K )
∫

I
.102

Remark 2.4 If the gauges above considered are taken to be measurable, then we speak of H103

(resp. M)-integrability on [0, 1].104

Given Γ : [0, 1] → cwk(X), it is known that the property of integrability is inherited on105

every I ∈ I if Γ is Henstock (H) integrable on [0, 1], while the same is true for every E ∈ L106

when Γ is McShane (M) integrable on [0, 1] (see, e.g., [19]).107

As pointed out before, in case of single-valued functions, according to [41] and [39,108

Remark 1], M-integrability is equivalent to the Birkhoff integrability.109

Definition 2.5 A multifunction Γ : [0; 1] → cwk(X) is said to be Henstock–Kurzweil–110

Pettis integrable (or HKP-integrable) on [0, 1] if for every x∗ ∈ X∗ the map s(x∗, Γ (·)) is111

HK-integrable and for each I ∈ I there exists a set WI ∈ cwk(X) such that s(x∗, WI ) =112

(H K )
∫

I
s(x∗, Γ ), for every x∗ ∈ X∗. The set WI is called the Henstock–Kurzweil–Pettis113

integral of Γ over I , and we set WI := (H K P)
∫

I
Γ .114

In the previous definition, if HK-integral is replaced by Lebesgue integral and intervals115

by Lebesgue measurable sets, then we get the definition of the Pettis integral.116

For more detailed properties of the integrals involved and for all that is unexplained in117

this paper, we refer to [12,18,19,26,35–38].118

Definition 2.6 An interval multifunction Φ:I → cwk(X) is said to be finitely additive, if119

Φ(I 1 ∪ I 2) = Φ(I 1) + Φ(I 2) for every nonoverlapping intervals I 1, I 2 ∈ I such that120

I 1 ∪ I 2 ∈ I. In this case, Φ is said to be an interval multimeasure.121

A map M :L → cwk(X) is said to be a multimeasure if for every x∗ ∈ X∗, the map122

L ∋ A �→ s(x∗, M(A)) is a real-valued measure (cf. [28, Theorem 8.4.10]).123

M : L → cwk(X) is said to be a dH -multimeasure if for every sequence (An)n≥1 in L of124

pairwise disjoint sets with A =
⋃

n≥1 An , we have125

dH

(

M(A),

n
∑

k=1

M(Ak)

)

→ 0 as n → +∞.126

A multimeasure M : L → cwk(X) is said to be λ-continuous, and we write M ≪ λ, if127

M(A) = {0} for every A ∈ L such that λ(A) = 0.128

Remark 2.7 It is well known that M is a d H -multimeasure if and only if it is a multimeasure129

(cf. [28, Theorem 8.4.10]). Observe moreover that this is a multivalued analogue of Orlicz–130

Pettis Theorem. It is also known that the indefinite integrals of Henstock or H integrable131

multifunctions are interval multimeasures, while the indefinite integrals of Pettis (hence also132

McShane or Birkhoff) integrable multifunctions are multimeasures.133

Definition 2.8 A multifunction Γ : [0, 1] → cwk(X) is said to be variationally Henstock134

(McShane) integrable, if there exists an interval multimeasure ΦΓ : I → cwk(X) with135

the following property: For every ε > 0 there exists a gauge δ on [0, 1] such that for each136

{(I1, t1), . . . , (Ip, tp)} ∈ Π P
δ (resp. Πδ), we have137

p
∑

j=1

dH

(

ΦΓ (I j ), Γ (t j )|I j |
)

< ε . (3)138
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We write then (vH)
∫ 1

0 Γ dt := ΦΓ ([0, 1]) ((vM S)
∫ 1

0 Γ dt := ΦΓ ([0, 1])). The set multi-139

function ΦΓ will be called the variational Henstock (McShane) primitive of Γ .140

The variational integrals on a set I ∈ I can be defined in an analogous way, and they141

are uniquely determined. It has been proven in [6, Proposition 2.8] that each variationally142

Henstock integrable multifunction Γ : [0, 1] → cwk(X) is Bochner measurable.143

Important tools for the study of multifunctions are embeddings and variational measures.144

Let l∞(BX∗) be the Banach space of bounded real-valued functions defined on BX∗ endowed145

with the supremum norm || · ||∞. The Rådström embedding i : cwk(X) → l∞(BX∗),146

given in [6,30] by the relation cwk(X) ∋ W −→ s(·, W ), allows to consider G-integrable147

multifunctions Γ : [0, 1] → cwk(X) as G-integrable functions i ◦ Γ : [0, 1] → l∞(BX∗).148

Thanks to the embedding, a multifunction Γ is G-integrable if and only if its image i ◦ G in149

l∞(BX∗) is G-integrable (G stands for any of the gauge integrals).150

For what concerns the variational measure we recall that151

Definition 2.9 The variational measure VΦ : L → R generated by an interval multimeasure152

Φ : I → cwk(X) is defined by153

VΦ(E) := inf
δ

{V ar(Φ, δ, E) : δ is a gauge on E} ,154

where155

V ar(Φ, δ, E) = sup

⎧

⎨

⎩

p
∑

j=1

‖Φ(I j )‖: {(I j , t j )}
p
j=1 ∈ Π P

δ and t j ∈ E, j = 1, . . . , p.

⎫

⎬

⎭

156

For other properties, we refer to [5,6,20].157

We also remember that for a Pettis integrable mapping G : [0, 1] → cwk(X), its integral158

JG is a multimeasure on the σ -algebra L (cf. [13, Theorem 4.1]) that is λ-continuous. As159

also observed in [13, section 3], this means that the embedded measure i(JG) is a countably160

additive measure with values in l∞(BX∗).161

We recall that162

Definition 2.10 [39, Definition 2] A function f : [0, 1] → X is said to be Riemann mea-163

surable on [0, 1] if for every ε > 0, there exist an η > 0 and a closed set F ⊂ [0, 1]164

with λ([0, 1]\F) < ε such that
∥

∥

∑p
i=1

{

f (t i ) − f (t ′i )
}

|I i |
∥

∥ < ε whenever {I i } is a finite165

collection of pairwise nonoverlapping intervals with max1≤i≤p |I i | < η and t i , t ′i ∈ I i

⋂

F .166

According to [39, Theorem 4], each H-integrable function is Riemann measurable on [0, 1].167

Moreover in [10, Theorem 9] it was proved that a function f : [0, 1] → X is M-integrable168

if and only f is both Riemann measurable and Pettis integrable. So we get the following169

characterization, that is parallel to Fremlin’s description [22]:170

Theorem 2.11 A function f : [0, 1] → X is Birkhoff integrable if and only if it is H-171

integrable and Pettis integrable.172

Proof The only if part is trivial. For the converse observe that H-integrability implies Rie-173

mann measurability by [39, Theorem 4]. Moreover by [22, Theorem 8] f is Mc Shane174

integrable, and Riemann measurability together with Mc Shane integrability implies M-175

integrability by [39, Theorem 7]. ⊓⊔176

We denote by S P (Γ ), SM S(Γ ), SH(Γ ), S H (Γ ), S Bi (Γ ) = SM(Γ ) and SvH (Γ ),177

the collections of all selections of Γ : [0, 1] → cwk(X), which are, respectively, Pettis,178

McShane, H, Henstock, Birkhoff and variationally Henstock integrable.179
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3 Henstock and McShane integrability of cwk(X)-valued multifunctions180

Proposition 3.1 Let Γ : [0, 1] → cwk(X) be such that Γ (·) ∋ 0 a.e. If Γ is Henstock181

integrable (resp. H-integrable) on [0, 1], then it is also McShane (resp. Birkhoff, i.e., M)182

integrable on [0, 1].183

Proof Let i be the Rådström embedding of cwk(X) into l∞(BX∗). IfΓ is Henstock integrable,184

then we just have to prove that i ◦ Γ is McShane integrable. By the hypothesis, we have that185

i ◦ Γ is Henstock integrable. Then, thanks to [22, Corollary 9 (iii)], it will be sufficient to186

prove convergence in l∞(BX∗) of all series of the type
∑

n(H)
∫

I n
i ◦ Γ , where (I n)n is any187

sequence of pairwise nonoverlapping subintervals of [0, 1].188

But Γ is HKP-integrable and s(x∗, Γ ) ≥ 0 a.e. for every x∗ ∈ X∗. It follows from [18,189

Lemma 1] that Γ is Pettis integrable. Consequently, the range of the indefinite Pettis integral190

of Γ via the Rådström embedding is a vector measure. This fact guarantees the convergence191

of the series
∑

n(H)
∫

I n
i ◦Γ , since (P)

∫

I
Γ = (H)

∫

I
Γ and i ◦((H)

∫

I
Γ ) = (H)

∫

I
i ◦Γ ,192

for every I ∈ I.193

As said before, thanks to [22, Corollary 9 (iii)], i ◦Γ is McShane integrable. Consequently,194

Γ is McShane integrable.195

If Γ is H-integrable, then i ◦ Γ is H-integrable and being already McShane integrable, it196

is also Pettis integrable [22, Theorem 8]. Applying now Theorem 2.11, we obtain Birkhoff197

integrability of i ◦ Γ . This yields Birkhoff integrability of Γ . ⊓⊔198

Observe that from this proposition it follows that if Γ is Henstock integrable and Γ (·) ∋ 0199

a.e., then i ◦ Γ is Pettis. We remember that the relation between Pettis integrability of Γ and200

i ◦ Γ is delicate question and it is examined, for example, in [12].201

Theorem 3.2 Let Γ : [0, 1] → cwk(X) be a multifunction. Then the following conditions202

are equivalent:203

(i) Γ is Henstock integrable;204

(ii) SH (Γ ) �= ∅ and for every f ∈ SH (Γ ) the multifunction Γ − f is McShane integrable;205

(iii) there exists f ∈ SH (Γ ) such that the multifunction G := Γ − f is McShane integrable.206

Proof (i) ⇒ (i i) According to [19, Theorem 3.1] SH (Γ ) �= ∅. Let f ∈ SH (Γ ) be fixed.207

Then Γ − f is also Henstock integrable (in cwk(X)) and 0 ∈ Γ − f for every t ∈ [0, 1]. By208

Proposition 3.1, the multifunction Γ − f is McShane integrable. Since each McShane inte-209

grable multifunction is also Henstock integrable, (i i) ⇒ (i i i) is trivial, (i i i) ⇒ (i) follows210

at once. ⊓⊔211

The next result generalizes [19, Theorem 3.4], proved there for cwk(X)-valued multifunctions212

with compact valued integrals.213

Theorem 3.3 Let Γ : [0, 1] → cwk(X) be a multifunction. Then the following conditions214

are equivalent:215

(i) Γ is McShane integrable;216

(ii) Γ is Henstock integrable and S H (Γ ) ⊂ SM S(Γ ).217

(iii) Γ is Henstock integrable and S H (Γ ) ⊂ S P (Γ );218

(iv) Γ is Henstock integrable and S P (Γ ) �= ∅.219

(v) Γ is Henstock and Pettis integrable.220
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Proof (i) ⇒ (i i) Pick f ∈ S H (Γ ); then, according to Theorem 3.2, Γ = G + f for a221

McShane integrable G. But as Γ is Pettis integrable, also f is Pettis integrable (cf. [37,222

Corollary 1.5], [13, Corollary 2.3]). In view of [22, Theorem 8], f is McShane integrable.223

(i i) ⇒ (i i i) is valid, because each McShane integrable function is also Pettis integrable224

([23, Theorem 2C]).225

(i i i) ⇒ (iv) In view of [19, Theorem 3.1] S H (Γ ) �= ∅ and so (iii) implies S P (Γ ) �= ∅.226

(iv) ⇒ (v) Take f ∈ S P (Γ ). Since Γ is Henstock integrable, it is also HKP-integrable227

and so applying [18, Theorem 2], we obtain a representation Γ = G + f , where G : [0, 1] →228

cwk(X) is Pettis integrable in cwk(X). Consequently, Γ is also Pettis integrable in cwk(X)229

and so (v) holds.230

(v) ⇒ (i) In virtue of [19, Theorem 3.1] Γ has a McShane integrable selection f . It231

follows from Theorem 3.2 that the multifunction G : [0, 1] → cwk(X) defined by Γ (t) =232

G(t) + f (t) is McShane integrable. ⊓⊔233

4 Birkhoff and H-integrability of cwk(X)-valued multifunctions234

A quick analysis of the proof of [19, Theorem 3.1] proves the following:235

Proposition 4.1 If Γ : [0, 1] → cwk(X) is H-integrable, then SH(Γ ) �= ∅. If Γ : [0, 1] →236

cwk(X) is Pettis and H-integrable, then SBi (Γ ) �= ∅.237

As a consequence, we have the following result:238

Theorem 4.2 Let Γ : [0, 1] → cwk(X) be a multifunction. Then the following conditions239

are equivalent:240

(i) Γ is H-integrable;241

(ii) SH(Γ ) �= ∅ and for every f ∈ SH(Γ ) the multifunction Γ − f is Birkhoff integrable;242

(iii) there exists f ∈ SH(Γ ) such that the multifunction Γ − f is Birkhoff integrable.243

Proof (i) ⇒ (i i) Instead of [19, Theorem 3.1] we apply Proposition 4.1. The remaining244

implications are trivial. ⊓⊔245

Applying Theorems 4.2 and 2.11, we have the following:246

Theorem 4.3 Let Γ : [0, 1] → cwk(X) be a multifunction. Then the following conditions247

are equivalent:248

(i) Γ is Birkhoff integrable;249

(ii) Γ is H-integrable and SH(Γ ) ⊂ S Bi (Γ ).250

(iii) Γ is H-integrable and SH(Γ ) ⊂ SM S(Γ ).251

(iv) Γ is H-integrable and SH(Γ ) ⊂ S P (Γ );252

(v) Γ is H-integrable and S P (Γ ) �= ∅.253

(vi) Γ is Pettis and H-integrable.254

Proof (i) ⇒ (i i) If f ∈ SH(Γ ), then, according to Theorem 4.2, Γ = G + f for a Birkhoff255

integrable G. But as Γ is Pettis integrable, also f is Pettis integrable (cf. [13, Corollary 2.3],256

[37, Corollary1.5]). In view of Theorem 2.11, f is Birkhoff integrable.257

(i i) ⇒ (i i i) ⇒ (iv) are valid, because each Birkhoff integrable function is McShane258

integrable ([21, Proposition 4]) and each McShane integrable function is also Pettis integrable259

([23, Theorem 2C]).260
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(iv) ⇒ (v) In view of Proposition 4.1 SH(Γ ) �= ∅ and so (iii) implies S P (Γ ) �= ∅.261

(v) ⇒ (vi) Take f ∈ S P (Γ ). Since Γ is H-integrable, it is also HKP-integrable and so262

applying [18, Theorem 2], we obtain a representation Γ = G + f , where G : [0, 1] →263

cwk(X) is Pettis integrable in cwk(X). Consequently, Γ is also Pettis integrable in cwk(X)264

and so (v) holds.265

(vi) ⇒ (i) In virtue of Proposition 4.1, Γ has a Birkhoff integrable selection f . It follows266

from Theorem 4.2 that the multifunction G : [0, 1] → cwk(X) defined by G := Γ − f is267

Birkhoff integrable. ⊓⊔268

5 Variationally Henstock integrable selections269

Now, in order to examine [6, Question 3.11], we are going to consider the existence of varia-270

tionally Henstock integrable selections for a variationally Henstock integrable multifunction271

Γ : [0, 1] → cwk(X). In particular, we extend [6, Theorem 3.12] which gives only a par-272

tial answer, and we remove the hypothesis that X has the Radon–Nikodým property or the273

hypothesis SvH �= ∅ in the theorems of decomposition arising from the previous quoted274

result; so we give a complete answer to the open question.275

First of all we give the following result which extends [6, Theorem 3.12].276

Theorem 5.1 Let Γ : [0, 1] → cwk(X) be any variationally Henstock integrable multi-277

function. Then SvH �= ∅ and every strongly measurable selection of Γ is also variationally278

Henstock integrable.279

Proof Let us notice first that Γ is Bochner measurable and so it possesses strongly measurable280

selections [6, Proposition 3.3] (the quoted result is a consequence of [27]). Let f be a strongly281

measurable selection of Γ . Then f is Henstock–Kurzweil–Pettis integrable, and the mapping282

G defined by G := Γ − f is Pettis integrable: see [18, Theorem 1]. Since Γ is vH-integrable,283

then Γ is Bochner measurable ([6, Proposition 2.8]). As the difference of i(Γ ) and i({ f }),284

the function i(G) is strongly measurable, together with G. Therefore, G has essentially dH -285

separable range (that is, there is E ∈ L, with λ([0, 1]\E) = 0 and G(E) is dH -separable)286

and so i(G) is also Pettis integrable (see [11, Theorem 3.4 and Lemma 3.3 and their proofs]).287

Now, since Γ is variationally Henstock integrable, the variational measure VΦ associated288

with the vH-integral of Γ is absolutely continuous (see [40, Proposition 3.3.1]). If Vφ is289

associated with the Henstock–Kurzweil–Pettis integral of f , then Vφ ≤ VΦ and so it is also290

absolutely continuous with respect to λ. Since ‖G‖ ≤ ‖Γ ‖ + ‖ f ‖, it is clear that also VG is291

λ-continuous.292

Then, i(G) satisfies all the hypotheses of [5, Corollary 4.1], and therefore, it is variationally293

Henstock integrable. But then i({ f }) is too, as the difference of i(Γ ) and i(G), and finally294

f is variationally Henstock integrable. ⊓⊔295

Remark 5.2 At this point, it is worth to observe that the thesis of Theorem 5.1 holds true only296

for strongly measurable selections of Γ . In general, Γ may have scalarly measurable selec-297

tions which are neither strongly measurable nor even Henstock integrable (see [6, Proposition298

3.2] and [1, Theorem 3.7]).299

A decomposition result, similar to Theorem 4.2, can be formulated now. It is also given300

in [7, Corollary 3.5] but with a different proof.301

Theorem 5.3 ([7, Corollary 3.5]) Let Γ : [0, 1] → cwk(X) be a variationally Henstock302

integrable multifunction. Then Γ is the sum of a variationally Henstock integrable selection f303
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and a Birkhoff integrable multifunction G : [0, 1] → cwk(X) that is variationally Henstock304

integrable.305

Proof Let f be any variationally Henstock integrable selection of Γ . Then, as previously306

proved, Γ is Bochner measurable, f is strongly measurable and the variational measures307

associated with their integral functions are λ-continuous. Moreover, f is HKP-integrable,308

and, according to [18, Theorem 1], the multifunction G, defined by G := Γ − f , is Pettis309

integrable. Since Γ and f are variationally Henstock integrable, the same holds true for G.310

Hence, also i(G) is variationally Henstock integrable and, consequently, by [6, Proposition311

4.1], G is also Birkhoff integrable. ⊓⊔312

Remark 5.4 There is now an obvious question: Let Γ : [0, 1] → cwk(X) be a variation-313

ally Henstock integrable multifunction. Does there exist a variationally Henstock integrable314

selection f of Γ such that G := Γ − f is variationally McShane integrable?315

Unfortunately, in general, the answer is negative. The argument is similar to that applied316

in [17]. Assume that X is separable and g is the X -valued function constructed in [15] that is317

vH (and so strongly measurable by [6, Proposition 2.8]), Pettis but not vMS-integrable (see318

[15]). Let Γ (t) := conv{0, g(t)}. Then, Γ is vH-integrable (see [6, Example 4.7]), but it is319

not vMS-integrable ([6, Theorem 3.7] or [6, Example 4.7]) and possesses at least one vH-320

integrable selection by Theorem 5.1 . Let now f ∈ SvH (Γ ) and consider the multifunction321

G = Γ − f . Clearly G is vH-integrable and G(t) = conv{− f (t), g(t) − f (t)} for all322

t ∈ [0, 1]. If we suppose that G is variationally McShane integrable, then its selections323

− f, g − f will be Bochner integrable since they are strongly measurable and dominated by324

‖G‖, but that would mean that g is Bochner integrable, contrary to the assumption. �325

The next theorems 5.5 extend [6, Theorems 4.3, 4.4]. In fact we can remove the hypothesis326

SvH (Γ ) �= ∅ thanks to Theorem 5.1 and [6, Proposition 3.6]. Its proof is the same of the327

quoted results in [6].328

Theorem 5.5 Let Γ : [0, 1] → cwk(X) be a vH-integrable multifunction. Then the follow-329

ing equivalences hold true:330

SvH (Γ ) ⊂ SM S(Γ ) ⇐⇒ SvH (Γ ) ⊂ SP (Γ ) ⇐⇒ SP (Γ ) �= ∅ ⇐⇒331

Γ is Pettis integrable ⇐⇒ Γ is McShane integrable332

Moreover if Γ is also integrably bounded, then all the previous statements are equivalent to333

the variational McShane integrability of Γ .334

So, in particular335

Corollary 5.6 A function f : [0, 1] → X is variationally McShane integrable (= Bochner336

integrable, cf. [16]) if and only if it is variationally Henstock integrable and integrably337

bounded.338

6 Variational H-integral339

Recently, Naralenkov introduced stronger forms of Henstock and McShane integrals of func-340

tions and called them H and M integrals. We apply that idea to variational integrals. Since the341

variational McShane integral of functions coincides with Bochner integral, the same holds342

true for the M-integral. In case of the variational H-integral, the situation is not as obvious,343
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but we shall prove in this section that the variational H-integral coincides with the variational344

Henstock integral. We begin with the following strengthening of the Riemann measurability,345

due to [39].346

Definition 6.1 We say that a function f : [0, 1] → X is strongly Riemann measurable,347

if for every ε > 0, there exist a positive number η and a closed set F ⊂ [0, 1] such that348

λ([0, 1]\F) < ε and
∑K

k=1 ‖ f (tk) − f (t ′k)‖ · |Ik | < ε whenever {I1, . . . , IK } is a nonover-349

lapping finite family of subintervals of [0, 1] with maxk |Ik | < η and, all points tk, t ′k are350

chosen in Ik ∩ F , k = 1, . . . , K .351

Lemma 6.2 If f : [0, 1] → X is strongly measurable, then f is strongly Riemann measur-352

able.353

Proof Fix ε > 0. Then there exists a closed set F ⊂ [0, 1] such that λ([0, 1]\F) < ε and354

f|F is continuous. Since F is compact, then f|F is uniformly continuous, and so there exists355

a positive number δ > 0 such that, as soon as t, t ′ are chosen in F , with |t − t ′| < δ, then356

‖ f (t)− f (t ′)‖ < ε. Now, fix any finite family {I1, . . . , IK } of nonoverlapping intervals with357

maxk |Ik | < η, and choose arbitrarily points tk, t ′k in Ik ∩ F for every k: Then we have358

K
∑

k=1

‖ f (tk) − f (t ′k)‖ · |Ik | <

K
∑

k=1

ε|Ik | < ε.359

⊓⊔360

Now, in order to prove that each variationally Henstock function f : [0, 1] → X is also361

variationally H-integrable, we shall follow the lines of the proof of [39, Theorem 6], with362

E = [0, 1].363

Another preliminary result is needed, concerning interior Perron partitions.364

Definition 6.3 Let δ : [0, 1] → R
+ be any gauge on [0, 1], and let P := {(t1, I1), (t2, I2),365

. . . , (tK , IK )} ∈ Π P
δ . P is said to be an interior Perron partition if tk ∈ int (Ik) for all k,366

except when Ik contains 0 or 1, in which case tk ∈ int (Ik) or tk ∈ Ik ∩ {0, 1}.367

We can observe that the result given by Naralenkov in [39, Lemma 3] can be expressed368

in the following way:369

Lemma 6.4 [39, Lemma 3] Let δ be a gauge on [0, 1], and let P := {(t1, I1), . . ., (tK , IK )}370

be any δ-fine Perron partition of [0, 1], where the tags t1, . . . , tK are all distinct. Then, for371

each function φ : [0, 1] → X and each ε > 0 there exists a δ-fine interior Perron partition372

of [0, 1], P ′ := {(t1, I ′
1), (t2, I ′

2), . . . , (tK , I ′
K )} such that

∑K
k=1 ‖φ(tk)‖ ·

∣

∣ |Ik | − |I ′
k |

∣

∣ < ε.373

Thanks to this Lemma we can obtain, for variationally Henstock integrable functions, the374

following result:375

Lemma 6.5 Let f :[0, 1] → X be any variationally Henstock integrable mapping, and376

denote by Φ its primitive, i.e., Φ(I ) =
∫

I
f , for all intervals I . Suppose that δ is377

a gauge on [0, 1], and P := {(t1, I1), (t2, I2), ..., (tK , IK )} ∈ Π P
δ has all the tags378

t1, . . . , tK distinct. Then, for each ε > 0 there exists a δ-fine interior Perron partition379

P ′ := {(t1, I ′
1), (t2, I ′

2), . . . , (tK , I ′
K )} of [0, 1], such that

∑K
k=1 ‖ f (tk)‖ ·

∣

∣ |Ik |− |I ′
k |

∣

∣ < ε,380

and
∑K

k=1 ‖Φ(Ik) − Φ(I ′
k)‖ ≤ ε.381

Proof Since f is variationally Henstock integrable, the function t �→ Φ([0, t]) is continuous382

with respect to the norm topology of X . ⊓⊔383
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We are now ready to present the announced result.384

Theorem 6.6 Let Γ :[0, 1] → cwk(X) be any variationally Henstock integrable multifunc-385

tion. Then it is also variationally H-integrable.386

Proof Thanks to Rådström embedding Theorem we may assume that Γ is a function taking387

values in a Banach space. Denote it by f . First of all, we observe that f is strongly measurable,388

and therefore strongly Riemann measurable. Fix ε > 0. Then there exists a sequence of389

pairwise disjoint closed sets (Fn)n in [0, 1] and a decreasing sequence (ηn)n in R
+ tending390

to 0, such that the set N :=
⋂

n([0, 1]\Fn) has Lebesgue measure 0, and moreover such that391

for every integer n392

K
∑

k=1

∥

∥ f (tk) − f (t ′k)
∥

∥ · |Ik | ≤
ε

2n
393

holds, as soon as (Ik)
K
k=1 is any nonoverlapping family of subintervals with maxk |Ik | < ηn394

and the points tk, t ′k are taken in Fn ∩ Ik . Now, choose any bounded gauge δ0, corresponding395

to ε in the definition of variational Henstock integral of f , and set δ(t) = θn(t), when t ∈ Fn396

for some index n, and δ(t) = δ0 if t ∈ N , where397

θn(t) = min

{

ηn,
1

2
max{δ0(t), lim sup

Fn∋τ→t

δ0(τ )}

}

.398

δ is measurable, as proved in [39, Theorem 6]. We shall prove now that the gauge δ/2 can be399

chosen in correspondence with ε in the notion of variational integrability of f . To this aim,400

fix any partition P := {(t1, I1), . . . , (tK , IK )} ∈ Π P
δ/2. Without loss of generality, we may401

assume that all tags tk are distinct. Indeed, if a tag t is common to two intervals I, J of P ,402

then403

∥

∥

∥

∥

f (t)|I | −

∫

I

f

∥

∥

∥

∥

+

∥

∥

∥

∥

f (t)|J | −

∫

J

f

∥

∥

∥

∥

≤ 2 max

{ ∥

∥

∥

∥

f (t)|I | −

∫

I

f

∥

∥

∥

∥

,

∥

∥

∥

∥

f (t)|J | −

∫

J

f

∥

∥

∥

∥

}

404

and therefore the sum405

∑

k

∥

∥

∥

∥

f (tk)|Ik | −

∫

Ik

f

∥

∥

∥

∥

406

is dominated by twice the analogous sum evaluated on a (possibly partial) partition with407

distinct tags.408

Thanks to Lemma 6.5, there exists an interior Perron partition P ′ := {(tk, Jk), k =409

1, . . . , K } ∈ Π P
δ/2 such that410

max

{

K
∑

k=1

‖ f (tk)‖ ·
∣

∣|Ik | − |Jk |
∣

∣,

K
∑

k=1

∥

∥

∥

∥

∫

Ik

f −

∫

Jk

f

∥

∥

∥

∥

}

≤ ε . (4)411

Now, we shall suitably modify the tags of P ′; fix k and consider the tag tk .412

If tk ∈ Fn for some n and lim supFn∋s→tk
δ0(s) ≥ δ0(tk), then we pick t ′k in the set413

int (Ik) ∩ Fn in such a way that δ0(t
′
k) > δ(tk). This is possible since then we have414

lim supFn∋s→tk
δ0(s) ≥ 2δ(tk).415

If tk ∈ Fn for some n and lim supFn∋s→tk
δ0(s) < δ0(tk) or if tk ∈ N , then we set t ′k = tk .416

From this, it follows that the partition P ′′ := {(t ′k, Ik) : k = 1, . . . , K } is a δ0-fine interior417

Perron partition. Summarizing, we have418
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∑

k

∥

∥

∥

∥

f (tk)|Ik | −

∫

Ik

f

∥

∥

∥

∥

≤
∑

k

‖ f (tk)‖ ·
∣

∣|Ik | − |Jk |
∣

∣ +
∑

k

‖ f (tk) − f (t ′k)‖ · |Jk | +419

+
∑

k

∥

∥

∥

∥

f (t ′k)|Jk | −

∫

Jk

f

∥

∥

∥

∥

+
∑

k

∥

∥

∥

∥

∫

Ik

f −

∫

Jk

f

∥

∥

∥

∥

.420

Now,421

∑

k

‖ f (tk)‖ ·
∣

∣|Ik | − |Jk |
∣

∣ +
∑

k

∥

∥

∥

∥

∫

Ik

f −

∫

Jk

f

∥

∥

∥

∥

≤ 2ε422

thanks to (4), and423

∑

k

∥

∥

∥

∥

f (t ′k)|Jk | −

∫

Jk

f

∥

∥

∥

∥

≤ ε424

because P ′′ is δ0-fine. Finally, thanks to the strong Riemann measurability,425

∑

k

‖ f (tk) − f (t ′k)‖ · |Jk | =
∑

tk∈N c

‖ f (tk) − f (t ′k)‖ · |Jk | ≤
∑

n

ε

2n
= ε,426

and so427

∑

k

∥

∥

∥

∥

f (tk)|Ik | −

∫

Ik

f

∥

∥

∥

∥

≤ 4ε428

which concludes the proof. ⊓⊔429
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