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ELECTRODYNAMIC CHARACTERISTICS OF A STRIP ANTENNA LOCATED
ON A PLANE INTERFACE OF A RESONANT MAGNETOPLASMA
AND AN ISOTROPIC MEDIUM

T.M. Zaboronkova,1,2∗A. S. Zaitseva,1 A.V.Kudrin,1

and B. Spagnolo 1,3,4 UDC 533.951

We study the electrodynamic characteristics of an antenna having the form of an infinitesimally
thin, perfectly conducting narrow strip located on a plane interface of a resonant magnetoplasma
and an isotropic medium. The antenna is perpendicular to an external magnetic field and is
excited by a given voltage. Singular integral equations for the antenna current, on the basis of
which the current distribution is found in the case of an infinitely long radiator, are obtained.
The limits of applicability of an approximate method based on the transmission line theory for
determining the current distribution and input impedance of the antenna are established. Within
the framework of this method, the results obtained are generalized to the case of a finite-length
strip antenna.

1. INTRODUCTION

Electrodynamic characteristics of metal antennas in a magnetoplasma have been studied in a large
number of publications (see, e. g., [1–4] and references therein). Interest in this problem is due, in particular,
to the wide use of antenna systems in different experiments conducted in the space and laboratory plasmas.
Most of the theoretical papers on the subject consider the antennas located in a homogeneous magnetoplasma
(see, e. g., [5–8]). Recently, increased attention has been paid to the study of antenna characteristics in
inhomogeneous plasma media [4, 9–11]. The case where the antenna is located near the interface of two
media (in particular, isotropic and magnetized) is of the greatest interest since the presence of such an
interface can significantly affect the current distribution and power characteristics of the sources.

In this paper, using the integral equation method, we solve a model problem of the current distribution
and input impedance of a strip antenna that is perpendicular to an external magnetic field and located on
a plane interface of an isotropic medium and a magnetoplasma. The main attention is paid to the case of
a resonant plasma medium where the refractive index of one of the normal modes tends to inifinity for a
certain angle between the wave vector and the direction of the external magnetic field [1, 4]. Such conditions
take place in many experimental situations.

2. FORMULATION OF THE PROBLEM AND BASIC RELATIONS

Consider an infinitely long antenna, which is oriented along the x axis of a Cartesian coordinate
system and has the form of a perfectly conducting, infinitesimally thin, narrow strip of width 2d lying in the
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xz plane (see Fig. 1). It is assumed that this plane co-

Fig. 1. Geometry of the problem.

incides with the interface of a magnetoplasma and an
isotropic medium. The external magnetic field B0 is
aligned with the z axis. The half-space y < 0 is filled with
a homogeneous cold collisionless magnetoplasma, whose
dielectric permittivity tensor has the form

ε̃ = ϵ0

⎛

⎝
ε −ig 0
ig ε 0
0 0 η

⎞

⎠ , (1)

where ϵ0 is the electric constant. Expressions for the el-
ements of tensor (1) are given in, e. g., [12]. Recall that
the plasma is resonant in the frequency ranges in which
the relationship sign ε ̸= sign η is fulfilled for the diagonal
elements of the dielectric permittivity tensor [1, 4]. In
particular, the whistler frequency range

ωLH < ω < ωH < ωp, (2)

where ωLH is the lower hybrid frequency, and ωH and ωp are the gyrofrequency and plasma frequency of
electrons, respectively, which is considered in what follows, is resonant. Note that this frequency range is
also important in many problems related to the use of antennas in plasmas [1, 4]. Homogeneous medium in
the half-space y > 0 is isotropic and has a dielectric permittivity ε̃a = ϵ0εa. In the case where the medium
in the region y > 0 is free space, one should put εa = 1.

The current in the antenna is excited by a time-harmonic (proportional to the factor exp(iωt)) given
voltage that creates an electric field with the only component Eext

x , which is nonzero for y = 0 and |z| < d
in a narrow interval (“gap”) |x| ≤ ∆:

Eext
x (x, 0, z) =

V0

2∆
[U(x+∆)− U(x−∆)] [U(z + d)− U(z − d)] . (3)

Here, V0 = const is the complex amplitude of the voltage applied to the gap, ∆ is the gap half-width, and U
is a Heaviside function. The distribution of Eext

x for |z| < d can be represented as the following expansion
into a Fourier integral:

Eext
x (x, 0, z) =

k0
2π

+∞∫

−∞

Eext
x (nx) exp(−ik0nxx) dnx, (4)

where

Eext
x (nx) = V0

sin(k0nx∆)

k0nx∆
, (5)

k0 = ω/s is the wave number in free space, and c is the light speed.

The density J of the electric current excited in the antenna by an external field given by Eq. (3) will
be sought in the form

J = x0I(x, z)δ(y), (6)

where |z| < d, and δ(y) is a Dirac function. The surface density I(x, z) of the current obviously admits the
following representation:

I(x, z) =
k0
2π

+∞∫

−∞

I(nx, z) exp(−ik0nxx) dnx. (7)
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To find the distribution I(x, z), we express the tangential components Ex and Ez of the electric field
excited by current (6) via the Fourier transform I(nx, z) of the surface current density and take into account
boundary conditions for the field components on the interface y = 0. In addition, we make use of boundary
conditions for the tangential components of the electric field on the antenna surface (y = 0 and |z| < d):

Ex + Eext
x = 0, (8)

Ez = 0. (9)

This procedure provides integral equations for the unknown quantity I(nx, z) and thus reduces the problem
of determining the antenna current to the solution of the corresponding integral equations.

3. DERIVING INTEGRAL EQUATIONS FOR THE ANTENNA CURRENT

At first we obtain expressions for the components of the field corresponding to current density (7)
from the system of Maxwell equations. For the region y < 0 the Maxwell equations can be written in the
form

rotE = −iωµ0H , rotH = iωε̃E, (10)

where µ0 is the magnetic constant. Replacing the dielectric permitivity tensor ε̃ by the quantity ε̃a, we
obtain the Maxwell equation for the region y > 0.

The solution of the equations for the electromagneic field can be written in the form

E(x, y, z) =
k0
2π

+∞∫

−∞

E(nx, y, z) exp(−ik0nxx) dnx,

H(x, y, z) =
k0
2π

+∞∫

−∞

H(nx, y, z) exp(−ik0nxx) dnx, (11)

where the quantities E(nx, y, z) and H(nx, y, z) admit, in turn, the representation

E(nx, y, z) =
k0
2π

+∞∫

−∞

E(nx, y, nz) exp(−ik0nzz) dnz,

H(nx, y, z) =
k0
2π

+∞∫

−∞

H(nx, y, nz) exp(−ik0nzz) dnz. (12)

Note that Eqs. (11) and (12) give expansions of the field into Fourier integrals over the wave numbers nx and
nz normalized to k0. Then the quantities Ex(nx, y, nz), Ey(nx, y, nz), Hx(nx, y, nz), and Hy(nx, y, nz) can
conveniently be expressed via the components Ez(nx, y, nz) and Hz(nx, y, nz), which satisfy the following
system of equations for y < 0:

L̂Ez − k20
η

ε
(n2

z − ε)Ez = −ik20
g

ε
nzZ0Hz, (13)

L̂Hz − k20

(
n2
z +

g2 − ε2

ε

)
Hz = ik20

g

ε
ηnzZ

−1
0 Ez, (14)

where

L̂ =
∂2

∂y2
− (k0nx)

2 (15)

797



and Z0 = (µ0/ϵ0)1/2 is the wave impedance of free space. For the region y > 0, one should put ε = η = εa
and g = 0 in Eqs. (13) and (14). Solutions for the fields should satisfy the radiation conditions at infinity
(for |y| → ∞), as well as the boundary conditions for the tangential field components on the interface y = 0.
For the corresponding Fourier-transformed field components, we have

Ex(nx, y − 0, nz) = Ex(nx, y + 0, nz), Ez(nx, y − 0, nz) = Ez(nx, y + 0, nz),

Hx(nx, y − 0, nz) = Hx(nx, y + 0, nz), Hz(nx, y − 0, nz) = Hz(nx, y + 0, nz)− I(nx, nz), (16)

where we introduced the rotation

I(nx, nz) =

d∫

−d

I(nx, z
′) exp(ik0nzz

′) dz′. (17)

It is seen from Eq. (16) that the boundary conditions consist in the continuity of the tangential field
components Ex, Ez, and Hx on the interface y = 0. As concerns Hz, this component is continuous on the
interface for |z| > d, while for |z| < d it should undergo a jump corresponding to the surface current (6).
Hence, the jump of the Fourier transform Hz(nx, y, nz) for y = 0 in Eq. (16) is determined by the quantity
I(nx, nz) calculated from Eq. (17).

It can easily be found that the Fourier transform E(nx, y, nz) and H(nx, y, nz) of the electromagnetic
field components can be written as

Ex(nx, y, nz) = i
2∑

k=1

Bk
iny,k + αknx

n⊥k
exp(ik0ny,ky),

Ey(nx, y, nz) = −
2∑

k=1

Bk
iαkny,k + nx

n⊥k
exp(ik0ny,ky),

Ez(nx, y, nz) =
i

η

2∑

k=1

Bkn⊥knk exp(ik0ny,ky),

Hx(nx, y, nz) = −Z−1
0

2∑

k=1

Bknk
iny,k − βknx

n⊥k
exp(ik0ny,ky),

Hy(nx, y, nz) = iZ−1
0

2∑

k=1

Bknk
iβkny,k − nx

n⊥k
exp(ik0ny,ky),

Hz(nx, y, nz) = −Z−1
0

2∑

k=1

Bkn⊥k exp(ik0ny,ky) (18)

for y < 0, and as

Ex(nx, y, nz) = −Cny +Dnxnz

n2
⊥

exp(−ik0nyy),

Ey(nx, y, nz) =
Cnx −Dnynz

n2
⊥

exp(−ik0nyy),

Ez(nx, y, nz) = D exp(−ik0nyy),

Hx(nx, y, nz) =
−Cnxnz + εaDny

Z0n2
⊥

exp(−ik0nyy),

Hy(nx, y, nz) = −Cnynz + εaDnx

Z0n2
⊥

exp(−ik0nyy),
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Hz(nx, y, nz) = Z−1
0 C exp(−ik0nyy) (19)

for y > 0. Here, Bk, C, and D are the coefficients to be determined (k = 1, 2). The other quantities in
Eqs. (18) and (19) are described by the formulas

n2
⊥k = (2ε)−1

{
ε2 − g2 + εη − (η + ε)n2

z + (−1)k
{
(η − ε)2 n4

z

+ 2 [g2 (η + ε)− ε (η − ε)2]n2
z + (ε2 − g2 − εη)2

}1/2}
,

n2
⊥ = εa − n2

z, nk = − ε

nzg

[
n2
z + n2

⊥k(nz) +
g2

ε
− ε

]
, αk =

[
n2
z + n2

⊥k(nz)− ε
]
/g,

βk = nz/nk, ny = (εa − n2
x − n2

z)
1/2, ny,k =

[
n2
⊥k(nz)− n2

x

]1/2
. (20)

In order to satisfy the radiation condition at infinity (for |y| → ∞), the branches of the functions ny and
ny,k in Eq. (20) should be chosen as follows:

Imny < 0, Imny,k < 0. (21)

The coefficients Bk, C, and D in Eqs. (18) and (19) can be determined from boundary conditions (16):

B1 =
Z0I(nx, nz)

∆(nx, nz)n⊥1

[
ih2

η

εa

n2ny

n2
⊥

− e2
η

εa

nxnz

n2
⊥

− n2
εa − n2

x

εan2
⊥

]
, (22)

B2 =
Z0I(nx, nz)

∆(nx, nz)n⊥2

[
−ih1

η

εa

n1ny

n2
⊥

+ e1
η

εa

nxnz

n2
⊥

+ n1
εa − n2

x

εan2
⊥

]
, (23)

C =
Z0I(nx, nz)

∆(nx, nz)

[
η

εa
(h1 − h2)

nxnz

n2
⊥

+
iny

n2
⊥
(n2e1 − n1e2) +

η

εa
(n2e1h2 − n1e2h1)

]
, (24)

D =
Z0I(nx, nz)

∆(nx, nz)

[
− η

εa
(h1 − h2)

ny

n2
⊥
+

i

εa
(n2e1 − n1e2)

nxnz

n2
⊥

]
, (25)

where

∆(nx, nz) = n2

[
η

εa
e1h2 +

iny

n2
⊥
(e1 +

η

εa
h2)

]
− n1

[
η

εa
e2h1 +

iny

n2
⊥
(e2 +

η

εa
h1)

]

− (n2 − n1)
εa − n2

x

εan2
⊥

+
η

εa

nxnz

n2
⊥

(e1 + h1 − e2 − h2); (26)

ek =
iny,k + nxαk

n2
⊥k

, hk =
iny,k − nxβk

n2
⊥k

, k = 1, 2. (27)

Since the tangential components of the electric field are continuous on the interface of a magneto-
plasma and an isotropic medium, both the coefficients (22) and (23) and the coefficients (24) and (25) can be
used when deriving the expressions for these field components on the surface y = 0. In what follows, we use
the coefficients (22) and (23). In view of Eqs. (22) (23), (26), and (27), as well as Eq. (17), rigorous integral
representations corresponding to the current given by Eq. (6) can be obtained for the field components
Ex(nx, y, z) and Ez(nx, y, z) at y = 0:

Ex(nx, 0, z) =
iZ0k0
2π

+∞∫

−∞

[ d∫

−d

I(nx, z
′) exp(ik0nzz

′) dz′
] 2∑

k=1

ekB̃k

∆(nx, nz)
exp(−ik0nzz) dnz, (28)
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Ez(nx, 0, z) =
iZ0k0
2πη

+∞∫

−∞

[ d∫

−d

I(nx, z
′) exp(ik0nzz

′) dz′
] 2∑

k=1

nkB̃k

∆(nx, nz)
exp(−ik0nzz) dnz, (29)

where the coefficients B̃k (k = 1, 2) are described by the following formulas:

B̃1 = ih2
η

εa

n2ny

n2
⊥

− e2
η

εa

nxnz

n2
⊥

− n2
εa − n2

x

εan2
⊥

,

B̃2 = −ih1
η

εa

n1ny

n2
⊥

+ e1
η

εa

nxnz

n2
⊥

+ n1
εa − n2

x

εan2
⊥

. (30)

Changing the integration order in Eqs. (28) and (29), we arrive at the following expressions for the tangential
field components Ex(x, y, z) and Ez(x, y, z) on the interface y = 0:

Ex(x, 0, z) =
k0
2π

+∞∫

−∞

dnx

d∫

−d

Kx(nx, z − z′)I(nx, z
′) exp(−ik0nxx) dz

′, (31)

Ez(x, 0, z) =
k0
2π

+∞∫

−∞

dnx

d∫

−d

Kz(nx, z − z′)I(nx, z
′) exp(−ik0nxx) dz

′. (32)

Here,

Kx(nx, ζ) =
iZ0k0
2π

+∞∫

−∞

2∑

k=1

ekB̃k

∆(nx, nz)
exp(−ik0nz |ζ|) dnz, (33)

Kz(nx, ζ) = sign(ζ)
iZ0k0
2πη

+∞∫

−∞

2∑

k=1

nkB̃k

∆(nx, nz)
exp(−ik0nz |ζ|) dnz (34)

are the kernels of integral representations of the field components Ex(x, 0, z) and Ez(x, 0, z), respectively.
From boundary conditions (8) and (9) for the tangential components of the electric field on the

antenna surface with allowance for Eqs. (4), (5), (31), and (32), integral equations can be obtained for the
Fourier transform I(nx, z) of the surface current density. Thus, from Eq. (8) we have

d∫

−d

Kx(z − z′)I(nx, z
′) dz′ = −Eext

x (nx). (35)

Boundary condition (9) yields
d∫

−d

Kz(z − z′)I(nx, z
′) dz′ = 0. (36)

In integral equations (35) and (36), it is assumed that |z| < d.
The behavior of solutions of the obtained integral equations is determined by the properties of their

kernels. It is shown in what follows that in the case of a fairly small antenna width 2d, where the inequalities

d ≪ 2∆, (k0d)
2 max {|εa|, |ε|, |g|, |η|} ≪ 1, (37)

are fulfilled, the properties of these kernels allow an approximate solution of Eqs. (35) and (36) to be obtained
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in analytical form. Note that the integrals in Eqs. (35) and (36), which are singular for z′ → z, should be
understood in the sense of the principal value.

4. SOLVING INTEGRAL EQUATIONS FOR THE CURRENT

We start the analysis of Eqs. (35) and (36) with studying the properties of their kernels (33) and
(34). We represent the kernels of these equations in the form

Kx(nx, ζ) = K(s)
x (nx, ζ) + Fx(nx, ζ), Kz(nx, ζ) = K(s)

z (nx, ζ) + Fz(nx, ζ), (38)

where K(s)
x (nx, ζ) and K(s)

z (nx, ζ) are the singular parts of the kernels Kx(nx, ζ) and Kz(nx, ζ), respectively,
whereas Fx(nx, ζ) and Fz(nx, ζ) are their regular parts. We take into account that in the considered case
of resonant plasma (see Eq. (2)), the relations ε > 0 and η < 0 take place for the diagonal elements of the
dielectric permittivity tensor given by Eq. (1). Under the additional condition |εη| ≫ ε2a, which is usually
fulfilled in the whistler frequency range (2) for the cases of practical interest, the singular parts of the kernels
can be written in the form

K(s)
x (nx, ζ) =

iZ0k0
2π

[(
−1 +

2n2
xεa

ε2a + |εη|

) +∞∫

|nx|

√
n2
z + n2

x

n2
z

cos(k0nz |ζ|) dnz

+
2in2

x√
|εη|

+∞∫

ñz

cos(k0nz|ζ|)√
n2
z − |ε/η|n2

x

dnz

]

, (39)

K(s)
z (nx, ζ) =

iZ0k0

π
√

|εη|
nx sign(ζ)

+∞∫

ñz

nz sin(k0nz |ζ|)√
n2
z − |ε/η|n2

x

dnz, (40)

where ñz =
√
|ε/η||nx|. The regular parts Fx(nx, ζ) and Fz(nx, ζ) of the kernels are determined by integrals

over nz, whose integrands are given by the differences of the corresponding quantities in rigorous formulas
for the kernels Kx(nx, ζ) and Kz(nx, ζ) and in Eqs. (39) and (40).

It can easily be shown that quantities (39) and (40) tend to infinity at ζ = 0, while the quantities
Fx(nx, ζ) and Fz(nx, ζ) do not have singularities at this point. Thus, indeed we have obtained representations
of the kernels Kx(nx, ζ) and Kz(nx, ζ) in the form of sums of the singular and nonsingular terms. In the
latter, one can then put ζ = 0 if conditions (37) are fulfilled.

The integrals in Eqs. (39) and (40) can be calculated analytically [13], and under conditions (37)
they are given by the expressions

K(s)
x (nx, ζ) = − iZ0k0

2π

{[

−1 +
2n2

xεa
ε2a + |εη| +

2in2
x√

|εη|

](
ln

k0| ζ|
2

+ ln |nx|+C

)
+

2in2
x√

|εη|
ln

√
|ε|/|η|

}

, (41)

K(s)
z (nx, ζ) =

iZ0

π
√

|εη|
nx

ζ
, (42)

where C = 0.5772 . . . is Euler’s constant.

After the algebra given above, integral equation (35) for |z| < d can be written as follows:

d∫

−d

I(nx, z
′) ln

k0 |z − z′|
2

dz′ =
2iπ

Z0k0
χEext

x (nx)− S(nx)

d∫

−d

I(nx, z
′) dz′, (43)
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where

χ =
iξ

n2
x + iξ

, ξ =

√
|εη|
2

/(

1−
iεa

√
|εη|

ε2a + |εη|

)

, (44)

S(nx) = C + ln |nx|−
2in2

x√
|εη|

χ ln
√

|ε|/|η|− 2iπ

Z0k0
χFx(nx, 0). (45)

Recall that the expression for ξ was obtained under the condition |εη| ≫ ε2a. Equation (36), in turn, when
inequalities (37) are fulfilled, transforms to the form

d∫

−d

nx
I(nx, z′)

z − z′
dz′ = 0. (46)

When deriving Eq. (46), it was taken into account that Fz(nx, 0) = 0, so that the kernel of Eq. (36) is
determined by its singular part (42). It can be shown that the solutions of Eqs. (43) and (46) are the main
terms of asymptotics of the solutions of the initial integral equations (35) and (36) when inequalities (37)
are fulfilled. Then we restrict ourselves to analyzing only Eqs. (43) and (46).

The solution of Eq. (43) with a logarithmic kernel, which also satisfies Eq. (46) with Cauchy’s ker-
nel [14], can be obtained analytically and has the form

I(nx, z) = − 2i

Z0k0
√
d2 − z2

χV0

ln[4/(k0d)]− S(nx)

sin(k0nx∆)

k0nx∆
. (47)

Substituting Eq. (47) into Eq. (7), we arrive at the following formula for the surface current density I(x, z)
in a strip antenna:

I(x, z) = − iV0

Z0π
√
d2 − z2

+∞∫

−∞

sin(k0nx∆)

k0nx∆

χ exp(−ik0nxx)

ln[4/(k0d)]− S(nx)
dnx. (48)

The total current in the cross section x = const is determined by the relation

I(x) =

d∫

−d

I(x, z) dz. (49)

Note that the singularity of the function I(x, z) for |z| → d (see Eq. (48)), which corresponds to the Meixner
condition at the edge [15], is integrable, so that the total current I(x) of the antenna in the cross section
x = const is finite.

5. RESULTS OF CALCULATIONS OF THE CURRENT DISTRIBUTION AND IMPEDANCE OF
THE ANTENNA

Even after all the assumptions, integral representation (48) admits only a numerical study. However,
if the condition ln[4/(k0d)] ≫ |S(nx)| is fulfilled for the values |nx| < (k0∆)−1, then the integral in Eq. (48)
can be evaluated analytically, and the distribution of current along the antenna takes the form

I(x) =
V0πh

Z0k0 ln[4/(k0d)]
exp(−ih|x|), (50)
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Fig. 2. Dependences of the normalized current am-
plitude on the x coordinate for N = 1011 cm−3

(curve 1), N = 5 · 1012 cm−3 (curve 2), and
N = 1013 cm−3 (curve 3) for d = 0.01 cm, εa = 1,
B0 = 800 G, and ω = 1.7 · 108 s−1.

Fig. 3. Dependences of the normalized quantity
Re I(x) on the x coordinate for N = 1011 cm−3

(curve 1), N = 5 · 1012 cm−3 (curve 2), and N =
1013 cm−3 (curve 3) for the same values of the
parameters d, εa, B0, and ω as in Fig. 2.

where |x| > ∆ and

h = k0
1− i√

2

√
ξ . (51)

The obtained approximate formula (50) obviously corresponds to the transition to the transmission line
theory and gives a complex propagation constant h of the antenna current. Thus, the conditions under
which this formula was obtained determines in fact the limits of applicability of the transmission line theory
for a linear antenna located on the interface of an isotropic medium and a resonant magnetoplasma. It should
be mentioned that in the case considered here, i. e., for |εη|1/2 ≫ εa, the current propagation constant h
is given approximately by the formula h ≈ k0 (1 − i) |εη|1/4/2 and is a factor of

√
2 smaller than the

corresponding quantity for the antenna located in a homogeneous resonant magnetoplasma [8].

Using the current distribution I(x), we write the input impedance Z = R + iX of the antenna. It
can be obtained in a standard way using the formula Z = V0/I(∆) and, within the framework of approxi-
mation (50) under the condition |h|∆ ≪ 1, is determined by the expression

Z =
Z0

π

k0
h

ln

(
4

k0d

)
. (52)

We now proceed to the results of numerical calculations, which illustrate the behavior of the current
distribution and input impedance of the strip antenna considered. The calculations were performed for the
following values of the parameters corresponding to the laboratory plasma conditions: 1.78 ·1010 s−1 ≤ ωp ≤
1.78 · 1011 s−1 (the plasma density N lies in the interval 1011 cm−3 ≤ N ≤ 1013 cm−3), ωH = 1.41 · 1010 s−1

(external magnetic field B0 = 800 G), and signal frequency ω = 1.7 · 108 s−1 lies in the whistler frequency
range (2). In the calculations, it was assumed that the strip conductor half-width d = 0.01 cm, ∆ = 0.05 cm,
the center of the region to which the external voltage is applied has the coordinate x0 = 0, and the relative
dielectric permittivity of the isotropic medium for y > 0 amounts to εa = 1 (free space).

The dependences of the normalized (to the current at the point x = 0) quantities |I(x)| and Re I(x)
are shown in Figs. 2 and 3, respectively, for three values of the plasma density, namely, N = 1011, 5·1012, and
1013 cm−3. For the chosen parameters, the results of calculations by Eq. (48) and approximate formula (50)
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in the limit ∆ → 0 coincide with graphical accuracy. It is seen in Fig. 2 that the current amplitude decreases
rapidly along the antenna wire with increasing distance from the point of application of the external voltage,
and this decrease is the faster the higher is the plasma density.

Figure 4 shows the dependences of the radiation

Fig. 4. Dependences of the radiation resistance R
and reactance X of the antenna on the normalized
plasma density in cases where the antenna is lo-
cated on a plane interface of a magnetoplasma and
free space (solid line) and in a homogeneous mag-
netoplasma (dashed line) for N0 = 1011 cm−3 and
the same values of other parameters as in Fig. 2.

resistance R = ReZ and reactance X = ImZ of the
antenna on the normalized plasma density N/N0 (here,
N0 = 1011 cm−3), which were obtained using Eq. (52) for
the above-mentioned values of other parameters. Note
that within the framework of approximation (52), the real
and imaginary parts of the input impedance of the an-
tenna turn out to be identical, i. e., R = X. In addition,
the dashed line in Fig. 4 shows the real and imaginary
parts of the input impedance of the same antenna located
in a homogeneous unbounded plasma with the same val-
ues of the parameters (see [8]). It is seen in Fig. 4 that
the dependences of R and X in the presence of an inter-
face in the case considered are similar to the behavior of
the corresponding quantities for the antenna in a homo-
geneous unbounded plasma, but the the values of R and
X are greater than in the case of a homogeneous plasma
medium.

It should be mentioned that the results obtained in
this paper can easily be applied to a finite-length antenna,
which can be described as a transmission line of length 2L.
Within the framework of this approximation, the antenna

current can be written as follows:

I(x) = I0
[
exp(−ih |x|) +R1 exp(−ihx) +R2 exp(ihx)

]
, (53)

where |x| < L, I0 is a certain constant, and h is the current propagation constant in an infinitely long
antenna (see Eq. (51)). The coefficients R1 and R2 can be found from the condition that the current is equal
to zero at the ends x = ±L of the antenna. As a result, we obtain the following formula for the current
distribution along the antenna:

I(x) =
I(0)

sin(hL)
sin[h (L − |x|)], |x| < L, (54)

where I(0) is the current at the antenna input.

In the case of an electrically short antenna, where the condition |h|L ≪ 1 is fulfilled, from Eq. (54)
it is easy to obtain a “triangular” distribution of current along the antenna wire (|x| < L):

I(x) = I(0) (1 − |x|/L). (55)

In the opposite case of a long antenna (|h|L ≫ 1), the current distribution given by Eq. (54) transforms
(with allowance for the inequality Imh < 0) to an exponential distribution of Eq. (50).

The input impedance Z of a finite-length antenna can be determined in a standard way [1] on the
basis of the found current distribution using the induced EMF method:

Z = −
∫

Ĵ
∗
(r)Ê(r) dr, (56)
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where Ĵ = J/I(0) is the density of the antenna current normalized to I(0), Ê is the field excited by this
normalized current, and the asterisk denotes complex conjugation. Recall that the value of the integral in
Eq. (56) is determined by the form of the current distribution and does not depend on I(0). It is noteworthy
that the use of Eq. (54) with a complex propagation constant given by Eq. (51) for calculation of the input
impedance of the antenna does not lead to an infinite value of Z that takes place within the framework of
the transmission line theory for hL = πn (n = 1, 2, . . .) in cases where the quantity h is real [5]. The nonzero
value of the imaginary part of h is due to the fact that the loss for radiation of small-scale quasielectrostatic
waves [1, 4] to the half-space y < 0 filled with a resonant magnetoplasma was taken into account when
Eq. (51) was derived.

After the calculation of Z, the current at the input of a finite-length antenna can be found using the
formula I(0) = V0/Z. Leaving aside the calculation of the input impedance Z by Eq. (56), we only note
that increasing the antenna wire length up to values significantly exceeding the characteristic scale |h|−1 of
the current decrease along the antenna is inexpedient since this is not accompanied by an increase in the
real part of the input impedance of the antenna and, therefore, its radiated power.

6. CONCLUSIONS

We have considered the problem of the current distribution of a perfectly conducting strip antenna
that is perpendicular to the external magnetic field and located on a plane interface of an isotropic medium
and a resonant magnetosplasma, which is described by a dielectric permittivity tensor of general form. In
the case of an infinitely long antenna, the problem was reduced to a system of singular integral equations
for the current. As a result of the solution of these equations, we obtained expressions for the current
distribution and input impedance of the antenna. It is shown that under certain conditions, which establish
the limits of applicability of the approximate method based on the transmission line theory, we succeeded in
obtaining relatively simple expressions for elecrodynamic characteristics of the antenna considered. In such
an approximation, the current distribution, as well as the input impedance of the antenna located on the
interface of a resonant magnetoplasma and an isotropic medium coincide with the corresponding character-
istics of a certain equivalent transmission line with a complex current propagation constant. Moreover, the
results obtained for an infinitely long antenna can easily be generalized to the case of a finite-length antenna
within the framework of the transmission line theory. The approach used in this paper can be employed
for determining the electrodynamic characteristics of the antenna located not only on an interface of an
isotropic medium and a magnetosplasma, but also on an interface of arbitrary anisotropic media.
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Science Foundation (project No. 14–12–00510). Other results were obtained under support of the Russian
Foundation for Basic Research (project No. 14–01–31280), the grant of the President of the Russian Feder-
ation for young PhD researchers (project No. MK–4688.2014.2), and the grant of the Russian Government
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