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When measuring quantummechanical properties of charge
transport in mesoscopic conductors, backaction effects occur.
We consider a measurement setup with an elementary quan-
tum circuit, composed of an inductance and a capacitor, as de-
tector of the current flowing in a nearby quantum point con-
tact. A quantum Langevin equation for the detector variable
including backaction effects is derived. Differences with the
quantum Langevin equation obtained in linear response are
pointed out. In this last case, a relation between fluctuations
and dissipation is obtained, provided that an effective temper-
ature of the quantum point contact is defined.

1 Introduction

Probing a quantum system implies disturbing its state
according to the Heisenberg uncertainty principle. Mea-
surements on a mesoscopic system require quantum de-
tectors, and measurement-induced disturbances result
in quantum backaction. Research on quantum electron-
ics has progressed to the point where backaction effects,
often near to the limit imposed by the uncertainty rela-
tions, are of key relevance to experiments [1–5]. This is
the case of nanoelectromechanical systems where quan-
tum electronic conductors have been used as position
detection of nanomechanical oscillators [6–11]. Analo-
gous backaction effects occur when measuring quantum
mechanical properties of charge transport in mesoscopic
conductors. In fact, to perform time-resolved detection
of the quantum mechanical current in a quantum trans-
port process, mesoscopic on-chip detectors are required.
Some effects of the detector backaction have been ad-
dressed already in the literature [12–18] also in connec-
tion with qubit measurements [19–29], a relevant issue
for quantum networking [30–32].

In the present work we address the quantum back-
action effects of a mesoscopic detector on a prototype
quantum conductor, a quantum point contact (QPC)
consisting of two metallic leads driven out of equilibrium
by a static voltage bias which establishes a tunneling
current [33–35]. We model the detector as a dissipative
quantum LC circuit which is coupled inductively to the
QPC [36–42]. In this scheme, the detector is contin-
uously weakly coupled to the mesoscopic conductor.
Measurement-induced disturbances on the QPC affect
the detector. These are the focus of our work. We derive
a Quantum Langevin Equation (QLE) for the charge on
the capacitor’s plates, corresponding to the x coordinate
of the quantum oscillator, accounting for backaction
effects. The QLE, derived perturbatively in the LC-QPC
coupling, presents non trivial damping and frictional
terms in addition to the traditional ones entering the
QLE of a dissipative quantum harmonic oscillator [43,
44]. We compare this equation with the QLE for our
dissipative detector coupled to the QPC obtained in
linear response. In this case the QPC’s force noise is not
related to the QPC damping kernel via the temperature,
as it would be for an equilibrium system [43, 45–47], and
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references therein]. However, similarly to other analy-
ses [15, 48–50], we find that, in linear response, for each
given frequency, an effective temperature can be defined.
In the present work, the measured system is a non-linear
and non-equilibrium system. This places our work in the
intriguing and timely research field investigating con-
nections among quantum measurements, fluctuations
theorems, and non-equilibrium systems [51–57].

The paper is organized as follows. In the next sec-
tion we introduce the model. The full Hamiltonian con-
sists of three parts, namely the dissipative resonant cir-
cuit described by the Caldeira-Leggett model, the QPC
part, and the inductive QPC-detector coupling. In Sec. 3
the Heisenberg equation for the QPC current including
backaction contributions is solved and the full QLE is
derived. Within linear response theory, we derive a QLE
analogous to that found for a classical variable whose av-
erage is the expectation value of the operator x [15, 49]. In
Sec. 4, a fluctuation-dissipation relation for our system,
in linear response regime, is derived provided that an ef-
fective temperature related to the QPC is introduced. Fi-
nally, in Sec. 5 we draw the conclusions.

2 Model

The Hamiltonian of our measurement setting is the sum
of the dissipative LC circuit term, the QPC term, and the
LC-QPC interaction term

H = HLC + HQPC + Hint. (1)

The dissipative LC circuit is modeled by a quantum
harmonic oscillator of position and momentum op-
erators x and p, respectively, where x is the charge in
the capacitor of the LC circuit. The oscillator is linearly
interacting with a dissipative environment at finite tem-
perature, which is modeled as a thermal reservoir, or heat
bath, of N independent quantum harmonic oscillators
of coordinates xj and momenta pj. The coupling with
the heat bath is not constrained to be small and, to keep
the discussion as general as possible, we do not specify
a particular spectral density for the oscillators in what
follows [44, 58, 59]. The corresponding Hamiltonian is
the celebrated Caldeira-Leggett model [60]

HLC = p2

2M
+ 1

2
Dx2

+ 1
2

∑
j

⎡
⎣ p2

j

mj
+ mjω

2
j

(
xj − gj

mjω
2
j

x

)2
⎤
⎦ . (2)

V

Figure 1 Scheme of the LC oscillator (upper part) coupled to the
quantum point contact with external bias eV = μL − μR (lower
part). The dashed box indicate the dissipative environment in
which the oscillator is embedded.

Identifying the bare oscillator mass M with the induc-
tance L, and the coefficient D with the inverse of the ca-
pacitance C yields the resonance frequency of the LC cir-
cuit � = √

1/LC = √
D/M .

The second term in Hamiltonian (1) is the QPC
part

HQPC =
∑
r∈R

Erc†r cr +
∑
l∈L

Elc
†
l cl

+ �

∑
r,l

�r,l

(
c†l cr + c†r cl

)
. (3)

This Hamiltonian has free left (L) and right (R) lead
parts plus a tunneling term with energy-dependent tun-
neling frequencies �rl. Creation and annihilation opera-
tors obey Fermi anticommutation relations.

Finally, the inductive LC-QPC interaction in Hamil-
tonian (1) couples the oscillator coordinate x with the
derivative of the QPC current [36, 40]

Hint = αxİ, (4)

where α is the inductive coupling strength, with dimen-
sion e−2ω−1

� [36, 40].
In what follows we assume that the heat bath is ini-

tially in the canonical thermal state at temperature Tosc

and then the coupling with the LC oscillator is turned
on. Similarly, we assume for the leads an initial canoni-
cal thermal state with temperature T . At t = t0 the cou-
pling α is switched on and a voltage bias V , which keeps
left and right leads at chemical potentials μL and μR, with
eV = μL − μR > 0, is applied (see Fig. 1).
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3 Quantum Langevin equation for the LC
circuit coupled to the QPC

In order to take into account backaction effects we de-
rive an equation for the quantum mechanical evolution
of the whole system formed by the detector and the mea-
sured mesoscopic conductor. An analogous point of view
has been taken to address the dynamics of the measure-
ment process in quantum dot systems [61, 62]. The quan-
tum Langevin equation for the LC circuit is derived from
the second time derivative for the x operator whose evo-
lution is induced by the full Hamiltonian (1). The Heisen-
berg equation for x is

ẋ = i
�

[H, x] = p
M

. (5)

By replacing this equation into ẍ = i
�

[H, ẋ] , we get

Mẍ = −Dx +
∑

j

gj

(
xj − gj

mjω
2
j

x

)
+ i

�
α
(
x[İ, p] + i�İ

)
.

(6)

Further, by replacing the solution of the Heisenberg
equations for the coordinates xj of the bath oscillators
into Eq. (6) the quantum Langevin equation for the co-
ordinate of the oscillator coupled to the QPC is obtained
(t0 = 0)

Mẍ + M
∫ t

0
dt ′γ (t − t ′)ẋ(t ′) + Dx − i

�
α
(
x[İ, p] + i�İ

)
= ξ (t), (7)

where the friction memory kernel reads [44]

γ (t) = �(t)
1

M

∑
j

g2
j

mjω
2
j

cos (ωjt). (8)

The bath force operator is given by

ξ (t) =
∑

j

gj

[
xj(0) cos (ωjt) + pj(0)

mjωj
sin (ωjt)

]

−Mγ (t)x(0). (9)

Note that the presence of the slippage term, depen-
dent on the initial position of the oscillator, is an arti-
fact due to the choice of a factorized initial condition
with the harmonic bath in the thermal equilibrium state.
Upon choosing a shifted thermal bath described by the

density matrix

ρB = 1
Z

exp

⎧⎨
⎩−βosc

∑
j

⎡
⎣ p2

j

2mj

+
mjω

2
j

2

(
xj − gj

mjω
2
j

x(0)

)2
⎤
⎦
⎫⎬
⎭ , (10)

the bath force operator satisfies 〈ξ (t)〉 = 0 [43, 44].
Eq. (7) is the starting point of our analysis. In the fol-

lowing we will derive the QPC current derivative operator
including the backaction effect of the meter (LC circuit)
on the measured system (QPC).

3.1 Evaluation of the QPC current

The dynamics of the detector, described by the degree of
freedom x, depends on the variables of the system to be
measured. Here we derive the current operator I and, via
its Heisenberg equation, İ . We will distinguish terms de-
scribing the current flowing in the QPC in the absence of
any coupling with the detector from terms due to back-
action effects of the detector on the QPC.

The current I flowing from the left to the right lead of
the QPC is given by

I = i
�

[HQPC + Hint, QR] (11)

≡ I0 + Iba ,

where QR = e
∑

r∈R c†r cr is the charge on the right lead.
Note that I is the sum of two terms: The first is the cur-
rent which would flow in the QPC in the absence of the
detector

I0 =
∑

r,l

ie�rl

(
c†l cr − c†r cl

)
≡

∑
r,l

I0,rl, (12)

and the second is the backaction current

Iba = αxIba, where Iba = i
�

[İ, QR]. (13)

From Eq. (11) the time derivative of the current oper-
ator reads İ = İ0 + İba, where

İ0 = i
�

[HQPC, I0] + i
�

[Hint, I0] ≡ İ (0)
0 + δİ0 , (14)

and

İba = i
�

[HQPC + HLC, αxIba] + i
�

[Hint, αxIba]. (15)
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Note that, whereas I0 is of order zero in α, its time deriva-
tive İ0 is the sum of the operators İ (0)

0 (of order zero in α)
and δİ0 which includes higher orders in α (see Eq. (14)).
In other words, the variation in time of the unperturbed
current in the QPC depends on the detector’s variables.
Both terms, İba and δİ0, represent the backaction effect in
the current derivative. We keep these terms separate for
comparison with the linear response regime addressed
in Section 4.

Up to now everything is exact. To leading order in α

the QPC current is given by

I ≈ I0 + αxI (0)
ba , (16)

where I (0)
ba = i[İ (0)

0 , QR]/� (see Eq. (13)). The leading order
backaction effect in Eq. (7) is obtained by approximating
İ up to linear order in α. We find

İ ≈ İ (0)
0 + αx

(
İ0 + İ

(0)
ba

)
+ αẋI (0)

ba , (17)

where we approximated δİ0 ≈ αxİ0, with İ0 ≡
i[İ (0)

0 , I0]/�. The terms appearing in Eq. (17) take, in
the tunneling limit (second order in �) [33], the follow-
ing form

İ (0)
0 = e

∑
r,l

�rlωrl

(
c†l cr + c†r cl

)

+ 2e
∑
r,l,l′

�rl�rl′ c
†
l cl′ − 2e

∑
r,r′,l

�rl�r′lc†r cr′ (18)

İ0 = e2

�

∑
r,l

�rl

[∑
l′

ωrl′�rl′
(

c†l cl′ + c†l′ cl

)

−
∑

r′
ωr′l�r′l

(
c†r cr′ + c†r′ cr

) ]
(19)

I (0)
ba = i

�
e2

∑
r,l

�rlωrl

(
c†l cr − c†r cl

)
= e

�

∑
rl

ωrlI0,rl (20)

İ
(0)
ba = e2

�

∑
r,l

�rlω
2
rl

(
c†l cr + c†r cl

)
+ İ0 , (21)

where ωλ ≡ Eλ/� with λ = l, r, ωrl ≡ ωr − ωl, and I0,rl is
given by Eq. (12). We remark that, for energy indepen-
dent tunneling amplitudes �rl ≡ �, and assuming the
leads at equal temperatures, the second order approxi-
mation is meaningful only in the presence of an applied
bias, μL �= μR. This is signalled by the vanishing of the
thermal averages of Eqs. (18)–(21) under the above con-
ditions and V = 0.

To obtain the explicit solution for İ(t) we take the time
derivative of Eq. (17). We find for each rl component (İ =∑

rl İrl)

Ïrl = Ï (0)
0,rl + αxÏ

(0)
ba,rl + αẋ

(
İ0,rl + 2İ

(0)
ba,rl

)
+ αẍI (0)

ba,rl,

(22)

where we considered that the first non vanishing term in
Ï0 is O(�3). The same happens with the last two terms of
the expression for İ (0)

0 in Eq. (18). By taking this fact into
account and calculating the time derivatives of İ (0)

0 and

İ
(0)
ba,rl via the Heisenberg equations we find

Ï (0)
0,rl + αxÏ

(0)
ba,rl ≈ −ω2

rl(I (0)
0,rl + αxI (0)

ba,rl) ≈ −ω2
rlIrl , (23)

where in the last equality we used Eq. (16). Thus Eq. (22)
can be cast in the form

Ïrl = −ω2
rlIrl + αẋ

(
İ0,rl + 2İ

(0)
ba,rl

)
+ αẍI (0)

ba,rl, (24)

which is readily solved by Laplace transform to give the
rl component of the QPC current

Irl(t) = Irl(0) cos(ωrlt) + 1
ωrl

İrl(0) sin(ωrlt)

+ α

ωrl

∫ t

0
dt ′ẋ(t ′)

(
İ0,rl + 2İ

(0)
ba,rl

)
(t ′) sin[ωrl(t − t ′)]

+ α

ωrl

∫ t

0
dt ′ẍ(t ′)I (0)

ba,rl(t ′) sin[ωrl(t − t ′)]. (25)

3.2 Quantum Langevin equation including the QPC
backaction current

Taking the derivative of Eq. (25) with respect to t, we ob-
tain the rl component of the operator İ appearing in the
QLE (7) (t > 0)

İrl(t) = −ωrlIrl(0) sin(ωrlt) + İrl(0) cos(ωrlt)

+α

∫ t

0
dt ′ẋ(t ′)

(
İ0,rl(t ′) + 2İ

(0)
ba,rl(t ′)

)
cos[ωrl(t − t ′)]

+α

∫ t

0
dt ′ẍ(t ′)I (0)

ba,rl(t ′) cos[ωrl(t − t ′)]. (26)

This solution, summed over r and l, can be replaced in
Eq. (7). By integrating by parts the last term in (26), the
QLE in the full Hilbert space, including backaction, takes
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on the final form (t > 0)

Mẍ(t) + M
∫ t

0
dt ′γ (t − t ′)ẋ(t ′) + Dx(t)

−α2x(t)
∫ t

0
dt ′ ∑

rl

Xrl(t, t ′) cos[ωrl(t − t ′)]

+α2
∫ t

0
dt ′ẋ(t ′)

∑
rl

{ (
İ0,rl(t ′) + İ

(0)
ba,rl(t ′)

)

× cos[ωrl(t − t ′)]

−I (0)
ba,rl(t ′)ωrl sin[ωrl(t − t ′)]

}
+ α2ẋ(t)I (0)

ba (t)

= ξ (t) + α
∑

rl

(
Irl(0)ωrl sin(ωrlt) − İrl(0) cos(ωrlt)

)

+α2ẋ(0)
∑

rl

I (0)
ba,rl(0) cos(ωrlt). (27)

The operators Xrl in Eq. (27) act in the full QPC-LC detec-
tor Hilbert space and read

Xrl(t, t ′) ≡ i
�

[ẋ(t ′), p(t)]
(
İ0,rl(t ′) + 2İ

(0)
ba,rl(t ′)

)
(28)

+ i
�

[ẍ(t ′), p(t)]I (0)
ba,rl(t ′).

Taking the average with respect to the factorized ther-
mal state of the leads, which for lead 
 = R, L reads
e−β(H
−μ
N
)/Z
 (where Z
 = Tr
{e−β(H
−μ
N
)},H
 =∑

λ∈
 Eλc†λcλ, N
 = ∑
λ∈
 c†λcλ), from Eq. (27) we get the

following QLE in the Hilbert space of the dissipative
oscillator (t > 0)

Mẍ(t) + M
∫ t

0
dt ′γ (t − t ′)ẋ(t ′) + Dx(t)

−α2x(t)
∫ t

0
dt ′ ∑

rl

〈Xrl(t, t ′)〉 cos[ωrl(t − t ′)]

+α2
∫ t

0
dt ′ẋ(t ′)

∑
rl

{
〈İ0,rl(t ′) + İ

(0)
ba,rl(t ′)〉

× cos[ωrl(t − t ′)]

−〈I (0)
ba,rl(t ′)〉ωrl sin[ωrl(t − t ′)]

}
+ α2ẋ(t)〈I (0)

ba (t)〉

= ξ (t) + α
∑

rl

〈Irl(0)ωrl sin(ωrlt) − İrl(0) cos(ωrlt)〉 , (29)

where we considered that 〈I (0)
ba,rl(0)〉 = 0 (see Appendix

A). Eq. (29) is the central result of this work. The detec-
tor, considered as an open quantum system in contact
with a heat bath including backaction effects on the mea-
sured system, obeys a generalized QLE. It is a non-linear
equation due to the presence of detector’s variables en-

tering 〈Xrl(t, t ′)〉, in the second line of Eq. (29). We inter-
pret terms in the third and fourth lines as a QPC con-
tribution to the friction memory kernel. In the second
member of Eq. (29) we find a stochastic force contribu-
tion from the QPC.

3.3 Quantum Langevin Equation in linear response

In this section we derive the Quantum Langevin equa-
tion for the LC detector in linear response regime. To this
end we identify İ in the interaction Hamiltonian Eq.(4)
with the unperturbed current in the QPC, İ (0)

0 , that is

Hint ≈ αxİ (0)
0 . (30)

Under these conditions, the effect on the meter of the
current flowing in the QPC can be obtained following the
same procedure used to solve the Heisenberg equations
for the harmonic oscillators, namely by solving

...
I

(0)
0,rl = −ω2

rl İ
(0)
0,rl − ω2

rlαxİ0,rl . (31)

Its solution is formally similar to that for a heath bath os-
cillator driven by the coordinate of the particle, namely

İ (0)
0,rl(t) = −ωrlI0,rl(0) sin(ωrlt) + İ (0)

0,rl(0) cos(ωrlt)

+α

∫ t

0
dt ′ẋ(t ′)İ0,rl(t ′) cos[ωrl(t − t ′)] (32)

−αx(t)İ0,rl(t) + αx(0)İ0,rl(0) cos(ωrlt),

where we disregarded terms from the derivative of İ0,
to order �2 (see Appendix B for an outline of the deriva-
tion). Inserting this solution into Eq. (7) and taking the
average with respect to the thermal state of the QPC, we
end up with the following QLE in the Hilbert space of the
dissipative oscillator

Mẍ(t) + M
∫ t

0
dt ′γ (t − t ′)ẋ(t ′) + (

D − DQPC − 〈D(t)〉) x(t)

+α2
∫ t

0
dt ′ẋ(t ′)

∑
rl

〈İ0,rl(t ′)〉 cos[ωrl(t − t ′)] (33)

= ξ (t) + 〈ξQPC(t)〉 − α2x(0)
∑

rl

〈İ0,rl(0)〉 cos(ωrlt).

Here DQPC describes a renormalization of the LC
potential. In fact, by including time dependent terms to
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order �2 in Eq.(19) (see Appendix A), it follows that

DQPC ≡ 2α2
∑

rl

〈İ0,rl(t)〉

= α2 4e2

�

∑
rl

�2
rlωrl

[
fL(ωl) − fR(ωr)

]
, (34)

where f
(ω) = {exp[β(�ω − μ
)] + 1}−1 is the Fermi
function for the 
-lead. Also in this case the QLE is of
non-linear form due to the additional contribution

D(t) = α2 i
�

{
[x(0), p(t)]

∑
rl

İ0,rl(0) cos(ωrlt)

+
∫ t

0
dt ′[ẋ(t ′), p(t)]

∑
rl

İ0,rl(t ′) cos[ωrl(t − t ′)]
}
.

(35)

On the other side, because of the mentioned time in-
dependence of 〈İ0,rl(t)〉 used in Eq.(34), the dissipative
term in Eq. (33) is convolutive and allows to cast the QLE
in linear response in the form

Mẍ(t) + M
∫ t

0
dt ′γ (t − t ′)ẋ(t ′)

+ (
D − DQPC − 〈D(t)〉) x(t) + M

∫ t

0
dt ′γQPC(t − t ′)ẋ(t ′)

= ξ (t) + 〈ξQPC(t)〉 − MγQPC(t)x(0), (36)

where the QPC memory damping kernel γQPC(t) is given
by

γQPC(t) ≡ α2

M
�(t)

∑
rl

〈İ0,rl(0)〉 cos(ωrlt)

= α2 2e2

M�
�(t)

∑
rl

�2
rlωrl

[
fL(ωl) − fR(ωr)

]
cos(ωrlt)

(37)

and the stochastic force ξQPC(t) by

ξQPC(t) ≡ α
∑

rl

(
ωrlI0,rl(0) sin(ωrlt) − İ (0)

0,rl(0) cos(ωrlt)
)

.

(38)

Notice that this stochastic force contribution is the same
as the one entering the QLE (29). Therefore it is not
related to backaction effects. On passing, we observe
that the slippage term dependent on x(0) of the RHS of
Eq. (36) is analogous to that of Eq. (9).

4 Fluctuation-dissipation relation and
effective temperature

The QLE (36) for the detector in linear response includes,
in addition to damping and fluctuating force due to
the equilibrium bath of harmonic oscillators, analogous
contributions due the QPC, similarly to [15, 49]. Consid-
ering that 〈ξ (t)〉 = 0, the correlation function of the full
force ξ (t) + ξQPC(t) has no cross terms of mixed origin
(heat bath and QPC). Since the QPC is a non-equilibrium
system, we cannot expect that the spectrum of the QPC
stochastic force and the corresponding dissipative term
are related by the standard equilibrium relation holding
for the thermal bath

S̄ξ (ω) = �ω coth
(

�ω

2KBT

)
γ̃ ′

ξ (ω) , (39)

where S̄ξ (ω) is the symmetrized quantum noise spectral
density of ξ (t). Neverthless, an indication of the asym-
metry of the QPC’s quantum noise can be obtained by
defining, for any given frequency, an effective tempera-
ture [15, 49], Teff(ω), via the relation

S̄ξQPC (ω) = M�ω coth
(

�ω

2KBTeff(ω)

)
γ̃ ′

QPC(ω) . (40)

The QPC damping kernel in the continuum limit reads

γQPC(t) = �(t)
2α2

M�
e2

∫
dω′

∫
dω′′ω′′ρL(ω′)ρR(ω′ + ω′′)

×�2(ω′′)
[
fL(ω′) − fR(ω′ + ω′′)

]
cos(ω′′t) . (41)

The real part of the Fourier transform of γQPC(t) is

γ̃ ′
QPC(ω) = πω

α2

M�
e2�2(ω)

∫
dω′ρL(ω′)

×
{ [

ρR(ω′ − ω)fR(ω′ − ω) − ρR(ω′ + ω)fR(ω′ + ω)
]

+ fL(ω′)
[
ρR(ω′ + ω) − ρR(ω′ − ω)

] }
. (42)

In the above expressions �(ω) is the continuum limit of
�rl, and ρ
(ω) denotes the density of states in the lead

. By using the expression for the QPC force operator
given in Eq. (38), we can calculate the symmetrised noise

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (6 of 10) 1600059Wiley Online Library
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Figure 2 Behavior of the effective temperature defined by Eq. (46)
for small frequencies ω < (μL − μR)/�. It is a result of different
excitation and relaxation rates of the oscillator caused by the shot
noise in the QPC for zero temperature of the leads.

spectrum of the QPC force operator S̄ξQPC (ω)

S̄ξQPC (ω) =
∫ +∞

−∞
dt〈ξQPC(t)ξQPC(0)〉 cos (ωt)

= ω2πα2e2�2(ω)
∫

dω′ρL(ω′)

×
{
ρR(ω′ − ω)

[
fL(ω′)

(
1 − fR(ω′ − ω)

)
+ fR(ω′ − ω)

(
1 − fL(ω′)

) ]
+ ρR(ω′ + ω)

[
fL(ω′)

(
1 − fR(ω′ + ω)

)
+ fR(ω′ + ω)

(
1 − fL(ω′)

) ]}
, (43)

where we neglected the squared average of the operator
İ (0)

0 , which is of order �4.
In the limit T → 0, assuming a constant density of

states ρ
 = � around ω < (μL − μR)/�, Eq. (43) yields

S̄ξQPC (ω) ≈ 2πω2α2�2(ω)�2(μL − μR)/�. (44)

Under the same conditions, the real part of the damping
kernel in Fourier space reads

γ̃ ′
QPC(ω) ≈ 2π

M�
ω2e2α2�2(ω)�2. (45)

The effective temperature Teff(ω), resulting of the non-
equilibrium fluctuations that arise during the evolution
of the entire system follows from Eq. (40) and is given by

coth
(

�ω

2KBTeff(ω)

)
≈ μL − μR

�ω
. (46)

The frequency dependence of the effective temperature
resulting from Eq. (46) is reported in Fig. 2. Under sta-

tionary conditions, ω → 0, Teff(ω) reduces to

Teff(ω → 0) ≈ μL − μR

2kB
. (47)

Analogously to single electron transistor and tunnel
junction detectors [48, 63, 64], the effective temperature
at zero frequency is proportional to the applied source-
drain voltage drop V , that is KBTeff ≈ eV . Physically, the
finite effective temperature entering the QLE is a result
of different excitation and relaxation rates of the oscilla-
tor caused by the shot noise in the QPC when the leads
are at zero temperature. For a tunnel junction it has been
shown [48] that the effective oscillator temperature is
responsible for a quadratic term in the I-V character-
istic. An analogous backaction effect can be expected
in our case, but it is beyond the scope of the present
paper.

In concluding this section we note that, by consider-
ing the full QLE (29) with backaction terms, additional
contributions to the memory kernel are involved which
display nontrivial time dependencies, while the QPC
force operator is left untouched. Therefore, an analogous
effective temperature can not be defined when consider-
ing backaction effects in our non-equilibrium and non-
linear system.

5 Conclusions

In the present work we addressed the quantum backac-
tion effects of a mesoscopic detector on the tunneling
current in a QPC, a prototype quantum conductor.
The detector has been modelled as a dissipative quan-
tum LC circuit inductively coupled to the QPC as in
Refs. [36, 40]. In those articles no backaction effect was
included, whereas dissipation in the resonant circuit
measuring finite-frequancy current moments was the
subject of Ref. [40]. Measurement-induced disturbances
on the QPC are originated by the continuos and weak
meter-QPC coupling and we found that they enter both
the backaction current and its derivative. These back-
action effects, treated in lowest order in the coupling
strength, enter the non-linear QLE for the dissipative
resonator, Eq. (29), which is the main result of this
work. Backaction gives rise to non-trivial damping and
frictional terms in the QLE. We also derived the QLE
in linear response. In this case, the QPC’s force noise
can be related to the damping kernel by a frequency-
dependent effective temperature. Interestingly, the same
QPC stochastic force enters the QLE in linear response
and QLE including backaction effects. However, due to
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Fortschr. Phys. 65, No. 6–8 (2017)

Fortschritte
der Physik

Progress
of Physics

O
riginalPaper

the more involved damping contributions originated
by backaction, the stochastic force noise and damping
kernel can not be related via a similar relation. A fur-
ther step of our work, currently in progress, consists in
evalating the role of measurement induced disturbances
(backaction) on measurable quantities, like the second
current cumulant both under stationary conditions
and at finite frequencies, extending the analysis of
Ref. [40].

Acknowledgments. E. P. and T. M. acknowledge support from the
Galileo Programme 2013-2014, project G13-67.

A Time evolution of the QPC operators

The Heisenberg equation for the QPC operator cl, to zero
order in α, is

ċl = −iωlcl − i
∑

r′
�r′lcr′ . (A.1)

Eq. (A.1) has solution

cl(t) = cl(0)e−iωl t − i
∑

r′
�r′l

∫ t

0
dt ′e−iωl(t−t ′)cr′ (t ′)

� cl(0)e−iωl t − i
∑

r′
�r′lcr′ (0)

∫ t

0
dt ′e−iωl(t−t ′)e−iωr′ t ′

,

(A.2)

where, in passing to the second line, we replaced the sim-
ilar solution for cr(t) taken to zero order in �.

By substituting Eq. (A.2) and the analogous expres-
sion for cr(t) (and their Hermitian conjugates) into
Eq. (20) we get, to order �2,

I (0)
ba (t) = i

�
e2

∑
rl

�rlωrl

{
c†l (0)cr(0)e−iωrl t − h.c.

−
∑

l′( �=r)

�rl′

[
c†l (0)cl′ (0)

e−iωl′ l t − e−iωrl t

ωrl′
− h.c.

]

+
∑

r′( �=l)

�r′l

[
c†r′ (0)cr(0)

e−iωrr′ t − e−iωrl t

ωr′l
− h.c.

]}
.

(A.3)

Similarly, by replacing the solutions for c†(t) and c(t) into
Eq. (21), the time derivative of the operator I (0)

ba , to order

�2, reads

İ
(0)
ba (t) = e2

�

∑
rl

�rlω
2
rl

{
c†l (0)cr(0)e−iωrl t + h.c.

−
∑

l′( �=r)

�rl′

[
c†l (0)cl′ (0)

e−iωl′ l t − e−iωrl t

ωrl′
+ h.c.

]

+
∑

r′( �=l)

�r′l

[
c†r′ (0)cr(0)

e−iωrr′ t − e−iωrl t

ωr′l
+ h.c.

]}

+ e2

�

∑
r,l

�rlωrl

{∑
l′

�rl′
[

c†l (0)cl′ (0)e−iωl′ l t + h.c.
]

−
∑

r′
�r′l

[
c†r (0)cr′ (0)e−iωrr′ t + h.c.

] }
.

(A.4)

The average value with respect to the equilibrium QPC
thermal state selects the terms with l′ = l and r′ = r in
Eq. (A.4). As a result we have

〈İ (0)
ba (t)〉 =2

�
e2

∑
rl

�2
rlωrl

[
fL(ωl) − fR(ωr)

]
cos(ωrlt)

=
∑

rl

〈İ0,rl(t)〉 cos(ωrlt),
(A.5)

where, in passing to the second line we used the explicit
expression for İ0 given in Eq. (19). Note that, up to sec-
ond order in �, this average value is constant in time.
This is easily seen by replacing in Eq. (19) the solutions
for the QPC creation and annihilation operators to zero
order in � given by Eq. (A.2).

B Time derivative of the QPC current in linear
response

Here we outline the derivation of Eq. (32), namely the
solution for the time derivative of the current operator in
linear response. Eq. (31) is obtained by taking twice the
time time derivative of İ (0)

0,rl, the rl component of Eq. (18).
This is done by means of the Heisenberg equation Ȧ =
i/�[HQPC + Hint, A], where the interaction Hamiltonian
features İ (0)

0 itself (see Eq. (30)). We get

Ï (0)
0,rl = ie�r,l(−ω2

rl)
(

c†l cr − c†r cl

)
. (B.1)

The time derivative
...
I

(0)
0,rl of the above operator is ob-

tained via the commutator i/�[HQPC + Hint, Ï (0)
0,rl] which

yields Eq. (31). This equation can be formally solved, for
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example by Laplace transform, and has solution

İ (0)
0,rl(t) = Ï (0)

0,rl(0)

ωrl
sin(ωrlt) + İ (0)

0,rl(0) cos(ωrlt)

− αωrl

∫ t

0
dt ′x(t ′)İ0,rl(t ′) sin[ωrl(t − t ′)].

(B.2)

Now, by comparing Eq. (B.1) with Eq. (12) one finds the
relation Ï (0)

0,rl(0)/ωrl = −ωrlI0,rl(0). Using this relation for
the first term (RHS) of Eq. (B.2), integrating by parts the
third term (RHS), and neglecting the time derivative of
İ0,rl, Eq. (B.2) can be cast in the form of Eq. (32).

Key words. Quantum backaction, mesoscopic conductor, quan-
tum Langevin equation, fluctuation-dissipation relation.
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