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I-90123 Palermo, Italy
3Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen’s University,

Belfast BT7 1NN, United Kingdom
(Received 23 March 2016; published 23 May 2016)

We calculate the first two moments and full probability distribution of the work performed on a system
of bosonic particles in a two-mode Bose-Hubbard Hamiltonian when the self-interaction term is varied
instantaneously or with a finite-time ramp. In the instantaneous case, we show how the irreversible work scales
differently depending on whether the system is driven to the Josephson or Fock regime of the bosonic Josephson
junction. In the finite-time case, we use optimal control techniques to substantially decrease the irreversible work
to negligible values. Our analysis can be implemented in present-day experiments with ultracold atoms and we
show how to relate the work statistics to that of the population imbalance of the two modes.

DOI: 10.1103/PhysRevA.93.053618

I. INTRODUCTION

Thermodynamics has lasted through all the scientific
revolutions that have occurred in the last centuries. In the early
days, thermodynamics was applied to macroscopic systems
with a number of particles of the order or larger than the
Avogadro number. This implies that when repeating a ther-
modynamic process under the same conditions, the observed
values of thermodynamic quantities, such as work, entropy,
and heat, would always be the same. Recently, motivated
by experiments in mesoscopic systems in solid-state physics,
molecular biology, and in optical and atomic physics, attention
has been turned to the fluctuations of thermodynamic quanti-
ties satisfying fundamental theorems [1,2]. Such fluctuations
can have a twofold origin: they can be merely due to the small-
ness of mesoscopic systems giving rise to classical statistical
fluctuations; or, they can be intrinsically quantum fluctuations.

In the context of work in quantum mechanics, it has been
shown that work cannot be identified with a single observable
but rather to a generalized measurement [3–8]. Quantum fluc-
tuations of work, in contrast to classical thermal fluctuations,
survive when the temperature is lowered close to absolute
zero. Their origins can be traced to the noncommutativity of
operators in quantum mechanics: they emerge when driving a
system with a sequence of Hamiltonians that do not commute
with each other [9]. Such observation leaves an open question:
How can one access the quantum fluctuations of work for a
quantum mesoscopic system?

The aim of this paper is to answer positively to this question
by studying the fluctuations of work generated by or made
on a system of ultracold atoms in a double-well potential.
Recent technological and experimental progress in the field
of cold atomic gases has triggered enormous research activity
towards the realization of quantum simulators of condensed-
matter physics models, quantum metrology, and quantum
information processors [10–12]. Far less attention has been
devoted to applications of out-of-equilibrium thermodynamics
in ultracold atoms [7] with the exception of the issue of
thermalization in closed quantum systems [13,14].

Here, we consider a zero-temperature bosonic gas subject
to a double-well potential. In the so-called two-mode approx-

imation, the system can be regarded as a bosonic Josephson
junction [15,16] and its physics has been extensively studied
both theoretically [17–21] and experimentally [22–27]. We
calculate the work fluctuations in such setup after changing
the interparticle interaction strength by means of a Feshbach
resonance. Similar effects could be obtained by changing the
potential, raising or lowering the barrier separating the two
wells. For slow adiabatic changes of the interaction, the work
needed to drive the system is approximately given by the free-
energy difference �F of the initial and final equilibrium states.
However, for fast driving the average work is always larger
than �F and their difference gives the irreversible work. We
analyze the dependence of the irreversible work on the initial
and final values of the self-interaction constant spanning the
Rabi, Josephson, and Fock regime of the double-well system.

Furthermore, with the aim of reducing the irreversible
work production, we employ optimal control methods to find
a tailored time-dependence of the self-interaction [28]. We
find that the irreversible work can be effectively reduced to a
negligible value even if driving the system at a finite speed,
challenging the minimal work principle [29]. We test the
robustness of our protocol to imperfections in the values of
the self-interaction.

Our results can be tested in present-day experiments with
ultracold atoms in double-well potentials [22–27] or realizing
instances of the Lipkin-Meshkov-Glick (LMG) [30,31] as, for
instance Bose-Einstein condensates in optical cavities [32]. In
Sec. VI, we discuss a scheme to estimate work fluctuations in
such systems.

II. MODEL

The system considered is a zero-temperature Bose-Einstein
condensate in a double-well potential. For our study we use
the two-mode Bose-Hubbard Hamiltonian

Ĥ = U

2
[n̂L(n̂L − 1) + n̂R(n̂R − 1)] − J (âLâ

†
R + âRâ

†
L),

(1)

where J and U are respectively the tunneling and the self-
interaction energies and the number of particles N is assumed
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to be constant. The operators âL and âR are the particle
annihilation operators in the left and right well, respectively,
and n̂L and n̂R are the corresponding number operators.

We analyze the system by using both a numerical and an
analytical approach in order to find the eigenstates of the
Hamiltonian. The analytical results are obtained by mapping
the double well to a quantum harmonic oscillator (QHO). In
order to do that, we introduce the Schwinger operators

Ĵx = 1

2
(â†

RâR − â
†
LâL), (2)

Ĵy = i

2
(â†

RâL − â
†
LâR), (3)

Ĵz = 1

2
(â†

LâR + â
†
RâL), (4)

fulfilling the standard angular momentum commutation rela-
tions: [Ĵx,Ĵy] = i�Ĵz. These operators allow us to describe the
system with the angular momentum formalism obtaining the
Hamiltonian in the form

Ĥ = −U

2
N + U

(
N

2

)2

+ UĴ 2
x − 2J Ĵz. (5)

We now map Hamiltonian (5) into that of a QHO employing
the Holstein-Primakoff approximation, valid in the Josephson
and Rabi regimes [23]. We remind that the system is in
the Rabi and the Josephson regimes, respectively, when the
conditions UN

J
� 1 and 1 � UN

J
� N2 are fulfilled, whereas

for UN
J

� N2 the system is in the Fock regime. The operator
Ĵx , proportional to the population imbalance, is related to the
position operator of the QHO by the equation Ĵx = √

N/2 x̂,
whereas for the momentum p̂ of the QHO it holds the
relation Ĵy = −√

N/2 p̂. Hence, the double-well system can
be mapped to the QHO Hamiltonian

Ĥ = E′ + 1

2
mω2

px̂2 + 1

2m
p̂2 (6)

having an effective mass m = (2J )−1 and the plasma fre-

quency ωp = 2J

√
UN
2J

+ 1, where we defined E′ = −U N
2 +

U N2

4 − J − JN . While the mapping to Hamiltonian (5) is
exact, the mapping to the QHO is only approximate and valid
as long as 〈â†â〉 � N where â = (x̂ + ip̂)/

√
2.

In the following we will need the ground-state expectation
values

〈x̂2〉 = J

ωp

(7)

〈p̂2〉 = ωp

4J
(8)

and using the Gaussian properties of the ground state, we
obtain

〈x̂4〉 = 3 〈x̂2〉 . (9)

and similarly for other high-order moments.
Within this framework, knowing the eigenstates of the

QHO, we are able to compare both numerical and analytical
results of the statistics of work, which we now define. Suppose
that we prepare a quantum system in the ground state |ψ0〉 of
an initial Hamiltonian Ĥi with energy E0. The Hamiltonian is

then changed in time, not necessarily in an adiabatic fashion,
reaching at time τ the Hamiltonian Ĥf with eigenvalues
and eigenstates: {Ẽq, |ψ̃q〉}. The change in the Hamiltonian
induces an evolution operator that maps the initial state into
|ψ(τ )〉. Then, the probability density function of the work done
on the system is

P (W ) =
∑

q

| 〈ψ̃q |ψ(τ )〉 |2δ(W − Ẽq + E0). (10)

A similar distribution can be analogously defined for an
arbitrary initial state and for nonunitary evolutions.

The average work done for the quench in a finite time, is
then obtained as the first moment of P (W ):

〈W 〉 = 〈ψ(τ )|Ĥf |ψ(τ )〉 − 〈ψ0|Ĥi |ψ0〉 . (11)

The variance of the work, defined as

�W 2 = 〈W 2〉 − 〈W 〉2 , (12)

with 〈W 2〉 = 〈ψ(τ )|(Ĥf − E0)2|ψ(τ )〉, is useful because it
gives information about the fluctuations of the work.

Thanks to the Jarzynski relation, it holds the relation 〈W 〉 �
�F , where �F = Ẽ0 − E0 is the final-initial ground-state
energy difference. Since the equality holds in case of an
adiabatic process, in the following we study the irreversible
work Wirr = 〈W 〉 − �F , which measures the amount of
wasted work during the transformation.

III. INSTANTANEOUS QUENCH

We start our analysis with an instantaneous quench in which
we vary either the self-interaction energy U or the tunneling
J . Under this assumption, |ψ(τ )〉 = |ψ0〉 and the expectation
value of (11) is reduced to the evaluation on the ground state
of the initial Hamiltonian, hence

〈W 〉 = 〈ψ0|(Ĥf − Ĥi)|ψ0〉 = 〈ψ0|Ĥf |ψ0〉 − E0. (13)

We evaluate the work done on the system going through
all the regimes by keeping fixed Ui and changing Uf and vice
versa. By using the mapping to the QHO as shown in Eq. (6)
and the results in Eqs. (7)–(9), we find the following analytical
results for the average work done on the system, its variance
and the irreversible work

〈W 〉 = �U
N

2

[(
N

2
− 1

)
+ J

ωi

]
(14)

�W 2 = J 2

ω2
i

N2

2
�U 2 (15)

Wirr = N

2

J

ωi

�U − ωf − ωi

2
. (16)

where �U = Uf − Ui and ωi,ωf are the initial and final
plasma frequencies.

It is important to notice that the average work can be written
as

〈W 〉 = Wclass + Wquant, (17)

where we want to stress the fact that the average work has a
classical constant part Wclass = �U N

2 (N
2 − 1) and a quantum
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FIG. 1. Numerical (blue dots) and analytical (solid line) log-log
plots of the quantum part of the average work (top, main), its variance
(inset) and the irreversible work (bottom) against (Uf − Ui)/J ,
obtained by changing U instantaneously from Ui = 0, where the
system is in the Rabi regime, to different values of Uf in the range
10−3J–104J , including all the regimes for N = 100. In the bottom
panel, the dotted line fitting the numerical points corresponds to the
QHO analytical prediction, the green (dashed) and the orange (solid)
lines correspond to the limits (Uf − Ui)/J much smaller and much
larger than 1, respectively [see Eqs. (22) and (25)].

part affected by the ground-state quantum fluctuations, related
to the average square of the population imbalance

Wquant = �U
N

2
〈x̂2〉 = �U 〈n̂2〉 , (18)

where n̂ = n̂L − n̂R is the population imbalance.
In Fig. 1 we show the results of the quantum part of the

average work, the variance and the irreversible work obtained
by varying U , going from a fixed initial value Ui where the
system is in the Rabi regime, to different final values Uf

belonging to the three regimes.
As expected from the analytical expressions (14)–(16), for

the values used in Fig. 1, i.e., Ui = 0 implying ωi = 2J , we
obtain Wquant ≈ N

4 Uf and �W 2 ≈ N2

8 U 2
f . For the irreversible

work the gray dotted line fitting the numerical points is given
by the simplified form

Wirr = NUf

4
+ J − J

√
Uf N

2J
+ 1 (19)

obtained from Eq. (16) with Ui = 0.

For this quantity we analyzed two limiting cases: Uf N

2J
� 1

and Uf N

2J
� 1. In the first scenario, by expanding the square-

root term up to the second order, i.e.,
√

Uf N

2J
+ 1 	 1 + Uf N

4J
−

U 2
f N2

32J 2 , we get Wirr 	 N2

32J
U 2

f , represented in Fig. 1 by the green

line. On the other hand, when Uf increases and Uf N

2J
� 1,

the dominant term is the linear one, and we get Wirr 	 N
4 Uf

(orange line).
Analogously, in Fig. 2 we study the case in which we keep

fixed the final parameter Uf and vary the initial one Ui going
through every of the three regimes of the bosonic Josephson
junction. Analogously to the previous case, for the average
work, we consider only its quantum component (18).

As expected, the analytical results (green dotted lines)
given by Eqs. (18), (15), (16) fit the numerical ones (blue
dots) for Ui < 103J , because for larger values of Ui , with the
parameters used here, the system is in the Fock regime. This
limitation of the analytical approach is due to the fact that
in this regime the Holstein-Primakoff approximation does not
work anymore and the eigenstates of the initial Hamiltonian
can not be described as the ones of the QHO. In order to show
the results on a log-log graphic, we considered the absolute
values of the analyzed quantities, since for Ui > Uf , i.e., at
the right of the gray dotted line in the graphics, the average
work has a negative value, corresponding to work extraction.
Furthermore, as done for the previous case in which we change
Uf , we analyze the limiting cases for UiN

2J
� 1 and UiN

2J
� 1.

For UiN

2J
� 1 we obtain

Wquant 	�U
NJ

4J + UiN
(20)

�W 2 	(
U 2

f − 2Uf Ui

)N2

8

2

NUi/(2J ) + 1
(21)

Wirr 	 �U
N

4

1

1 + UiN/4J

−
[
ωf − 2J

(
1 + UiN

4J
− U 2

i N2

32J 2

)]/
2, (22)

where once again we use the expansion√
UiN

2J
+ 1 	 1 + UiN

4J
− U 2

i N2

32J 2

in series up to the second order, and in (21) we considered
Ui � Uf . These behaviors are shown by the blue lines in
Fig. 2.

On the other hand, in the limit for UiN

2J
� 1, by using the

approximation
√

UiN

2J
+ 1 	

√
UiN

2J
, we obtained the following

analytical results for the examined quantities:

Wquant 	�U

4

2JN

Ui

(23)

�W 2 	 − Uf NJ

4
− �U

NJ

4
(24)

Wirr 	�U

4

√
2JN

Ui

−
√

NJ

2
(
√

Uf −
√

Ui), (25)
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FIG. 2. Analytical (green dotted lines) and numerical (blue dots)
log-log plots of the quantum part of the average work (top), its
variance (middle) and the irreversible work (bottom) vs Ui , obtained
by changing U instantaneously from different values of Ui in the
range 10−3J–103J , including all the regimes, to a value Uf = 10J ,
where the system is in the Josephson regime. We plot the absolute
value of the work since it is negative for Ui � Uf . We set N = 100.
The blue (dashed) and orange (solid) lines represent respectively the
analytical formulas obtained for the limiting cases of UiN

2J
� 1 and

UiN

2J
� 1.

where in (25) we used the approximation Uf N

2J
� 1, since the

final state of the system is in the Josephson regime.
So far we have limited our analysis to the first two moments

of work and the irreversible work. The full distribution of
work can calculated in a similar way. As shown in Eq. (18),
the quantum part of the work is proportional to the square of
the population imbalance. Since this quantity is approximately

Numerical
Analytical

50 100 150 200
Wquant�J

10�8

10�5

10�2

10

P�W�

FIG. 3. Semilog plot of the probability distribution of the work
calculated analytically by using (26) and numerically, for a sudden
quench from Ui = 0 to Uf = 0.1J and N = 100.

Gaussian in the Rabi and Josephson regime, we expect Wquant

to be distributed according to an exponential function:

P (Wquant) =
√

N

πσWquant
exp[−W/σ ] (26)

where σ = J�UN/ωi . The relation (26) works quite well in
the Josephson regime as shown in Fig. 3. As it can be noticed
from this plot, for higher values of the work, the analytical
and numerical results present a progressive slight shift. This
is probably due to the fact that in the Holstein-Primakoff
approximation we are neglecting higher-order terms, hence
the spacing between the energy levels in the Bose-Hubbard
model may not be exactly the same as in the QHO.

IV. FINITE-TIME TRANSFORMATIONS

We now turn to a transformation in which we vary the work
parameter U in a finite time τ . As we saw in the previous
sections, the properties of the bosonic Josephson junction are
well captured by the QHO away from the Fock regime. We thus
expect that even for the dynamics such mapping still holds. In
our analysis, we compare the numerical results obtained for
the work fluctuations by using the Bose-Hubbard model with
the semianalytical results obtained from the approach of Ford
et al. [33] for the evolution of the ground state in a QHO
with a time-dependent frequency (see Appendix A for the
detailed calculations). Previous works have investigated the
work distribution of a QHO, for the case of a linear ramp for
the squared frequency [34], i.e., ω2(t) = ω2

0 − (ω2
0 − ω2

1)t/τ ,
and for a generic ramp [33].

We start our analysis with a linear ramp for U (t):

Ulin(t) = Ui + (Uf − Ui)
t

τ
. (27)

The results for the variance of work and irreversible work are
shown in Fig. 4. In order to compare the numerical results with
the time evolution of the QHO, we notice that since the plasma
frequency squared is a linear function of U (t), for the ramp
in Eq. (27), we are considering the same case of Ref. [34].
The results show that both irreversible work and variance
of work decay with the ramp duration τ . This is analogous
to the analysis in Ref. [34] with the adiabaticity parameter
Q. Moreover, we observe oscillations in both quantities as
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FIG. 4. Analytical (dashed) and numerical (solid) plots of vari-
ance of the work (top) and the irreversible work (bottom) vs τ ,
obtained by changing U from Ui = 0 to Uf = 0.2J with N = 200.

a function of τ . These can be associated with parametric
time oscillations of the variance of the population imbalance
around the variance of the instantaneous ground state. Thus,
the irreversible work is directly related to squeezing and
antisqueezing of the population imbalance in time. Such
conjecture is confirmed in Appendix A.

Furthermore, having a semianalytical form of the transition
probability pτ

q,0 (A10), we obtain both numerical and analyti-
cal results for the probability distribution of the work, defined
as

P (W ) =
∑

q

∣∣pτ
q,0

∣∣2
δ(W − qωi). (28)

Even in this case, we obtain a shift between numerical and
analytical results similar to the one obtained for a sudden
quench, shown in Fig. 3.

V. OPTIMAL CONTROL

It is natural to expect that for a given duration τ , the
irreversible work should depend on the actual time dependence
of the self-interaction U (t). The aim of this section is to find
the best ramp U (t) that minimizes Wirr for fixed τ . Previous
attempts to reduce irreversible work in quantum harmonic
oscillators [35,36] and systems within the linear response
regime [37] have been reported. Our goal is a standard optimal
control problem [38], which we approach considering two
types of chopped basis: the first a linear ramp plus a truncated
Fourier expansion, similar to Ref. [28], and a polynomial.

For these functions we impose the boundary conditions
U (0) = Ui and U (τ ) = Uf and we enforce the plasma

frequency ω(t) = 2J

√
U (t)N

2J
+ 1 to be real for every t . We

optimized the free parameters of every kind of ramp and
compared the results of the irreversible work with the case
of the linear ramp Ulin(t), Eq. (27).

In a first attempt, we use one ramp from each class with
four parameters of which, given the boundary conditions, two
are free. The first one is a linear ramp with two sinusoidal
terms, having the form

ULCS(t) = A0+A1 cos

(
πt

τ

)
+B1 sin

(
πt

τ

)
+C1

t

τ
(29)

with A0 = Ui − A1 and C1 = Uf − Ui + 2A1 in which we
optimize the free parameters A1 and B1. The frequency of
the oscillating terms is chosen to have at least one oscillation
during the ramp. The second kind of ramp analyzed is a cubic
polynomial:

Uc(t) = A0 + A1
t

τ
+ A2

(
t

τ

)2

+ A3

(
t

τ

)3

, (30)

where the free parameters A2 and A3 are optimized. For this
case the boundary conditions impose A0 = Ui and A1 = Uf −
Ui − A2 − A3.

For comparison we consider also other ramps with four
free parameters. In the first one we add two frequencies to the
ramp ULCS(t), hence we consider A1, B1, A2, and B2 as free
parameters in

U2LCS(t) = A0 + A1 cos

(
πt

τ

)
+ B1 sin

(
πt

τ

)

+A2 cos

(
2πt

τ

)
+ B2 sin

(
2πt

τ

)
+ C1

t

τ
.

(31)

The last ramp we consider is a quintic polynomial:

Uq(t) = A0 + A1
t

τ
+ A2

(
t

τ

)2

+ A3

(
t

τ

)3

+A4

(
t

τ

)4

+ A5

(
t

τ

)5

. (32)

A1/J

B1/J

Wirr /J

-50
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80
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FIG. 5. Irreversible work vs the parameters A1 and B2 calculated
for the ansatz ULCS(t) (Linear + Cos + Sin ramp) for the values
Ui = 0.2J , Uf = 0.8J , and τ = 0.1/J .
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FIG. 6. Semilog plot of the irreversible work vs τ evaluated with
the optimal parameters of every ansatz, for values Ui = 0.2J and
Uf = 0.8J . The blue line corresponds to the linear ramp, the orange
crosses to the linear + Sin + Cos ramp, the triangles to the ramp
U2LCS(t), the green points and the diamonds respectively to the cubic
and quintic ones.

In each of these cases, the condition of reality imposed on
ω(t) gives a restriction on the possible values of one of the
free parameters, depending on the values of the other ones.
The choice of the parameters range analyzed is done on
the basis of both efficiency and stability, by observing the
dependence of the irreversible work on the free parameters
which, for the ansatz having two free parameters, can be
represented graphically as in Fig. 5. The plot of the irreversible
work versus the free parameters for the ramp ULSC(t) in
Fig. 5 shows oscillations of the irreversible work, whose
amplitudes increase for larger values of the parameter B1.
Nevertheless, this kind of considerations derived from a
graphical representation is hard to extend to the case of more
than two free parameters, but we expect a similar potential
landscape [39].

The optimized results of the irreversible work obtained for
every ramp as a function of the ramp duration τ are compared
in Fig. 6 and reported in Table I for convenience. With each of
these ramps we obtain a substantial decrease in the dissipated
work with respect to the linear ramp for every τ . The most
efficient optimizations are obtained with the four-parameters
ramps U2LCS(t) and Uq(t), for which the irreversible work

reaches a value smaller than 10−4J after a time τ = 0.1/J . For
the other ramps the value of the dissipated work is always larger
and approaches zero for much higher values of τ . In particular,
for smaller values of the duration of the quench, i.e., 0 < Jτ <

0.08, the ramp ULCS is more efficient than the cubic, but for
0.08 < Jτ < 0.3, the best optimization is granted by the cubic
and the quintic, which reach a zero value of the dissipated work
respectively from τ = 0.08/J and τ = 0.1/J .

On the basis of these results regarding the efficiency of the
optimization process, we analyzed the stability of the optimal
parameters obtained for every ramp. In order to do that, for
every ansatz, we associate a relative percentage error to each
parameter, we evaluate the work done on the system for random
variations of the parameters inside the range given by the
errors, and we consider the average and standard deviation of
the irreversible work.

For the case examined above, i.e., Ui = 0.2J and Uf =
0.8J , we obtain the maximum stability for the ansatz ULCS,
where variations up to the 20% of the optimal parameters give
variations on the irreversible work between the 0.2% and the
8%, except for the cases of τ = 0.08/J and τ = 0.1/J for
which the variations are higher, respectively, of the 13.6% and
the 11.4%. The results of this tolerance analysis are shown in
Fig. 7. For the cubic ramp, in order to obtain the same kind of
results gained for the ramp ULCS, we consider fluctuations
of the parameters up to the 5% of their value, obtaining
variations in the irreversible work between the 0.5% and the
14%, with higher peaks of the 61.5% and the 40% respectively
for τ = 0.1J and τ = 0.3J . The enhancement in the stability
obtained with the ansatz ULCS is due to the fact that, as shown
in Fig. 5, variations of A1 tend to leave the irreversible work
in a minimum, hence the major contribution to changes in
the value of the work is given by B1. On the other hand, for
the cubic ramp, the minima of the oscillations cross different
values of both A2 and A3, hence both the oscillations contribute
to the variations of the irreversible work. Although the ansatz
U2LCS gives the best efficiency, for the values of U analyzed, it
is the most unstable. It would probably be possible to minimize
the work analyzing a different range of parameters, reducing
the efficiency of the optimization in order to enhance its
stability, but the lack of a graphical representation for the case
of four free parameters analysis makes it harder to find a stable
range.

TABLE I. Values of the exact optimal parameters and the irreversible work obtained with these for each ramp, for different values of τ ,
considering a quench from Ui = 0.2J to Uf = 0.8J . All quantities are in units of J .

ULCS U2LCS Uc Uq

τ A1 B1 Wirr A1 B1 A2 B2 Wirr A2 A3 Wirr A2 A3 A4 A5 Wirr

0.02 3.8 0.2 2.04 3.6 0.4 0.2 0.0 2.01 −8.0 5.4 2.29 −15.8 0.6 16.2 −7.4 2.13
0.04 3.2 0.0 9.47 × 10−1 21.0 16.0 −6.4 −11.0 1.09 −8.0 5.4 1.63 25.0 −14.0 −21.4 −26.0 5.36 × 10−1

0.06 3.2 0.0 2.68 × 10−1 18.0 15.0 3.0 −7.8 7.93 × 10−3 −8.0 5.6 8.28 × 10−1 19.6 19.0 −20.2 −26.0 1.31 × 10−1

0.08 2.2 −0.2 4.45 × 10−2 1.6 10.4 4.2 −1.4 7.96 × 10−5 −8.0 5.6 1.90 × 10−1 2.6 21.0 −2.2 −26.0 3.29 × 10−2

0.10 1.4 −0.2 1.15 × 10−1 −15.0 19.8 3.6 −3.8 7.73 × 10−5 −7.6 5.4 1.84 × 10−3 4.8 −14.2 8.2 1.2 1.90 × 10−5

0.20 0.2 −0.2 1.41 × 10−1 0.2 0.0 −0.6 0.8 2.62 × 10−3 −0.4 0.6 1.09 × 10−2 6.8 21.2 −16.8 −17.0 6.67 × 10−6

0.30 0.0 −0.2 1.86 × 10−2 3.8 3.2 0.0 −2.6 7.86 × 10−4 0.0 0.6 2.36 × 10−3 17.8 −14.0 13.8 −20.4 3.44 × 10−6

0.40 0.2 −0.2 5.49 × 10−3 −2.8 −0.4 −3.6 2.4 6.23 × 10−4 −0.8 1.2 4.59 × 10−4 10.8 −6.6 2.8 −7.8 6.87 × 10−6

0.50 0.0 −0.2 3.71 × 10−3 −2.4 4.0 0.0 −1.2 2.51 × 10−4 0.4 0.2 4.80 × 10−3 −1.0 14.0 −20.0 7.0 1.19 × 10−5

053618-6



WORK FLUCTUATIONS IN BOSONIC JOSEPHSON JUNCTIONS PHYSICAL REVIEW A 93, 053618 (2016)

0.1 0.2 0.3 0.4 0.5

10�2

0.1

1

FIG. 7. Plot of the irreversible work vs the duration of the quench
τ , evaluated for the exact optimized parameters (orange crosses) and
as an average for random fluctuations of these parameters up to the
15% and 5% of the optimal values for A1 and B1 respectively (blue
dots). These results are obtained for Ui = 0.2J and Uf = 0.8J .

We also examine transitions in different regimes, going
from an initial value Ui = 0.8J in the Josephson regime to
a final one Uf = 40J in the Fock regime. In this case, the
most efficient ansatz are ULCS and U2LCS, whose results of
the irreversible work are the same from τ = 0.02/J and for
which a zero dissipated work is reached at τ = 0.04/J . It
is observed that with the cubic and the quintic the stability is
enhanced, although the efficiency is lower, i.e., with the quintic
ramp we find a dissipated work equal to zero at τ = 0.1/J

and for the cubic this is obtained at τ = 0.4/J , hence in this
case a good compromise between optimization efficiency and
stability would be the quintic ramp.

For the two cases examined we have found different results
regarding the efficiency and the stability of the optimization,
and this can be probably due to the fact that different boundary
conditions give different constraints to the values that the
parameters can assume. For this reason, we do not expect
the kind of parameters landscape such as the one represented
in Fig. 5 to be the same in that range of parameter values for
transitions with different values of Ui and Uf .

VI. CONCLUSION

In this paper we have analyzed the fluctuations of the
work done on an ensemble of ultracold atoms in a two-site
Bose-Hubbard model. We have carefully shown analytical
predictions for the first two moments of work and the
irreversible work for instantaneous quenches. In this regime
we have predicted that the probability distribution of work is
well described by an exponential function in agreement with
that of a quantum harmonic oscillator.

For finite-time ramps, we have analyzed the case of a linear
ramp in time demonstrating oscillations of the irreversible
work that are synchronous with the squeezing oscillations
of the population imbalance distribution. Finally, we have
used simple optimal control techniques to minimize the
irreversible work to negligible values. This result might have
applications in the realization of quantum thermal machines
with ultracold atoms and in the quest to maximize their
efficiencies.

It is natural to expect further decrease of the irreversible
work using a larger chopped basis for the time-dependent
ramp. Moreover, one could use more sophisticated schemes as
the one in Ref. [28], in which the frequencies of the oscillating
terms are chosen random, or the Krotov’s method [38]. Our
analysis is therefore a starting point for a more systematic
study.

Finally, let us discuss possible experimental verifications
of our analysis. The two-site Bose-Hubbard model can be
realized in different setups with ultracold atoms in double-well
potentials, in atomic condensates with two species, and in
self-organized condensates in optical cavities [22,25,32,40]. It
is worth to stress the fact that (18) is an interesting result
because it shows that we can reconstruct the statistics of
the work, at least the first two moments, experimentally
by measuring only one observable, i.e., the square of the
population imbalance, rather than doing two measurements
on the energy of the system or by coupling the system
to an external quantum probe. Similar experiments could
be carried out in nuclear magnetic resonance quadrupolar
systems in which spin squeezing has been recently observed
[41,42].
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APPENDIX: WORK DISTRIBUTION OF A QHO

In this Appendix we revise the dynamics of the parametri-
cally driven quantum harmonic oscillator and how to calculate
the work distribution. Let us assume the QHO to be driven
with Hamiltonian Eq. (6) from an initial frequency ω(0) = ωi

to a final one ω(τ ) = ω1. An initial energy eigenfunction of a
QHO evolves into [33,43]

ψn(t) = 1

2nn!

(
ωi

πg−(t)

)1/4

Hn

(√
ωi

g−(t)
x

)
·

× exp

[
− ig0(t) + ωi

2πg−(t)
x2

− i

(
n + 1

2

) ∫ t

0

ωi

mg−(t ′)
dt ′

]
, (A1)

where the Hn are the Hermite polynomials and the functions
g+(t), g−(t), and g0(t) satisfy the differential equations

ġ−(t) = −2g0(t)/m, (A2)

ġ0(t) = mω2(t)g−(t) − g+(t)/m, (A3)

ġ+(t) = 2mω2(t)g0(t) (A4)

with initial conditions g−(0) = 1/m, g0(0) = 0, and g+(0) =
mω2

0.
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FIG. 8. Comparison of the plots of the variance in units of J/ωi

(where ωi is the plasma frequency at t = 0) vs time obtained for
the cases of the numerical Bose-Hubbard model, the semianalytical
approach to the QHO and the asymptotic limit. The parameters used
are N = 200, Ui = 0, Uf = 0.2J .

Equation (A2) can be used to calculate the position variance
of the QHO initially in its ground state n = 0:

〈x2〉 =
∫ ∞

−∞
|ψ0(t)|2x2dx

=
(

ωi

πg−(t)

) 1
2
∫ ∞

−∞
dxx2 exp

[
2Re

(
ig0(t) − ωi

2g−(t)

)
x2

]

= 1

2

√
ωi

g−(t)

[
2Re

(
ig0(t) − ωi

2g−(t)

)]3/2

, (A5)

where in the last passage we used the Gaussian integral∫
e−λx2

x2dx = 1
2

√
πλ−3/2. It can be noticed that in the case

of an adiabatic ramp, since the evolved state at the time τ is an
eigenstate of the final Hamiltonian, 〈x2〉 will be the variance
of the ground state for the final Hamiltonian.

In Fig. 8, we compare the analytical result from (A5)
with the one we obtained numerically by using a Trotter
expansion of the evolution operator and to the instantaneous

variance, defined as 〈x2(t)〉 = J/ω(t). As the frequency ω(t)
is increased, the system wave function tries to catch up with
the instantaneous value of the variance and start oscillating
around it. The slower the driving, the smaller is the amplitude
of these squeezing oscillations.

To calculate the probability distribution of the work we
need the transition probability

pq,0 = | 〈ψ̃q |ψ(τ )〉 |2 =
∣∣∣∣
∫ ∞

−∞
dxψ̃∗

q ψ0(τ )

∣∣∣∣
2

, (A6)

where we set n = 0 as we assume the initial state to be the
ground state. To this end, the wave functions of the final
Hamiltonian at t = τ , are given by

ψ̃q = 1

2qq!

(
mωf

π

)1/4

exp

[−mωf x2

2

]
Hq(

√
mωf x). (A7)

We thus obtain:

pq,0 =
∣∣∣∣
∫ ∞

−∞
dxψ̃qψ0(τ )

∣∣∣∣
2

(A8)

=
∣∣∣∣ 1

2qq!

(
mωf

π

)1/4(
ωi

πg−(t)

)1/4 ∫ ∞

−∞
dxHq(

√
mωf x)

× exp

[(
ig0(t) − ωi

2πg−(t)
− mωf

2

)
x2

]∣∣∣∣
2

. (A9)

Because of the parity, the only possible transitions that give
a nonzero value for the integral above are the ones for which
the index q is even, and in this case from (A10) we obtain the
result

pq,0 =
∣∣∣∣ 1

2q

(
mωf ωi

g−(t)

)1/4 1

(q/2)!

× [(ig0(t) − ωi)/(2πg−(t)) − mωf /2 + √
mωf ]q/2

[−(ig0(t) − ωi)/(2πg−(t)) + mωf /2](q+1)/2

∣∣∣∣
2

,

(A10)

where we used the result∫
exp[αx2]Hq(βx)dx = q!

√
π

(q/2)!

(α + β)q/2

(−α)(q+1)/2
.
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