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Abstract:TheMediterraneanSea is an ideal location to test
the response of organisms to hydrological transformations
driven by climate change. Here we review studies carried
out on planktonic foraminifera and coccolithophores dur-
ing the late Quaternary and attempt the comparison of
data scattered in time and space. We highlight the prompt
response of surface water ecosystems to both orbital- and
suborbital-climatic variations.
Amarkedly different spatial response was observed in cal-
careous plankton assemblages, possibly due to the influ-
ence of the North Atlantic climatic system in the western,
central and northern areas and of the monsoon system
in the easternmost and southern sites. Orbital-induced
climatic dynamics led to productive surface waters in the
northern, western and central Mediterranean Sea during
the last glacial and to distinct deep chlorophyll maxi-
mum layers in the eastern Mediterranean Sea coinciding
with bottom anoxia episodes. High-frequency planktonic
modifications are well documented in the Sicily Channel
and Alboran Sea and highlight the occurrence of differ-
ent steps within a single stadial (cold phase)/interstadial
(warm phase) oscillation.
The review of planktonic organisms in the marine

*Corresponding Author: Alessandro Incarbona: Univer-
sità di Palermo, Dipartimento di Scienze della Terra e del
Mare, Via Archirafi 22, 90134 Palermo, Italy; Email: alessan-
dro.incarbona@unipa.it; Tel. +39 09123864650; Fax: 09123860834
Enrico Di Stefano, Rodolfo Sprovieri: Università di Palermo, Di-
partimento di Scienze della Terra e del Mare, Via Archirafi 22, 90134
Palermo, Italy
Serena Ferraro: Università degli Studi di Urbino “Carlo Bo”, Di-
partimento di Scienze della Terra, della Vita e dell’Ambiente, Cam-
pus Scientifico Località Crocicchia, 61029 Urbino, Italy; Consiglio
Nazionale delle Ricerche, Istituto per l’Ambiente Marino Costiero,
Sezione Capo Granitola, Via del Mare 3, 91021 Torretta Granitola
(Campobello di Mazara, Trapani), Italy

sedimentary archive casts light on the uniqueness
of the Mediterranean Sea, especially in terms of cli-
matic/oceanographic/biological interaction and influ-
ence of different climatic systems on distinct areas. Fur-
ther research is needed in the eastern Mediterranean Sea
where results are obscured by low-resolution sedimen-
tary records and by a strong focus on sapropel deposition
dynamics.
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1 Introduction
The Mediterranean region is located in a transitional
zone, between subtropical andmidlatitude regimes [1]; the
northern area is linked to the midlatitude variability, the
North Atlantic Oscillations and other teleconnection pat-
terns, such as the Scandinavian, the East Atlantic and the
East Atlantic/northern Russia patterns [2], and the south-
ern and the easternmost parts of the region are under the
influence of the descending branch of the Hadley cell and
of the East African monsoon in summer [1, 3]. The mon-
soon system may have significantly modified the Mediter-
ranean thermohaline circulation in the past through en-
hanced Nile river runoff, leading to deep water formation
failure in the Adriatic and Aegean Sea and the deposi-
tion of anoxic sediments on the easternMediterranean sea
floor [3–5].

The Mediterranean Sea is also a key laboratory to test
the response of organisms to hydrological transformations
driven by climate change. The reduced volume of the basin
makes the Mediterranean susceptible to amplified hydro-
logical variations that impact marine ecosystems. Signif-
icant sea surface temperature (SST), salinity, thermoha-
line circulation strength and nutrient availability varia-
tions have been identified in the western/central Mediter-
ranean Sea during the late Quaternary [6–18].
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Foraminifera and coccolithophores are among the
most important planktonic organisms, together with di-
atoms which are only rarely preserved in the Mediter-
ranean sedimentary archive [19]. Standard ocean bio-
zonation is not always usable, necessitating the adoption
of regional planktonic foraminifera and coccolithophore
schemes for the Oligocene to the present [20–22], high-
lighting that the Mediterranean Sea behaved as a distinct
bioprovince due to its gradual isolation from oceans.

The trophic levels of theMediterranean Sea are among
the poorest in the world’s oceans, as mirrored by the anal-
ysis of living planktonic foraminifera and coccolithophore
assemblages from water samples and sediment traps. A
strong seasonality, characterized by very low biomass
(oligotrophic regime) during late spring-summer and
higher biomass in late fall-winter (mesotrophic regime),
has been noted from oceanographic cruises [23, 24], as
well as from 12-year-long sediment trap samples [25]. A
markedwest-east trend towards oligotrophy can be seen in
both calcareous plankton assemblages [23, 24] and follows
the same increasing nutrient depletion trend, especially
due to phosphorous shortage [26]. However, many local
investigations [27–39] point out the great fragmentation
of the Mediterraneanmarine environment that reflects the
occurrence of temporary uplift of waters (local upwelling),
small-scale cyclonic and anticyclonic gyres and frontal
zones [40, 41].

Here we present a review of recent studies dealing
with the analysis of planktonic foraminifera and coccol-
ithophores inMediterranean sediments of the last 130,000
years, since the last interglacial. We examine whether cal-
careous planktonic assemblages were modified between
glacial/interglacial switches and during abrupt climatic
changes, i.e. at orbital- and suborbital-scales, respectively.
Finally, we compare results from different Mediterranean
areas, such as from the western and eastern basins, and
discuss the most likely climatic forcings that may have
driven marine ecosystem variations.

2 The Calcareous Plankton
Response to Glacial/Interglacial
Switches

In the following we focus on modifications in calcare-
ous plankton assemblages during the last 130,000 years
(since the last interglacial period). The main reason for
such a choice deals with the availability of data, given that
most of the sedimentarymaterial recovered in theMediter-

ranean sea floor is from gravity cores (that is limited in
length), and the reliability of age models that can ben-
efit from radiocarbon datings and peak-to-peak correla-
tionswithGreenland ice cores. Specifically, the agemodels
of Ocean Drilling Program (ODP) Site 963 and Hole 977A
were assessed by calibrated accelerator mass spectrome-
try radiocarbon datings, oxygen isotopic and event stratig-
raphy [10, 11, 14, 15, 42, 43].

2.1 Planktonic Foraminifera

Late Quaternary planktonic foraminifera assemblages are
dominated by Globigerina bulloides (which indicate high
fertility surface water), Globigerinoides ruber (warm
and oligotrophic surface water),Neogloboquadrina pachy-
derma right coiling (dx) (deep chlorophyll maximum, or
DCM) and Turborotalita quinqueloba (high fertility surface
water) [24, 25, 44, 45].

Studies carried out in the Sicily Channel (ODP Site
963) and in the Alboran Sea (ODP Hole 977A) provide
the highest-resolution records for the selected time do-
main and illustrate planktonic foraminifera modifications
across glacial/interglacial cycles in the western-central
Mediterranean Sea (Fig. 1) [10, 11, 15, 42, 43]. A coherent
framework emerges from the comparison of the two sites,
although there are minor discrepancies due to the west-
east temperature and productivity gradients. For example,
there is a higher abundance of G. ruber and almost ab-
sence of left coiling N. pachyderma in the Sicily Channel.
Interglacials (Holocene and MIS 5e) are characterized by
positive peaks in the G. ruber distribution pattern (Figs. 2
and 3), suggesting the presence of warm and oligotrophic
surface waters. Globigerina bulloides, N. pachyderma dx
and T. quinqueloba dominate the assemblages during the
last glacial period (MIS 4-2, Figs. 2 and 3) and indicate the
presence of cold and productive waters. The scheme de-
scribed above seems to be suited for a largeMediterranean
area that includes other Sicily Channel and Alboran Sea
sites, the Gulf of Lions, the Sardinia Channel, the Balearic,
the Tyrrhenian and the Adriatic Sea [e.g. 46–54]. A few ex-
ceptions deal with, for instance, very coastal sites along
the Tyrrhenian Sea where G. bulloides, N. pachyderma dx
and T. quinqueloba are very abundant even during the
Holocene [47].

A clear turnover in planktonic foraminifera assem-
blages is not readily observed across glacial/interglacial
switches in the eastern Mediterranean Sea, where G. ru-
ber is common and abundant down to levels dated to
the last glacial period [48, 55–57]. The dataset (compiled
from 37 sedimentary cores) used to reconstruct sea sur-
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Figure 1: Bathymetric map of the Mediterranean Sea and location of ODP 963 and 977 cores. Black arrows show the path of surface water
circulation [modified from (author?) 116, 117]. Black circles represent the location of basins and the main cores discussed in the text: 1)
Alboran Sea, ODP Hole 977A; 2) Balearic Sea; 3) Gulf of Lions; 4) Tyrrhenian Sea; 5) Sicily Channel, ODP Site 963; 6) Adriatic Sea 7)Ionian
Sea; 8) Aegean Sea; 9) Levantine Sea.

face temperature in the Mediterranean Sea during the last
glacial maximum (LGM, around 20 ka) [58, data avail-
able at: http://doi.pangaea.de/10.1594/PANGAEA.227307]
offers a suitable snapshot to assess the spatial distribu-
tion of planktonic foraminifera. In Figure 4, the ratio be-
tween G. ruber and (G. bulloides + N. pachyderma dx
+ T. quinqueloba) is plotted against latitude (Fig. 4a) and
longitude (Fig. 4b). It is worth noting the significant cor-
relation between the ratio and degrees longitude (R2 =
0.66) that illustrates the different behaviour of planktonic
foraminifera assemblages during the LGM in the western
and eastern Mediterranean subbasins (Fig. 4b), charac-
terized by cold/productive and warm/oligotrophic surface
waters, respectively. The Mediterranean area between 10∘

and 20∘E shows the highest scattering, which can readily
be explainedby theunevenness of geographic features, in-
cluding the Sicily Channel, Tyrrhenian, Ionian and Adri-
atic Sea, and the wide latitudinal length (30∘–45∘N). The
latitude is also a strong spatial factor and is significantly
(R2 = 0.59) correlated to the ratio (Fig. 4a). The northern-
most regions where Mediterranean deepwater forms (Gulf
of Lions, Adriatic and Aegean Sea) experience the blow of
strong northern winds that induce cooling and increased
productivity. Inmany reports from theAdriatic andAegean
Sea, the distribution pattern of the principal planktonic
foraminifera species seems to be comparable to western-
central Mediterranean sites [e.g. 47, 59–62].

A strong orbital control is exerted on planktonic
foraminifera assemblages in the eastern Mediterranean
Sea. Deposition of sapropel layers coincides with max-

ima in the Northern Hemisphere summer insolation and
the monsoon index [4, 63–65], which would have pro-
duced an abnormal input of freshwater runoff from the
Nile [3, 5, 66]. The lack of deepwater formation in the east-
ern Mediterranean Sea and the slowdown of the Mediter-
ranean thermohaline circulation may have led to pycn-
ocline/nutricline shallowing into the lower part of the
photic zone [67, 68]. Peaks of N. pachyderma dx that co-
incide with late Quaternary sapropels demonstrate the oc-
currence of a DCM [55, 69] and represent the best evidence
for the orbital-controlled switch to high-productivity con-
ditions in the eastern Mediterranean Sea marine environ-
ment.

2.2 Coccolithophores

Although much fewer coccolithophore results are avail-
able by web data bank, the visual inspection of investiga-
tions from different Mediterranean sites strongly points to
dynamics that are readily comparable to those of plank-
tonic foraminifera. In Figure 5, coccolithophore taxa are
grouped following ecological preferences [15, 70, 71] for
the last 130 ka in the Sicily Channel as follows: ‘Placol-
iths’ are r-strategist taxa and indicate high surface pro-
ductivity [72–74]; Florisphaera profunda, the most abun-
dant species of ‘Lower Photic Zone’ taxa, is a proxy for a
deep nutricline and low productivity conditions [14, 74–
77]; ‘Upper Photic Zone’ (UPZ) taxa are K-strategist taxa
and indicate surface oligotrophy [72, 78, 79]; and the ‘Mis-
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Figure 2: Downcore variations of geochemical data and planktonic foraminifera species at ODP Site 963, plotted versus calibrated age (kyr).
From the left, oxygen isotopic record of Greenland ice cores (NGRIP members, 2004); benthic and planktonic oxygen isotopic records at
ODP Site 963 [11, 17]; distribution patterns of G. ruber, G. bulloides, T. quinqueloba and N. pachyderma dx at ODP Site 963, expressed as
percentage values [11, 15, 17, 80] and their ecological preference. Light grey bands mark stadials, white bands mark interstadials. S26 to S2
show the sequence of stadials. YD: Younger Dryas.

cellaneous’ group includes species with diverse ecologi-
cal preferences that on the whole may be assimilated to
a weak K-strategist tendency [15, 72, 80]. Coccolithophore
distribution patterns show very high abundance of placol-
iths during the last glacial period, as well as abundance
peaks of Florisphaera profunda and UPZ taxa during the
Holocene and MIS 5 (especially MIS 5e). The switch be-
tween high productivity (Gephyrocapsa spp. and Emilia-
nia huxleyi blooming) during glacials and a deep nutri-
cline and surface oligotrophy during interglacials is fur-
ther highlighted by the N ratio [74, 81]. At the base of the
Holocene, the F. profunda increase (and the N ratio de-
crease) may also be detected in the Balearic and Tyrrhe-
nian Sea [49, 82].

The analysis of the number of coccoliths per gram
of sediment in the Alboran Sea displays an opposite be-
haviour (the highest productivity during Holocene sedi-
ments) and interpretation. This may be due to the fact that

the lower global sea level during the last glacial period
led to amarked decrease in theAtlantic/Mediterranean ex-
change and a significant density gradient between surface
and subsurface water [83, 84], which may have impacted
surface ecosystems, limiting the nutrient uplift. However,
we argue that, first, a correction for the dry bulk density
and for sedimentation rates would be needed to address
a real coccolithophore flux signal [e.g. 77, 85]. In other
words, the number of coccoliths per gram of sediment
is dependent on many factors different than production,
for instance dilution by terrigenous material, which is ex-
pected to be much higher during glacials. Second, we ar-
gue that the impact of a significant density gradient onma-
rine ecosystems would be largely dependent on the hori-
zon locationwithin thewater column. To our knowledge, a
numerical estimate of the density gradient depth between
surface and subsurface water does not exist, and it is rea-
sonable that during the 110-15 ka interval (or 70-15 ka, tak-
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Figure 3: Downcore variations of geochemical data and planktonic foraminifera species at ODP Hole 977A, plotted versus calibrated age
(kyr). From the left, oxygen isotopic record of Greenland ice cores [106]; alkenone-derived sea surface temperature and the G. bulloides
oxygen isotopic record at ODP Hole 977A [12]; distribution patterns of G. ruber, G. bulloides, T. quinqueloba, N. pachyderma dx and N.
pachyderma sx at ODP Hole 977A, expressed as percentage values [42] and their ecological preference. Light grey bands mark Heinrich
events (He6-He1). Note that Heinrich events between geochemical and micropaleontological data are slightly misaligned, because they are
plotted following the age model provided by [12, 42], respectively. YD: Younger Dryas.

ing into account the whole MIS 5 as an interglacial) there
was awide set of vertical fluctuations. In any case, less vol-
ume exchanged at Gibraltar implies a thinner Atlantic sur-
face water inflow, which today is about 200 metres-thick
and covers thewhole photic zone (e.g. [86, 87]. Thus, para-
doxically, the reduced water exchange at Gibraltar may
even favour surface fertility through the shallowing of in-
termediate water masses that are nutrient-enriched [26].

In the eastern Mediterranean basin, the orbitally con-
trolled sapropel dynamics drive coccolithophore assem-
blage modifications. The nutricline shallowing produces
distinct DCM levels, as evidenced by F. profunda abun-
dance peaks [57, 77, 85, 88–92]. The establishment of a
DCM does not necessarily imply that the coccolithophore
productivity increased. Recent studies demonstrate that F.
profunda peaks during sapropel S5 and S1 are accompa-
nied by a concomitant decrease in the total flux of coc-
coliths [77, 85, 91]. Specifically, the number of coccoliths
x cm−2 x kyr−1 is markedly higher below and above sapro-
pel layers. This is in agreementwith the significant anticor-
relation between F. profunda percentage values in surface
sediments of both the Sicily Channel and eastern Mediter-
ranean Sea and primary productivity derived by satellite
imagery (Fig. 6) [77, 85].

Decreased coccolithophore fluxes within sapropels
would apparently contradict the well-established geo-

chemical evidence of increased productivity, such as high
values in the Ba/Al ratio and light values in the δ15N [e.g.
93–98]. One possible explanation deals with increased
primary productivity in a different phytoplankton com-
partment. Diatoms may successfully compete with coc-
colithophores in eutrophic environments [99]. A study of
rarely preserved siliceous remains in the sapropels S5 layer
recovered south of Crete points to the crucial role of mat-
forming diatoms to explain enhanced primary productiv-
ity in the lower photic zone [19].

3 The Calcareous Plankton
Response to Suborbital-Climatic
Fluctuations

High-frequency climatic variations in the Northern Hemi-
sphere over the last 130 kyr, which are not due to the
Earth’s orbital motion, were initially traced in both Green-
land ice and North Atlantic cores [100, 101]. They are
characterized by marked fluctuations called Dansgaard-
Oeschger (D-O) oscillations during the last glacial pe-
riod, with stadials (cold phases) and interstadials (warm
phases) that alternate about every 1,500 years and are rec-
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Figure 4: Plots of the planktonic foraminifera ratio between G. ruber
and (G. bulloides + N. pachyderma dx + T. quinqueloba) versus the
location (Fig. 4a latitude; Fig. 4b longitude) of Mediterranean cores
selected by [58] for sea surface temperature reconstructions during
the last glacial maximum (around 20 ka; the data set is available
at http://doi.pangaea.de/10.1594/PANGAEA.227306). Correlation
indices are shown. Red ellipses in both Figure 4a and 4b shows
scattered points whose meaning is discussed in the text.

ognized across the whole Northern Hemisphere [102, 103].
Climatic instability is also documented within the last in-
terglacial and Holocene [104–106].

The stadial/interstadial alternation drove theMediter-
ranean thermohaline circulation with an opposite be-
haviour with respect to the Atlantic Meridional Overturn-
ing Circulation (AMOC); that is, stadials were character-
ized by enhanced circulation and bottom ventilation and
vice versa [6, 12, 13]. The significant impact on calcareous
plankton assemblages has been recognized in the Sicily
Channel (Figs. 2 and 5). Cold and more productive waters
mark interglacial stadials, up to S25 during the last inter-
glacial [11, 71] and within the Holocene [14]. Three differ-
ent scenarios are associated with each D-O cycle of the
last glacial [15]: 1) oligotrophic surface water and a deep
nutricline in the early interstadials; 2) a DCM and coccol-
ithophorewinter/spring blooming in the late interstadials;

3) reduced productivity and a shallower nutricline during
stadials.

The reduced productivity during stadials is also
clearly indicated by geochemical and micropaleonto-
logical investigations on the Alboran Sea sedimentary
record [7, 107–109]. One possible explanation of this phe-
nomenon deals with the significant density gradient be-
tween surface and subsurface water, produced during the
last glacial by global sea level fall [83, 84] and by vertical
mixing disturbance due to input of fresher water of polar
origin. The incursion of low-salinity waters is documented
in both theAlboran Sea and the Sicily Channel by light iso-
topic values in planktonic foraminifera shells [17, 110, 111]
during the southward shift of the Polar front and the depo-
sition of ice rafted detritus (Heinrich events) in the North
AtlanticOcean. Thehighoffset recorded in the isotopic val-
ues of benthic and planktonic foraminifera in the Sicily
Channel suggests the possible occurrence of such a distur-
bance for many stadials [15].

The teleconnection between themonsoon climate sys-
tem and the AMOC during the late Quaternary is well-
established [e.g. 112–114] and may also have impacted
the easternMediterranean Sea circulation. Salinity and/or
temperature, speed, ventilation and the vertical location
of the Levantine Intermediate Water seem to be modified
across stadial/interstadial phases over the past 130 ka,
both in the Sicily Channel and the Corsica Trough [11, 16,
17]. However, there is no evidence of high-frequency cli-
mate impact on calcareous plankton assemblages. It is
possible that resulting hydrological variations were not
able to impact surface marine ecosystems, for instance if
nutricline re-locations did not reach the photic zone. Al-
ternatively, missing evidence may be the result of a low-
resolution investigation, inability to gather themillennial-
and centennial-scale signal, ormicropaleontological stud-
ies with a different target, for instance sapropel deposition
dynamics.

4 The Importance of Further
Mediterranean Investigations on
Planktonic Ecosystems

The Mediterranean Sea conveyor belt reproduces ocean
processes that can be observed at a reasonable spatial
scale and interacts with different climate systems that op-
erate at middle and high-latitude. The plume of warm and
saline water of the Mediterranean outflow enhances the
North Atlantic water density and may precondition deep

Brought to you by | Università degli Studi di Palermo
Authenticated

Download Date | 3/10/17 2:54 PM

http://doi.pangaea.de/10.1594/PANGAEA.227306


The Uniqueness of Planktonic Ecosystems in the Mediterranean Sea | 573

Figure 5: Downcore variations of geochemical data and coccolithophore taxa and groups at ODP Site 963, plotted versus calibrated age
(kyr). From the left, oxygen isotopic record of Greenland ice cores (NGRIP members, 2004); benthic and planktonic oxygen isotopic records
at ODP Site 963 [11, 17]; distribution patterns of F. profunda, placoliths, miscellaneous and UPZ taxa at ODP Site 963, expressed as percent-
age values [11, 15, 17, 80] and their ecological preference; distribution pattern of the N ratio, assessed by small placoliths / (small placol-
iths + F. profunda), following [74]. Light grey bands mark stadials, white bands mark interstadials. S26 to S2 show the sequence of stadials.
YD: Younger Dryas.

water formation [115]. The enhancedwater exchange at the
Gibraltar Strait and the denser outflow during last glacial
period cold spells may have fed the AMOC after periods of
slowdown [84]. These topics justify the broad scientific in-
terest in theMediterranean Sea, despite the fact that it rep-
resents about 1% of the world’s ocean water volume.

The planktonic community investigation from
Mediterranean sedimentary archives may be equally
important to understanding the biological response to
climate forcing, mediated by hydrological dynamics.
The present-day Mediterranean Sea primary productiv-
ity shows a wide range of seasonally-controlled trophic
regimes. Productivity patterns span from ‘bloom’ con-
ditions that are nearly identical to the North Atlantic
Ocean, with a distinct spring maximum in the Gulf of
Lions, to ‘non-blooming’ conditions in most of the east-
ern basin where a slight increase in productivity is ob-
served in fall and winter [41]. Meso-scale permanent and
semi-permanent gyres, frontal dynamics and seasonal

vertical dynamics of the water column further fragment
the Mediterranean Sea environment. There is little doubt
that such a variety of hydrological features and climatic-
and seasonal-induced variations is unique in the world’s
oceans. This is one of the reasons why the Mediterranean
still represents one of the most appealing regions for ma-
rine biologists.

The marked trophic difference in the planktonic com-
munities of the western and eastern (and northern and
southern) Mediterranean also existed during the LGM
(Fig. 4). Planktonic foraminifera and coccolithophore as-
semblageswere immediatelymodified by climatic solicita-
tions of abrupt suborbital oscillations in western-central
sites (Figs. 2, 3 and 5) and by sapropel dynamics in the
eastern basin. Although the three-step modification de-
scribed forD-Ooscillations in both Sicily Channel andAlb-
oran Sea calcareous plankton groups needs to be verified
in ocean sediments to assess whether it is a local (and
unique) response to climate forcing, this abrupt response
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Figure 6: Plots of F. profunda percentage values in the eastern
Mediterranean Sea [red dots 77], and in northern and southern
Sicily Channel [white and grey dots 118] versus satellite-derived
chlorophyll a values. Correlation indices are shown. The data set is
available at http://doi.pangaea.de/10.1594/PANGAEA.805695.

to climate forcing is alarming in light of the significant im-
pacts of global warming in the near future. Increased SST
and pCO2, the introduction of alien species, coastal pollu-
tion and fishing overexploitation may synergically act on
planktonic communities and in turnmayprofoundly affect
the Mediterranean Sea trophic chain. Thus, the extreme
sensitivity of plankton groups found in the present study,
as well as results from future high-resolution studies, will
be a basic prerequisite for reliable prediction of Mediter-
ranean Sea ecosystem transformation.

5 Concluding Remarks
The review of planktonic foraminifera and coccol-
ithophore data from the Mediterranean Sea over the last
130,000 years (since the last interglacial) points to the
unique importance of this area for understanding climatic,
hydrological and biological interaction. The Mediter-
ranean calcareous plankton ecosystem is extremely sensi-
tive to climatic variations, both orbitally- and suborbitally-
induced, and reveals the simultaneous impact of different
climatic systems. Cold sea surface temperature and higher
productivity characterize the last glacial period in the
western (Alboran and Balearic Sea, Gulf of Lions), cen-
tral (Sicily Channel and Tyrrhenian Sea) and northern
(Adriatic and Aegean Sea) Mediterranean Sea, possibly
due to strengthened Polar Vortex action. Maxima in the

Northern Hemisphere summer insolation and in the mon-
soon index drove calcareous plankton dynamics and led
to the establishment of distinct DCM layers during eastern
Mediterranean sapropel deposition.

The whole sequence of late Quaternary suborbital cli-
matic oscillations is recorded in planktonic foraminifera
and coccolithophore assemblage variations of the Sicily
Channel and Alboran Sea. The in-depth examination of
each D-O cycle of the last glacial period casts light on
abrupt marine ecosystem modifications that can be sum-
marized by a three-fold scenario. This again reflects tele-
connection with the high-middle latitude Atlantic Ocean
climatic system and possible disturbance of low-saline in-
flow water during relevant southward shifts of the Po-
lar Front. So far, no evidence exists of high-frequency
changes in the plankton from the ultra-oligotrophic east-
ern Mediterranean Sea, possibly because hydrological
variations were too subtle to impact biological processes.
Further research on high-resolution sedimentary records
is needed to verify whether high-frequency monsoon ac-
tivity may stimulate different water column and biological
productivity dynamics.

The abrupt response to climate forcing of plank-
tonic communities in the Mediterranean Sea observed in
the recent past highlights the vulnerability of the basal
trophic chain level to subtle environmental variations. The
study of calcareous plankton in Mediterranean sedimen-
tary archives still represents a unique opportunity to un-
derstand climatic/hydrological andbiological interactions
and to predict the near future marine environment evolu-
tion.
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