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INTERNAL PRE-CROSSED MODULES
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Abstract
In this work we introduce the notions of Peiffer product and

Peiffer commutator of internal pre-crossed modules over a fixed
object B, extending the corresponding classical notions to any
semi-abelian category C. We prove that, under mild additional
assumptions on C, crossed modules are characterized as those
pre-crossed modulesX whose Peiffer commutator 〈X,X〉 is triv-
ial. Furthermore we provide suitable conditions on C (fulfilled
by a large class of algebraic varieties, including among others
groups, associative algebras, Lie and Leibniz algebras) under
which the Peiffer product realizes the coproduct in the cate-
gory of crossed modules over B.

1. Introduction

The relevance of commutator theory in the study of internal structures in Mal’tsev
categories has been clear since the pioneering works of Janelidze, Carboni, Pedicchio
and Pirovano [27, 14, 37]. In particular, they showed that a reflexive graph

A
d //
c
// Beoo

underlies a category structure (which in this context is actually a groupoid) if and only
if the kernel pairs of d and c centralize each other, i.e., their Pedicchio–Smith commu-
tator is trivial. Moreover, under suitable conditions on the base category, the quotient
over such a commutator realizes the reflection of reflexive graphs onto groupoids (see
[37]).

In the case of the category Gp of groups (where the so-called (SH) condition holds,
see, e.g., [34]) this reflection can be obtained equivalently by means of the usual
commutator subgroup [Ker(d),Ker(c)] of the kernels of d and c.

On the other hand, groupoids in Gp can be equivalently described as crossed mod-
ules (see [13, 30]). The latter were introduced by Whitehead in [42] while working
on second relative homotopy groups (see also [41, 38], and [39] for an extensive
recollection of results concerning crossed modules and their applications and gener-
alizations).
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The crossed module representation of groupoids cited above is the result of a nor-
malization process, that, applied to a reflexive graph, produces what was introduced
in [12] under the name of pre-crossed module. More precisely, a pre-crossed module
(X, δ) over a group B is a homomorphism δ : X → B together with a (left) action of
B on X such that, for b in B and x in X:

δ(bx) = bδ(x)b−1 .

A pre-crossed module becomes a crossed module if the following Peiffer identity
(which appeared first in [41]) holds for any x, x′ in X:

δxx′ = xx′x−1 .

Looking at the normalized version of the above cited reflection, the role of the usual
commutator is played by the so-called Peiffer commutator. In fact, for X and Y
pre-crossed submodules of a given pre-crossed module A, following the work [18] by
Conduché and Ellis, one can form the subgroup of A generated by the Peiffer words

xyx−1(δxy)−1 , yxy−1(δyx)−1 ,

with x in X and y in Y . This subgroup is known as the Peiffer commutator of X and
Y , and it is denoted by 〈X,Y 〉. Let us observe that the Peiffer commutator generalizes
the classical commutator for groups, which is recovered when B is the trivial group
(a calculus of Peiffer commutators and some applications to homology can be found
in [18, 3]). The reflection of a pre-crossed module X is then obtained by quotienting
out the Peiffer subgroup 〈X,X〉.

The aim of this work is to develop a structural approach to the study of Peiffer
commutators in the case of internal pre-crossed and crossed modules in a semi-abelian
category C. Semi-abelian categories were introduced by Janelidze, Márki and Tholen
in [29] as a convenient setting where to develop non-abelian categorical algebra.
In such a context, the notions of internal action, semidirect product and internal
(pre)crossed module are available thanks to the crucial works [6, 9, 28].

In order to introduce the internal Peiffer commutator as in Definition 3.8, given
two pre-crossed modules X and Y over an object B, we first define their Peiffer prod-
uct X 1 Y , which is the internal version of the one introduced by Gilbert and Higgins
for the group case [22]. In Proposition 3.11 we show that X 1 Y plays for the Peiffer
commutator the same role as X × Y plays for the Huq commutator [26], in the sense
that it is universal among those objects where the images of X and Y have triv-
ial Peiffer commutator. Notice that, when X and Y are trivial pre-crossed modules,
then X 1 Y ∼= X × Y . In Theorem 3.18 we prove that, in any semi-abelian category
satisfying the condition (SH), the reflection of pre-crossed modules onto crossed mod-
ules can be computed by means of the quotient over the Peiffer commutator. Since
crossed modules form a Birkhoff subcategory XMod(C) of the category of pre-crossed
modules (see [23]), one can consider the relative commutator introduced by Ever-
aert and Van der Linden in [21] associated with XMod(C). In the case of groups,
this relative notion, likewise the one introduced here, captures the classical Peiffer
commutator, as shown by Everaert in [19] (see also [20]). In fact, Theorem 3.18 says
that the internal Peiffer commutator 〈X,X〉 coincides with the relative one in any
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semi-abelian category satisfying the condition (SH). It would be interesting to com-
pare the two notions also in the general case, when any two pre-crossed submodules
are considered.

Our investigation reveals that the generalization of the Peiffer commutator and
Peiffer product to the semi-abelian context is far from being a mere translation of the
corresponding notions for groups, since in general the necessary constructions have
to be performed in the category PXModB(C) rather than in C.

This observation naturally leads to the task of detecting assumptions under which
these new notions can be described directly in the base category, as it happens for
groups. The property of C being algebraically coherent [17] turns out to be crucial
in this sense. In this context, Proposition 4.3 and Proposition 4.5 show that both
Peiffer product and Peiffer commutator can be obtained by using just coproducts in
C, avoiding the problem of computing coproducts in PXModB(C).

A further assumption is taken in Section 5 in order to prove that the Peiffer product
yields the coproduct in the category of internal crossed B-modules, generalizing a
result by Brown for crossed modules of groups in [10] (see also Chapter 4 of [11]).
The problem of studying the coproduct of crossed modules was faced also for Lie
algebras and associative algebras, respectively, in [16] and [40]. Our Theorem 5.2
generalizes all these results, since it applies, in particular, to any category of interest
in the sense of Orzech [36], including, other than groups, associative algebras and Lie
algebras, also Poisson algebras and Leibniz algebras among others.

The paper is organized as follows. In Section 2, we describe the category of internal
pre-crossed modules over a fixed object B and its equivalence with internal reflexive
graphs over B. Moreover, we provide the description of some relevant limits and
colimits in PXModB(C) in terms of universal constructions in the base category. Peiffer
product and Peiffer commutator of internal pre-crossed B-modules are introduced in
Section 3. In Section 4, we reformulate, in the algebraically coherent context, the
definitions given in Section 3 and we provide an explicit calculation of the Peiffer
commutator in the cases of rings and Leibniz algebras. The last section is devoted
to the proof of the fact that, under suitable assumptions, the Peiffer product is the
coproduct in XModB(C).

2. The category PXModB(C)
From now on, C will be a semi-abelian category [29]. Semi-abelian categories are

a convenient setting for working with internal actions. Here we briefly recall their
definition from [6].

For a fixed object B in C, let us consider

PtB(C) = 1B ↓ (C ↓ B) ,

i.e., the category of points of C ↓ B. The kernel functor KerB : PtB(C)→ C is monadic
and the corresponding monad, denoted by B[(−), is defined, for any object X of C,
by the kernel diagram

B[X
κB,X // B +X

[1,0] // B .

The B[(−)-algebras are called internal B-actions [6] and the category of such algebras
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is denoted by Act(B,−). For an action ξ : B[X → X, the semidirect product X oB
of X with B is introduced in [9] as the split epimorphism corresponding to ξ via
the canonical comparison equivalence Ξ: PtB(C)→ Act(B,−). It can be computed
explicitly (see [32]) via the coequalizer

B[X
κB,X //
ιX ·ξ
// B +X

qξ // X oB.

Canonical examples of internal actions follow:

• the trivial action of A on X is given by the composite

τ : B[X
κB,X // B +X

[0,1] // X;

• the conjugation action of X is given by the composite

χ : X[X
κX,X // X +X

[1,1] // X;

• for a kernel K → X, the conjugation action of X restricts to an action

χ| : X[K // K;

• for any action ξ : B[X → X and any morphism f : A→ B, the composite

f∗(ξ) : A[X
f[1X // B[X

ξ // X

defines an action, called the pullback action of ξ along f (indeed, the above
composition amounts to a pullback via the canonical comparison Ξ).

An internal pre-crossed module (δ : X → B, ξ) in C is introduced in [28] as an
arrow δ : X → B, together with an internal action ξ of B on X, making the following
diagram commute:

B[X
1[δ //

ξ

��

B[B

χ

��
X

δ
// B

A morphism between two pre-crossed modules (δX : X → B, ξX) and (δY : Y → B, ξY )
with the same codomain B is given by a morphism f in the slice category C ↓ B which
is equivariant with respect to the B-actions, i.e., it is a morphism of B[(−)-algebras:

B[X
1[f //

ξX
��

B[Y

ξY
��

X
f

// Y

The purpose of the following sections is to study some basic constructions in the
category PXModB(C) of pre-crossed modules in C with codomain a fixed object B.



INTERNAL PEIFFER PRODUCT AND PEIFFER COMMUTATOR 185

We widely use the equivalence between internal pre-crossed modules and internal
reflexive graphs in C (see [28]), which associates with every reflexive graph

X1

d //
c
// Beoo

its normalization δ : X
c·ker(d)−→ B, equipped with the conjugation action of B on X

computed in X1 (i.e., the pullback along e of the conjugation action of X1 on its
normal subobject X). Conversely, every pre-crossed module (δ : X → B, ξ) yields a
reflexive graph

X oB
p //

[δ,1〉
// B,ioo

where p and i are the canonical projection and inclusion, respectively, and [δ, 1〉 is
the unique arrow making the following diagram commute:

X
j //

δ
##

X oB

[δ,1〉

��

B
ioo

1
{{

B

Thanks to the equivalence mentioned above, every categorical construction in the
sequentiable (in the sense of Bourn [7], see [20]) category RGB(C) of internal reflexive
graphs in C with a given object of objects B has a counterpart in PXModB(C).

We are going to describe how the main constructions we need for the present paper
can be performed directly in the category PXModB(C) by means of constructions in
the base category C.

2.1. The (regular epi, mono) factorization

Let f1 be an arrow in RGB(C). Its (regular epi, mono) factorization can be obtained
by means of the (regular epi, mono) factorization (q1,m1) of f1 as an arrow in C:

X1

d

��
c

��

q1 // // •

d′m1

��
c′m1

��

// m1 // Y1

d′

��
c′

��
B

e

OO

1
// B

q1e

OO

1
// B

e′

OO

Indeed, m1 is obviously a monomorphism in RGB(C) and q1 is the coequalizer in
RGB(C) of the following pair of morphisms:

R
r1 //
r2
//

dr1

��
cr1

��

X1

c

��
d

��
B

〈e,e〉

OO

1
// B

e

OO

where (R, r1, r2) is the kernel pair of q1.
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By equivalence, we have a (regular epi, mono) factorization in PXModB(C) by
taking the restrictions (q,m) to the kernels. Moreover, q is a regular epimorphism in
C being a pullback of q1, while m is obviously a monomorphism. Thus the following
result holds:

Proposition 2.1. Every morphism in PXModB(C) has a (regular epi, mono) factor-
ization which can be obtained by means of the (regular epi, mono) factorization of the
corresponding arrow in C:

X
q // //

δX
  

•
δYm

��

// m // Y

δY
��

B

We state here the following lemma, which will be used later on.

Lemma 2.2. Let X, Y and Z be pre-crossed B-modules in C, and f : X → Y and
g : Y → Z arrows in C such that the composite g · f is a pre-crossed module morphism.
Then

1. if g is a monomorphism in PXModB(C), f is also a pre-crossed module mor-
phism;

2. if f is a regular epimorphism in PXModB(C), g is also a pre-crossed module
morphism.

Proof. It is easy to prove that in both cases f and g are morphisms in the slice
category C ↓ B. It remains to prove that they are equivariant. Let us consider the
following diagram, where the outer square commutes since the composite g · f is a
pre-crossed module morphism

B[X
1[f //

ξX
��

B[Y
1[g //

ξY
��

B[Z

ξZ
��

X
f

// Y
g

// Z

When g is a monomorphism of pre-crossed modules, the right hand square commutes
and, by cancellation, the same holds for the one on the left. When f is a regular
epimorphism of pre-crossed modules, the left hand square commutes and, moreover,
1[f is also a regular epimorphism since these are preserved by the functor B[− (see,
e.g., [33]). Again, by cancellation, the right hand square commutes as desired.

2.2. Limits
It is well known that the category RGB(C) has pullbacks that are computed in the

following way. Given a cospan in RGB(C):

X1

d

��
c

��

f1 // •

����

Y1

d′

��
c′

��

g1oo

B

e

OO

1
// B

OO

1
// B

e′

OO
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it is easy to see that the pullback X1 ×(f1,g1) Y1 is endowed with a reflexive graph
structure over B. Since the kernel functor KerB : PtB(C)→ C preserves limits, the
restriction of this pullback to the kernels of the domain projections is again a pullback,
yielding the following result.

Proposition 2.3. Every cospan in PXModB(C) has a pullback which can be obtained
by means of the pullback of the corresponding arrows in C:

X ×(f,g) Y

zz

//

δX×δδY

��

Y

δY

��

g

��
X

δX
**

f // •
δ

��
B

Applying the last proposition to the particular case of a pullback along the initial
map, we can describe explicitly how a kernel is computed in PXModB(C).

Proposition 2.4. A kernel diagram in PXModB(C) is a diagram of the following
type:

Ker(f) � ,2ker(f) //

0
##

X

δX

��

f // Y

δY��
B

where the action of B on Ker(f) is the restriction of the one on X.

The following result essentially depends on the characterization of kernels in the
category RGB(C), which is a special case of Proposition 6.2.1 in [4]:

Proposition 2.5. The kernels in the category PXModB(C) are precisely the arrows
of the form

K � ,2 k //

0   

X

δ
��
B

where k is a kernel in C and the action of B on X passes to the quotient X/K.

In a semi-abelian category C which is strongly protomodular the above condi-
tion on the B-action comes for free, so it suffices to ask that k is a kernel. In
fact, in the semi-abelian context, the condition “every action which restricts to a
kernel passes to the quotient” is equivalent to strong protomodularity (see [35] for
details).

2.3. Colimits
While limit constructions are quite easy in PXModB(C), colimits can be rather

complicated to describe, unless we assume some additional conditions on the base
category.
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It is well known that a pushout in RGB(C) is constructed by means of level-
wise pushouts in C. In general, it may not be easy to compute pushouts directly
in PXModB(C). An exception is given by the cokernel of a kernel. Following Bourn
[7], in the sequentiable context, we call cokernel of k : X → Y the pushout of k along
the unique arrow X → 0 (if it exists, as in the case of kernels). Thanks to Proposi-
tion 2.5, it is easy to prove the following result.

Proposition 2.6. The cokernel of a kernel k in PXModB(C) is a diagram of the
following type (the action of B on Coker(k) is induced by the one on X):

K � ,2 k //

0
!!

X

δ

��

coker(k)� ,2 Coker(k)

δ′

yy
B

Another manageable colimit is the pushout of two regular epimorphisms.

Proposition 2.7. The pushout of two regular epimorphisms in PXModB(C) can be
obtained by means of the pushout of the corresponding arrows in C:

•
f

�� ��

g // //

δ

��

Y

δY

��

$$ $$
X

δX

��

// // X +(f,g) Y

δX+δδY
uu

B

Proof. Thanks to Lemma 1.1 in [8], both in C and in PXModB(C), a commutative
square of regular epimorphisms is a pushout if and only if it induces a regular epi-
morphic restriction to the kernels. Since the kernels in PXModB(C) are computed as
in C, the pushout in PXModB(C) coincides with the pushout of the corresponding
arrows in C.

PXModB(C) being exact and sequentiable, the following proposition can be
proved likewise the analogue one in the semi-abelian context (see Corollary 4.3.15
in [4]).

Proposition 2.8. In PXModB(C), the join of two kernels is the kernel of the diagonal
of the pushout of the corresponding cokernels.

Corollary 2.9. The join of two kernels in PXModB(C) can be obtained by means of
the join of the corresponding arrows in C.

Let us consider now the coproduct construction. The coproduct of two internal
reflexive graphs (X1, d, c, e) and (Y1, d

′, c′, e′) in RGB(C) is given by the pushout of
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the corresponding initial maps:

0

~~

//
_��

��

X

fxx

_��

��

Y_��

��

g // X +
PX
Y

_��

��

B
e′

��

e //

1

��

1

��

X1

xx
c

��

d

��

Y1

d′

��

c′

��

// X1 +(e,e′) Y1

[d,d′]

��

[c,c′]

��

B

1

OO

1
//

1~~

B

e

OO

1ww
B

e′

OO

1
// B

OO

But the induced square on the kernels of the domain projections is not in general
a pushout in C, so that X +

PX
Y needs not coincide with the coproduct X + Y in

C (see Proposition 6.2 in [24]). It does happen when the base category is (LACC)
(i.e., locally algebraically cartesian closed, see [24]), which implies that the kernel
functor

KerB : PtB(C)→ C

preserves colimits. However, while groups and Lie algebras are examples of (LACC)
categories, many other important algebraic varieties are not (e.g., the category of
rings, as shown in [24]). In Section 4, we will use the weaker condition (CS) requiring
the canonical arrow

σ : X + Y → X +
PX
Y

to be a regular epimorphism. In a semi-abelian context, this condition is equivalent
to algebraic coherence in the sense of [17] (see Proposition 4.1 below).

Remark 2.10. Notice that in any case the comparison arrow σ is cancellable on the
right with respect to morphisms in PXModB(C), i.e., if f and g in PXModB(C) are
such that f · σ = g · σ, then f = g.

3. Peiffer product and Peiffer commutator

3.1. Definitions and properties

Lemma 3.1. Let (δ : X → B, ξ) be a pre-crossed module and f : A→ B a morphism
in C. The pullback of δ along f is endowed with a pre-crossed module structure.

Proof. This is a pre-crossed module version of a standard fact about internal reflexive
graphs and fully faithful morphisms between them (see [1] for the crossed module
case). We just recall here the construction of the induced action: it is the (unique)
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arrow ξ making the diagram below commute:

A[(A×(f,δ) X)

ξ

''

f[f //

1[δ

��

B[X

ξ

��
A×(f,δ) X

δ

��

f // X

δ

��
A[A

χ
// A

f
// B

Let (δX : X → B, ξX) and (δY : Y → B, ξY ) be pre-crossed modules in C. Then X
and Y act on each other by means of the following actions:

δ∗Y ξX : Y [X
δY [1 // B[X

ξX // X,

δ∗XξY : X[Y
δX[1 // B[Y

ξY // Y.

Proposition 3.2. There exists a (unique) arrow [δX , δY 〉 : X o Y → B, making the
following diagram commute

X
jX //

δX
""

X o Y

[δX ,δY 〉

��

Y
iYoo

δY
||

B

and it is endowed with a pre-crossed module structure, such that jX and iY are mor-
phisms in PXModB(C).

Notice that, as a particular case, when (Y, δY ) = (B, 1B), we recover the arrow
[δX , 1〉 : X oB → B introduced in Section 2.

Proof. First of all we have to show that [δX , δY 〉 exists. This is true (and the arrow
is unique) if and only if the following diagram commutes:

Y [X
κY,X //

δ∗Y ξX

��

X + Y

[δX ,δY ]

��
X

δX

// B

The latter depends on the fact that δX is a pre-crossed module.
Now we prove that there is an action of B on X o Y . By definition of δ∗Y ξX , we

can form the following pullback:

X o Y

1oδY
��

pY // Y

δY
��

X oB
pB
// B

(1)
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By Lemma 3.1, the arrow 1 o δY is a pre-crossed module, with the corresponding
action ξY . Then B acts on X o Y with the action i∗BξY defined by the following
composition:

B[(X o Y )

i∗BξY ((

iB[1 // (X oB)[(X o Y )

ξY
��

X o Y

Finally, we prove that ([δX , δY 〉, i∗BξY ) is a pre-crossed module. It suffices to show
that the following diagram commutes:

B[(X o Y )

iB[1

��
(a)

1[[δX ,δY 〉 // B[B

χ

��

(X oB)[(X o Y )

ξY

��

1[(1oδY )
// (X oB)[(X oB)

χ

��

[δX ,1〉[[δX ,1〉
77

(c)

(b) (X oB)
[δX ,1〉

''
X o Y

[δX ,δY 〉
//

1oδY

44

B

The commutativity of the bottom triangle follows from the uniqueness of [δX , δY 〉,
and consequently (a) commutes by functoriality of −[−. (c) commutes because every
morphism is equivariant with respect to the conjugation actions of its domain and
codomain; the commutativity of (b) depends on the fact that 1 o δY is a pre-crossed
module.

In order to prove that jX : X → X o Y is a morphism in PXModB(C), we have to
show that the following diagram commutes:

B[X
ξX //

1[jX
��

X

jX

��
B[(X o Y )

iB[1
// (X oB)[(X o Y )

ξY

// X o Y

It suffices to compose with the jointly monic projections (pY , 1X o δY ) of the pull-
back (1). Indeed, pY · ξY = ξY · (pB[pY ) by definition of ξY , and then

pY · ξY · (iB[1) · (1[jX) = ξY · (pB[pY ) · (iB[jX) = ξY · (1[0) = 0 = pY · jX · ξX .

On the other hand, by the commutativity of the square (b) above, (1 o δY ) · ξY =
χ · (1[(1 o δY )), and then

(1 o δY ) · ξY · (iB[1) · (1[jX) = χ · (1[(1 o δY )) · (iB[jX) =

= χ · (iB[jX) = jX · ξX = (1 o δY ) · jX · ξX ,

where the last but one equality holds by definition of X oB (in other words, the
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conjugation action of B as subobject of X oB on the normal subobject X coincides
with the action ξX defining the semidirect product).

To prove that iY : Y → X o Y is also a morphism in PXModB(C), we have to show
that the following diagram commutes:

B[Y
ξY //

1[iY
��

Y

iY

��
B[(X o Y )

iB[1
// (X oB)[(X o Y )

ξY

// X o Y

As before, it suffices to compose with the projections of the pullback (1). Indeed,

pY · ξY · (iB[1) · (1[iY ) = ξY · (pB[pY ) · (iB[iY ) = ξY · (1[1) = ξY = pY · iY · ξY ,

and

(1 o δY ) · ξY · (iB[1) · (1[iY ) = χ · (1[(1 o δY )) · (iB[iY ) = χ · (iB[(iBδY )) =

= χ · (iB[iB) · (1[δY ) = iB · χ · (1[δY ) = iB · δY · ξY = (1 o δY ) · iY · ξY ,

where in the last line we use the fact that δY is a pre-crossed module.

As a consequence, we get a morphism [jX , iY ]
PX

: X +
PX
Y → X o Y of pre-crossed

B-modules. We denote by X 2rY the kernel of such an arrow in C. As seen in Sec-
tion 2.2, 0 : X 2rY → B is the kernel in PXModB(C) of [jX , iY ]

PX
. In a symmetric

way, we obtain X 2r Y as the kernel of [iX , jY ]
PX

: X +
PX
Y → Y oX.

Definition 3.3. We denote by X � Y := (X 2rY ) ∨
PX

(X 2r Y ) the domain of the
pre-crossed module which is the join in PXModB(C) of these two normal subobjects
of X +

PX
Y . By Proposition 2.8, this join is the kernel of the diagonal of the following

pushout in PXModB(C):

X +
PX
Y

[jX ,iY ]
PX //

[iX ,jY ]
PX

��

X o Y

��
Y oX // X 1 Y

where X 1 Y is what we call the (internal) Peiffer product of δX and δY , with δX1Y

the corresponding pre-crossed module over B (see [22] for the original definition of
Peiffer product of groups).

In the following, we will denote lX and lY the canonical morphisms from X and
Y , respectively, to X 1 Y , obtained by composition of the canonical injections in
X +

PX
Y with the regular epimorphism X +

PX
Y → X 1 Y . It follows that (lX , lY ) is

a jointly strongly epimorphic pair in PXModB(C).

Remark 3.4. Given two trivial pre-crossed B-modules associated with X and Y (i.e.,
δ = 0 with B acting trivially), we have X o Y ∼= Y oX ∼= X × Y and consequently
X 1 Y ∼= X × Y .
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Lemma 3.5. Let f : X → X ′ and g : Y → Y ′ be regular epimorphisms of pre-crossed
B-modules. Then the following is a pushout in C:

X + Y
[j,i] // //

f+g
����

X o Y

fog
����

X ′ + Y ′
[j,i]
// // X ′ o Y ′

Proof. Let us consider the following commutative cube:

Y [X
κY,X

xx

g[f
����

δ∗Y ξX // X

f

����

jzz
X + Y

f+g

����

[j,i] // // X o Y

fog

����

Y ′[X ′

κY ′,X′xx

δ∗
Y ′ξX′

// X ′

jzz
X ′ + Y ′

[j,i]
// // X ′ o Y ′

The upper and lower squares are pushouts by definition of semidirect product. g[f
being a regular epimorphism (since −[− preserves them) and δ∗Y ′ξX′ a split epimor-
phism, the square on the rear and hence its composite with the lower square are
pushouts. By cancellation, it follows that the square on the front is a pushout.

Lemma 3.6. Let f : X → X ′ and g : Y → Y ′ be regular epimorphisms of pre-crossed
B-modules. Then the following is a pushout in PXModB(C):

X +
PX
Y

[j,i]
PX // //

f+
PX
g
����

X o Y

fog
����

X ′ +
PX
Y ′

[j,i]
PX

// // X ′ o Y ′

Proof. Let us consider the diagram of solid arrows below, where u and v are mor-
phisms in PXModB(C) such that u · (f +

PX
g) = v · [j, i]

PX
:

X + Y

(a)

σ //

f+g
����

X +
PX
Y

(b)f+
PX
g
����

[j,i]
PX // // X o Y

fog
���� v

��

X ′ + Y ′
σ
// X ′ +

PX
Y ′

u
--

[j,i]
PX // // X ′ o Y ′

t
$$ •

By Lemma 3.5, the rectangle (a) + (b) is a pushout in C, hence there exists a unique
t in C such that t · (f o g) = v and t · [j, i]

PX
· σ = u · σ. Moreover, t is a morphism in
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PXModB(C) by Lemma 2.2, since v and the regular epimorphism (f o g) are. Then
the equality t · [j, i]

PX
= u follows by applying Remark 2.10.

Proposition 3.7. Let f : X → X ′ and g : Y → Y ′ be regular epimorphisms of pre-
crossed B-modules. Then the induced arrows

f 1 g : X 1 Y → X ′ 1 Y ′,

f � g : X � Y → X ′ � Y ′

are also regular epimorphisms.

Proof. The arrow f 1 g is obviously a regular epimorphism being the last part of a
composite of regular epimorphisms. By Lemma 3.6 and a trivial argument on com-
position and cancellation of pushouts the following is a pushout in PXModB(C):

X +
PX
Y

f+
PX
g
����

[lX ,lY ]
PX // // X 1 Y

f1g
����

X ′ +
PX
Y ′

[lX′ ,lY ′ ]PX

// // X ′ 1 Y ′

As a consequence, the restriction to the kernels of the horizontal arrows, i.e., the
morphism f � g, is a regular epimorphism. Notice that all the pushouts above are
also pushouts in C as observed in Section 2.3.

Definition 3.8. Let X and Y be subobjects of A in PXModB(C):

X // m //

δX
  

A

δ

��

Yoo
noo

δY
��

B

(2)

The Peiffer commutator 〈X,Y 〉 is given by the regular image of X � Y through the
arrow [m,n]

PX
: X +

PX
Y → A:

X � Y_��

��

// // 〈X,Y 〉
��

��
X +

PX
Y

[m,n]
PX

// A

(3)

Remark 3.9. Since the (regular epi, mono) factorization in PXModB(C) is the same
as in C, 〈X,Y 〉 turns out to be a subobject of A in PXModB(C). Its corresponding
arrow on B is 0 : 〈X,Y 〉 → B, since it is the image of a kernel. Hence, it is possible
to compute the cokernel in PXModB(C) of the inclusion of 〈X,Y 〉 in A. Moreover,
when [m,n]

PX
is a regular epimorphism, then 〈X,Y 〉 is the kernel of its cokernel in

PXModB(C).

Remark 3.10. X � Y is the Peiffer commutator of X and Y in X +
PX
Y .

From the definition of Peiffer commutator and being the Peiffer product a cokernel,
the next result follows.
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Proposition 3.11. Let X and Y be subobjects of A in PXModB(C) as in diagram (2).
The following are equivalent:

1. 〈X,Y 〉 = 0;

2. there exists a (necessarily unique) morphism ϕ making the following diagram
commute:

X
lX //
##

m

##

X 1 Y

ϕ

��

Y
lYoo
||

n

||
A

Remark 3.12. In case of trivial pre-crossed modules associated with X and Y , as
already observed X 1 Y ∼= X × Y , lX = 〈1, 0〉 and lY = 〈0, 1〉, and ϕ is nothing but
the cooperator of f and g in the sense of [4]. As a consequence, in this case, the
normal closure of the Peiffer commutator coincides with the Huq commutator.

In the category of groups, the Peiffer commutator of X and Y defined above
coincides with the Peiffer commutator defined by Conduché and Ellis in [18]. Notice
that in this case X +

PX
Y = X + Y . This is not necessarily true in a general semi-

abelian category, hence the computation of the Peiffer commutator may not be easy.
As we will see in Section 4, when C is algebraically coherent, the construction of the
Peiffer commutator can be performed entirely in C, avoiding the use of the coproduct
in PXModB(C).

Proposition 3.13. The Peiffer commutator preserves the (regular epi, mono) factor-
ization of pre-crossed B-module morphisms. Namely, given the following commutative
diagram in PXModB(C):

X // m //

f

��

A

h
��

Yoo
noo

g

��
X ′ //

m′
// A′ Y ′oo

n′
oo

where m, n, m′ and n′ are monomorphisms, we have the following factorization of
the induced arrow between the Peiffer commutators:

〈f, g〉 : 〈X,Y 〉 // // 〈f(X), g(Y )〉 // // 〈X ′, Y ′〉

Proof. By the properties of the factorization, it suffices to show that:

1. 〈f, g〉 is a regular epimorphism whenever f , g and h are;

2. 〈f, g〉 is a monomorphism whenever f , g and h are.

The second assertion is trivial, while the first one follows from Proposition 3.7, since
the diagonal of the following commutative square is a regular epimorphism:

X � Y

f � g
����

// // 〈X,Y 〉

〈f,g〉
��

X ′ � Y ′ // // 〈X ′, Y ′〉
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Corollary 3.14. The Peiffer commutator is monotone: if X 6 X ′ and Y 6 Y ′ are
pre-crossed submodules of a given pre-crossed module A, then 〈X,Y 〉 6 〈X ′, Y ′〉.

Corollary 3.15. If X and Y are pre-crossed submodules of a given pre-crossed mod-
ule A and q is the cokernel of the inclusion of 〈X,Y 〉 in A, then 〈q(X), q(Y )〉 = 0.

3.2. Reflection onto crossed modules

We are going to show how the Peiffer commutator may allow to describe directly
the reflection

PXModB(C)
I //
⊥ XModB(C),
H
oo

where XModB(C) stands for the subcategory of internal crossed modules of codomain
B, introduced by Janelidze in [28]. We recall from [34] that, when the semi-abelian
category C satisfies the condition (SH), an internal pre-crossed module (∂ : A→ B, ξ)
is a crossed module if and only if the following diagram commutes (Peiffer condition):

A[A

χ

��

∂[1 // B[A

ξ

��
A

1
// A

As a corollary of Proposition 3.11 we get the following lemma.

Lemma 3.16. Given a crossed module (∂ : A→ B, ξ), we have 〈A,A〉 = 0. Moreover,
if X and Y are pre-crossed submodules of A, then 〈X,Y 〉 = 0.

Proof. Since ∂ is a crossed module, it satisfies the Peiffer condition, which is equiva-
lent to the commutativity of the following diagram:

A[A

∂∗ξ

��

// A+A

[1,1]

��
A

1
// A

which, in turn, is equivalent to the existence of the (unique) arrow [1, 1〉 making the
following diagram commute:

A
j //

1
""

AoA

[1,1〉

��

A
ioo

1
||

A

By Proposition 3.2, we know that j and i are pre-crossed B-module morphisms of
codomain [∂, ∂〉 : AoA→ B, then there exists in PXModB(C) the canonical arrow
[j, i]

PX
: A+

PX
A→ AoA, which is a regular epimorphism since (j, i) is a jointly

strongly epimorphic pair in C and then in PXModB(C). Since both [j, i]
PX

and the
composite [1, 1〉[j, i]

PX
= [1, 1]

PX
are morphisms in PXModB(C) and [j, i]

PX
is a regular
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epimorphism, by Lemma 2.2 [1, 1〉 is also a morphism in PXModB(C):

AoA

[∂,∂〉 ##

[1,1〉 // A

∂��
B

Moreover, [1, 1〉[j, i]
PX

= [1, 1〉[i, j]
PX

= [1, 1]
PX

. From the definition of A 1 A it follows
that there exists a (unique) arrow ϕ making the following diagram commute:

A+
PX
A

[j,i]
PX //

[i,j]
PX

��

AoA

�� [1,1〉

��

AoA //

[1,1〉 --

A 1 A

ϕ

&&
A

By Proposition 3.11 this means that 〈A,A〉 = 0.
The second statement follows from Corollary 3.14.

In fact, when the condition (SH) holds (as in the case of strongly protomodu-
lar categories and, in particular, for algebraically coherent categories), the property
〈A,A〉 = 0 characterizes crossed modules among pre-crossed modules.

Proposition 3.17. In a semi-abelian category C satisfying (SH), a pre-crossed mod-
ule (∂ : A→ B, ξ) is a crossed module if and only if 〈A,A〉 = 0.

Proof. The condition 〈A,A〉 = 0 is necessary by Lemma 3.16.
Suppose now that 〈A,A〉 = 0. Then, by Proposition 3.11, there exists a unique

arrow ϕ making the following diagram commute:

A
l1 //

1
""

A 1 A

ϕ

��

A
l2oo

1
||

A

By composition with the canonical arrow AoA→ A 1 A, we get the arrow [1, 1〉
below:

A
j //

1
""

AoA

[1,1〉

��

A
ioo

1
||

A

As observed in the proof of Lemma 3.16, the existence of [1, 1〉 is equivalent to the
Peiffer condition, which, under the (SH) condition, implies that (∂ : A→ B, ξ) is a
crossed module.

Furthermore the reflection PXModB(C)→ XModB(C) can be obtained performing
the quotient on the Peiffer commutator. More precisely, the following theorem holds.
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Theorem 3.18. Let (δ : X → B, ξ) be an internal pre-crossed module in a semi-
abelian category C satisfying (SH). Then HI(δ) is obtained by the following cokernel
in PXModB(C):

〈X,X〉 � ,2 //

0
  

X

δ

��

η � ,2 X

〈X,X〉

HI(δ)
}}

B

Proof. The regular epimorphism η arises also as the right vertical map in the following
pushout in PXModB(C):

X +
PX
X

[1,1]
PX � ,2

Σ

_��

X

η
_��

X 1 X
q

� ,2 X

〈X,X〉

(4)

(paste this diagram with diagram (3)).
The fact that HI(δ) is a crossed module follows from Corollary 3.15 and Proposi-

tion 3.17.
On the other hand, given any morphism f : X → A in PXModB(C), where the

codomain is a crossed module, then by Lemma 3.16 we have that 〈f(X), f(X)〉 = 0
and by Proposition 3.11 this yields an arrow ϕ : X 1 X → A making the following
diagram commute:

X
l1 //

f
##

X 1 X

ϕ

��

X
l2oo

f
{{

A

Hence ϕ · Σ = f · [1, 1]
PX

and the universal property of HI(δ) follows from the one of
the pushout (4).

4. The algebraically coherent case

We consider from now on the following condition on the base category C:
(CS) For any (δX : X → B) and (δY : Y → B) in PXModB(C), the comparison arrow

σ : X + Y → X +
PX
Y

is a regular epimorphism.

It turns out (as Proposition 4.1 shows) that, in the semi-abelian context, this
condition is equivalent to algebraic coherence, independently introduced in [17].
A semi-abelian category is algebraically coherent when, for any B in C, the kernel
functor

Ker : PtB(C)→ C
preserves jointly strongly epimorphic pairs. This condition is fulfilled by a wide class
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of algebraic varieties such as the categories of groups, rings, Lie and Leibniz algebras,
Poisson algebras and in general any category of interest in the sense of Orzech [36],
as shown in [17].

Proposition 4.1. A semi-abelian category C is algebraically coherent if and only if
it satisfies the condition (CS).

Proof. Given X and Y in PXModB(C), it suffices to consider the coproduct of the
corresponding objects in RGB(C) and restrict the canonical injections to the kernels
of the domain projections. If C is algebraically coherent, these restrictions are jointly
strongly epimorphic or, equivalently, σ is a regular epimorphism.

Conversely, it suffices to observe that PtB(C) is isomorphic to the full subcategory
of RGB(C) whose objects are those reflexive graphs where domain and codomain
projections coincide, and this embedding preserves coproducts. Then, given a jointly
strongly epimorphic pair (f1, g1) in PtB(C), whose restriction to kernels is (f, g):

X
f //

_��

��

A_��

��

Y
goo

_��

��
X1

p

��

f1 // A1

α

��

Y1

p′

��

g1oo

B

s

OO

1
// B

β

OO

1
// B

s′

OO

just doubling the split epimorphisms, one gets a jointly strongly epimorphic pair in
RGB(C), and, by equivalence, in PXModB(C). Hence [f, g]

PX
: X +

PX
Y → A is a reg-

ular epimorphism. If σ is a regular epimorphism, by composition [f, g] : X + Y → A
is also a regular epimorphism, proving that the kernel functor Ker : PtB(C)→ C pre-
serves jointly strongly epimorphic pairs as desired.

We saw in Section 2.3 that the join of two kernels in PXModB(C) coincides with the
join of the corresponding objects in C. Under (CS), this property extends to arbitrary
subobjects. In fact, we have more.

Proposition 4.2. A semi-abelian category C satisfies the condition (CS) if and only
if the join of any pair of subobjects in PXModB(C) coincides with the join of the
corresponding subobjects in C:

X ∨ Y
##

##δX∨δY

��

Yoooo

δY

��

~~
n

~~
X
;;

;;

δX
))

//
m

// A

δ

��
B

Proof. The joins of X and Y computed in C and in PXModB(C) are obtained by
means of the (regular epi, mono) factorization of the arrows [m,n] : X + Y → A and
[m,n]

PX
: X +

PX
Y → A, respectively. If (CS) holds, then the two factorizations yield

the same subobject of A.
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Conversely, let us consider X and Y as subobjects of X +
PX
Y in PXModB(C).

If their join in C coincides with X +
PX
Y , then σ : X + Y → X +

PX
Y is a regular

epimorphism.

4.1. Construction of the Peiffer product and commutator under (CS)
The condition (CS) on C says that σ : X + Y → X +

PX
Y is a regular epimorphism.

Hence, considering the following commutative diagram where the two rows are short
exact sequences:

X �Y
� ,2 //

����

X + Y
[j,i] // //

σ
����

X o Y

1

��
X 2rY � ,2 // X +

PX
Y

[j,i]
PX

// // X o Y

the leftmost vertical arrow is a regular epimorphism, since the left hand square is a
pullback. In a symmetric way, we obtain a canonical regular epimorphism by replacing
X o Y with Y oX in the diagram above:

X �Y // // X 2r Y.

Let us denote X �Y := (X �Y ) ∨ (X �Y ) (computed in X + Y ). By Corollary 2.9,
it follows that also X � Y can be obtained as the join (X 2rY ) ∨ (X 2r Y ) in C. Then
we have a regular epimorphism:

X �Y // // X � Y.

Proposition 4.3. The Peiffer product X 1 Y , introduced in Definition 3.3 as the

quotient
X+

PX
Y

X � Y in PXModB(C), under (CS) can be obtained as a quotient X+Y
X �Y

of
the coproduct in C.

Proof. Consider the following diagram, where the inner square is constructed as a
pushout in PXModB(C):

X + Y
[j,i]

))

[i,j]

$$

σ

'' ''
X +

PX
Y

[j,i]
PX

//

[i,j]
PX

��

X o Y

��
Y oX // X 1 Y

Since σ is a regular epimorphism and the inner square is also a pushout in C, so is
the outer square.

Remark 4.4. In this case, the Peiffer product X 1 Y can also be computed as the
colimit of the following diagram:

Y [X
δ∗Y ξX

||

κ
Y,X

$$

X[Y
δ∗XξY

!!

κ
X,Y

zz
X X + Y Y
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where κ
Y,X

and κ
X,Y

represent the formal conjugates in X + Y of Y on X and of
X on Y . Indeed, in order to obtain this colimit, we can take first the pushout of the
span on the left producing the semi-direct product X o Y (see [28]), i.e., the universal
quotient of X + Y where the action δ∗Y ξX becomes a conjugation. In a symmetric way,
we obtain Y oX and by a final pushout, we get the desired colimit, which coincides
then with X 1 Y , thanks to Proposition 4.3. As a consequence, X 1 Y is the universal
quotient of X + Y where both the actions δ∗Y ξX and δ∗XξY become conjugations.

Proposition 4.5. Let X and Y be pre-crossed submodules of A as in diagram (2).
Under (CS) the Peiffer commutator 〈X,Y 〉 can be obtained as the regular image of
X �Y through the arrow [m,n] : X + Y → A:

X �Y_��

��

// // X � Y_��

��

// // 〈X,Y 〉
��

��
X + Y

σ // //

[m,n]

44X +
PX
Y

[m,n]
PX // A

Remark 4.6. In the case [m,n] is a regular epimorphism, then 〈X,Y 〉 is normal in A
if considered in C. But since algebraic coherence implies strong protomodularity (see
[17]), thanks to Proposition 2.5, it becomes normal also in PXModB(C).

Remark 4.7. In case of trivial pre-crossed modules, X �Y coincides with the canoni-
cal object X 3Y of [33] and the Peiffer commutator 〈X,Y 〉 coincides with the Higgins
commutator [X,Y ] introduced in the case of Ω-groups in [25] and in a categorical
setting in [33].

Remark 4.8. In the present setting, the reflection described in Section 3.2 of a pre-
crossed module (δ : X → B, ξ) can be computed by means of the following pushout
in C:

X +X
[1,1] � ,2

_��

X

η
_��

X 1 X
q

� ,2 X

〈X,X〉

4.2. Examples

As an application of the constructions described above, we provide here some
examples of explicit calculation of the Peiffer commutator for algebraically coherent
varieties. In this context, following the description given in Remark 4.4, we can inter-
pret 〈X,Y 〉 as the ideal generated in X ∨ Y by the Peiffer words, i.e., those elements
of A whose vanishing makes the actions δ∗Y ξX and δ∗XξY become conjugations.

Example 4.9. Let us consider first the case of (not necessarily unitary) rings. Follow-
ing the notation of diagram (2), let (δ : A→ B, ξ) be a pre-crossed module in the
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category of rings. The action ξ is given by the assignment of two bilinear maps:

B ×A→ A, (b, a) 7→ b · a ,
A×B → A, (a, b) 7→ a · b ,

satisfying the following identities (for all a, a′ ∈ A and b, b′ ∈ B):

(bb′) · a = b · (b′ · a) , (b · a)a′ = b · (aa′) ,
(b · a) · b′ = b · (a · b′) , (a · b)a′ = a(b · a′) ,
(a · b) · b′ = a · (bb′) , (aa′) · b = a(a′ · b) .

The pre-crossed module condition says that:

δ(b · a) = b · δ(a) and δ(a · b) = δ(a) · b.

Given X and Y pre-crossed submodules of A as in diagram (2), their Peiffer commu-
tator 〈X,Y 〉 6 A is the ideal of X ∨ Y generated by the following Peiffer words (for
all x ∈ X and y ∈ Y ):

xy − δX(x) · y , xy − x · δY (y) , yx− δY (y) · x , yx− y · δX(x) .

Example 4.10. Consider now the category of Leibniz algebras over a fixed field. As
above, δ is a pre-crossed module. Here, the action ξ is a pair of bilinear maps:

B ×A→ A, (b, a) 7→ [b, a] ,
A×B → A, (a, b) 7→ [a, b] ,

satisfying the following identities (for all a, a′ ∈ A and b, b′ ∈ B):

[[a, a′], b] = [[a, b], a′] + [a, [a′, b]] , [[a, b], b′] = [[a, b′], b] + [a, [b, b′]] ,
[[a, b], a′] = [[a, a′], b] + [a, [b, a′]] , [[b, a], b′] = [[b, b′], a] + [b, [a, b′]] ,
[[b, a], a′] = [[b, a′], a] + [b, [a, a′]] , [[b, b′], a] = [[b, a], b′] + [b, [b′, a]] ,

and the pre-crossed module condition says that:

δ([b, a]) = [b, δ(a)] and δ([a, b]) = [δ(a), b] .

Given X and Y pre-crossed submodules of A as in diagram (2), their Peiffer commu-
tator 〈X,Y 〉 6 A is the ideal of X ∨ Y generated by the following Peiffer words (for
all x ∈ X and y ∈ Y ):

[x, y]− [δX(x), y] , [x, y]− [x, δY (y)] , [y, x]− [δY (y), x] , [y, x]− [y, δX(x)] .

5. Coproduct of crossed modules

Brown showed in [10] that the Peiffer product of two crossed B-modules of groups
represents their coproduct in XModB(Gp). We show here that an internal version of
this result holds in any algebraically coherent semi-abelian category satisfying the
following condition.

(UA) Given a jointly strongly epimorphic cospan A
f // B C

goo in C, then for
any 4-tuple (ξ1, ξ2, ξ3, ξ4) of actions on a fixed object X making the following
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diagram commute:

A[X

ξ1 ##

f[1 // B[X

ξ3

��
ξ4

��

C[X

ξ2{{

g[1oo

X

(5)

we have ξ3 = ξ4.

Proposition 5.1. Let C be an action representative semi-abelian category (see [6, 5])
or a category of interest. Then C satisfies the condition (UA) above.

Proof. In an action representative semi-abelian category C, for every X in C, there
exists an object Act(X) (the “actor” of X), such that the actions of any object Y on
X are in one-to-one correspondence with the morphisms Y → Act(X). Through this
correspondence, naming φi the morphism associated with the action ξi in diagram (5)
above, we get the following commutative diagram:

A

φ1 ##

f // B

φ3

��
φ4

��

C

φ2{{

goo

Act(X)

Hence condition (UA) follows from the fact that f and g are jointly (strongly) epi-
morphic.

A similar phenomenon occurs in any category of interest C, that might not be
action representative. Nevertheless, it is shown in [15] that, viewing C as a subvariety
of a variety CG of groups with operations, for every object X in C there exists an
object USGA(X) in CG (the “universal strict general actor” of X), such that every
action of an object Y in C on X yields a morphism Y → USGA(X) in CG. Then, as
above, we get a commutative diagram in CG:

A

φ1 $$

f // B

φ3

��
φ4

��

C

φ2zz

goo

USGA(X)

The pair (f, g) is jointly strongly epimorphic in CG since the same holds in the sub-
variety C, and condition (UA) follows by cancellation.

Thanks to the previous proposition, the following theorem applies also to the cases
of crossed modules of Lie algebras, Leibniz algebras and commutative algebras studied
in [16, 2, 40].

Theorem 5.2. Let C be an algebraically coherent semi-abelian category satisfying the
condition (UA), (∂X : X → B, ξX) and (∂Y : Y → B, ξY ) internal crossed modules in
C. Then (∂1 : X 1 Y → B, ξ1), constructed as in Proposition 4.3, is the coproduct of
∂X and ∂Y in XModB(C).
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Proof. By definition, (∂1, ξ1) is a pre-crossed module. Since in the context we are
considering the property (SH) holds (see [17]), it suffices to verify the Peiffer identity
for X 1 Y :

(X 1 Y )[(X 1 Y )
∂1[1 //

χ
((

B[(X 1 Y )

ξ1xx
X 1 Y

In other words, we have to show that the following two actions are equal:

(X 1 Y )[(X 1 Y )
∂∗1ξ1 //
χ

// X 1 Y.

To prove this, we can pre-compose with the canonical injections lX and lY to obtain
the following diagram:

X[(X 1 Y )

∂∗Xξ1 ((

lX[1 // (X 1 Y )[(X 1 Y )

∂∗1ξ1

��

χ

��

Y [(X 1 Y )

∂∗Y ξ1vv

lY [1oo

X 1 Y

(6)

As already observed in Section 3.1, the pair (lX , lY ) is jointly strongly epimorphic in
PXModB(C), and then in C, thanks to condition (CS). Hence, by condition (UA), we
only have to prove that diagram (6) is commutative.

Let us focus on the left hand side triangles. Again by algebraic coherence, the
functorX[− preserves jointly strongly epimorphic pairs (see [17]), so the two triangles
commute if and only if they commute when pre-composed with the jointly strongly
epimorphic pair

X[X
1[lX // X[(X 1 Y ) X[Y.

1[lYoo

This is true because, on one hand, ∂X is a crossed module, then the two squares

X[X

χ=∂∗XξX

��

lX[lX // (X 1 Y )[(X 1 Y )

∂∗1ξ1

��
χ

��
X

lX

// X 1 Y

commute because morphisms in C are always equivariant with respect to the conju-
gation actions and because lX is a morphism of pre-crossed modules. On the other
hand, composing with 1[lY we get the following diagram:

X[Y

∂∗XξY

��

1[lY //

κX,Y

%%

X[(X 1 Y )

∂∗Xξ1 ((

lX[1 // (X 1 Y )[(X 1 Y )

∂∗1ξ1

��
χ

��
Y

ιY
// X + Y

[lX ,lY ]
// X 1 Y

where both the outer rectangles are commutative, since [lX , lY ] coequalizes the pair
(κX,Y , ιY · ∂∗XξY ), X 1 Y being a quotient of Y oX.



INTERNAL PEIFFER PRODUCT AND PEIFFER COMMUTATOR 205

In a symmetric way, one can prove that the right hand side triangles in (6) commute
because ∂Y is a crossed module and X 1 Y is also a quotient of X o Y .
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physique, Université catholique de Louvain, Chemin du Cyclotron 2, 1348 Louvain-
la-neuve, Belgium
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Archirafi, 34, 90123 Palermo, Italy

https://ncatlab.org/timporter/show/crossed+menagerie
https://ncatlab.org/timporter/show/crossed+menagerie
mailto:alan.cigoli@uclouvain.be
mailto:sandra.mantovani@unimi.it
mailto:giuseppe.metere@unipa.it

	Introduction
	The category PXModB(C)
	The (regular epi, mono) factorization
	Limits
	Colimits

	Peiffer product and Peiffer commutator
	Definitions and properties
	Reflection onto crossed modules

	The algebraically coherent case
	Construction of the Peiffer product and commutator under (CS)
	Examples

	Coproduct of crossed modules

