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1 Introduction

1.1 Overview

In the course of my studies I conducted empirical analysis on real-life complex systems;

specifically, I focused on agent-based models and complex networks. The aim of the

present dissertation is to provide both a complete perspective of the results I achieved

and an overview of the tools necessary to approach these systems. In this introduction,

I will, firstly, explore the concepts of complexity and emergence from a general point of

view; then, I will proceed to present an introductory description of the real systems that

I studied; finally, I will present a short overview of the work I have done on these systems.

1.2 Complexity and Emergence

In recent years, some physicists have developed an interdisciplinary approach to their

work; the development of statistical physics, in particular, has proved extremely use-

ful in analysing social [1], biological [2] and socio-technical systems [3]. The first moves

away from classical physics and towards an interdisciplinary approach occurred when re-

searchers faced complexity. Describing complexity is, of course, a hard task as a unique

definition of it does not exist. Researchers usually talk about complexity when a sys-

tem exhibits a new form of organization, more specifically complexity occurs when the

relationship between the parts of a system give rise to a collective behaviour [4, 5].

Although an emerging behaviour is typically observed in social or biological systems,

physical systems can also exhibit such properties. A well known example from the phys-

ical field is water [6]; water’s properties can be considered as an emerging phenomenon as
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1 Introduction

they are unpredictable even after exhaustive studies of its constituents i.e. hydrogen and

oxygen. Another physical example of emergent phenomena is friction; friction being the

force that resists the relative motion of two surfaces sliding against one another. Such

force emerges from the microscopic complex texture of the surfaces, whose interaction

by sliding converts mechanical energy into heat energy.

This construct of emergent behaviour can equally be applied to human organization.

Among many examples, the complexity of the urban environments in which humans live

[7] is incontrovertible evidence for emergent behaviour in human organization. Even in

the absence of predefined planning, the social interactions of people in urban areas, over

time, will lead to an efficient organization of these areas. Emergence is, therefore, a uni-

versal concept that transcends almost all branches of knowledge and science, grounded

always in the idea that microscopic heterogeneous interactions can produce surprising

macroscopic behaviour.

As a consequence, when researchers deal with emerging behaviours, the reductionist

approach widely used in classical physics – that a phenomenon can be kept apart from

the rest of the system – must, in many cases, be abandoned. In fact, the removal of the

object of study from the environment in which it exists might imply the disappearance of

the emerging phenomenon. New tools and methodologies, beyond what classical physics

offered, are therefore necessary to study such open and intrinsically self-interacting sys-

tems.

Despite the common presence of emerging phenomena both in social and thermody-

namic systems, the expression “complex system” is typically reserved for those systems

whose behaviour crucially depends upon tiny details [8].

To highlight this difference let us think about thermodynamics. Originally, the study of

thermodynamics focused on probabilistic and macroscopic descriptions of the states of

the system, since the extremely high number of particles involved makes it practically

impossible to write down the equations of motion. Even if these equations were possible,

producing the solution, given the extremely high number of coupled equations, would

be a huge task.

Despite these analytical issues, the observation of a particular collective state in some
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1.2 Complexity and Emergence

thermodynamic conditions is possible and such thermodynamic states can be fully and

uniquely understood in terms of the main thermodynamic parameters: pressure, volume,

temperature and number of particles. Let us think, for example, about water that is

boiling at 100 degrees. Such collective state is essentially always verified in our expe-

rience. Which means that, it is definitively independent by the configurations of the

water particles. On the contrary, in a complex system, a negligible difference of some

boundary conditions can produce a totally different final state.

To understand better the peculiarities of complex systems, let us now consider Dy-

namical Systems. A Dynamical system is a system in which a known function describes

the time dependence of an object in a state space. That means that the knowledge of the

current state implies the knowledge of the future states. However many systems, char-

acterized by a significant number of heterogeneous interacting entities, and sometimes

also extremely simple ones with a non-linear coupling of the variables, like the double

pendulum [9], have in certain conditions shown surprisingly unpredictable dynamics:

they are chaotic [10]. The physics of a chaotic system is deterministic, however in a

chaotic system a long-range prediction cannot be done with accuracy. The initial ap-

pearance of disorder is grounded in the unpredictability of the system. The intrinsically

unpredictable nature of the system dynamic is shown by trying to reproduce exactly

the same set up of the experiment, which is impossible. Such surprising behaviour is

in part caused by the strong sensitivity of small initial conditions to variation. Obvi-

ously, in theory, perfect knowledge of such initial conditions1 could permit us to make

predictions; however, the presence of errors, no matter how small, is inevitable, and the

strong sensitivity of the initial conditions leads to an intrinsic unpredictability of the

system dynamic [11]. As a consequence in many real systems the paradigm of the perfect

prediction has been undermined.

Similarly to what happens in the case of thermodynamic, whilst the huge amount of

heterogeneous information has limited the predictive power of the micro-structure, the

aggregation, in many cases, seems predictable and it has typical patterns among very

different systems, like powerlaw tails [12], community structures [13] and hierarchical or-

1combined with infinite computational power and the knowledge of the dynamical equations
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1 Introduction

ganization [14]. Therefore the interest of scientists in such systems has moved from the

lower unpredictable level to the higher aggregate level, which shows non-trivial emerg-

ing properties. A remarkable example is the Omori law of earthquakes [15], that is: the

empirical prediction of the intensity of the aftershock subsequent to a primary strong

earthquake. Although it is not possible to forecast when or where they will occur, their

intensity show a powerlaw decay over time.

The current interest in complex systems has caused physicists to move away from clas-

sical models to deal with open systems. In natural science, an open system allows the

environment to exchange both matter and energy with it. A closed system, on the other

hand, can exchange only energy with the environment, not matter. For this reason, a

complex system requires a different approach; new techniques have been developed to

do this. These techniques ensure that external interactions with the environment can be

considered. Many of these new methodologies were transposed from other disciplines,

such as sociology or biology, in which dealing with open systems is the norm; a social

or biological system can almost never be isolated from its environment. When dealing

with social complex systems, computer simulations are usually the preferred method of

analysis because analytical resolutions are inapplicable. In particular, a class of compu-

tational algorithms, named Agent-Based Models (ABM), has gained a primary position

in modelling emerging phenomena in social systems. The use of such computational

methods allows researchers to overcome two big problems of complex systems in the

following ways: first, they permit the inclusion of heterogeneous entities; and, second,

they allow the modelling of the interaction between such entities and the environment

without a perfect formal knowledge of the fundamental equations that rule the dynam-

ics. A more detailed discussion of ABM will be undertaken in the following section.

1.3 Agent-Based Models in Statistical Physics

To face complexity physicists have developed specific tools designed to highlight the

collective behaviour of such systems. In particular in my research activities, I focused
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1.3 Agent-Based Models in Statistical Physics

my interest on complex networks and Agent-Based Models (ABM). In the following I

will briefly describe agent-based models that are the central part of this dissertation.

A popular way to investigate emerging phenomena observed in reality is agent-based

modelling [16, 17]. The main advantage of an ABM is that it can model interactions

among autonomous agents, mainly by computational simulation. It is worth noting

that an ABM is conceptually different from the simulator approach widely used in en-

gineering science. In fact, an ABM should be designed bearing in mind the parsimony

principle[18], i.e. just few specific characteristics of the agent interactions are included in

the model whereas most of the environmental or individual peculiarities are kept apart.

A simulator, on the contrary, tries to reproduce in detail the dynamic of each component

of the system. ABMs have drawbacks: the simplicity of them can limit their predictive

power. However, there are also great advantages, for example: the observation of an

emerging phenomenon in such a simple controllable toy system represents strong clues

about the real causes of the emergence[19]. A historical example of this approach is the

segregation model of Schelling[20], which shows a critical transition to segregation in a

very basic modelling of interactions. More specifically, Schelling modelled two types of

entities/agents, let us say “black” and “white” that lay on a bidimensional grid. Starting

from a random initial condition with a homogeneous distribution of the two colors, at

each time-step some agents could be moved to another position on the grid according to

a predefined rule. Such a rule is the “intolerance to diversity”. In fact, if an agent has

a fraction of neighbours p of an opposite color, then he will decide to move to another

place of the grid. Surprisingly even for a small probability of the intolerance of diversity

p ' 0.37, the collective stationary states will be composed of segregated groups of agents

of the same color. For a lower value of p no segregated groups will be present in the

system.

Later the development of ABMs became more and more refined. At present, they of-

ten include some social peculiarities like learning processes or heterogeneous agents. In

modern ABMs, agents usually hold the following features [21]: i) perception i.e. agents

can perceive their environment and also the other agents in their neighbourhood; ii)

performance i.e. they have a set of actions that they can perform; iii) memory i.e. they
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1 Introduction

have a memory storing a set of information; iv) policy i.e. they have a set of heuristic

rules that control their response to external stimulus.

Another specific and fundamental characteristic of ABMs is the level of abstraction

that can be used to build them: the lower the level of abstraction, the more detailed the

modelling; the higher level of abstraction, the more simplified the modelling will be – this

is usually done by describing the dynamic through aggregate variables/entities[22]. An

example of a highly abstract ABM is the Schelling model[20] that we have just described

above, or the one in Ref.[23]. In that paper the authors proposed an ABM approach to

solve the problem of molecular self-assembly by using a heuristic set of rules. Those rules

are applied to rigid tetris-shape objects. Despite the simplicity of the model, it showed

both near optimal aggregates and require less computer processing than Monte-carlo sim-

ulations, commonly used in literature[24]. At the low level of abstraction, in Ref.[25],

an ABM was used to map the spreading of a disease in Italy. Such a model takes into

account the very detailed structure of social interactions, including differences between

households, schools and workplaces, movement between different cities and vaccine sup-

plies. The results of this ABM were broadly similar to epidemic patterns historically [26].

Once the optimal setup for the ABM is chosen, a computational investigation is per-

formed and the experiment can be repeated many times even varying the environment

or behavioural parameters, which is of course impossible for a real social system. In-

deed, the possibility to include “what-if” experiments in the analysis makes the ABM

approach much more similar to methods of investigation used in the field of physics,

rather than those used in the field of social science.

Historically agent-based modelling has been commonly used in the domain of soci-

ology. Recently, physicists have become increasingly interested in it. The stochastic

motion of diffusing particles can be described by Langevin equations, however, to ex-

plain their ability to react chemically, the introduction of a self-consistent field for the

particles is required. That field induces a self-adaptive process which produces the

structural formation. This is called active Brownian motion[27]. Unlike standard Brow-
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nian particles, active particles can take energy from the environment by local or global

coupling. Agent-based modelling was used to describe such systems[28]. The authors

showed that the complex collective motion observed can be explained as the result of the

active motion of the agents with their mutual interactions. Then the resulting complex

behaviour of the swarm of particles emerged from two opposite influences: the active

motion of the particle/agents that drives the swarm to disperse, and the local attraction

of the particles/agents that drives to concentrate into a swarm. The swarm intelligence

[29] is, indeed, a self-organized collective behaviour observed both in natural and arti-

ficial systems, for example animal herding. Typically the observation of such peculiar

behaviour needs the presence of interacting autonomous agents that can be easily mod-

elled by ABMs [30, 31].

Another important contribution that physicists introduced to agent-based modelling

was to mix a physical framework with social or biomedical one. For example, Ref.[32]

studied the transport of nano particles in blood flow with an ABM based around fluid

dynamic equations. Another example is in Ref.[33] where the authors described urban

evacuation planning again using fluid dynamic equations.

Even if the rules of the micro-structure were not modelled as physical equations, the

statistical mechanic approach was crucial in many cases to understand the underlying

rules governing those systems, for example in minority games[34]. The minority games

are an extension of the El Farol bar problem. This problem, proposed by Brian Arthur

in Ref.[35], sets out the following scenario: suppose one wants to listen to music every

Thursday in the El Farol bar. If the bar is too crowded one can no longer listen to the

music. A paradoxical result is produced by supposing that all customers in the bar are

informed in the same way. In fact, if all the customers think that just a few people will

go to the bar, then the bar will be crowded; on the other hand, if all the people think

that the bar will be crowded, then nobody will go to the bar. Consequently, only mixed

strategies, with not all the actors thinking in the same way, could provide solutions to

the problem. In the minority game the agents have the further ability to make decisions

according to previous knowledge of the subject, meaning that they can take advantage of
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the available public information concerning recent bar attendance history. The adaptive

agents, so defined, are shown to react according to mechanisms that are similar to those

encountered in statistical mechanics. In fact, their stationary state is not the expected

Nash equilibrium, with all the agents maximizing their utility function, but instead is the

ground state of a disordered spin model that presents a richer dynamic [36], much like

metastable states. Evidently, there is a similarity between this model and many other

systems in which the active entities/particles interact with an external entity/field. For

example in economics, where investors interact with the market basing their decisions

on their previous knowledge. It is worth noting that this approach is opposed to the

classic representative agent of macro-economic theory, which, by assuming all the agents

are identical, produces a necessarily unique agent theory. In the minority games, as we

have seen above, the agents heterogeneity is an essential condition to avoid frustrated

behaviour.

Ultimately, the great advantage of an agent-based model is its wide applicability. In

fact when just a small number of individuals participate in the dynamic, a deterministic

approach, as mean-field, could be no more suitable; whereas an ABM can also show

emerging phenomena when there is a small number of participants involved.

1.4 The Air Transportation System

As I mentioned above, in the course of my research I dealt with real-life complex sys-

tems. More specifically, I conducted an empirical statistical analysis and agent-based

modelling of the Air Transportation Management (ATM). In the following section I will

describe first the ATM system, focusing the attention to the main issues concerning its

complexity, then I will summarise my approach.

1.4.1 General Description

Complex system theory has recently been used to try to better understand Air Trans-

portation Management. One prominent example is a series of studies where the network

topology of the airport network was investigated [37, 38, 39, 40, 41, 42]. Another study
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1.4 The Air Transportation System

focused its attention on the navigation points (NVPs) network [43]. NVPs are fixed

bidimensional points in the airspace that are used in the ATM system to direct air

traffic flow. This works in the following way: a few hours before departure flight plans

are released that consist of sequences of NVPs that the aircraft must follow en route to

the destination airport. An important aspect of airway infrastructure is its “inefficient”

topology. In fact, an aircraft trajectory, for safety reason, is typically different from the

shortest path between origin and destination airport. This is because an NVP-based

systems is considered more controllable than a free-routing one because it allows the air

traffic controllers (ATC) to focus their attention on a limited number of special NVPs

where the routes intersects. A key figure of the ATM system are these ATCs. The main

mission of the ATCs is to guarantee the safety of aircraft by maintaining a safe distance

among them. They have the additional task to enhance the efficiency of the system,

allowing the aircraft to follow the shortest path locally, only when air-traffic conditions

permit it.

The growth of the ATM system – both the free routing and the increment of flight

connections – are therefore constrained by the limits of human control of the system.

In 2012, around 9.5 million flights crossed European airspace and this number is

expected to increase by 50% in the next 20 years [44]. Due to this traffic increase,

without significant changes in the way air transport is currently managed, flying in

Europe could lead to increased costs for the airlines, due to greater delays, and for the

environment, due to higher CO2 emissions. To tackle these challenges, the European

Commission created in 2007 the SESAR JU (Single European Sky ATM Research Joint

Undertaking) with the aim of coordinating all relevant research and development efforts

in the sphere of aerospace in Europe. Since its inception SESAR has been working on

defining, exploring, testing, and implementing new solutions to cope with the predicted

increase in air traffic. The concepts of free-routing and 4D trajectories, for example,

have been proposed [45, 46, 47] and are already implemented in some areas of the

European Airspace [48]. In the future, or in what we call in the following, SESAR

scenario, all airspace users will be allowed to plan an optimal trajectory, in space and

time, from departure to arrival. This is a radical shift from the current practice whereby

aircraft need to stick to the structure of the airspace network and follow pre-defined
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airways which are often not the most direct routes. In this environment, air traffic

controllers have the role of avoiding conflicts in some specific areas that are mainly

located where airways intersect. The implementation of free-routing poses, therefore,

some challenges in terms of the safety of the operations and the complexity of the

situation that controllers have to manage. For instance, conflicts may become harder to

detect due to the spread and increased number of possible conflicting points. Moreover,

methods used to solve conflicts (i.e. direct routes) may not be applicable any longer

since aircraft will be already flying the most direct trajectory.

1.4.2 Our Contribution

Although Free Route Airspace is already implemented in some parts of Europe [49],

its application is still limited to conditions where traffic load is quite low. Therefore,

it is relevant to assess its impact in the higher traffic conditions foreseen in the next

20 years, specifically, in relation to the safety of the operations and to the complexity

that controllers will have to manage. To this end, we have developed an ABM to

evaluate the implementation of some of the features foreseen by SESAR within the ELSA

“Empirically grounded agent-based model for the future ATM scenario” project co-

financed by EUROCONTROL on behalf of the SESAR Joint Undertaking in the context

of SESAR Work Package E. The ELSA agent-based model is a two layer multi-agent

model: the first layer is strategic, where the airline companies negotiate their flight plans

with a Network Manager, taking into account that the flight plans must comply sector

capacities. The outcome of the strategic layer is a flight plan that becomes the input of

the second layer, the tactical one. In the tactical layer, pilots and controllers interact with

each other, in particular pilots follow the released flight plans and controllers modify the

aircraft trajectory to both solve potential conflicts and to enhance the system efficiency

i.e. allowing aircraft to follow a free route locally if such a choice does not imply an

increment of complexity. Within the ELSA project I developed the ABM of the tactical

layer.

The specific scientific questions that I investigated are: (i) what are the issues that

affect the predictability of the last filed flight-plan within the ATM system? How is the

predictability affected by these issues? (ii) Can sectors capacity be improved by a more
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efficient management of conflicts? (iii) What are the impacts of the changes foreseen by

SESAR on the airspace management and on the controllers’ workload? (iv) Are these

changes able to accommodate efficiently the foreseen traffic increase?

The characterization of the deviations from the planned trajectory

During the early phases of the development of the ABM, we performed a preliminary

investigation of the ATM system with the aim of highlighting the ATC operations [50].

In this work we observed several regularities by comparing the planned flight plans (so

called M1 files) with the radar tracked ones (so called M3 files) of the German airspace.

At a global level we observed an important deviation from the Gaussian behaviour of

the percentage increment of planned trajectory length, moreover these deviations are

more pronounced during night-time. Another empirical observation regards the “angle

to destination” hold by a flight when a deviation from planned trajectory occurs, this

angle is typically of 20 degrees and it is significantly different with respect to a random

null expectation. Both these facts suggest that optimization is an important task of the

ATC and it can be revealed from data. Subsequently we focused our attention on a

local NVP level, and we observed that only few NVPs are involved in flight trajectory

deviation, and those NVPs are systematically over-deviated along different time-periods.

The results achieved in Ref.[50] were useful to outline the development and the calibra-

tion of the ELSA ABM.

Modelling the Tactical ATM: an Agent-Based Model Approach

ABMs are a consolidated tool in the Air Traffic Management domain. In our opinion,

we can track down essentially three big research areas of applications of ABMs in ATM.

In fact, we can have ABMs: (i) for the conflict detection and resolution [51], (ii) for the

management of the traffic flow [52] and (iii) for the investigation of the aspects related

to the role of human operators [53].

ABMs for the conflict detection and resolution intervene at a tactical or pre-tactical

level and provide methods for detecting and solving (multiple) conflicts on a pairwise

or global basis. In Ref.[51] a set of categories has been proposed for the categoriza-

tion of the different modeling approaches. For example, these categories include the
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dimensions at which the model works (vertical, horizontal or both), the method of con-

flict resolution (optimization, brute force, force field, etc.) and the type of maneuvers

adopted by aircraft to avoid the conflict (vectoring, flight level changes and velocity

changes). Among others, the work in Ref.[54] has received much attention, although it

was not used at an operational level: it proposed a global method for conflict resolution

based on genetic algorithms and taking into account future velocity uncertainties. The

conflict detection and resolution algorithm of Ref.[55] is based on a local geometrical res-

olution of conflicts involving a combination of velocity changes and re-routings. Using

the geometric characteristics of aircraft trajectories and intuitive reasoning, closed-form

analytical solutions have been developed for optimal heading and/or speed commands.

The conflict resolutions are optimal in the sense that they minimize the velocity vec-

tor changes required for conflict resolution, resulting in minimum deviations from the

nominal trajectory. Another interesting approach is the conflict detection and resolu-

tion algorithm of Ref.[56] that is based on a potential field approach that in its original

and simplistic version assumes that aircraft are like charged particles interacting in an

external electric potential field. In Ref.[52] a multi-agent model is proposed where two

features are implemented: agent are endowed with reinforcement learning algorithms

and they are individually (rather than globally) rewarded in terms of their contribu-

tion to the overall performance of the system. This will ensure a better managing of

congestion issues obtained by issuing ground delays, re-routings and setting separation

between aircraft. The input to the model is given by a set of trajectories generated by

FACET [57]. FACET is a simulation and analysis tool that provides flight trajectories

that follow a set of navigation points between the origin and destination airport. The

trajectories can be made conflict free by using an additional module that performs air-

craft self-separation by using either the algorithm of Ref.[55] or the algorithm of Ref.[56].

The model proposed in Ref.[58] proposed a global optimization of the system by taking

advantage of the capabilities of specific causal models, namely the Colored Petri Net-

work models. The detection of conflicts is followed by a geometrical local resolution

of conflicts [55] that is iterated until all secondary possible conflicts are resolved. The

optimal or suboptimal solutions thus proposed for each aircraft are then used to feed the

considered causal model that will select the ones that solve simultaneously all conflicts
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1.4 The Air Transportation System

through a certain scoring procedure. However, the model works on idealized trajectories

connecting the departure and arrival airports in a rectilinear way.

The agents of our agent-based model are aircraft pilots and air traffic controllers who

are active within Area Control Centers (ACC) in the European airspace. The pilots are

passive entities: they follow a flight plan, or the instructions of the ATCs; ATCs, on the

other hand, are active entities and monitor, control and modify the flight plan. ATCs’

actions are influenced by the current workload of the sectors they manage and by the

workload of neighbouring sectors. Furthermore, the local geometry of the flight plans

indirectly influences their actions. In the tactical phase of the air traffic management,

we model and simulate the events of a planned flight plan, transforming it into an actual

one. Therefore we are in the tactical phase of the air traffic management. The model

we propose here provides a conflict detection module based on the computation of the

pairwise distances between all aircraft present in a certain airspace and also provides a

module for the pairwise local resolution of conflicts at a tactical level [59]. The approach

of Ref.[55] is very close in spirit to the one presented here, where, however, the resolution

algorithm works on the basis of numerical simulations. We also implemented a module

for the issuing of directs. When possible, directs are issued by controllers at a tactical

level in order to speed up the passage of aircraft within a certain airspace and therefore

to facilitate the airline operations. We believe that this is one of the novelties of our

model, not present in the ABMs we have recalled above.

Our model performs a local conflict detection and resolution procedure mainly based

on geometric considerations and mainly working at the level of an ACC. Subsequently,

once trajectory has been made conflict-free, it searches for possible improvements of the

system efficiency by issuing directs. The issuing of directs is the place where the con-

trollers behavior is most evident. Indeed, the way we implement the strategies adopted

by controllers to issue directs is based on information relative to each specific sector in

the airspace as well as information relative to the entire considered airspace. This is done

having in mind that controllers of a certain ACC all work in the same physical place

and therefore that induces the emergence of “best practices” shared by the controllers

of the entire ACC.
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Once the model was developed, a calibration procedure was performed. The aim of

the calibration was to reproduce the stylized facts illustrated above, in particular we

focused in the intra-day dynamic of the flight deviation rate. We calibrated the model

with respect to three parameters: the first two refer to the direct operations and they

are respectively an unconditional probability of direct and a sensitivity to sector traffic

congestion, the third parameter is the lookahead of the ATC, used in his forecast to

guarantee the minimum safety separation between aircraft.

We showed that a calibrated model can be used to discover zones of the airspaces that

require a significant activity of the ATC. In the same work we showed that the spa-

tial heterogeneity of the ATC operations can be observed also from data. However,

differently from the ABM simulations, in real data the real compositions of the ATC

operations cannot be discovered, in fact an horizontal deviation can occur either for

network optimization (direct) or for safety reasons(re-routing). As a second step we

showed that the exploration of the range of parameters can be used to perform scenario

simulations, for example we relaxed the sensitivity on the traffic congestion of our ATC,

and we showed how it can impact on safety. In particular we observed weak but signifi-

cant linear relations between direct and safety operations, moreover this relation is still

present also in condition of noisy forecast of the ATC.

The useful results obtained in this work let us believe that the ELSA ABM will be a

valid tool to test the inefficiency of the air transportation network for the present and

for the future scenarios.

The free route scenario

One of the strongest interests of the Airport Transport Management (ATM) community

is the development of a free-routing system, i.e. an air transportation system where

the routes of the aircraft coincide with the shortest geodetic path. The ELSA ABM

was used to implement this concept on simulated trajectories that preserve the same

statistical regularities observed in real trajectories [60]. Our analysis was first focused

on the Italian ACC LIRR. Later we extended our results to a set of 15 different European

ACCs. Specifically, we implemented two concepts of the new SESAR scenario: the free-
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1.4 The Air Transportation System

routing and de-conflicted flight plans. In order to explore the free-routing concept, we

introduced a new technique that performs a slow transition of the current ATM network

towards the SESAR scenario. Our approach was based on a local uniform correction of

the flight plans, controlled by a network efficiency parameter, taking the value of 1 only

in the SESAR scenario.

Furthermore, as mentioned above, we implemented the concept of de-conflicted flight

plans on our simulated trajectories. This was done by a brute force algorithm, that

recursively shifted in time the flight departures until no conflict was detected by our

module. It is worth noting that if the flight plans in this scenario are precisely executed,

no conflicts will be detected by our ABM. However the real-life execution of a flight

plan must take into account several variables that can affect our result. We modelled

such uncertainty with a random uniform delay of the aircraft departure. As a result,

the delayed flight plans could not be de-conflicted any longer.

The aim of the investigation is to test the resilience of the de-conflicted flight plan concept

on different networks. Such networks are defined by ranging the efficiency parameter

from the current scenario towards the new SESAR scenario. Our ultimate goal is to

identify, from a safety and predictability point of view, which scenario is most suitable

to accommodate inevitably unforeseeable events.

After performing numerical simulations with the model, we have shown that in a free-

routing scenario the controllers perform less operations although these operations are

dispersed over a larger portion of the airspace. This can potentially increase the com-

plexity of conflict detection and resolution for controllers. Furthermore, by investigating

all the intermediate scenarios, we observed two different regimes, which are regulated

by two linear laws. These laws connect the observed number of ABM operations with

the number of operation that we should expect. Specifically the slope of such linear law

becomes 5 times bigger when the efficiency parameter approaches the SESAR scenario.

Another important aspect that we investigated is the relationship between conflicts and

traffic demand. We observed that the operations performed by the ABM increase with

the square of the number of aircraft. This observation is very robust along all the transi-

tion to the free-routing. However we have highlighted that such scaling can be modified

by a severe constraint on the sectors capacity.
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1.5 Outline of the Thesis

This dissertation is organized as follow: in chapter 2 we discuss an empirical investigation

of the ATM system performed with the aim of highlighting the ATC operations from

data, the results obtained here were published in Ref.[50]. The results achieved in

chapter 2 were useful to outline the development and the calibration of the ELSA ABM.

In chapter 3 we describe each module of our ABM in detail, in particular we focus

on the time-step configuration, the conflict detection and resolution module, and the

direct module. In chapter 4 we describe the procedure that we used to generate the

input data necessary in order to perform the simulations both of current and SESAR

scenario. Finally in chapter 5 we discuss the results of ABM simulations. In particular,

in section 5.1 we show the calibration activities performed, in section 5.2 we show that

a calibrated model is able to reproduce stylized facts of the ATM system, and in section

5.3 we characterize the behavioural parameters of our ATC agents, such work was used

to write the pre-print of Ref.[61]. In chapter 5.4 we show our prediction on the future

SESAR scenario based on our ABM simulations, part of this work was published in

Ref.[60].
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Deviations

In the recent literature it is possible to find many examples where network science has

been applied to the air transportation system (for a review, see [37, 3]). Many studies

have focused on the topological aspect of the airport network [38, 39, 40, 41, 42, 62,

63, 64, 65, 66, 67, 68], but network science techniques can also be used to study topics

more related to air traffic management [69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. In

particular, one can consider different elements of the airspace like sectors and navigation

points and build networks which are informative about the air traffic management [43].

In fact, differently than the airport network, navigation point networks are more related

to air traffic management problems and to safety issues.

In this chapter, we present a study of the air traffic management procedures controlling

the flow of flights occurring on top of the navigation point network. Navigation points

are fixed two dimensional points in the airspace specified by latitude and longitude. The

airlines must use this grid to plan each flight trajectory from departure to destination.

Navigation points are also of reference for air traffic controllers who use them to solve

conflicts and problems originated by unforeseen events and to rationalize and decrease

the complexity of the aircraft flow. The navigation points can be viewed as a guide for

airlines, but also as a burden, because flights cannot fly straight and have to find a path

on this predefined grid. In fact, it is foreseen by the SESAR project [80] that naviga-

tion points will slowly disappear to allow smooth trajectories, the so-called “business”

trajectories. However, in the present air transportation system they are crucial for air

traffic controllers. It is worth mentioning that some areas of ECAC have implemented

free-routes already, for example Maastricht ACC, although such ACCs cover just a small
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2 Statistical Characterization of Flight Deviations

amount of ECAC airspace.

In our study we investigate how the planned flight trajectories are modified by con-

trollers in relationship with unforeseen events or pilots’ requests. Our study is based

on a metric called directional-fork, or di-fork, comparing planned flight trajectories with

deviated flight trajectories. By using this metric we obtain a quantitative description of

the deviations of planned flight trajectories called by air traffic controllers at the level

of single navigation point pairs. The activity of air traffic controllers usually concerns

two main aspects: on one side they are responsible for loss of safety and for making the

aircraft trajectories conflict-free. On the other side, whenever possible, they can issue

directs that (i) shorten trajectories, thus allowing for lower fuel consumption, and (ii)

can improve the predictability of the system. In our investigations we show that directs

are the main determinants for the probability of flight trajectory deviations.

We perform a statistical validation of the navigations point pairs by comparing the

observed values of the di-fork metric with the values expected under a null hypothesis of

deviations occurring at randomly distributed navigation point pairs. In other words, we

investigate how the different navigation points present in a given airspace are used by

air traffic controllers over the day. Specifically, we detect navigation point pairs where

trajectories (i) are most likely to be deviated with respect to the planned ones, thus

providing a “destabilization” of the planned trajectory, or (ii) are most likely not to

be deviated with respect to the planned ones, thus providing a “stabilization” of the

planned trajectory.

The chapter is organized as follows: in section 2.1 we describe the database used in

our investigation. Section 2.2 deals with the statistical investigation of planned flight

trajectories. Section 2.3 focuses on the statistical properties of flight deviations observed

from the planned flight trajectories. Section 2.4 introduces the di-fork and the statistical

validation method used to detect a set of over-expressed and under-expressed navigation

point pairs.
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2.1 Data

2.1 Data

Our database contains information on all the flights that, even partly, cross the ECAC

airspace. Data are collected by EUROCONTROL (http://www.eurocontrol.int), the

European public institution that coordinates and plans air traffic control for all Europe

and were obtained as part of the SESAR Joint Undertaking WP-E research project

ELSA “Empirically grounded agent based model for the future ATM scenario”. 1

Data come from two different sources. First, we have access to the Demand Data

Repository (DDR) [81] database containing all the trajectories followed by any aircraft

in the ECAC airspace during 15 months – from the 8th of April 2010 to the 27th of June

2011. Each 28 day time period is termed AIRAC cycle. A planned or realized trajectory

is made by a sequence of navigation points crossed by the aircraft, together with altitudes

and timestamps. The typical time between two navigation points lies between 1 and 10

minutes, giving a good time resolution for trajectories. In this work we use the “last filed

flight plans”, i.e. the so-called M1 files, which are the planned trajectories – filed from 6

months to one or two hours before the real departure. We also use the real trajectories,

i.e. the so-called M3 files, because we will compare planned and actual trajectories in

order to investigate the air traffic controllers role. It is worth mentioning that the last

filled flight plans (M1 files) already incorporate airline preferences. In fact, we have also

checked that M1 and M3 files do not show dramatic differences. Indeed, we do not have

access to data relative to the initial flight plan, and that prevented us from performing

a rigorous study on the way airline preferences affect the overall performances of the

system. We might only recall that the issue of airline preferences was touched upon in

Ref.[60].

In our study we are considering commercial flights. For this reason we have selected

only scheduled flights – excluding, in particular, military flights – using land-plane air-

craft, i.e. no helicopter, gyrocopter, etc. This gives, in first approximation, the full set

of commercial flights. We also excluded all flights having a duration shorter than 10

minutes and a few other flights having obvious recording data errors.

1Data can be accessed by asking permission to the legitimate owner (EUROCONTROL). The owners

reserve the right to grant/deny access to data.
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2 Statistical Characterization of Flight Deviations

The database includes all flights in the enlarged ECAC airspace 2 even if they departed

and/or landed in airports external to the enlarged ECAC airspace.

The other source of information are the NEVAC files. NEVAC files 3 contain all

the elements allowing the definition (borders, altitude, relationships, time of opening

and closing) of the elements of airspaces, namely airblocks, sectors, airspaces (including

Flight Information Region, National Airspace, Area Control Center, etc.). The active

elements at a given time constitute the configuration of the airspace at that time. Thus,

they give the configuration of the airspaces for an entire AIRAC cycle. Here we only

use the information on sectors, airspaces and configurations to rebuild the European

airspace. Specifically, at each time we have the full three dimensional boundaries of

each individual sector and airspace in Europe. All this information have been gathered

in a unique database, using MySQL, in order to allow fast crossed queries. The last filled

flight plans (M1 files) are released a few hours before departure. Therefore they already

incorporate the fact that some sectors might be closed due to military operations. This

is why we did not consider them in our analysis at all. In any case, the way we might

treat sudden closures of sectors caused by military operations is essentially the same

we use to consider disruptions due to extreme weather events. Therefore, having the

information about what are the portions of airspace closed for military operations, we

might consider such situation with very minor modifications of our model.

Our investigations are mainly performed considering the flights relative to the AIRAC

334, i.e. the AIRAC starting on May 6, 2010 and ending on June 2, 2010. Data relative

to other AIRACs are considered in order to check the stability of our results. We only

consider flights that cross the German airspace, which is one of the European regions

2Countries in the enlarged ECAC space are: Iceland (BI), Kosovo (BK), Belgium (EB), Germany-

civil (ED), Estonia (EE), Finland (EF), UK (EG), Netherlands (EH), Ireland (EI), Denmark (EK),

Luxembourg (EL), Norway (EN), Poland (EP), Sweden (ES), Germany-military (ET), Latvia (EV),

Lithuania (EY), Albania (LA), Bulgaria (LB), Cyprus (LC), Croatia (LD), Spain (LE), France (LF),

Greece (LG), Hungary (LH), Italy (LI), Slovenia (LJ), Czech Republic (LK), Malta (LM), Monaco

(LN), Austria (LO), Portugal (LP), Bosnia-Herzegovina (LQ), Romania (LR), Switzerland (LS),

Turkey (LT), Moldova (LU), Macedonia (LW), Gibraltar (LX), Serbia-Montenegro (LY), Slovakia

(LZ), Armenia (UD), Georgia (UG), Ukraine (UK).
3http://www.eurocontrol.int/eec/public/standard_page/NCD_nevac_home.html
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with the highest levels of air traffic. Specifically, we select from our database all airspace

portions labeled with an ICAO code starting with ED. This would imply that small

portions of the airspace of Belgium and Netherlands, mainly at high altitudes, are also

included in our analyses. The boundaries of the considered airspace are shown in Fig. 2.9

below. Moreover, to focus our analysis on the en-route phase of each flight, we filter the

trajectories retaining only the portion at an altitude higher than 240 FL. Time of the day

is always expressed in UTC. Finally, data do not include Saturdays and Sundays in order

to avoid weekly seasonality effects. The selected time period partly overlaps with the

major disruption of the European airspace occurred during the Eyjafjallajokull volcano

eruption. Such disruption ended on May 9, 2010. Considering that in our investigations

we eliminated Saturdays and Sundays, the overlap lasts for two days only. We decided

to perform our analysis with AIRAC 334 because it was far away from Easter holydays

and Summer holydays, thus allowing us to discard seasonality effects. In any case we

checked that the results obtained with AIRAC 334 are not significantly different from

those obtained for successive AIRACs.

In the left panel of Fig. 2.1 we show the box plot of the daily number of active flights

in the different hours of the day. An intraday pattern is clearly recognizable, with

many flights during day-time and almost ten times less flights during the night. In the

right panel of Fig. 2.1 we show the number of active navigation points in the planned

trajectories at different hours of the day. A navigation point is active in a given time

interval if at least one flight is scheduled to pass through it in that interval. Also in this

case one can see that significantly less navigation points are used during the night.
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Figure 2.1: Box plots of the daily number of flights (left panel) and number of active

navigation points of the planned flight trajectories (right panel) for different

time windows of the day. Data refer to the whole 334 AIRAC and the

German (ED) airspace and are binned in two hour intervals.

2.2 Statistical properties of the length of planned and

actual trajectories

When planning their flights, the airlines have to take into account many different con-

straints that give rise to trajectories quite different the one from the other, even for the

same origin-destination airport pair in the same day. As a result, any investigation of

flight trajectories aiming at detecting statistical regularities in the deviations occurring

in the actual flight trajectories with respect to the planned ones, must take into account

such heterogeneity. To this end, we present first some simple statistical facts aiming at

having an overview of the data. This is the starting point of our analysis. We seek to

understand under which conditions the controllers are using specific navigation points

with respect for instance to the traffic conditions.

First, we associate each flight trajectory with a timestamp defined as (i) the entrance

time in the German airspace for flights coming from different airspaces or (ii) the first

time when the aircraft reaches 240 FL for flights departing inside the ED airspace. In

this way, we are able to see that different types of flights are present during day and

night. To show this, Table 2.1 displays the mean and the 2.5% and 97.5% percentile
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2.2 Statistical properties of the length of planned and actual trajectories

of the distribution of flight length (in km) during day (6:00 am - 9:00 pm) and night

(9:00 pm - 6:00 am). The values shown in Table 2.1 refer to the whole flight trajectory.

We consider separately planned flight trajectories and actual flight trajectories. The

first observation is that night-time flights have flight trajectories that are typically much

longer than day-time flights, both for planned and actual trajectories.

Planned (km) actual (km)

Day 2831 (627, 12983) 2822 (616, 12954)

Night 3698 (655, 13030) 3687 (628, 13037)

Table 2.1: Average length of the planned and actual flight trajectories during day (6:00

am - 9:00 pm) and night (9:00 pm - 6:00 am). The numbers in round brackets

are the values corresponding to the 2.5% and 97.5% percentile of the length

distribution. All values are expressed in km. Data refer to the whole 334

AIRAC and the German (ED) airspace.

This claim is confirmed by comparing the distribution function of the planned length

trajectories during day and night time shown in Fig. 2.2. Similar results are observed

when investigating the actual trajectories.
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Figure 2.2: Cumulative distribution function of the length of planned flight trajectories

in the 334 AIRAC during day (green line) and night (blue line). Data refer

to the whole 334 AIRAC and the German (ED) airspace.

We then compare the difference in length between planned and actual trajectory,
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considering separately day and night. Table 2.1 shows no appreciable difference, but

this is mainly due to the large heterogeneity of flight length. To have a comparison

for each flight, in Figure 2.3 we show the probability density function of the fractional

difference between the length of planned (labeled as L(M1)) and actual (labelled as

L(M3)) flight trajectories during day (left) and night (right) time. For comparison we

also show a normal distribution with the same mean and variance as the data. During

day-time the distribution is almost symmetric, even if the left tail is slightly fatter than

the right one, indicating a larger probability of longer actual trajectories (L(M1) <

L(M3)). On the contrary, for night-time flights, actual trajectories are more likely to be

shorter than the planned trajectories (L(M1)> L(M3)), as indicated by the fatter right

tail. In any case, empirical data show tails much fatter than Gaussian ones.
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Figure 2.3: Semilogarithmic plot of the probability density function of the relative dif-

ference between the length of the planned and actual trajectory of flights in

the German airspace during the 334 AIRAC for different parts of the day:

day-time from 6:00 am to 9:00 pm (left panel), and night-time from 9:00 pm

to 6:00 am (right panel). The red lines are Gaussian density with mean and

variance matching those of the data.

These results indicate that the difference in planned and actual flight length has

different characteristics during day and night. We now investigate whether this difference

is associated with a better management of the traffic during night-time due, for example,

to the presence of minor constraints in low traffic conditions.

In order to do this, we use the “flight efficiency” Key Performance Indicator, as defined
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2.2 Statistical properties of the length of planned and actual trajectories

by the Performance Review Commission in [82].However, while the efficiency values

presented in [82] are computed over the en-route portion of trajectory, we here compute

efficiency by taking into account the whole trajectory. This efficiency is related to

the best path that a flight can follow in theory, without taking into account winds.

Indeed, the efficiency is obtained by comparing the planned or actual length of the i-th

flight trajectory with the length of the shortest path between its origin airport (Oi) and

destination airport (Di). Specifically, the Efficiency for a single flight i is:

Ei =
`i
`nvpi

(2.1)

where `i is the shortest distance between origin and destination (i.e. the grand circle)

associated with the flight i, while `nvpi is the length measured along its planned or actual

trajectory specified by the series of successive navigation points crossed and defining the

flight trajectory. This variable takes positive values smaller than or equal to unity. In

Table 2.2 we show the average µE (third and sixth columns), confidence intervals (fourth

and seventh columns) and standard deviations σE (fifth and eighth columns) of the

efficiency computed in different time windows of the day, and considering planned and

actual flight trajectories separately. Averages are taken across all investigated flights.

The confidence intervals are evaluated with a bootstrap procedure 4. An important

result is that for all time windows the average efficiency of the planned trajectories is

always smaller than the efficiency of actual trajectories. This suggests that the air traffic

controllers play an important role in increasing the system’s performances. Night-time

flights (in particular during the time interval from 8:00 pm to 4:00 am) are on average

more efficient than day-time flights. Moreover, the gain of average efficiency obtained in

the actual trajectories is systematically larger during night-time. It is worth mentioning

that the definition of Eq. 5.4.1 is a standard definition also used in Ref. [82]. However,

while we reported in the table the averages and standard deviations of the efficiency

4For each two-hour time window, we store the efficiency values computed for each flight in an Et array.

We therefore obtain 12 Et arrays. To compute the confidence interval of the average efficiency for

each Et we create 1000 bootstrap copies E∗
t by a sampling with replacement of the element of Et.

For each bootstrap replica of data we compute the average thus obtaining a distribution of average

values 〈E∗
t 〉. The confidence intervals correspond to 95% respectively associated with the 2.5 and

97.5 percentile of the average and standard deviation distributions.
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2 Statistical Characterization of Flight Deviations

ratios, in the ATM domain it is more customary to deal with the ratio between the

average values 〈`i〉 and 〈`nvpi 〉.
The difference of the average flight trajectory efficiency between night and day and

between planned and actual trajectories shows the relevance of the navigation points

structure in determining the choices of both the airlines and the air traffic controllers

in the planning and management of flight trajectories. Hereafter we investigate the

statistical regularities associated with the modifications of planned flight trajectories

originated by the interactions between air traffic controllers and pilots. In fact, we

believe that a sound statistical characterization of the deviations occurring in the actual

flight trajectories might be better performed focusing on the modifications occurring at

the level of navigation points.

2.3 Statistical characterization of flight trajectory

deviations

Starting from this section we perform our investigations by considering the en-route

phase of the flight trajectories only. We consider as en-route the portion of trajectory

ranging from the first navigation point when the ascending aircraft reaches FL 240 to the

last navigation point when the descending aircraft leaves FL 240. Indeed our definition

of en-route phase is different from the one reported in Ref. [82]. European airspaces are

usually vertically divided into two portions: FL 240 is considered to be the upper limit

of the lowest portion in the vast majority of the European airspaces.

We first study whether the deviations from the planned flight trajectory occur in

specific regions of the trajectories or if rather they are uniformly distributed over the

trajectory. To this end, for each flight f i scheduled between the origin airport Oi and the

destination airport Di and for each navigation point P i
j of the planned flight trajectory,

we compute the distance dij of the navigation point j from the destination airport Di.

Such distance is computed along the planned flight trajectory. We then normalize such

distance dividing it by the total planned length `i of the flight, i.e. the distance from

Oi to Di measured along the flight trajectory. The normalized distance d̂ij is obtained

as d̂ij = dij/`
i.
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2.3 Statistical characterization of flight trajectory deviations
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2 Statistical Characterization of Flight Deviations

We call deviation the event in which an aircraft passing over a certain navigation

point present in the planned M1 trajectory does not go to the next one as specified

in the planned (M1) trajectory. In Fig. 2.4 we show the probability density function

of d̂ij for all the navigation points and for those where we detect deviations from the

planned flight trajectory5. One can see by direct inspection that the two distributions

are quite different from each other thus suggesting the idea that the navigation points

where deviations occur are not randomly distributed along the trajectory. In particular,

the figure shows that there are more deviations far from the destination airport. The

figure thus shows that deviations frequently occurs close to the beginning of the flight

trajectory, thus indicating that they might not occur to recover from accumulated en-

route delay. The fact that the two distributions of Fig. 2.4 have different shapes indicates

that ATCO decisions are not randomly distributed along the trajectories.
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Figure 2.4: Probability density function of the normalized distance from the arrival air-

port of the navigation point where a deviation occurs (blue line). As a

comparison, the green line is the probability density function of the normal-

ized distance from the arrival airport of all navigation points crossed by the

flight. Normalization is obtained by dividing the distance along the trajec-

tory by the flight length, thus 0 corresponds to the arrival airport and 1 to

the departing airport. Data refer to the whole 334 AIRAC and the German

(ED) airspace.

5To be more precise, if an aircraft after being deviated returns back to its planned trajectory and

subsequently it is deviated again, then for such flight trajectory we count two deviations.
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2.3 Statistical characterization of flight trajectory deviations

We perform a similar analysis on an angle-to-destination estimator. Specifically, for

each flight f i planned between the origin airport Oi and the destination airport Di the

angle-to-destination of a navigation point P i
j is the angle αij between the segment con-

necting the two consecutive navigation points P i
j and P i

j+1 and the segment connecting

P i
j with Di, see the left panel of Fig. 2.5. In the right panel of Fig. 2.5 we show the

probability density function of αij for (i) all the navigation points and (ii) conditioned on

navigation points where we detect deviations from the planned trajectory. Also in this

case the two distributions are quite different from each other, thus supporting the con-

clusion that the navigation points where deviations occur are not randomly distributed

along the flight trajectory. It is also worth mentioning that, differently from the case of

flight length, there exists a typical angle of 20◦ − 25◦ for which deviations occur prefer-

entially. One can view this angle as the typical angle after which a deviation is needed,

since the aircraft is following a direction not in line with the destination airport. Note

also that small angles are not represented, probably because flights in line with the des-

tination airport do not need to be deviated. Hence, this fact advocates a major role of

the directs in the cause of deviations, rather than traffic regulations.
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Figure 2.5: The left panel illustrates our definition of angle-to-destination. The right

panel shows the probability density function of the angle-to-destination vari-

able estimated at a navigation point where a deviation occurs (blue line) and

for all navigation points (green line). Data refer to the whole 334 AIRAC

and the German (ED) airspace.

A third aspect we want to emphasize is that trajectory deviations do not occur in a
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2 Statistical Characterization of Flight Deviations

uniform way throughout the day. Rather, we observe an intraday pattern, as shown in

the left panel of Fig. 2.6. The figure shows the ratio between the observed deviations and

the possible deviations in the airspace6. Consistently with the definition of deviations

given above, the possible deviations are defined as the number of navigation points

that in each M1 trajectories (i) are actually crossed by the aircraft and are therefore

also present in the M3 trajectories and (ii) irrespective of the fact that the next planned

navigation point is crossed or not. As a result the number of possible deviations coincide

with the number of navigation points that are present both in the M1 and M3 flight

plans. This is therefore a global metric that is not attached to a single navigation point,

rather it is relative to the considered airspace. We show such ratio as a function of the

time of the day in the left panel and as a function of the number of active flights in the

right panel. Interestingly, the ratio of deviations is higher during night-time than during

day-time.

This observation, as well as the observation on the angles, suggests that, since traffic

is lower during night, the main motivation for deviations is not the need of dealing

with safety issues, but rather the possibility of issuing directs that will shorten the flight

trajectories. Such observation is in agreement with ATCs interviewed with ELSA project

and it is confirmed by the results summarized in the right panel of Fig. 2.6 where we

plot the fraction of deviations as a function of the total number of aircraft present in

the considered time window, averaged over an entire AIRAC. Each point refers to an

hourly time-window and different symbols refer to different AIRACs. Specifically: 334

(circle), 335 (square), 336 (triangle), 337 (diamond) 338 (star).

An inverse relation between the fraction of deviated flights and the number of active

6Error bars are given by the Wilson score interval [83] used to associate a confidence interval to

a proportion in a statistical population. The Wilson interval is an improvement over the normal

approximation interval. In fact, it is more accurate even for a small number of trials and for extreme

probabilities. It can be derived from Pearson’s chi-squared test with two categories and it is defined

as:

1

1 + 1
nz

2

[
p̂+

1

2n
z2 ± z

√
1

n
p̂ (1− p̂) +

1

4n2
z2

]
(2.2)

where p̂ is the sample proportion observed, n is the number of the trials, and z is the level of

significance.
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2.3 Statistical characterization of flight trajectory deviations
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Figure 2.6: In the left panel it is shown the ratio between the number of deviations

from the planned trajectory and number of possible deviations as a function

of the hour of the day. The vertical error bars represent the Wilson score

interval. See the text for more details. The right panel shows such fraction

of deviations from the planned trajectory as a function of the number of

active flights in different hours of the day. The number indicate the hour of

the day. Different symbols refer to different AIRACs, from AIRAC 334 to

AIRAC 338. Data refer to the German (ED) airspace.

flights is observed. During night-time (blue points) the traffic is lower and the fraction

of deviations is larger, while the opposite is true during day-time. The figure therefore

indicates that there exists an negative correlation between fraction of deviations and

traffic. When using the Pearson correlation coefficient we estimate a statistically sig-

nificant (p-value ¡ 0.01) correlation of -0.88, only slightly different from the value -0.83

obtained when we consider the Spearman correlation coefficient. This fact confirms that

most of the deviations are actually directs, because safety issues are very few during the

night.

Finally, Fig. 2.7 shows the point-biserial correlation between the angle-to-destination

for a navigation point, that is a quantitative variable, and the presence or absence of

a flight deviation at the same navigation point, that is a categorical one 7. The figure

7The point-biserial is nothing but the Pearson correlation coefficient between a vector with real entries

and a boolean vector made of [0, 1]. As in Fig. 2.2 the error bars are computed by using a bootstrap

replica of data and considering a 95-percentile confidence interval.
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2 Statistical Characterization of Flight Deviations

shows that the correlation is statistically different from zero. The aim of this analysis is

to assess the controllers behavior in optimizing the trajectories. In fact, the stronger the

correlation, the higher the tendency of the controller in deviating aircraft. The observed

intraday dynamics indicates an higher point-biserial correlation during night (from 8:00

pm to 4:00 am) rather than during the day. Again this result can be explained in terms of

air traffic controllers-pilots interaction to optimize flight paths rather than interventions

due to solve safety issues.
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Figure 2.7: Point-biserial correlation between the angle-to-destination and the categori-

cal variable indicating the presence of a deviation of the planned flight tra-

jectory as a function of the hour of the day. Data refer to the whole 334

AIRAC and the German (ED) airspace.

The conclusion of the previous statistical facts is the importance of pro-active devia-

tions rather than reactive ones. In other words, controllers usually modify the horizontal

trajectories in order to speed the flights up. This leads to deviations starting early in

the trajectory, triggered by high angles-to-destination and low traffic condition, usually

during night. We are now interested in studying the temporal heterogeneities of the

deviations, focusing on single navigation point pairs, i.e. trajectory segments.
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2.4 Over-expression and under-expression of flight deviations at navigation points ordered pairs

2.4 Over-expression and under-expression of flight

deviations at navigation points ordered pairs

We are now interested in studying the temporal heterogeneities of the deviations, focus-

ing on single navigation point pairs, i.e. trajectory segments. We want to verify whether

deviations occur randomly over the considered airspace or rather if they exhibit some

statistical regularities that can be characterized in space and time.

To this end, in section 2.4.1 we will introduce the metric, called di-fork, that we will use

to characterize deviations at a local level. In section 2.4.2 we will use the di-fork metric

in order to make clear, in a statistically robust way, that deviations follow specific pat-

terns, both in space and time. Such patterns are characterized by the fact that in certain

times and in certain portions we have either more or less deviations than expected. The

statistical procedure that will give us this information is briefly illustrated in the worked

example illustrated in Fig. 2.8.

Let us preliminarily discuss a metric, called fork, that was first introduced in Ref.

[84]. Such metric is used for characterizing the differences between planned and actual

flight trajectories at the level of each single navigation point. Let us first provide a

qualitative description of it. For each flight, we consider the last navigation point which

is common to the planned and the actual flight trajectory. At this point, we consider

that a “fork” happens when the flight trajectory is deviated from the planned one. By

counting the number of flights which are deviated from the considered navigation point

and by dividing it by the total number of flights flying through the navigation point in

the selected time interval, we obtain a quantitative indicator of how much the navigation

point is a “source” of deviations for the planned flight trajectories. This quantity varies

between 0 and 1 and is computed for each navigation point.

Hereafter we are providing a more formal definition. Let us consider a certain time

window ∆t. Let us consider a generic navigation point P appearing in at least one of

the actual flight trajectories. Let us call pF∆t(P ) the number of flights passing through

P as observed in the planned flight trajectories. Let us call dF∆t(P ) the number of

flights passing through P , as observed in the actual flight trajectories, and missing the

next navigation point as indicated in the corresponding planned flight trajectory. The
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2 Statistical Characterization of Flight Deviations

fork F∆t(P ) is defined as the ratio F∆t(P ) = dF∆t(P )/pF∆t(P ). By construction, this

metric aggregates the information on the different flight trajectories that in a certain

time window ∆t are passing through P .

This metric already produced some interesting results presented in [84]. However, its

weakness relies in the heterogeneity of trajectories which can cross a single navigation

point. Indeed, controllers are managing flows, i.e. ensemble of trajectories, and for

them the navigation point is a support to the flow. As a consequence, different flows

crossing at a given navigation point can be managed differently. We therefore introduce

a slightly different metric, where we take into account the direction of the flow as well

as the navigation point itself.

2.4.1 The directional fork

Let us consider pairs C(Pj, Pk) = (Pj, Pk) of navigation points that are consecutively

crossed according to a certain flight plan. The navigation point pairs we consider are

ordered and therefore (Pj, Pk) and (Pk, Pj) are different pairs describing flights passing

through the same pair of navigation points but moving in the opposite direction.

Similarly to the previously mentioned fork metric, the directional fork (or di-fork)

Φ∆t(C) associated with an ordered navigation point pair C is defined as the ratio

Φ∆t(C) = DF∆t(C)/PF∆t(C) where PF∆t(C) is the number of flights planned to flow

through Pj and Pk in the direction from j to k and DF∆t(C) is the number of flights

actually crossing Pj and then deviated to a navigation point different from Pk in the

considered time window ∆t. In other words, the first navigation point is the one crossed

by the aircraft and the second one is the navigation point present in the planned flight

trajectory but not present in the actual flight trajectory. This definition allows us to

investigate the deviations as a function of the different directions, and to have a more

flow-based metric. It is worth emphasizing again that the di-fork metric refers to navi-

gation point pairs, while the fork metric of Ref. [84] refers to single navigation points.

Below we investigate the capabilities of the di-fork metric in providing a statistical

characterization of the deviations occurring in the flight trajectories. More specifically,

we are interested in seeing how the statistical facts we found in section 2.3 are present

at the microscopic level, i.e. at the navigation point pair level.
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2.4 Over-expression and under-expression of flight deviations at navigation points ordered pairs

2.4.2 Navigation point pairs with over-expressed and

under-expressed values of the di-fork metric

Here we investigate whether the flight trajectory deviations are randomly distributed

over the day or rather if they are over-expressed or under-expressed for specific naviga-

tion point pairs. This type of investigation cannot be done only in terms of the occur-

rence of the flight trajectory deviations because the number of flights passing through a

specific navigation point pair in a given time interval is a quite heterogeneous variable.

We therefore estimate the over-expression and under-expression of flight trajectory de-

viations by considering navigation point pairs and trying to compare the occurrences of

flight trajectory deviations observed in this pair with an appropriate null model.

In this section we investigate the navigation point pairs C(Pj, Pk) for which the air

traffic flow is from Pj to Pk. Suppose that during a specific day we have PFday flights

with planned flight trajectories connecting Pj to Pk in a step. Suppose also that DFday

is the number of flights passing through the first navigation point Pj and deviating from

the successive navigation point Pk in the same day. Let us now define PF∆t the flights

that are planned to fly through Pj and Pk during an intraday time interval ∆t. We can

estimate what is the probability of observing a number DF∆t of flights flying through

Pj and then deviating from Pk during the same time interval. By assuming that for

each navigation point pair, the flight trajectory deviation events are independent the

one from the other, a good approximation of the probability of detecting DF∆t is given

by the hypergeometric distribution8:

H(DF∆t|PFday, DFday, PF∆t) =

(
DFday

DF∆t

) (
PFday−DFday

PF∆t−DF∆t

)(
PFday

PF∆t

) . (2.3)

By using this value of the probability of observing DF∆t deviated flight trajectories we

can obtain for each navigation point pair C(Pj, Pk) a p-value for the over-expression or

the under-expression of DF∆t. The probability of Eq. (2.3) allows us to associate a

p-value p(DF∆t) with the actual number DF∆t of detected deviation. Specifically, for

8It is worth mentioning that using the hypergeometric distribution is equivalent to performing an one

tail Fisher’s exact test [85] starting from a 2 × 2 contingency table whose entries are DF∆t and

PF∆t − DF∆t in the first column and DFday − DF∆t and (PFday − DFday) − (PF∆t − DF∆t) in

the second column [86].
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2 Statistical Characterization of Flight Deviations

over-expression (OE) we have

pOE(DF∆t) = 1−
DF∆t−1∑
X=0

H(DF∆t|PFday, DFday, PF∆t), (2.4)

whereas for under-expression (UE) we have

pUE(DF∆t) =

DF∆t∑
X=0

H(DF∆t|PFday, DFday, PF∆t). (2.5)

Since we are performing this test for all possible navigation point pairs C(Pj, Pk), we

have to use a correction for multiple hypothesis test comparison. The most restrictive

correction is given by the Bonferroni correction that prescribes to select only the p-values

smaller than P = α/2NpairNt where α is the univariate p-value significance level usually

set to α = 0.01, Nt = 12 is the number of used time bins and Npair is the number of

possible pairs we tested. Such number changes depending on the specific investigation.

As an example, when testing the 334 AIRAC only we use Npair = 29076 and therefore

we have P = 2.43 10−8. In the analysis presented below, where we test for over- and

under-expressions over five consecutive AIRACs we will consider Npair = 146112 and

therefore P = 2.85 10−9. The factor 2 is taken into account because we consider both

over- and under-expressions. Rather than the Bonferroni correction, we will instead use

the Holm-Bonferroni multiple hypothesis test correction [87]. This is uniformly more

powerful than the Bonferroni correction, as it controls the family-wise error rate for

every hypothesis test in a strong sense. Let p1 < p2 < p3 < · · · < pM be all p-values

sorted from smallest to largest, where M = 2NpairNt is the number of performed tests.

Let k be the smallest value such that pk < α/(M − k + 1). All p-values pi such that

i ≤ k are considered to be statistically significant in the Holm Bonferroni approach.

In the results presented hereafter, we aggregate the number of temporally over-expressed

and under-expressed navigation point pairs relative to the different days of an AIRAC.

2.4.3 Worked example

In Fig. 2.8 we illustrate an example of the two possible outcomes of the statistical

validation procedure associated to the hypergeometric distribution described above. The

left panel indicates a situation where we have an over-expressed navigation point pair

40



2.4 Over-expression and under-expression of flight deviations at navigation points ordered pairs

(thick red segment). The first navigation point is crossed by 90 aircraft. However

only 48 of them reach the other navigation point of the pair. This results in a di-

fork value of (90 − 48)/90 = 0.467 which leads to an over-expression as a result of the

comparison with the average daily behavior characterized by a di-fork value of (987 −
785)/987 = 0.205, see the central panel. The right panel shows the same pair in a

different time window. Now there are many more aircraft crossing the two navigation

points. However, the pair results to be under-expressed, given that only 135−131 = 4 out

of 135 aircraft do not cross the second navigation point of the pair. The example shows

that having an over-expressed or under-expressed pair does not necessarily indicate that

the pair is more frequently used. Rather, the statistical validation procedure associated

to the hypergeometric distribution selects the pairs where the occurrence of deviations

is statistically different from the daily average.

90

48

Frankfurt

Hamburg

OE :  (16,18) Fork :0.467

987

785

Frankfurt

Hamburg

Day  Fork :0.205

135

131

Frankfurt

Hamburg

UE :  (8,10) Fork :0.030

Figure 2.8: The left panel shows a navigation point pair (thick red segment) where the

first navigation point is crossed by 90 aircraft. However only 48 of them

reach the other navigation point of the pair. This results in a di-fork value

of (90−48)/90 = 0.467. The right panel shows a navigation point pair (thick

red segment) where the first navigation point is crossed by 135 aircraft. and

131 of them reach the other navigation point of the pair. This results in a

di-fork value of (135− 131)/135 = 0.030. The central panel shows the daily

behavior of the considered pair. The first navigation point is overall crossed

by 987 aircraft, with 785 of them reaching the other navigation point of the

pair. Therefore the average daily behavior is characterized by a di-fork value

of (987− 785)/987 = 0.205.

In Table 2.3 we show the number of over-expressed (second column) and under-
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2 Statistical Characterization of Flight Deviations

expressed (third column) navigation point pairs in the 334 AIRAC. The fourth and fifth

column show the number of navigation point pairs with at least one and five planned

flights, respectively. The number of over-expressed navigation point pairs is larger in

the night than during day-time, while the opposite is true for under-expressed pairs.

Time windows of early morning (e.g. the 6:00 am 8:00 am time window) and of early

afternoon (e.g. the 2:00 pm 4:00 pm time window) present a roughly balanced number of

over-expressed and under-expressed navigation point pairs. The fifth and sixth columns

indicate the number of OE and UE observed in at least one of the 5 AIRACs from 334

to 338.

For illustrative purposes, in Fig. 2.9 we show the localization of the under-expressed

pairs and over-expressed pairs in the 12 bi-hourly time-windows occurring in a day. The

different colors are proportional to the measured di-fork value in the considered time-

window, according to the color code on the right of the figure. Although there seem

to be a predominance of segments with colors belonging to upper and lower part of the

color bar, in some case we can also see, see panel (2, 4) for instance, some segment with

colors belonging to the central part of the color bar. Once again, this indicates that the

statistical validation procedure associated to the hypergeometric distribution selects the

pairs where the occurrence of deviations is statistically different from the daily average,

rather than pairs with higher or lower di-fork values.

In fact, in the left panel of Fig. 2.10 we show all navigation point pairs of the considered

airspace in the 12 bi-hourly time-windows occurring in a day. As in the above case, the

different colors are proportional to the measured di-fork value in the considered time-

window, according to the color code on the right of the panel9. The comparison of such

panel with Fig. 2.9 clearly shows that navigation point pairs with larger di-fork values

are not over-expressed as well as navigation point pairs with small di-fork values are not

under-expressed. In the right panel of Fig. 2.10 we show again all navigation point pairs

of the considered airspace in the 12 bi-hourly time-windows occurring in a day. However,

here the colors are proportional to the number of aircraft traveling across the navigation

9In this graphical representation the navigation point pairs C = (a, b) and C = (b, a) are considered to-

gether. In other words, the di-fork value represented here is defined as (DF (C)+DF (C))/(PF (C)+

PF (C)). Moreover, we only show the segments such that (PF (C) + PF (C)) ≥ 5
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Figure 2.9: Spatial localization of the under-expressed pairs and over-expressed pairs

over the day. The different colors are proportional to the measured di-fork

value in the considered time-window.

point pair in the considered time window10. By comparing such panel with Fig. 2.9 one

can clearly see that highly travelled segments are not necessarily over-expressed while

poorly travelled segments are not necessarily under-expressed.

The spatial localization of the over-(under-)expressed navigation point pairs might

change for different time-intervals. Again this is not surprising because the di-fork met-

ric not only takes into account the topology of the navigation point network which has

a slow dynamics over the day, but it also takes into account the flow of aircraft over the

network, which is instead pretty variable over the day. However, stable patterns can be

detected. In fact, we investigated the temporal persistence of the over-expression and

under-expression of flight deviations at navigation point pairs in Fig. 2.11. This is a

10In this graphical representation the navigation point pairs C = (a, b) and C = (b, a) are considered

together. Accordingly, the number of aircraft shown in the figure is the sum of the number go flights

traveling from one navigation point to the other in both directions.
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color coded figure showing for each investigated time window of the day and for each

statistically validated navigation point pairs of the AIRAC 334 whether each navigation

point pair turns out to be also over-expressed or under-expressed in the 4 AIRACs suc-

cessive to AIRAC 334. In the figure a value of 5 (labeled as a red cell) indicates that the

navigation point pair is over-expressed in all five considered AIRACs. Negative numbers

indicate under-expression. It is worth mentioning that a pair over-expressed (under-

expressed) in a certain AIRAC never happens to be under-expressed (over-expressed)

in the other 4 AIRACs. For comparison, in the fifth and sixth column of Table 2.3 we

indicate the number of OE and UE observed in at least one of the 5 AIRACs from 334 to

338. One can see that there are only a few navigation point pairs that are over-expressed

during the 5 AIRACs both during day time and during night-time. The two periods

of the day show a quite different general pattern suggesting again different underlying

reasons for the deviations of the planned flight trajectories. In fact, the figure is consis-

tent with our previous findings and gives us more information. It seems that during the

night, controllers are consistently deviating some of the flows in the airspaces, probably

to shorten the corresponding trajectories. During the day on the other hand, controllers

are stabilizing the horizontal deviations, especially some flows, which are probably more

complex than the others. This also complements the results of [84], in which we were

only able to see that some navigation points were consistently over-used for deviations.

As a result, the di-fork metric seems able to show in quantitative way that the frac-

tion of deviations occurring at the level of single navigation point pairs during the day

is not a random variable. Rather it follows patterns that reveal to be stable over differ-

ent AIRACs. Therefore it provides an useful instrument for a “microscopic” statistical

characterization of the deviations from planned flight trajectories in the air traffic man-

agement procedures. This metric might reveal useful to identify the specific portions of

the airspace in which modifications of the current structure are needed in order to make

the whole ATM system more efficient. On one side, such modifications might regard the

infrastructure, i.e. the navigation point network structure, the route structure and the

sectors dynamic configuration [88]. On the other side, modifications might occur also at

the level of the strategic 4D trajectory planning [89, 90]
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Figure 2.10: Spatial localization of the navigation point pairs over the day. In the left

panel the different colors are proportional to the measured di-fork value

in the considered time-window. In the right panel the different colors are

proportional to the number of aircraft traveling across the navigation point

pair in the considered time window.
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Figure 2.11: Color code summary of the persistence of over-expressed and under-

expressed navigation point pairs statistically validated during AIRAC 334

and during the successive 4 AIRACs. On the x axis we report the time

window of the day and each horizontal line parallel to the x axis represents

a navigation point pair statistically validated at least once during AIRAC

334. Positive values (red cells) indicate that the navigation point pair is

repeatedly over-expressed during different AIRACs at the considered time

window. Negative values (blue cells) indicate repeated under-expression.

Data refer to the five AIRACs from 334 to 338 and to navigation point pairs

of the German (ED) airspace. Data shown in this table were obtained by

using the FDR correction for multiple test comparison with Npair = 146112.
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3 The ELSA Agent-Based Model

Our agent-based model involves aircraft/pilots and air traffic controllers who are active

within an Area Control Center (ACC) in the European airspace. At the most elementary

level, the airspace is divided in 3-D airspace volumes, termed elementary sector, or

collapsed sector (called simply sector in the following). A sector is handled by two

controllers: one (executive) is responsible of keeping the adequate separation between

aircraft in the sector (making sure they do not infringe the separation minima), while

the other one (planner) is responsible for the coordination with the adjacent sectors and

the planning of the modified trajectories. The sectors are dynamic entities, which can

be split or aggregated depending on the air traffic load. Moreover, the sectors can be

roughly divided in two types: the en-route sectors, controlling the planes in their en-route

trajectory, and the Terminal Maneuvering Areas (TMA) or the Control Zones (CTR),

managing the take-off and landing phases. The first important level of aggregation of

sectors is given by the ACC, where all the sectors are physically controlled from the

same room (control center).

In our ABM, the pilots are passive entities, in fact they follow the flight plan, or the

instructions of the ATC if they were different. The ATCs shall monitor the execution

of the flight plan. The ATC actions are influenced by the current workload of their own

sector and by the workload of the neighboring sectors, as well as by the local geometry

of the flight plans. The model is able to work on the whole 3-D volume of the airspace,

while all results presented here are considering only the portion of airspace above FL

240.

We model and simulate the events that make a planned flight trajectory, recorded in

the so-called M1 files, transform into an actual one, recorded in the so-called M3 files.
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3 The ELSA Agent-Based Model

The aim is that of investigating the issues that affect the predictability1 of the last filed

flight-plan within the ATM system, and what are the changes brought by SESAR in

terms of airspace management and controllers’ workload.

3.1 General features of the model

The interaction between the agents considered in our ABM is needed in order to manage

the tactical changes occurring in the system due to unforeseen events, i.e. weather events,

congestions, limitation of sectors capacity, etc. Moreover, the ATC sectors are the places

where flight trajectories are made conflict free.

The model takes into account that M1 trajectories are not conflict free. Thus one main

task to be performed within the model is to deconflict trajectories. Moreover, we can

simulate disruptions in the system and see how the system reacts to them2. We assume

that the disruption lasts for a certain time window. Operationally, this means that for

a certain time window a certain area of the sector or ACC can not be crossed by flights.

This might correspond to a situation where an extreme weather event occurs and there-

fore the air traffic must be deviated [91, 92]. As a result, another task of the model is to

modify one or more flight trajectories in order to avoid these disruption areas. The way

we model this step is to deviate the flight trajectories along new navigation points that

are external to the restricted area and with the constraint that (i) we want to minimize

the length of the deviated trajectory and (ii) the deviated trajectory must be conflict free.

In general we will take into account two critical situations: (i) there is a possible

conflict of trajectories that nevertheless do not intersect one with each other and (ii)

there is a possible conflict of trajectories that intersect with each other. These two cases

are essentially the same from an operative point of view. We keep this case distinct from

the previous one to emphasize that the last case usually occurs mainly in the planned

trajectories, while the previous one usually occurs mainly when one of the two conflicting

trajectories have already been deviated. In any case the way our ABM treats these three

1Predictability is here intended as a comparison of the actual flight arrival time to the scheduled flight

arrival time.
2However we will not show in this dissertation experiments concerning disruptions
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3.1 General features of the model

different situations is the same. Starting form the planned trajectory, we identify the

navigation point(s) involved in the critical situation and try to select new navigation

point(s) for each flight trajectory such that the new trajectory has the minimal length

and it is conflict free. This algorithm is therefore essentially based on “re-routing” and

the possibility of performing flight level changes.

The model also performs another important task which is related to the issuing of

directs. They are given within the ACC in order to speed up the passage of the aircraft

within the ACC, provided that no conflict is created. The algorithm we have imple-

mented looks for a new shorter trajectory that allows the aircraft to come back to its

planned trajectory within the considered ACC. In general an aircraft in sector SA can

be directly sent to another sector SB if such choice is preferable in terms of trajectory

length. However, if sending the aircraft to a new sector SB would infringe the capacity

of that sector, the algorithm searches for a sub-optimal modified trajectory trying to

send the aircraft back to the planned trajectory within the same sector SA.

We have constructed the code in a modular way that allows to swap the priority of

the strategies adopted by the controllers. In fact, as a default controllers first check

for the possibility of doing re-routings and then change the flight altitude. However, if

necessary, we can easily modify the code in such a way that the two strategies mentioned

above are swapped or that, if needed, no direct is issued.

The modules described below implement a local resolution of conflicts. However, this

way of solving conflicts (i) can be slow from a computational point of view and (ii)

provides solutions that are not optimized at a global level, thus making it necessary to

“adjust” trajectories several times as long as an aircraft travels across the ACC. We are

fully aware of this limitation in our model. Indeed, we implemented such solution because

we had indications that this is close to the way controllers work in reality. Moreover, we

also believe that our solution might be quite effective in the SESAR scenario simulations.

In fact, we might simulate a scenario where controllers have a role less preeminent than

in the current scenario and some basic conflict-resolution actions are left to the single

aircraft. In this respect, our model might mimic a scenario where pilots, that clearly

have not a global vision of the system, endowed with a set of policy rules assigned by

their airlines, will perform an active conflict resolution at a tactical level, thus realizing
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3 The ELSA Agent-Based Model

a sort of self-organization amongst aircraft.

3.2 Overview of the Model

Figure 3.1: Schematic block diagram of the tactical ABM model. Oval red blocks identify

the start and the end of the code. Rectangular cyan box are used to indicate

the different modules of the model where operational steps are performed.

Larger rectangular yellow areas are used to identify different logical areas of

the model: the one on the left devoted to the set up of aircraft trajectories

and sector configuration and the one on the right devoted to the actual

management of trajectories. Rhomboidal green blocks identify the logical

nodes where choices are done. Solid lines with arrows are used to logically

connect the different blocks. Dashed lines are logical connectors used to

highlight the fact that a module is dialoging with the Conflict Detection

module. For each block we indicate the section where it is described.

A schematic block diagram of the model is given in Fig. 3.1. The logical blocks reported

in the left part of the figure are described in sections 3.4 and 3.5. They are relative to
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3.3 Navigation Points

the set up of aircraft trajectories and sector configuration. In these modules the model

computes the position of the aircraft with a certain look-ahead, the sectors workload

and defines the pairs of aircraft to be checked the one against the other in order to

check for possible conflicts. The logical blocks reported in the right part of the figure

are described in sections 3.6 and 3.8. They are relative to the actual management of

the trajectories needed either to solve possible conflicts or to issue directs in order to

shorten the passage of an aircraft in a sector. Here the model computes the distances

between aircraft pairs in order to identify the ones that are below the safety threshold

and, when needed, modifies the trajectories in order to solve the conflicts. It also tries

to shorten the aircraft trajectories, by checking that safety requirements and capacity

constraints are not infringed.

We have designed the code in a modular way that allows to swap the priority of the

strategies adopted by the controllers. In fact, as a default controllers first check for

the possibility of doing re-routings and then change the flight altitude (FL change).

Therefore, due to the modularity of the code, the sequence among the different modules

can be changed by the user of the code.

The code that implements the model presented here is written in C [93] and it is avail-

able at the following URL: http : //ocs.unipa.it/software.html : ELSA Tactical Layer3.

3.3 Navigation Points

The planned flight trajectories are sequences of specific points of the airspace called

navigation points to be crossed by the aircraft at specific times, flight levels, and within

a specific sector. The velocity of each aircraft during the flight interval between two

navigation points is assumed to be constant and its value is estimated from the schedule

of the flight plan. In our simulations all navigation points present in the last-filed

flight-plans are used. When trajectory changes are required by the controllers these

changes involves temporary navigation points that are selected by the program or that

can be externally provided. In the simulations we present in this thesis the temporary

3A previous version of the code specifically dedicated for performing simulations in the SESAR scenario

is available at the following URL: http : //ocs.unipa.it/software.html : ELSA SESAR Simulator
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3 The ELSA Agent-Based Model

navigation points are randomly uniformly distributed within the west Italian ACC.

It should be noted that not all temporary navigation points will be used in the flight

deviations. Only a set of them will be selected, as we will explain below. All the not

used ones will be eliminated from the analysis after all the flights in the ACC will be

managed. As we will explain in section 3.7.1, they are generated to allow the aircraft

to deviate from the planned trajectories without necessarily passing over a predefined

navigation point which might be too far.

3.4 Time-step configuration

The ABM is a discrete-time model. At each time-step the ReadyToFly module selects

the active aircraft, then the Expected Position module computes the expected dynamical

evolution of all trajectories within a look-ahead. The look-ahead assumes the value ∆td

when the ATCO checks the trajectories for possible safety issues when he tries to issue

a direct, see section 3.8. The look-ahead assumes a smaller value ∆tl when the ATCO

performs the routinary checks for conflict detection, see section 3.6. At time t0 suppose

that the position of all aircraft is known. The elementary time step of the model is δt.

At time t the time evolution of the system is computed with δt time resolution until the

time t+ ∆td where ∆td is the look-ahead time of air traffic controllers. On the basis on

the estimated time evolution air traffic controllers release their decisions to the aircraft

and a new iteration starts. To minimize the computational cost of the simulation the

initial time of the next iteration of the model is performed at time t + ∆ts where ∆ts

is a time interval ranging between δt and ∆tl. The values used in our simulations after

calibration were δt = 10 seconds, ∆tl = 7.5 minutes, ∆ts = 3 minutes and ∆td = 15

minutes, see Fig. 3.2.

Indeed, in the basic setup, the controller forecast of the aircraft position is exact

within its time look-ahead. Our ABM allows to introduce some errors in the forecast

of the controller. This is done by setting a parameter lε 6= 0 which is controlling the

uncertainty in the estimation of the velocity of the aircraft. Specifically, the uncertainty

in the controller’s forecast is introduced by the following procedure: (i) between time t

(current time) and t+∆ts, the model that the aircraft maintains the planned velocity, (ii)
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3.4 Time-step configuration

Figure 3.2: Illustration of the time discretization used in the model. In the two panel

we show a flight trajectory sampled at a discrete times with an elementary

time interval of δt = 30 sec. The dots indicate the aircraft positions sampled

at each δt. Red dots are the aircraft positions evaluated within a time step

∆ts = 3 min for the flight trajectory evaluated at t = t0 (left panel) and

at t = t0 + ∆ts (right panel). Red and cyan dots are the aircraft positions

evaluated within the time interval of the look-ahead ∆tl = 7.5 min whereas

red, cyan and magenta dots are the aircraft positions evaluated within the

time interval of the look-ahead used to issue directs ∆td = 15 min. Blue

circles are navigation points of the flight plan. The cross indicates the initial

position of the aircraft at the initial time of the time step. The arrows

indicate the directions travelled by the aircraft.

between t+∆ts and t+∆tl, the model introduces an uncertainty in the aircraft velocity.

The velocity used by the controller is v(1 + εv), where εv is drawn at random from a

uniform distribution in the range −lε and lε. With this choice the controller makes bigger

errors on positions on longer times. The choice of considering a uniform distribution is

done for the sake of simplicity. That gives us the opportunity of exploring the impact

of uncertainty in the ATCOs management procedures. Hereafter, we will consider two

rather different cases: lε = 0 (no uncertainty) and lε = 0.1 (10 % of maximal percentage

error).

It should be noted that the actual velocity of aircraft do not change in our model,

and hence they are always those of the planned trajectories (except in case of re-routing
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3 The ELSA Agent-Based Model

where the velocity is extrapolated on the new segment). In practice and in the absence

of learning processes, incorrect forecasts or stochastic changes of the trajectories are

indistinguishable.

The Sectors workload module is used to set up the sectors configuration of the consid-

ered airspace and to determine the number of aircraft present in each ATC sector. The

ACC we are considering is divided into a number of sectors. Each sector is characterized

by its geographical location and by a proxy for its capacity, defined by us as inferred

capacity and estimated as the maximum number of aircraft that are simultaneously

present in a sector within a time window of one hour [94]. This information is obtained

from the flight plans of the AIRAC used to start simulations. We want to emphasize

that the inferred capacity is just a raw approximation of the real capacity. However the

ABM can be set up with the real capacities if they are available.

In addition to the inferred capacity of a sector we dynamically estimate its workload.

Specifically, we estimate sector workload by assigning a numerical flag to each navigation

point of the planned flight trajectories for each sector. We define workload of a sector

the number of flights planned to cross it during the time window of an hour. At each

time-step the ABM evaluates the workload of each sector of the ACC.

3.5 Priority list of controllers’ actions

At each time step we create a list of flights active in the considered time-step. The list

is randomly ordered. The order of the list is followed by the controller in her attempt to

solve potential conflicts and to issue directs. Specifically, the i-th aircraft trajectory in

the list is checked against the trajectories of previous listed i − 1 flights. For example,

the first aircraft in the list will perform its planned trajectory whereas the trajectory

of the second one will be checked with respect to the trajectory of the first one. The

trajectory of the third aircraft will be checked with respect to the trajectories of the

second and the first ones and so on. Indeed, to speed computation, the trajectory check

between two aircraft is not performed when the two trajectories are too far to interact

within the look-ahead time interval.

The random reordering of the flight priority list is done in order to be sure that the
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3.6 Conflict Detection module

trajectories to be deviated are not always the same ones. If a conflict involving the i−th
aircraft is not solved by one of the procedures followed by the controller, then the list is

modified by putting the i− th aircraft in the first position of the list and the trajectory

analysis of the time step is repeated from the beginning. When this redefinition of the

priority list is repeated more than 50 times for a time step the simulation is aborted. It

is worth reporting that in the simulations performed to obtain the results of this work

we never had to abort a simulation.

3.6 Conflict Detection module

The collision detection module calculates the minimum distance for each pair of aircraft

positions between the flight i and the flights labeled as i − 1 in the priority list. This

operation is repeated for all the times t + kδt with k ranging from 1 to N such that

t + Nδt ≡ t + ∆tm where ∆tm is equal to ∆tl or ∆td depending whether the conflict

detection module has been activated by a re-routing procedure or by a direct procedure.

For each flight i the algorithm computes an array of flight positions pi,k, k = 1, · · ·N
given the flight positions at different time t+ kδt.

Suppose we are now checking if the i-th flight trajectory is conflicting with all other

fj trajectories, with j < i. For each of the N elementary time-increments, we compute

a matrix of distances dij,k with j rows and N columns. For all aircraft flying at the same

flight level all distances are computed by using the Haversine distance [95] between each

pair of flight positions4. For pairs of aircraft flying at different flight levels at time t+kδt

the distance is set to infinity because aircraft flying at different flight level are not raising

minimum separation issues. For each column we select the minimum value and obtain a

vector dimin(k) of length N . A possible conflict between two aircraft flying at the same

flight level is detected at time t+ kδt whenever the elements of dimin(k) are smaller than

the safety distance threshold dthr that is usually set to 5 NM. This reference value is the

standard value used in ATM for conflict detection, see Ref. [96].

4The computation of the Haversine distance is particularly time-consuming. Therefore we have also

implemented in the code the possibility that in some specific cases the Euclidean distance is used

instead of the Haversine one. This is for example advised when it is necessary to perform a very

large number of simulations in a limited portion of the airspace.
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In order to mimic some heuristics typically used by air traffic controllers in detecting

conflict we introduce in the ABM a linear growth of the safety threshold dthr as a function

of the time interval from the present time. In fact when an air traffic controller forecasts

the position of an aircraft at a far future time he uses an additional space of separation

between the aircraft to be safe in the forecast. Our model therefore uses a safety distance

threshold defined as:

dthr(k) = dthr + ∆dthrk (3.1)

where ∆dthr is one of the model parameters.

When a conflict is detected the algorithm proceeds to the next module that performs

the de-conflicting of flight trajectories.

3.7 Conflict Resolution module

After the conflict detection module has detected a conflict, this module searches for a

new conflict free trajectory. It is conceived as a two-step algorithm that acts on the

search of a new trajectory. The first step attempts to perform a re-routing of the flight

trajectory. When the re-routing is successful the new trajectory is accepted. If the

re-routing module fails to find an appropriate new trajectory the algorithm move to the

second step that require a change of flight level for the aircraft.

3.7.1 Re-rerouting submodule

The procedure of the re-routing attempt is illustrated in Fig. 3.3. We first identify the

position B (not necessarily a navigation point) defined by k = 0 at the considered time

step. We then identify the navigation point A which is the first navigation point after

the area of the potential collision (filled circle in the figure). The procedure is to attempt

to re-route the trajectory such that all navigation points that are in the conflict area plus

the A navigation point are avoided. These navigation points are replaced by a temporary

navigation point (see T point in Fig. 3.3). The temporary navigation point is selected

from several possibilities (see grey points in Fig. 3.3) by choosing the navigation point

solving the conflict that presents the shortest path between position B and navigation
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3.7 Conflict Resolution module

point E, i.e. the navigation point where the flight trajectory is re-routed. Another

constraint about the re-routing trajectory is the request that the deviated trajectory

from the planned one cannot exceed an angle αM both for the αin and αout angles

observed between the planned and the re-routed trajectories (see Fig. 3.3). If the re-

routing trajectory is not able to find a solution the re-routing submodule attempts to

re-route the flight trajectory by moving forward the navigation point E and by looking

again for a re-routing trajectory. When a possible solution is found, the result of the

search is accepted if the re-routing trajectory deviates from the planned trajectory for

less than a maximal time Tmax. Tmax is a model parameter that represents the maximal

time that an aircraft can spend away from its planned trajectory each time it is deviated.

If the solution found has a deviation time longer than Tmax the re-routing submodule

is not selecting any new trajectory and the resolution of the conflict is passed to the

flight level module. In the right panel we show the distance between the two aircraft

for the planned trajectory (blue dots) and the ones considered by the ABM module

(gray lines). Amongst those, the trajectory that satisfies the requirement of minimum

separation distance is highlighted in red, as in the left panel.

3.7.2 Flight level change submodule

The second step of the conflict resolution module involves changes of flight level. A flight

level (FL) is a unit measure defined as altitude above sea-level in 100 feet units measured

according to a standard atmosphere. Allowed flight levels are separated by 1000 feet,

i.e. 10 flight levels (separation levels). This is the standard separation vertical distance

between any pair of aircraft, see Ref. [96]. Moreover, in our model the semicircular rule

has been considered, meaning that aircraft flying in opposite directions are allowed to

fly only along odd or even levels respectively. Therefore when an aircraft needs to be

moved to another separation level, it will not be moved to the next first one but to the

second one in order to respect the semicircular rule, thus performing a jump of 2000 feet

or 20 FLs.

All flights are considered to be available in the planned trajectories. In our agent-

based model aircraft can move two Flight Levels (FL) first upwards and, if the conflict

cannot be solved by a move upwards, downwards. The model assumes that the flight
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Figure 3.3: The figure illustrates the procedure of re-routing, see text for more details.

The gray trajectories, although possible, are not selected because they do not

guarantee the minimum separation of 5 NM required between two aircraft.

The re-routing occurs between point B (blue cross of the left panel) and E

(green circle of the left panel). The re-routing is performed by deviating

the flight trajectory to the temporary navigation point T (yellow square of

the left panel) and then re-route back the trajectory to navigation point

E. To find the best re-routing flight trajectory the ABM module explores

trajectories passing through several different temporary navigation points

(gray spots of the left panel). The distance between the two aircraft is

shown in the right panel for the planned trajectory (blue dots), the ones

considered by the ABM module (gray lines) and the selected one satisfying

the requirement of minimum separation distance (red dots). In the left panel

all trajectories are considered within the time of the look-ahead ∆tl.
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3.8 Direct module

level change is abrupt occurring when the conflict resolution is settled. If no flight level

is available to solve the conflict then the list is reshuffled by moving the considered flight

in the first position of the priority list.

When a flight level change is executed the flight remains in the new flight level for a

time equals to Tmax. After Tmax the aircraft goes back to the flight level of the planned

flight.

3.8 Direct module

A direct, i.e. a change of the planned trajectory significantly shortening the flight path,

is made by skipping one or more navigation points of the flight plan and flying straightly

from the current navigation point to a distant navigation point of the flight plan. In our

algorithm this module is executed with a probability that depends on the workload of

sectors of initial and ending navigation points of the direct.

When the workload of sector exceeds its inferred capacity all directs that come from

other sectors are not allowed, while re-routing due to safety issues are still allowed.

Operationally this means that in a condition when the workload equal or exceeds inferred

capacity any other incoming flight has to enter the sector from the navigation point

specified in the flight plan.

Specifically, let ni be the first navigation point to be crossed of the current time step,

and nm the navigation point where the flight will return on its original flight plan. By

issuing a direct trajectory from ni to nm therefore m − i − 1 navigation points will be

absent in the new trajectory, as illustrated in the left panel of Fig. 3.4.

The direct module first evaluates how many navigation points can be skipped with

the constraint that the flight has to come back to the planned trajectory within a time

interval equal to Tmax = 20 min 5, and the direct is conditioned to the inferred sectors’

capacity of the adjacent sectors.

After that the model evaluates if the new trajectory will be involved in conflicts.

In order to do this check we use the Conflict Detection module of section 3.6 with a

5The choice of Tmax has been done in agreement with the indications of the air traffic controllers

consulted within the ELSA project of SESAR.
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3 The ELSA Agent-Based Model

different time-interval ∆td. If the direct is safe and the angle between the new and

original trajectory is larger then a sensitivity threshold value αs = 1◦ then the new

trajectory is accepted, otherwise the algorithm tries a suboptimal solution, see the left

panel of Fig. 3.4.
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Figure 3.4: Left panel: illustration of the procedure implemented to issuing directs.

Right panel: Probability function used in the procedure implemented to

issuing directs.

The probability to issue a direct for an air controller operation on a sector s is de-

pendent by the workload and by the inferred capacity of the sector involved. Let Cs be

a constant of the s-sector that in our calibration procedure we fixed to be the inferred

sector capacity obtained from real data [94]. Let Ps(Ns) be the probability to issue a

direct in the s-sector when the workload of sector s is Ns. For the sake of simplicity we

model Ps(Ns) as a linear decreasing function of Ns, see the right panel of Fig. 3.4

Ps(Ns) = pd

(
1− Ns

xcCs

)
(3.2)

The probability to attempt a direct is function of two parameters pd and xc. The first

Ps(Ns = 1) = pd is the probability to attempt a direct if just one flight is in the sector.

The second parameter xc is used to control the slope of probability as a function of the

workload, as illustrated in the right panel of Fig. 3.4. The pd parameter plays the role

of a scale factor for the overall probability. The xc parameter measures the controllers

confidence in approaching the maximum sector’s inferred capacity. While Ns and Cs are
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3.9 Disruptions

parameters depending on each specific sector, pd and xc are global parameters that are

set across the whole considered ACC.

In the present version of the model, air traffic controllers behave in the same way

in the different sectors. However, by introducing a direct probability Ps that depends

on the actual inferred capacity of each sector, see Eq. 3.2, we have actual a genuinely

multi-sector ABM where directs are issued differently across the ACC and across the

day. The choice of the use of the same parameters for different controllers and sectors

(except inferred capacity) is done in order to make the ABM model as parsimonious as

possible.

3.9 Disruptions

In the current version of the ABM the disruptions are modeled as circles of center

Sc and fixed radius Sr and located at a flight level drawn from a random uniform

distribution in the range [FLmin, FLmax]. Each disruption vertically extends over 1

separation level, i.e. 1000 feet. Each disruption has a duration drawn from a random

uniform distribution in the range [∆ts, Sd ∆ts], where Sd is an integer number. The area

within these circles is inaccessible for the aircraft, and if a disruption appears along an

aircraft flight trajectory, the aircraft has to be re-routed or change flight level because

all maneuvers are interdicted inside the disruptions. We implemented the fact that there

is an average number Sm of disruptions per time-step per flight-level. In our model, the

number of disruptions will follow a Poisson distribution with mean Sm.

The position of the disruptions is drawn from a list of points provided by the user. In

this way the user can obtain a uniform distribution of the disruptions inside the ACC

providing a uniform distribution of the points Sc, or he/she can obtain different spatial

distributions by providing an appropriate list.

At the beginning of each time-step the controllers cannot forecast the disruptions.

This means that they look at the current position of the disruptions and they operate

assuming that the disruptions are fixed along the time horizon ∆td even if they could

disappear within the ∆ts time step.

This module is not used in the simulations of the present dissertation. For this reason,
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3 The ELSA Agent-Based Model

the disruption parameters are not included in the summary Table:3.1.

3.10 Model’s parameters

In Table 3.1 we summarize the model’s parameters used in the different modules de-

scribed above. In the third column of the Table we give a short description of the

parameter and in the fourth column we give a categorization of the parameters de-

scribing whether the parameter is calibrated from data (CD) or it is set according to

information obtained by interviewing ATM experts and ATCOs (CV). A more detailed

description of the parameters is done in the following sections.

The parameters that need to be calibrated from data are a few. There are also several

parameters (CV category) that can be inferred form the typical behavior of controllers.

These are parameters that should be selected by consulting ATM experts and ATCOs.

It is worth noting that by considering these variables as parameters our model allows

to perform scenario simulations to test how changing a certain feature of air traffic

controllers might affect ATM performances.
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4 Input Data Generation

In this chapter we describe the modules of the model that we used to generate the input

data to the model necessary in order to perform the simulations.

4.1 Using the real Flight Plans

We briefly recall here that the DDR files available for the ELSA project are mainly

of three types: M1/M3 files containing information of the flight trajectories, and the

NEVAC files containing information about the sectors, the ACCs and the navigation

points. Specifically the M1 files contain the last filled flight plan submitted few hours

before departure, whereas the M3 files contain the radar track of the aircraft. Both M1

and M3 have the same format, that is a sequence of 4-Dimensional points i.e. latitude,

longitude, flight level (FL) and time-stamp for each NVP.

In the present dissertation, we have considered all flights in the enlarged ECAC airspace

even if they departed and/or landed in airports external to the enlarged ECAC airspace.

One of the main issues we had to tackle was cleaning the data. Indeed, there are

many information in the database that we do not need. Hence, we decided to use

standard filters to work on a well designed set of flights. Specifically we selected: i)

flights performed with Landplanes (i.e. no helicopter, gyrocopter, only aircraft which

can only operate from or alight on land), ii) scheduled flight, iii) flight having a IATA

code, furthermore we excluded iv) flight having a duration shorter than 10 minutes, and

v) military flight.

Additionally, with the aim to modelling the en-route air traffic flow on a specific ACC,

we filter out that portion of the flight trajectory lower than 240 Flight Level (FL).

Furthermore we exclude from the input flight plans such NVPs that are not contained
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4 Input Data Generation

within considered ACC.

Finally by cross-checking our input flight plan with the NEVAC files, we are able to

associate at each NVP the related sector of reference. As a result the M1 produced can

be immediately used as ABM input files, or they can be send to the modules described

in the following sections.

4.2 Flight Plan Generator 1 module: from M1 real

trajectories

The first Flight Plan Generator produces M1 simulated file obtained by starting from

real data. In fact, for the considered day and for the considered airspace, we select

the flight plans according to the filters illustrated in the previous section and then we

generate simulated flight plans that preserve:

• The distribution of flight between origin and destination. For an example, see the

upper left panel in Fig. 4.1.

• The occupancy of flight levels (with odd rule). For an example, see the upper right

panel in Fig. 4.1.

• The distribution of departure times. For an example, see green curve in lower right

panel of Fig. 4.1.

• The median velocity of the aircraft, see lower left panel in Fig. 4.1.

• The unweighted navigation point network, see Ref:[43].

It is worth mentioning that the navigation point network is generated starting from

real data. Then the trajectories of the simulated M1 flight plans are the best-path on

the navigation point network. The generated trajectories are therefore relative to the

CURRENT scenario by construction. One can use the correction procedure of section

4.3.1 or the correction procedure of section 4.3.2 to generate flight plans with larger

efficiency up to the level of the SESAR scenario.
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4.2 Flight Plan Generator 1 module: from M1 real trajectories

This module does not take into account capacity constraints. It will therefore be

used in those simulations where we would like to emphasize the fact that in the SESAR

scenario sectors will play a minor role.
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Figure 4.1: We show: the empirical probability distribution of the number of flights

between origin and destination airports (upper left panel) and empirical

probability distribution of flight level occupancy (upper right), the empirical

distribution of the aricraft velocities (lower left) and the distribution of the

departure times: the geen curve refers to the empirical values, the blue curve

are the de-conflicted flight plans descrived in sec:4.4 (lower right). All figures

refer to the day 06/05/2010, LIRR ACC.

4.2.1 Flight Plan Generator 2 module: Strategic Layer

The strategic layer is a full agent-based model where different agents, i.e. airlines and

network manager, are collaborating or competing for the same resources, i.e. time slots

and trajectories [94]. The strategic layer is designed to generate trajectories with a

coarse level of description, suitable to study high level phenomena. In particular, the

trajectories are kinematic and do not take into account winds, weight, etc.

69



4 Input Data Generation

In short, the strategic layer takes as input a network of navigation points with the

legitimate paths and fills the airspace realistically, with airlines submitting flight plans

and the network manager rejecting or accepting them on a capacity-constraint basis.

For the purposes of the present work, we consider the strategic layer as an external

tool that produces a set of realistic trajectories, fulfilling some capacity constraints,

which can be used as an input to our tactical layer. Since the agents can have different

behaviors, the results depend also on the choices of the code user. Here we used some

default values that were obtained by considering the results of the calibration procedure

in [60].

As a result, the strategic layer, when used as a “traffic generator”, generates synthetic

traffic on a given network of navigation points and sectors. It allows to create traffic in

a set of sectors given some airports and/or entry/exit points in a realistic way, making

sure no sector is overloaded. The user can specify in particular the sector capacities.

Other parameters, such as those specifying the type of airlines present in the considered

airspace, are set to default values [60].

4.2.2 3-D trajectories

It is worth mentioning that both traffic generators give as an output 2-D trajectories,

i.e. trajectories that lie on an horizontal plane. We aim in the future to overcome such

limitation, working at a fork project of the strategic layer. However the current released

version of the strategic layer [60] does not allow to manage 3-D trajectories.

In order to have 3-D trajectories we implemented the following procedure: (i) we first

extract from the distribution of flight levels occupancy a number of flight level values

equal to the number of navigation points of the considered trajectory; (ii) we then order

the values so that the first third of them are in increasing order, the last third of values

are in decreasing order the second third of values are mixed. This is a very simplistic

procedure that nevertheless has the advantage to roughly capture the fact that aircraft

have an ascending en-route and descending phase.
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4.3 SESAR scenario trajectories

4.3 SESAR scenario trajectories

The model described above will be used to perform scenario simulations in order to

investigate how predictability and capacity issues will change from the current to the

SESAR scenario. To this end, we decided to model the SESAR scenario as the end-point

of a spectrum of possible scenarios continuously ranging from the current to the SESAR

scenario.

First of all we extended the definition presented in section 2.2 of the single flight

efficiency to an airspace efficiency E in order to measure how different a given network of

routes is with respect to the situation where any pair of airports (Origin and Destination)

is directly connected by straight route. We define such efficiency as:

E =

∑
Nf
d(O,D)i∑

Nf
dBP (O,D)

(4.1)

where d(O,D) is shortest distance between Origin and Destination, while dBP (O,D) is

the Best Path distance on the route network identified by the navigation points. The

sum is over all planned flights recorded in the M1 files. In this way the more a route is

congested, the more weight it has. Another possible way to have an unweighted efficiency

is to extend the sum above all possible routes. This metric takes values in the range

(0,1]. Of course, the value E=1 corresponds to the SESAR scenario.

4.3.1 A correction procedure

We will move in a controllable way from the current scenario to the SESAR scenario

by generating surrogate route networks each identified by a certain value of efficiency.

This will be done by introducing a correction of the current trajectories. This will allow

us to study the transition between the current scenario and the SESAR scenario in a

controlled way.

The algorithm requires as input a generic M1 file, i.e. a set of real planned trajectories,

and produces as output another surrogate M1 with a larger target value of efficiency. At

each step the algorithm evaluates the current efficiency and if it is less than the target

efficiency performs the following steps:
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• for any flight trajectory, the first and last point will not be modified, as they

correspond to the origin O and destination D airports, see Fig. 4.2.

• then we randomly selects a navigation point Pi of a certain trajectory flight between

the 2nd navigation point and the one before the last navigation point.

• we substitute Pi with the medium point Mi between the previous navigation point

Pi−1 and the next one Pi+1, see Fig. 4.2. In some case, Pi−1 might coincide with

the origin O or Pi+1 might coincide with the origin D. This is not a problem given

the fact that Pi−1 and Pi+1 are merely used as a reference.

• this procedure is iterated until the target efficiency is reached or all navigation

points of all trajectories in the M1 files are modified.

At each iteration of the above steps the procedure maintains the number of navigation

points present in the M1 files.

By using such procedure we can generate a set of M1 scenarios with increasing effi-

ciency from the current scenario to the SESAR scenario characterized by unitary effi-

ciency. We will therefore use the model described in the previous section to generate the

corresponding sets of M3 files. We will be therefore able to investigate the modifications

occurring from the current to the SESAR scenario in a controlled way.
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Figure 4.2: The figure illustrates the techniques of correction that we use in order to

generate surrogate M1 scenarios with increasing efficiency.
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4.3.2 A simplified correction procedure

The correction procedure described above may be rather time consuming from a com-

putational point of view. We have therefore devised a simplified procedure that reveals

to be less time consuming and therefore more appropriate when we will have to perform

several sets of simulations.

The alternative correction is done in the following way. In a first step, a point Pi is

chosen at random on a trajectory, like previously. However, the point is simply removed

from the trajectory instead of being moved, i.e. the flight goes from Pi−1 to Pi+1 directly.

The procedure goes on until the target efficiency is met.

In a second time, we resample the trajectories by generating new points on the trajec-

tory so as to ensure that the agent-based model works properly. We do this by keeping

the same number of navpoints between the remaining points on the trajectories that

there were originally. Hence, the number of navigation points per trajectory is kept

constant too. Figure 4.3 illustrates the procedure.

Figure 4.3: The figure illustrates the simplified technique of correction that we use in

order to generate surrogate M1 scenarios with increasing efficiency.

By summarizing, our model will give us the possibility of performing simulations of

the current and SESAR scenario each of them characterized by:

• current scenario: low efficiency, no conflict-free trajectories.
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• SESAR scenario: unitary efficiency, conflict-free trajectories.

In both cases we can consider the possibility of giving or not directs (pd = 0 or pd = 1)

and the possibility of having or not having sectors.

74



4.4 Pre-tactical de-conflicting module

4.4 Pre-tactical de-conflicting module

The deconflicting module we describe here takes as input M1 real or surrogate trajecto-

ries. In other words, we start from M1 flight plans and try to make them conflict-free

by using a brute force method.

In fact, it is assumed that in the SESAR scenario, differently from the current scenario,

the flight-plan recorded in the M1 files will already be conflict-free, due to a better

strategic planning of the different aircraft trajectories. Therefore in order to eliminate

any possible bias due to this issue we decided that in some case it might be worth to

consider M1 de-conflicted trajectories for all the networks with different efficiency values

generated by using the procedures of section 4.3.

Specifically, we use the Conflict Detection Module of section 3.2 to detect possible

conflicts. Starting from M1 files, we consider all flight trajectories active in the selected

ACC and in the considered day. If a conflict is detected, we randomly shift in time the

departure of the interested aircraft of an amount of time within the range [-5 min, 5

min]. We try this procedure until the flight trajectory is de-conflicted, for a maximum

number of 100 iterations. If at the end of the 100 iterations the aircraft is still involved

in a safety event we try to shift in time the departure of this aircraft of an amount of

time within the range [-10 min, 10 min], then within the range [-15 min, 15 min] and

finally in the range [-20 min, 20 min].

At the end of this process all M1 flight trajectories will be conflict-free. Indeed, in

a few cases even enlarging the shift time interval to 20 min may be not enough to get

conflict-free M1 flight trajectories. In this case, we start again the procedure starting

from another flight-plan.

This module may be switched on and off, depending on the type of simulations we

want to perform.
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5 ABM Calibration, simulations and

Scenarios Analysis

5.1 Calibration of the model

In this section we want to discuss the calibration activities that have to be performed

in order to use our model.

We will here refer to the air-traffic of LIRR ACC (Rome, Italy) between 2010-05-

06 and 2010-06-03, i.e. the 334 AIRAC. The input data of the model are taken from

the database of DDR and NEVAC files developed within the ELSA [97] project. We

consider as an input to the model the M1 flight plans with the constraints indicated in

section 4.1. To focus our attention on the en-route phase we filtered out from the flight

plans all navigation points crossed at an altitude lower then 240FL. After the filtering

procedure 35714 flights were retained in the entire AIRAC. In order to include the local

constrains of the sector capacities, it is important to remember that the sectors are not

static geometric regions but they are merged together and split dynamically to fulfill the

occupancy requirement. For the sake of simplicity we will refer to the collapsed sector

defined in the reference [94]. These are a static bi-dimensional projection of the sectors

higher than FL 350. The sectors capacity inferred from data is defined as the maximum

number of flight expected within a time-window of a hour inside the collapsed sector.

In this section we describe our calibration procedure. In our simulations we consider

the scheduled flights of the LIRR ACC (Rome, Italy) of the AIRAC 334 described in

section 4.1. The calibration procedure is performed by choosing a specific stylized fact

observed in real data and requesting that model simulations are able to reproduce them.

Indeed, there is some degree of arbitrariness in selecting the specific stylized fact. Dif-
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ferent ones can be chosen depending on the specific aspects of the ATM researchers want

to investigate. In the present work, in order to calibrate the models parameters related

to controllers’ behavior we choose as stylized fact a statistical regularity concerning the

intraday pattern of directs issued by ATCOs. Specifically we calibrate our model to

reproduce the intraday evolution of the deviation rate metric of section 2.3 that has

been recently introduced in Ref. [50].

The deviation rate described in section 2.3 quantifies the deviations observed from

the planned flight trajectories. We call deviation the event such that an aircraft passing

over a scheduled navigation point does not go to the next planned one. The deviation

rate is defined as the ratio between the observed number of deviations and the number

of possible deviations in the airspace estimated in a one hour time window. The number

of possible deviations is defined as the number of planned navigation points that are

actually crossed by the aircraft. This metric is computed for each hour of the day by

using the information about all planned and actual flight trajectories.

This metric describes an unknown mixture of ATCO operations, i.e. re-routing and

direct. In section 2.3 it is shown that, in relative terms, directs are mainly issued during

night-time i.e. in low traffic conditions while they are relatively less issued during day-

time. Our choice is to reproduce this intraday statistical regularity. In the right panel

of Fig. 5.1 we show (blue circles) the empirical behavior of the deviation rate estimated

over the entire 334 AIRAC cycle as a function of the time of the day. The deviation

rate presents a U-shape having higher values during night hours and lower values during

day hours. The error bars are computed as the 95 % Wilson score interval [83] used to

associate a confidence interval to a proportion in a statistical population.

Hereafter we detail the procedure we have used to calibrate pd, xc and ∆tl parameters.

In our calibration procedure we considered pd ∈ [0.03, 0.5] with steps of 0.01567, xc ∈
[0.34, 1.5] with step of 0.03867 and ∆tl ∈ [5, 15] minutes with steps of 2.5 minutes and

for each triplet of parameters we performed one single simulation for each considered day

in the AIRAC, totaling 20 days of simulations – with Saturday and Sundays excluded.

From the output of the ABM we estimated the deviation rate with a time window of one

hour. By using the results of simulations, we minimized the chi-squared χ2 computed

starting from the deviation rates obtained with the ABM and the values estimated from
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real data.

χ2 =
∑
T

(dev
(sim)
i − dev(real)

i )2

dev
(real)
i

The χ2 is therefore computed over 24 points. In the left panel of Fig 5.1 we are showing

the average values of the χ2, as a function of pd and xc when ∆tl = 7.5 minutes. The

lowest value of χ2 is associated to pd = 0.2465 and xc = 0.6310 and ∆t = 7.5 min. This

set of parameters corresponds to χ2 = 0.01294. However, it is worth noticing that a

larger region of parameters (see the magenta region) could still provide acceptable set of

parameters. The solid green line in the right panel of Fig. 5.1 shows the deviation rate

metric obtained by performing the simulation of the model with the selected parameters

pd = 0.2465 and xc = 0.6310 and ∆tl = 7.5 min.
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Figure 5.1: Illustration of the calibration procedure. Left Panel: we are showing the

values of the χ2, as a function of pd and xc when ∆t = 7.5 minutes. Right

Panel: we show the empirical (blue circles) behavior of the deviation rate

metric averaged over the entire 334 AIRAC cycle. The solid green line shows

the deviation rate metric obtained by performing a simulation of the model

with the selected parameters pd = 0.2465 and xc = 0.6310 and ∆t = 7.5 min.

Here we want to assess the importance of the calibration procedure. In fact, in Fig.

5.2 we show results that can be obtained by our model by choosing sets of parameters

different from the calibrated ones. The first example sets that no direct is issued (left

panel of Fig. 5.2 ). The “No Directs” case is obtained by setting pd = 0 and ∆tl = 7.5

min. The second example sets that the probability to issue a direct is independent from

the sector workload (right panel of Fig. 5.2). This second example is obtained by setting
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to the case when pd = 0.24, ∆tl = 7.5, as in the calibrated case and xc = 1000. Such a

value of xc ensures that the sector workload plays no role when directs are issued. With

the chosen parameters we have that the deviations rate simulated during night-time

corresponds to the empirical case.
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Figure 5.2: Left panel: deviation rates in the “No Directs” case. Right panel: deviation

rates in the “No Sector Directs” case.

5.2 Statistical regularities of ABM simulations

In this section we give some examples of the simulation outputs of our model obtained

with the parameters of the calibration procedure of section 5.1 for the evolution of the

planned flight trajectories of the LIRR ACC (Rome, Italy) of the AIRAC 334.

In Fig. 5.3 we show the fraction of the different decisions taken by controllers. The

three decisions controllers can take are (i) issuing a direct, (ii) re-routing a flight tra-

jectory, and (iii) temporary change the flight level of a trajectory. We label the total

number of operations in a given one hour interval as NO. ND is the number of directs

issued by controllers in the time interval. Similarly, NR is the number of re-routings

and NF is the number of flight level changes. In Fig. 5.3 we show the ratio of directs

ND/NO (blue circles), the ratio of re-routings NR/NO (green circles), and the ratio of

flight level changes NF/NO (red circles). The error bar is to the 95% Wilson confidence

interval. The ratio of flight level changes (red circles) and the ratio of re-routings (green

circles) issued to solve possible conflicts are larger during day-time rather than during
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5.2 Statistical regularities of ABM simulations

night-time. It is worth noting that the number of re-routing is always higher than the

number of flight level changes. This is a satisfactory outcome of our model consistent

with the feedback we have received from ATM experts. The ratio of directs (blue circles)

behaves in the opposite way. This is again expected, given the fact that lower traffic

conditions during night allows for the possibility of optimizing trajectories more easily

[50]. During day-time, the sector workload can be different for different sectors and

therefore maximal sector capacity is not reached at the same time for all sectors. This

can be an explanation why directs are also issued during day-time.
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Figure 5.3: Controllers’ operation rate: the ratio NF/NO between the number NF of

flight level changes (red circles) and the total number of operations NO, the

ratio NR/NO between the number NR of re-routings (green circles) issued to

solve possible conflicts and NO, the ratio ND/NO between the number ND

of directs (blue circles) and NO, where NO = NF +NR +ND. The error bar

correspond to the 95% Wilson confidence interval.

5.2.1 Conflict resolution in the ABM

In this section we discuss the ability of our model in performing conflict resolution by

investigating the distance observed between all pairs of aircraft flying during a given

day.

In Fig. 5.4 we show the cumulated distribution of the distance between any pair of

aircraft for a simulation performed for the first day of AIRAC 334. The red curve shows
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the distribution of the planned trajectories, the blue curve (labeled as simulation I) is

the cumulated distribution of the flight trajectories simulated with our model by using

the safety threshold of 5 NM. The green curve (labeled as simulation II) is the cumulated

distribution of the flight trajectories simulated with our model by using a safety threshold

that increases with the look-ahead, as described in section 3.6. Specifically, in the second

simulation we set ∆dthr = 0.33.

In the figure we highlight as a vertical line the value of 5 NM. It is worth noting that

both the blue and the green lines show values that are on the right of the vertical line.

This means that our ABM solves all conflicts that were present in the planned flight

of the day. The blue line presents values that are quite close to the 5 NM threshold

whereas, as expected, the green line has lower values for distances slight above 5NM,

thus indicating that aircraft are more separated.
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Figure 5.4: Cumulative distribution of the distance between any pair of aircraft. The

red curve shows the cumulative distribution of the planned trajectories, the

blue curve (simulation I) is the cumulative distribution of flight trajectories

simulated with our model by considering a fixed safety threshold of 5 NM.

The green curve (simulation II) is the cumulative distribution of flight trajec-

tories simulated with our model when the safety threshold increases with the

look-ahead by setting ∆dthe = 0.33. The cumulative distribution is obtained

by considering all flights of AIRAC 334 and the associated simulations.

The parameter ∆dthr therefore allows the model to fine tune the probability of ob-
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5.2 Statistical regularities of ABM simulations

serving a pair of aircraft with a given minimal distance in a given day. As also recalled

in Table 3.1, ∆dthr is a parameter that might in principle reflect the ATCOs behavior

when managing traffic with a large look-ahead. In fact, a large ∆dthr would indicate

that human controllers tend to be overly safe when managing trajectories with a large

look-ahead and tend to separate aircraft pairs more than it is needed. The model shows

that this might end up in having aircraft separated more the 5 NM and therefore in

a non-optimal usage of the available airspace that in turn leads to a reduction of the

maximal sector capacity. On the other hand, a small ∆dthr would indicate that human

controllers are rather confident about their procedures even for aircraft that are far away.

In this case our simulations indicate that all available airspace is used which might lead

to an optimal assessment of sector capacity.

5.2.2 Spatial heterogeneity of the operations

In Fig. 5.5 we show the map of navigation points with the information about the type

of operations controllers do in proximity of such navigation points. In the left panel we

show re-routings. In the central panel we show flight level changes, while in the right

panel we show directs. In all panels the size of of circles is proportional to the number of

operations performed. All values refer to the 334 AIRAC. Interestingly, the navigation

points with the highest number of re-routings are aligned along the route between Milan

and Rome, which shows the highest traffic levels, as indicated in Fig. 5.6. On the other

hand the highest number of directs is issued either in central Italy (most probably in

proximity of Fiumicino airport) or in the Thyrrenian Sea, between Naples and Sicily,

where traffic levels are less pronounced than in the northern region, as indicated in Fig.

5.6. The location of flight level change operations highlights those navigation points

where controllers have difficulties in solving conflicts and use flight level change as the

last resort for conflict solution.

A similar result also holds for operations performed by real ATCOs. Indeed, the

ATCO operations do not uniformly affect the flux of aircraft in the airspace. Rather,

ATCOs typically concentrate their operations on specific segments of flight trajectories

(i.e. on the path joining two neighboring navigation points). This is clearly shown

by the results summarized in Fig.5.6 where we show the distribution of the difference
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Figure 5.5: Map of navigation points with the information about the type of operations

controllers have to do in their neighboring. Left panel (green): the size of

each circle is proportional to the number of re-routings. Central panel (red):

the size of each circle is proportional to the number of flight level changes.

Right panel (blue): the size of each circle is proportional to the number of

directs

M = Mpp−Mpr between the number of planned flights that should have passed through

a certain trajectory segment Mpp and the number of these flights that actually passed

through that trajectory segmentMpr. The blue line shows empirical data, while the green

line refers to data obtained through numerical simulations of our ABM. The red line

refers to a random allocation of M values the missed flight in each trajectory segment.

This random allocation preserves (i) the planned number of flights in each trajectory

segment Mpp and (ii) the sum
∑

linkM for the whole ACC. Such random sampling

therefore preserves the planned heterogeneity of the system as well as the global number

of operations done by the controllers.

Two comments are in order. On one hand, one can notice that the ABM well repro-

duces the empirical observations. On the other hand, it is worth noticing that these two

distributions show tails that are fatter than those of the distribution obtained with the

random sampling. This indicates that there are trajectory segments where the number

of operations done by the controllers is higher that what should be expected by the

random null model. This clearly suggests that ATCO operations tend to be focused
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Figure 5.6: Complementary cumulative distribution of the difference M = Mpp −Mpr

between the number of planned flights that should have passed through a

certain trajectory segment Mpp and the number of these flights that actually

passed through that trajectory segment Mpr. The blue line refer to empirical

data, while the green curve refer to data obtained through numerical simu-

lations of our ABM. The red curve refer to data obtained by performing a

random sampling of the missed flight in each trajectory segment.

on specific regions of the ACC. The comparison with such simple random null model

therefore allow us to highlight the presence of specific regions in the airspace that cannot

be explained just with the heterogeneity of the flux of aircraft: it is therefore a genuine

effect produced by the ATCOs and it is quite well reproduced by the ABM.

However, although the ABM well reproduces the existence of regional heterogeneity, it

is worth emphasizing that there are airspace regions where the ABM and human ATCOs

manage traffic in a different way. In Fig. 5.7 we show the difference M in a specific region

of the ACC located close to Genoa and characterized by high traffic conditions. The left

panel refers to the empirical case while the right panel refers to numerical simulations

performed with our ABM. The difference M is here shown through a color scale reported

on the right of each panel. One can see that there are trajectory segments where ATCOs

do not modify planned trajectories (lighter colors) that are instead quite heavily affected

by the ABM (darker colors) and viceversa.

In fact, this should not be surprising given the fact that ATCOs have to deal with

tactical conditions (weather events, aircraft problems, ....) that our ABM does not take
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Figure 5.7: Difference M in a specific region of the ACC located close to Genoa, Italy.

The left panel refers to the empirical case while the right panel refers to

numerical simulations performed with our ABM. The difference M is here

shown through the color-code reported on the right of each panel.

into account. Moreover, this different behavior might also be due to the fact that human

controllers tend to be overly safe and therefore have a conservative style in managing

the aircraft trajectories.

5.3 Dependence of directs and conflict resolution rates

from model parameters

Finally, we report on how our model performs under parameters different from the ones

chosen for calibration. Specifically, we evaluate the performances of our model with

respect to model decisions concerning directs and conflict resolutions as a function of

procedures followed by air traffic controllers and air traffic conditions of sectors.

Results of our investigation are summarized in Fig. 5.8. In the left panel of Fig. 5.8

we show the number of actions that the controllers perform in order to solve conflicts,

i.e. re-routings and flight level changes, as a function of the number of directs for the

five values of ∆t shown in the legend. Each point in the plot corresponds to the result

of a simulation of the ABM performed with a pair (pd, xc) of parameters selected in

the range pd ∈ [0.03, 0.5] (with step of 0.01567), xc ∈ [0.34, 1.5] (with step of 0.03867).

The figure suggests the existence of a linear negative relation between the number of
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Figure 5.8: Number of conflict resolutions as a function of the number of issued di-

rects. Each point in the plot corresponds to the result of a simulation of

the ABM performed with a pair (pd, xc) of parameters selected in the range

pd ∈ [0.03, 0.5] (with step of 0.01567), xc ∈ [0.34, 1.5] (with step of 0.03867).

Different colors refers to different values of the look-ahead ∆tl. In all sim-

ulations ∆td = 15 min.The simulations on the left panel are made with a

perfect forecast. The simulations on the left panel are done by introducing

a noise in the velocity of aircraft (lε = 0.1). This noise strongly affects the

reliability of forecast of flight trajectories.

operations needed to solve conflicts and the number of directs, thus indicating that the

number of unsolved conflicts decreases when the number of directs issued increases.

These results refer to ATCOs able to do a perfect forecast within the look-ahead

used when directs are issued ∆td. In reality, many unexpected factors can contribute to

make uncertain a forecast. Uncertainty can result for example from a flight entering the

airspace within ∆td unexpectedly or a weather event, or some errors in the forecast of

aircraft positions. We evaluate the performance of our ABM model with respect to this

type of uncertainty by performing a series of simulations in the presence of a source of

noise. Specifically, the source of noise is introduced in the velocity of aircraft. In the right

panel of Fig. 5.8 we show the results of a numerical simulation obtained by introducing

noise in the velocity estimation of the aircraft. The parameter used is lε = 0.1 which is

a quite large value. This produces the effect of increasing the number of needed conflict

resolutions especially for simulations with a high value of the look-ahead.

In Table 5.1 we report the result of a linear fitting procedure on the five sets of
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look-ahead (min) noise slope intercept correlation coef. p-value std err

5.00 0.0 -0.052 4939 -0.691 10−128 0.002

7.50 0.0 -0.040 4215 -0.653 10−110 0.002

10.0 0.0 -0.028 3734 -0.571 10−79 0.001

12.5 0.0 -0.021 3444 -0.522 10−64 0.001

15.0 0.0 -0.013 3273 -0.342 10−26 0.001

5.00 0.1 -0.060 5749 -0.719 10−144 0.002

7.50 0.1 -0.046 5073 -0.694 10−130 0.002

10.0 0.1 -0.039 4650 -0.685 10−125 0.001

12.5 0.1 -0.030 4370 -0.582 10−82 0.001

15.0 0.1 -0.027 4186 -0.555 10−74 0.001

Table 5.1: Summary statistics of the result of a linear fitting procedure on the five sets

of simulations obtained with different values of ∆tl. Other parameters are

changed as described in the text. The upper part of the table refers to sim-

ulations with perfect forecast whereas the lower part refers to simulations in

the presence of noise. The simulations in the presence of noise are obtained

by setting lε = 0.1.

simulations obtained for different values of ∆tl and shown in Fig. 5.8 as points of

different colors. The upper part of the table refers to simulations with perfect forecast

whereas the lower part refers to simulations in the presence of noise. The p − value

reported in a column is the two-sided p− value of the null hypothesis that the slope of

the linear relationship is zero. Indeed, the low p−values observed support the existence

of a linear relationship between directs and conflict resolution events, although the slope

value can be quite small in all considered cases. In fact, the correlation values reported

in the fourth column are indicating a statistically robust negative relationship between

directs and conflict resolution events.

It is worth noting that slopes observed in the presence of noise are systematically

higher in absolute value that in the case of perfect forecast. This seems to suggest

that also in the presence of enhanced uncertainty issuing directs reduces the number of

conflicts to be resolved.
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5.4 Results relating to the SESAR scenario

In this section we show that our model predicts that in the SESAR scenario poten-

tial conflicts will be less frequent than in the current scenario although they will be

more widespread over all the entire airspace. This in principle increase the complexity

controllers will have to face in the SESAR scenario.

The data we will consider below were obtained by first selecting the first day of AIRAC

334 (06 May 2010) and the LIRR ACC which covers most of Central Italy. We then

generated synthetic M1 trajectories by using the Flight Plan Generator with no capacity

constraints of section 4.2.1. We generated N=100 realizations of the given day. These

trajectories are subsequently rectified by using the module described in section 4.3.1 in

order to generate sets of flight-plans corresponding to different level of efficiency ranging

from a low value of E = 0.973 corresponding to the current scenario to the highest value

of E = 0.999 corresponding to the SESAR scenario. Moreover, such trajectories were de-

conflicted by using the module described in section 4.4. That was done in order to discard

any effect due to the resolution of possible conflicts, given the fact that in the SESAR

scenario it is assumed that the flight trajectories released by the Network Manager will

be conflict-free. Trajectories were generated for different number of aircraft present in

the airspace. These values ranged from Nf = 1500 to Nf = 2200. From real data, we

can observe that the number of aircraft actually present in the considered airspace, given

the applied filters, is approximately Nf = 1800. After, in each simulation we perturbed

each flight trajectory by randomly assigning a delay on departure to a percentage fd of

the flight trajectories. The maximum amount of delay on departure was 600 sec and the

percentage of delayed flight trajectories was fd = 0.20.

5.4.1 Going from the Current Scenario to SESAR Scenario

In Fig. 5.9 we show the average number of conflicts detected in the LIRR ACC, for

different values of efficiency (horizontal axis) and for different values of the number

of aircraft present in the ACC (different lines in the plot). All the curves have been

normalized with N2
f , i.e. with the maximum number of pairs of conflicting aircraft in

an environment with Nf aircraft. The average number of conflicts is here measured as
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the average number of actions that the controller has to perform in order to avoid the

conflicts detected by the Conflict Detection Module described in section 3.6. Therefore,

these measures are performed on the surrogate M3 flight trajectories generated by our

model. 1. Indeed, the figure shows two interesting features: on one side we have that

all curves seem to collapse in a single curve when the number of conflicts is rescaled

with N2
f . This is expected in a stable environment (same airspace, same departure

times distribution). Indeed, adding a flight at random on an airspace has a constant

probability – because of the stable environment – of triggering a conflict with each other

flight. Hence, adding a flight adds on average p×Nf conflicts, where p is the probability

to have a conflict. If, on average, a flight creates k conflicts, then the total number of

conflicts will grow as kp(Nf−1)/Nf/2 ∼ N2
f . Moreover, the number of detected conflicts

decreases when the efficiency increases, thus indicating that in the SESAR scenario we

would observe less conflicts and therefore a smaller workload for controllers.
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Figure 5.9: In the left panel we show the average number of conflicts detected in the

surrogate M3 flight trajectories of the LIRR ACC, for different values of

efficiency (horizontal axis) and for different numbers aircraft present in the

ACC (different lines in the plot). In the right panel, each of the curve has

been normalized with N2
f that represents the maximum possible number of

conflicts in an environment with Nf aircraft.

We have also devised a simple procedure to compute what is the expected number of

1We recall that our trajectories only concern the en-route part and do not include the airports prox-

imities or the terminal maneuvering area (TMA) sectors, as described in section 4.1.
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possible safety events (PSE), i.e. potential conflicts we should expect if all flights were to

stick exactly to their flight plans. Indeed, since we add some noise on the departure times

of the flights, the expected conflicts might not occur, and others non-expected events

can take place. Moreover, we can also understand whether the fact that we observe

less conflicts is already present at the level of planning or if it is mainly due to the

management of trajectories done by the controllers. We start from the M1 deconflicted

trajectories and we implement the following procedure:

• We perform a very fine spatial sampling of all flight trajectories, taking one point

every meter along the trajectories.

• Starting from the original flight plans we associate to each of these sampled points

a timestamp. This is done by assuming that between two navigation points the

velocity of the aircraft is constant.

• We select those sampled points P
(a)
i in the a-th flight trajectory and P

(b)
j in the

b-th flight trajectory such that the Euclidean distance d(P
(a)
i , P

(b)
j ) between the

two points is smaller than the safety threshold distance dthresh = 5 NM.

• We further select the points such that the times t
(a)
i at which the a-th aircraft

crosses P
(a)
i and t

(b)
j at which the b-th aircraft crosses P

(b)
j are below a certain time

threshold Tthresh.

By using such procedure we are able to show what are the points of the ACC that are

likely to attract the controller attention as a source of possible conflicts. Of course, the

number of PSEs thus defined is strictly dependent on the threshold Tthresh considered. In

Fig. 5.10 we show the PSEs detected in the LIRR ACC, for different values of efficiency

(horizontal axis) and for different values of the number of aircraft present in the ACC

(different curves in the plot). As above, each of the curves has been normalized by N2
f .

In the figure we show the results for Tthresh = 5.0 min. Also in this case, the figure shows

two interesting features. First, all curves collapse in a single curve when the number of

PSEs is rescaled by N2
f . Second, the number of PSEs decreases with the efficiency, thus

indicating that in the SESAR scenario we would expect less potential conflicts.
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Figure 5.10: In the left panel we show the average number of PSEs detected in the

M1 flight trajectories of the LIRR ACC, for different values of efficiency

(horizontal axis) and for different numbers of aircraft present in the ACC

(different curves in the plot). In the right panel each of the curve has

been normalized with N2
f that represents the maximum possible number of

conflicts in an environment with Nf aircraft.

In Fig. 5.11 we show a scatter plot between the normalized PSEs detected from the

M1 files with Tthresh = 5.0 min (horizontal axis) and the normalized number of conflicts

detected from the surrogate M3 files (vertical axis) for different values of efficiency. The

figure shows the existence of two different regimes. For values of efficiency close to unity,

the points can be fitted with a linear relationship, with a slope around 0.05, while for

lower values of efficiency, we have a linear relationship with a slope around 0.01. In

any case, the fact that the slope is higher for high values of efficiency indicates that a

small variation in the PSEs translates into a larger variation of the number of detected

conflicts. This means that the SESAR scenario might turn out to be less flexible with

respect to variations in the planning of the trajectories.
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Figure 5.11: Scatter plot of the average number of conflicts detected in the surrogate M3

flight trajectories versus the average number of possible safety events (PSE)

of the LIRR ACC. Different points represent different values of efficiency

and different values of the number of aircraft present in the ACC. In dashed

line we added the linear fits corresponding to the first and second part of

the curve.

5.4.2 Heterogeneity

The above results show that in the SESAR scenario one should expect to observe less

conflicts than in the current scenario. We now investigate their spatial locations. In

fact, the main reason for having a navigation point grid is that it helps the controllers

in monitoring the air traffic, since they need to do it only in specific portions of the

airspace. We are therefore interested in understanding whether or not this feature will

be maintained in the SESAR scenario.

In Fig. 5.12 we show a density map of the PSEs detected when considering three

different values of efficiency and Tthresh = 5.0 min. In the left panel we show the PSEs

detected starting from the real M1 trajectories, which correspond to an efficiency value

of E = 0.973. In the right panel we show the PSEs detected starting from the M1 trajec-

tories corresponding to the SESAR scenario, i.e. with an efficiency value of E = 0.999.

In the central panel we show the PSEs detected starting from the M1 trajectories corre-
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sponding to the intermediate value of efficiency E = 0.980. As expected, when efficiency

increases, the possible conflicts are more spread all over the airspace, rather than being

concentrated in specific regions. In fact, flight trajectories are more distributed over

the entire airspace and therefore the probability of conflicting is smaller. This explains

why the number of detected conflicts decreases when the efficiency increases. This also

implies that the controller activity in the SESAR scenario will change, moving from a

situation where he/she has to give attention to a high number of conflicts concentrated

in specific points, to a situation where he/she will have to manage less conflicts spread

over a much larger portion of the airspace.

Figure 5.12: Density map of the PSEs detected when considering three different values

of efficiency and Tthresh = 5.0 min in the LIRR ACC. In the left panel

we show the PSEs detected starting from the real M1 trajectories, i.e. of

E = 0.973. In the right panel we show the PSEs detected starting from

the M1 trajectories corresponding to the SESAR scenario, i.e. with an effi-

ciency value of E = 0.999. In the central panel we show the PSEs detected

starting from the M1 trajectories corresponding to the intermediate value

of efficiency E = 0.980. To enhance readability, we first take the logarithm

of the number of PSEs and then we normalize by dividing all values of

the maximum value found in the three graphs (which is reached in the left

panel).

Indeed, controllers are obviously sensitive not only to the number of conflicts or the

number of flights, but to other factors. In fact, to our knowledge there is no consensus

about what is a complex situation for controllers. In literature [98] there are examples

of several metrics that capture specific aspects of the complexity typically faced by the

controllers. These metrics are quite diverse and are linked to time to conflicts, distances
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between aircraft, geometry of conflicts, etc. They are computable with the planned

trajectories, which allows to see at each point in time what is the expected complexity

for the controller. On the other hand, we also have our own measure of complexity,

directly coming from the model. In fact, the number of actions done by the controllers

can be viewed as a complexity measure where our (super-)controller gradually meets

more complex situations and thus makes more actions to solve the conflicts. As a

consequence, we investigated in Ref.[60] whether the number of actions can be related

to the complexity metrics already known in literature.

5.4.3 Complexity Scaling

In this subsection, it is worth understanding better what is the relationship between the

complexity and its most simple component, the density.

To investigate this issue we perform simulations on the same airspace, but varying

the sectors capacities. We first produce a fixed number of trajectories with the strategic

layer, and then we change the capacities in three different ways:

• In the first scenario, we decrease uniformly the capacities of all sectors.

• In the second one, we “impair” severely three central sectors, increasing the ca-

pacities of the surrounding sectors to have the same average capacity. Then we

decrease all capacities uniformly like in the previous point.

• The last one is the witness in which we remove the capacity constraint and change

the number of flights submitting a flight plan.

After that, we use the tactical layer to solve all conflicts in each simulation and we

track the number of actions of the controllers. Figure 5.13 shows the output. For each

of the scenarios, we performed a power-law regression with the function Nf 7→ bNa
f .

For the red line – without capacity constraints – we obtain a = 2.0 ± 9.0e − 5 and

b = 8.4e−5±3.0e−11, i.e. a pure quadratic law. This is expected, because the number

of conflicts should scale with the number of pairs of aircraft, i.e. ∼ Nf (Nf − 1)/2 ∼ N2
f ,

as already noted before.

Interestingly, the regression for the two other scenarios yield different scalings. With

the same regression, the violet line yields: a = 2.4±1.0e−4 and b = 3.6e−6±8.0e−14
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Figure 5.13: Different scaling for different scenarios. The scatter plots have been ob-

tained with a uniform reduction of the capacities (light blue), with some

sectors severely impaired (violet) and without any capacity (red). The solid

lines are the result of power law regressions for each set of data (see text

for the values of the coefficients).
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and the blue line gives: a = 2.8 ± 2.0e − 4 and b = 3.4e − 7 ± 1.0e − 15. In other

words, they are clearly displaying super-quadratic behaviours. But before explaining

why, we comment on the fact that despite this behaviour, these two cases usually need

less actions than the unconstrained capacity case for the same number of flights. This

is due to the fact that capacities tend to spread the flights during the day. Hence the

concentration in time of flights decreases during peaks, which decreases the number of

potential conflicts (flights are flying at different times).

The same argument explains the super-quadratic behaviour. Indeed, due to our ex-

perimental procedure, when the number of flights increases, it means that the capacities

have less relative influence, since we keep the number of flights fixed as input to the

strategic layer. Hence, when the number of flights increases, the number of potential

conflicts increases more quickly than N2
f , because more flights are flying at similar times.

Finally, note that the same kind of simulations in free-routing yields the same kind of

results (not shown here).

The conclusion is that sectors play a major role in the complexity of the airspace, and

that complexity heavily depends on the pairs of flights simultaneously present in the

airspace. All the variance is not explained by the density though, and other factors are

important, especially to human controllers.

5.5 Results: The Heterogeneity of the Network among

Different ACCs

In this section we decided to consider many different ACCs in order to investigate

whether the results obtained in section 5.4 might depend on the features of the starting

network of navigation points. Also in this case, we here considered as a starting point

the real data relative to AIRAC 334 and day 06/05/2010.

We model the flights trajectories within a set of 15 ACCs: LFFF, EGPX, LECB,

LFMM, LECM, LECS, LFRR, LIPP, LECP, EGCC, LIMM, LFEE, EGTT, LIBB,

LIRR. The main features of these ACCs are reported in Table 5.2.

In the previous section we used the Conflict-Free Flight Plan Generator of section 4.2

which makes use of the shortest path route on the considered navigation points network,
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ACC ACC name number of flights Area (km2) Number of sectors

LIRR Rome 2122 501732 10

LIMM Milan (I) 1066 73234 5

LIPP Padova (I) 1083 95360 5

LIBB Brindisi (I) 448 244179 3

LFFF Paris 639 171702 4

LFMM Marseille (F) 1494 299525 11

LFEE Reims (F) 1799 98989 5

LFRR Brest (F) 1886 400217 11

EGTT London 2854 3648975 18

EGCC Manchester (UK) 786 47959 3

EGPX Scotland 614 6838031 12

LECM Madrid 2203 442101 10

LECB Barcelona (ES) 1366 266783 9

LECP Palma (ES) 321 51173 6

LECS Sevilla (ES) 660 182051 15

Table 5.2: Main features of the 15 considered ACCs.

while in this section the routes generated with the module described in sec. 4.2.1 not

always correspond to a shortest paths.

We performed a this set of simulations by using the rectification procedure of section

4.3.2 and the Conflict-Free Flight Plan Generator of section 4.2.1. The aim of this test

is the same as in section 5.4.

For each ACC we generated 100 surrogate M1 flight plans preserving four stylized

facts observed in the real M1 files:

• The distribution of departure times.

• The distribution of flight levels for each navigation point (also with the constraint

of the odd rule),

• The same fraction of number of flights between each origin-destination pair.
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• The same total number of flights in the ACC.

After generating such M1 trajectories, for each ACC we performed 10 simulations. In

each simulation we perturbed each flight trajectory by randomly assigning a delay on

departure to a percentage fd of the flight trajectories. The maximum amount of delay

on departure was 600 sec and the percentage of delayed flight trajectories was fd = 0.20.

Furthermore, we performed two types of simulation. The first one was made without

the direct modules (i.e. pd = 0), the second one with the direct module with pd = 1

xc = 1000. This is done because we want to investigate the extreme situation occurring

when either we do not have directs or a direct is issued whenever it is possible. For each

of the 15 ACCs mentioned above we made simulations for its real efficiency value (current

scenario) and the ideal unitary efficiency value corresponding to the SESAR scenario. In

a few cases we also considered intermediate values of efficiency. The considered cases are

summarized in Table 5.3. In the table, all ACCs are ordered according to their original

efficiency value.

In Fig. 5.14, for each of the 15 ACCs and in the two extreme cases of pd = 0 (blue

circles) and pd = 1, xc = 1000 (red circles), we show a scatter-plot of the efficiency

obtained after running the ABM versus the original efficiency measured in the ACC.

In both cases, there exists a linear relationship between the M3 and the M1 efficiency.

However, the efficiency obtained by issuing a direct is larger than the one obtained by

generating flight trajectories where no direct is issued. Such result is of course expected.

The importance of these two curves lies in the fact that they constitute the boundaries

between which our simulations will have to stay.
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ACC original efficiency target efficiency 1 target efficiency 2 target efficiency 3

EGTT 0.9145 0.954 0.98 0.999

LIMM 0.9278 0.954 0.98 0.999

LIRR 0.9448 0.98 0.999

LFRR 0.9509 0.98 0.999

LFFF 0.9524 0.98 0.999

EGPX 0.9550 0.98 0.999

LECP 0.9623 0.98 0.999

LECM 0.9744 0.999

LECS 0.9751 0.999

LECB 0.9756 0.999

LFMM 0.9781 0.999

LFEE 0.9813 0.999

EGCC 0.9848 0.999

LIBB 0.9849 0.999

LIPP 0.9850 0.999

Table 5.3: Efficiencies values used in the numerical simulations for the 15 ACCs. Such

values have been obtained starting from the data relative to AIRAC 334 and

day 06/05/2010. The efficiency value for LIRR is different from the one used

in section 5.4, due to the fact that the Conflict-Free Flight Plan Generator

of section 4.2 considers shortest paths, while the Conflict-Free Flight Plan

Generator of section 4.2.1 considers real trajectories.
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Figure 5.14: In the left pannel is the scatter-plot of the efficiencies of the M3 surrogate

trajectories obtained after running the ABM versus the original efficiency

measured for each of the 15 ACCs and in the two extreme cases of pd = 0

(blue circles) and pd = 1 (red circles). In the right panel we show all the 39

target efficiencies of Table 5.3

In Fig. 5.15, for each of the 15 ACCs and in the two extreme cases of pd = 0 (right

panels) and pd = 1 (left panels), we show the number of re-routing (top panels) and

the number of flight level changes (bottom panels) for the 15 ACCs. In this case we

considered the original navigation points networks with their efficiency and the networks

obtained by using the rectification procedure of section 4.3.2 with a few new target

efficiencies. The figures show that in all cases the number of re-routing decreases as

long as efficiency increases. However, the number of flight level changes might increase

in some cases. In the bottom panels we show the total number of actions done by the

ABM, i.e. we consider both re-routings and flight level changes. In this case, we number

of actions generally decreases as long as efficiency increase, as already observed in Fig.

5.9.
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Figure 5.15: Number of re-routings (top panels) and number of flight level changes (cen-

tral panels) and total number of actions (bottom panels) for each of the 15

ACCs and in the two extreme cases of pd = 0 (right panels) and pd = 1 (left

panels).

For each of the 15 ACCs, let us consider the Gain metric defined as:

G =
N(ES)−N(EC)

N(EC)
(5.1)

where ES = 0.9999 is the target efficiency relative to the SESAR scenario and EC is the
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efficiency of the considered ACC in the current scenario. N here indicates the number

of re-routing actions done by the ABM. The G metric should indicate how much, in

percentage, we gain in terms of number of re-routings when we move from the current

to the SESAR scenario. In Fig. 5.16 we show the Gain for the case when pd = 1 (top

panel) and pd = 0 (bottom panel). As expected the Gain is larger when directs can be

issued. However we were not able to see any dependance of the gain G from variables

such as the original efficiency EC or other ACC metrics as those reported in Table 5.2.
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Figure 5.16: Gain metric of Eq. 5.1 computed for each of the 15 ACCs and in the two

extreme cases of pd = 0 (bottom panel) and pd = 1 (top panel).

In Table 5.4 we show the average number of reroutings and flight level changes in the

SESAR scenario (E=1) for the two extreme cases pd = 0 and pd = 1. The correlation

between flight level changes and re-routings is 0.85 when pd = 1 and 0.80 when pd = 0.

The values of re-routings and flight level changes are quite similar in the two cases when

pd = 0 and pd = 1, thus indicating that trajectories are really linearized in the SESAR

scenario and therefore issuing directs does not play a big role, as already notice in Fig.

5.14.

In Fig. 5.17 we show the number of re-routings versus the number of flight level

changes for the case pd = 1 (left panel) and the when pd = 0 (right panel). In the figure

the blue points correspond to the 15 ACCs considered with their original efficiency

values, i.e. the one corresponding to the scenario (see Table 5.3). The figure indicates
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ACC original average # of average # of average # of average #

efficiency reroutings flight level changes of reroutings of flight level changes

(no directs) (no directs) (directs) (directs)

LFFF 0.9524 3.248 18.74 4.537 18.392

EGPX 0.9550 1.432 3.5 2.471 3.525

LECB 0.9756 5.477 18.693 6.846 18.508

LIPP 0.9850 9.326 15.953 14.414 15.672

LFEE 0.9813 17.447 31.207 17.288 31.028

LECM 0.9744 22.469 44.493 29.752 43.817

LFRR 0.9509 41.137 56.547 45.975 56.419

LECS 0.9751 2.423 6.844 16.014 6.981

LFMM 0.9781 13.326 28.829 18.473 28.672

LECP 0.9623 0.661 4.059 2.186 3.913

EGCC 0.9848 1.198 7.434 1.765 7.304

LIMM 0.9278 8.169 18.977 11.485 18.695

EGTT 0.9145 20.062 58.569 20.731 59.093

LIBB 0.9849 1.372 2.621 5.11 2.581

LIRR 0.9448 18.985 43.458 22.993 43.804

Table 5.4: average number of reroutings and flight level changes in the SESAR scenario

(E=1) for the two extreme cases pd = 0 and pd = 1
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the existence of a positive correlation between number of re-routings and number of flight

level changes, although there seems to exist no linear relation between the two variables.

In fact, we observe a correlation of 0.879 for the current scenario when pd = 1 and 0.908

for the current scenario when pd = 0. The lack of a linear law indicates that the starting

navigation points network and the other metrics such as those of Table 5.2 might play a

role. The red points correspond to the 15 ACCs considered with their unitary efficiency

values, i.e. the one corresponding to the SESAR scenario. Also in this case a positive

correlation between number of re-routings and number of flight level changes. For the

SESAR scenario we observe a correlation of 0.840 when pd = 1 and 0.910 when pd = 0.

Moreover, in the SESAR scenario when pd = 1 we observe an increase on flight level

changes and a decrease of the number of re-routings, while in the case when pd = 0

the differences between future SESAR and current scenario are negligible. This goes in

the direction by which the rectification of trajectories (with direct, in this case) is again

beneficial for the general efficiency of the system. The green points correspond to the

intermediate values of efficiency reported in Table 5.3.
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Figure 5.17: Scatter-Plot of the number of flight level changes versus the number of

re-routings. The blue points correspond to the 15 ACCs considered with

their original efficiency values, i.e. the one corresponding to the scenario.

The red points correspond to the 15 ACCs considered with their unitary

efficiency values, i.e. the one corresponding to the SESAR scenario. The

green points correspond to the intermediate values of efficiency reported in

Table 5.3.
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5 ABM Calibration, simulations and Scenarios Analysis

In Fig. 5.18 we show the number of re-routings with respect to the number of flights

in the ACC for the case pd = 1 (left panel) and when pd = 0 (right panel). The

blue points correspond to the 15 ACCs considered with their original efficiency values,

i.e. the one corresponding to the scenario. The red points correspond to the 15 ACCs

considered with their unitary efficiency values, i.e. the one corresponding to the SESAR

scenario. The green points correspond to the intermediate values of efficiency reported

in Table 5.3. The relationship between number of re-routings and number of flights

is approximatively linear. However, we recall that in Fig. 5.9 we had observed that

the number of re-routings might rescale with N2
f . In fact, the two empirical facts are

not contrasting with each other. Indeed, in Fig. 5.9 we were considering a given ACC

with an arbitrarily changing number of flights. In the present case, we are considering

different ACCs each with its own number of flights. Moreover, when looking at the

points relative to the SESAR scenario with pd = 0 we do not see any clear relationship

between number of re-routings and number of flights in the ACC, thus indicating that

the specific features of the ACC might still play a role in the SESAR scenario. This

is in a sense unfortunate. Had we observed a common behaviors in all ACCs in the

SESAR scenario, this would have been a strong support to the idea of having more

standard management procedures in the SESAR scenario. As shown in Fig. 5.19 similar

considerations can be done for the relationship between number of flight level changes

and number of flights in the ACC.
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5.5 Results: The Heterogeneity of the Network among Different ACCs
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Figure 5.18: Number of re-routings as a function of the Number of Flights. The blue

points correspond to the 15 ACCs considered with their original efficiency

values, i.e. the one corresponding to the scenario. The red points corre-

spond to the 15 ACCs considered with their unitary efficiency values, i.e.

the one corresponding to the SESAR scenario. The green points correspond

to the intermediate values of efficiency reported in Table 5.3.
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Figure 5.19: Number of Flight level changes as a function of the Number of Flights.

The blue points correspond to the 15 ACCs considered with their origi-

nal efficiency values, i.e. the one corresponding to the scenario. The red

points correspond to the 15 ACCs considered with their unitary efficiency

values, i.e. the one corresponding to the SESAR scenario. The green points

correspond to the intermediate values of efficiency reported in Table 5.3.
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6 Conclusions

In this dissertation we highlighted the complex nature of the air transportation man-

agement system by focusing on the activities of the air traffic controllers. Despite the

difficulties in understanding the pilot/controller interaction at the level of the single

aircraft, we observed that the statistical proprieties of flight trajectory deviations have

typical patterns. Such regularities were modelled by our ABM that was built by using

a minimal set of rules. We want to stress that agent-based modelling nowadays is the

only technique that allows a genuine modelling of emerging phenomena starting from

the microscopic level of interaction of agents. In our case, the complexity of the flight

plans network, together with the heterogeneity of the sector geometry, makes virtually

impossible to write down fundamental equations for such system. Moreover, even if it

were possible, the high uncertainty due to both unforeseeable meteorological events and

other sources of uncertainty would vanish such efforts. Differently, our ABM shows a

good agreement of ABM simulations with empirical data and a non-trivial behaviour in

modelling the transition towards the future SESAR scenario.

The air transportation system is a complex system with a pronounced within-day

dynamics and a marked spatial heterogeneity. For example, by using traffic data, we have

verified that day flights and night flights present a different value for their average length

and a different distribution of flight length. In the air traffic management procedures,

the interaction between pilots and air traffic controllers is primarily devoted to conflict

resolutions aiming to prevent safety issues. Once safety problems are positively avoided

or solved the interaction between pilots and air traffic controllers focuses on possible

improvement of the efficiency of the air transportation system. To analyze the effect on

the efficiency improvement of the system of their interaction we have considered a very
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simple measure of flight efficiency based on the comparison between the length of planned

or actual flight trajectory with the great circle distance. Our results show that night-time

flights (in particular during the time interval from 8:00 pm to 4:00 am) are on average

more efficient than day-time flights. Moreover, the gain of average efficiency obtained

in the actual trajectories is systematically larger during night-time. Our results show

an asymmetry in the change of efficiency of flights during night-time. Specifically for

large changes in absolute value the improvement is more evident than the deterioration.

This asymmetry is not detected during day-time when efficiency improvement is quite

balanced by efficiency deterioration.

The tactical interaction present between pilots and air controllers is also reflected

in the observation that flight trajectory deviations preferentially occur near the origin

rather than close to destination of the flight. Moreover, flight trajectory deviations

occur at an angle-to-destination that is a non monotonic function of the angle with a

maximum observed close to 20 degree. Pilots and air controllers are most probably

solving on average different kind of problems during day and night. In fact we observe

that the fraction of flight trajectory deviations is higher during night-time than during

day-time intraday time windows. We also detect that the fraction of flight trajectory

deviations is an inverse function of the number of flights observed in the investigated

time window.

Our study shows that the time of the day plays an important role in setting the most

probable type of interaction between pilots and air controllers. Indeed, in addition to

time there is also a role of the specific geographical location of the considered navigation

point pair. To clarify this point we introduced a new metric called di-fork that is useful

to track the trajectory deviations at the level of single navigation point pairs. By making

use of this metric, we can detect the set of navigation point pairs presenting a number

of flight trajectory deviations that are over-expressed or under-expressed with respect to

a statistical null hypothesis assuming (i) that deviations occur randomly over the day

and (ii) taking into account the heterogeneous number of flights planned to fly through

the navigation point pair over the day. The detected set of over-expressed and under-

expressed navigation point pairs is persistent over a time period spanning 5 successive

AIRACs, i.e. up to 140 days. This result quantitatively shows that the fraction of
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deviations occurring during the day is not a random variable. Rather, it corresponds to

the effort of making the system more efficient under certain constraints due, for example,

to safety and capacity issues.

We believe that these results present a clear statistical evidence of the ability of the air

traffic management system of improving air traffic performances on average with respect

to the set of planned flight trajectories. The improvement of performance is relatively

more evident during night-time time windows when constraints related to the capacity

of air sectors are less stringent. As a consequence the interaction between pilots and air

controllers is a complex interaction that is the result of a learning process aiming not

only at the prevention and resolution of safety problems but also to the improvement of

the performances of each single airline and of the entire air transportation system.

In this thesis I presented an agent-based model of the ATM system that aims at model-

ing the interactions between aircrafts and ATC controllers at a tactical level. Specifically,

We have presented in detail the different modules of the model whose core is given by

the conflict detection and resolution module and by the directs module. We have given

an example of the calibration of our model done in order to obtain simulations describ-

ing the statistical regularities about the rate of flight trajectory deviations observed in

empirical data. We explicitly show that the calibrated model is able to reproduce the

existence of regional localization of ATM operations, i.e. the fact that ATCO opera-

tions tend to be focused on specific points of the ACC. Finally, we have shown scenario

simulations results about the relationship between directs and conflict resolution events

conditioned to model parameters.

Our model can be used to give useful insights about the functioning of the ATM sys-

tem. We are aware that our model is very basic. For example, our agent-based model

does not implement any learning mechanism as done for example in other models [52]

or uses specific fitness measures. The way our model solves conflicts is fast from a com-

putational point of view but provides solutions that are not optimized at a global level.

However we implemented such a solution because we wanted to develop a parsimonious

ABM mimicking the way air traffic controllers work in reality.

Indeed, we believe that such solution might be quite effective in the SESAR scenario
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simulations. In fact with a simple variant of the ABM, we might simulate a scenario

where controllers have a role less preeminent than in the current scenario and some ba-

sic conflict-resolution actions are left to aircraft interactions. In this respect, our model

might mimic a scenario where pilots, that clearly have not a global vision of the sys-

tem, endowed with a set of policy rules assigned by their airlines, will perform an active

conflict resolution at a tactical level, thus realizing a sort of self-organization amongst

aircraft.

Following on from this, we specifically studied the free-routing solutions envisioned

by SESAR. First, we focused our analysis on a single Italian ACC (LIRR). The result

of this SESAR scenario simulations was that we showed controllers can be expected to

perform a smaller number of operations but that these operations will be dispersed over

a larger area of airspace.

Next we investigated the transition to the SESAR scenario for 15 different ACCs. We

observed an overall decreasing of the operations performed, in agreement with what we

initially found. However, differences between the ACCs emerged during the transition

to SESAR, probably due to the traffic and the geometry specificity of these ACCs. The

maximum gain of efficiency achieved with direct operations shows a universal stability

governed by a linear law. In other words: the maximum improvements that are possible

to obtain with local optimization are constrained by the global efficiency of the airways.

Moreover it appears impossible to use a simple law to describe the transition of airways

to a high level of global efficiency. This is because the gain in safety due to increased

efficiency is an emerging phenomenon strongly dependent upon the specificity of the

structure.

Taking our research forward, we aim to better understand the challenges of the tran-

sition to SESAR for heterogeneous Area Control Centers (ACCs) by using synthetic

ACCs. With a view to highlight the most important potential variables in the SESAR

transition, we aim to analyse the geometry of the intersections of routes, the occupancy

of flight levels and the transportation flow on the network. It must be remembered,

of course, that the SESAR scenario will not be implemented immediately; instead a
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lengthy transition period between the current scenario and the new SESAR scenario

should be expected. We believe that our model could be a useful tool to explore possible

intermediate scenarios. In the present work we explored such intermediate scenarios in

which high efficiency areas grow homogeneously in airspace. However, we think that a

more reasonable transition should be dis-homogeneous i.e. a scenario where the airspace

has both high efficiency areas and also a smaller number of low efficiency areas, where

the traffic conditions require more careful management by the ATCs. In this intermedi-

ate scenario, the ABM could help us discover areas where the SESAR scenario could be

implemented easily thus creating highly efficient areas of airspace. To achieve this poten-

tially important result further work on the ABM is required, specifically: we are looking

to employ a Network Designer agent that creates and modifies the NVP structure. Such

modification will be a local correction procedure driven by an utility function. Our belief

is that such function will be able to take into account both the network efficiency and

the workload of the ATCOs, nevertheless airline and passenger utilities could be taken

into account too.

Additionally, in the future development of the ABM, we want to include a function that

manages the Terminal Manoeuvring Areas (TMA) – the airspace close to the airports.

The specific procedures used in TMAs, and the effects these have on the en-route areas,

are of great significance simply by merit of their quantity: there are a huge number of

airports (and thus TMAs) in European airspace.

It is worth mentioning that the modular structure of the code could allow us, in the next

future, to improve the aircraft cinematic description. Therefore, the future release of

the code could include for example: smooth flight level changes, winds, different aircraft

models, pilot agency etc.

Finally, we will include in future versions of our ABM the memory of the ATC agents.

This important feature can help us to discover new protocols required to solve conflicts.

In future scenarios, the standard procedures may no longer be applicable. By including

the memory of ATC agents, the new adaptive agents will perform their actions on the

basis of previous knowledge of problematic areas. As a result the new protocol created

will be an emerging bottom-up effect.

In conclusion, the current and future challenges facing Airport Transport Management
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6 Conclusions

are numerous and complex: they exist at the level of infrastructure, i.e. navigation point

network structures and route structure; at the level of sector dynamic configuration and

at the level of strategic trajectory planning. We believe that the introduction of our

agent-based modelling approach will be extremely useful in solving these challenges at

all three levels.
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