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Abstract

X-Ray binaries are gravitationally bound systems consisting of a compact ob-

ject that accretes matter from a companion star; they are the most interesting

objects of the sky, infact they allow to study the physics of matter in very ex-

treme conditions of density, temperature or magnetic field. So the determination

of spectral and temporal properties of X-ray binaries plays an important role in

understanding the processes involved in these systems. This project aims to un-

derstand the properties of binary systems, at high inclination (dipping and eclips-

ing sources), containing neutron stars weakly magnetized. In the light curves of

these systems it is possible to identify a variety of modulations with orbital peri-

odicity that are caused by the high inclination of the orbital plane with respect to

the line of sight. Using data from several X-ray satellites such as Chandra, XMM-

Newton and Suzaku, we analized the spectral properties of the source X1822-371

and temporal evolution of the source XB1916-053.

A short introduction about X-ray binary systems and basics about accretion is

presented in chapter 1, while in chapter 2 I describe briefly the formation and

evolution of binary systems.

The results we obtained analizing the source X1822-371 are described in chapter

3. Our aim was to understand the nature of the residuals between 0.6 and 0.8

keV previously observed in the XMM/EPIC-pn data by Iaria et al. (2013). We

interpreted the Gaussian feature in absorption as a cyclotron resonant scattering

feature (CRSF) produced close to the neutron star surface and derive the mag-

netic field strength at the surface of the neutron star. If our interpretation is

correct this is the very first detection of a CRSF below 1 keV in a LMXB.

In the source XB 1916-053 the known orbital period derivative is extremely large

vii



and can be explained by invoking an extreme, non-conservative mass transfer

rate that is not easily justifiable. The results of our analysis of a large sample

of data are presented in chapter 4. We had found that both in a conservative

and non-conservative mass transfer scenario we have to invoke the presence of a

third body to explain the observed sinusoidal modulation. We proposed that XB

1916-053 forms a hierarchical triple system.



Chapter 1

Binary systems

1.1 Introduction

One third of 339 X-ray sources listed in the fourth Uhuru catalogue (Forman

et al., 1978) [1], compiled with data collected from the Uhuru satellite launched

in 1970, have been classified as binary systems. X-ray binaries were identified

since the sixties of the twentieth century 1 when space technology allowed to

place X-ray detectors outside the Earth’s atmosphere that, being opaque to x-

rays, prevents the radiation from astronomical sources to be detected by ground

devices. Since then numerous satellites that have been launched have explored

the sky looking for X-ray sources and, to date, a few hundreds X-ray binary

systems in our Galaxy and in nearby galaxies have been spotted (Liu et al, 2007)

[3]

1.2 Basics about accretion

X-Ray binaries are among the brightest X-ray sources, their luminosities vary

in the range of 1033÷ 1038erg s−1 2. It became clear already few years after their

discovery that the luminosity of X-ray binaries was due to accretion of matter

onto a compact object (Shklovsky, 1967) [4]. The term accretion is the process

of extraction of gravitational potential energy from matter that is captured by

the gravitational field of a celestial body. Consider a body of mass M and radius

1In 1962 the discovery of Scorpius X-1 (Giacconi et al., 1962) [2], identified today as a binary

system containing a neutron star
2The luminosity of the Sun is on the order of 1033erg s−1

1
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R*, the potential energy released from a mass m accreting on the surface of the

object is:

∆Eacc =
GMm

R∗
= ξmc2

where G is the universal gravitational costant 3, ξ =
GM

c2R∗
is the efficiency and

the ratio
M

R∗
is called compactness.

Assuming you have a white dwarf with radius R∗ = 103Km and mass M = 1M�

(
M

R∗
≈ 1024 g cm−1) you get for a gram of accreted mass: ∆Eacc = 1.3× 1017erg;

while for a neutron star, whose radius is R*=10 Km and mass is M = 1.4M�

(
M

R∗
≈ 1027 g cm−1), we have: ∆Eacc = 1.9 × 1020 erg. On the other hand the

energy extracted during nuclear fusion of one gram of hydrogen into helium is

equal to:

∆Enucl = 6.3× 1018 erg

Then the process of accretion onto a neutron star is about 30 times more efficient

of the process of nuclear fusion and its efficiency depends from the compactness

of the object that accretes matter.

The luminosity of a system that accretes matter is:

Lacc =
GMṁ

R∗

therefore, for given value of compactness, luminosity depends on the rate at which

the matter accretes, denoted by ṁ. The luminosity that you can get in this way is

not unlimited; there is a maximum luminosity, called Eddington’s limit. Consider

a spherical accretion flow in a steady state accretion regime and assume that

the accreting matter is fully ionized hydrogen. Under these assumptions the

radiation produced by the compact object surface due accretion of matter, exerts

an outward pressure force mainly on free electrons, because the cross section for

protons is a factor (me
mp

)2 smaller, where me
mp
∼ 5 × 10−4 is the ratio of the mass

of the electron and the proton4; while the force of gravity directed inwards, acts

mainly on protons, which are about 1860 times more massive than electrons. Due

to the Coulomb attractive force which is exerted between protons and electrons

3G = 6.67× 10−8 cm3 g−1 s−2.
4with me ∼ 0.9× 10−27 g and mp ∼ 1.672× 10−24 g.
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the effects of these two forces will be transmitted to both types of particles. These

two forces will equilibrate at the Eddington’s luminosity limit value:

LEdd =
4πGMmpc

σT
u 1.3 ∗ 1038

( M
M�

)
ergs−1 5

For a luminosity higher than the Eddington limit, the radiation pressure will

overcome the gravity attractive force, and this limits the accretion rate to the

Eddington value.

1.3 X-ray binaries

A binary system is a set of two astronomical objects that, following the laws

of Kepler, revolve around a common center of mass under mutual attraction due

to gravity. X-ray binaries consist of a main sequence (or slighty evolved) star,

called the companion star (or donor star), and a compact object, that is the

end product of stellar evolution. During their life cycle, stars are systems in

equilibrium in which thermonuclear reactions that occur in the nucleus generate

radiation pressure needed to balance the gravity force that bring the star to

gravitational collapse. During its evolution the star runs out of nuclear fuel

inside, so the radiation pressure will not be able to contrast the collapse of the

star. If the collapsed object has a mass less than the Chandrasekhar’s limit

(1.44M�), the outward pressure of the electron-degenerate gas in its nucleus can

restore a balance. For compact objects with a mass between 1.44 ÷ 3.8M�,

the outward pressure is given by a degenerate neutron gas formed by inverse β−

decay: p+ +e− → n+ ν. Finally for stars whose mass is greater than the Tolman-

Oppenheimer-Volkoff (3.8M�) value no force is able to counteract the collapse

and a singularity of spacetime is created, more commonly known as black hole.

In X-ray binary systems the compact object is a neutron star or a black hole;

a possible classification of these systems can be made considering the mass of

the companion star: we speak, then, of High Mass x-ray Binaries and Low Mass

x-ray Binaries (White et al., 1995) [5].

5where σT = 6.7× 10−25cm2 is the Thomson cross section.
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1.3.1 High Mass X-Ray Binaries

High Mass X-ray Binaries (HMXBs) have companions of mass greater than

5M�
6 of spectral type O or B with an intense stellar wind (about 10−10M�yr

−1)7.

The X-ray luminosity vary between 1033 ÷ 1036erg s−1, while the ratio between

X-ray and optical brightness, defined as:

R=
Lx(2÷ 10keV )

Lopt(3000÷ 7000Å)
8

is between 10−5 e 10 (Bradt e McClintock, 1983) [7]. The HMXBs are young

binary systems (about 107 yr) where the compact object has a strong magnetic

field (1012 G) 9, often have eccentric orbits (0.1 < e < 0.4) and orbital period

ranging from 4.8 hours to 187 days (Staubert, 2008) [8].

Figure 1.1: An High Mass X-Ray Binary: the compact object attracts the strong

stellar wind of the companion (left) and accretes matter. (Credits: www. physorg.

com/ news8222. html )

1.3.2 Low Mass X-Ray Binaries

In Low Mass X-Ray binaries (LMXBs) (see figure 1.2) the companion star

has a mass M < 1M� and is, generally, of spectral type G or K with stellar wind

6M� refers to the mass of the Sun approximately 2× 1030Kg.
7The loss of mass of the Sun because of the solar wind is about 10−14M�yr

−1 (Gibson,

2001) [6]
8Where Lx(2 ÷ 10keV ) is the luminosity in the energy band between 2 and 10 keV and

Lopt(3000÷ 7000Å) is the luminosity in the wavelenght band between 3000 and 7000 angstrom
9The intensity of Sun’s magnetic field is about one Gauss.

www.physorg.com/news8222.html
www.physorg.com/news8222.html
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rather weak. Moreover the binary system is not very bright in optical band so

the ratio LX
Lopt

has values ranging from 100 to 1000, except in those systems where

an high inclination angle of the plane of the orbit with respect to the line of sight

hides the X-ray source by reducing the ratio to about 20. The LMXBs are old

systems (about 109 yr) and this allowed the circularization of the orbit due to

tidal effects; the compact object has a relatively low magnetic field (108 G) and

the system has an orbital period ranging from 0.19 hours to 17 days (Staubert,

2008) [8].

Figure 1.2: A Low Mass X-Ray Binary: the matter flows from the the inner La-

grangian point and accrete onto the compact object forming an accretion disk. (Credits:

http/ /: xraypulsars. aip. de: 8180/ xraypulsars )

Observing light curves of Low Mass x-ray binaries a variety of modulations

are noticed that can be ascribed to different inclination angle of the plane of the

orbit with respect to the line of sight (see figure 1.3) and this allows a further

classification of Low Mass x-ray Binaries. If the source is observed at an angle

i< 60◦ there will not be any modulations in light curve. At higher inclinations

for 60◦ <i< 75◦, it is possible to observe a partial reductions of flux emitted

by the source due to a bulge of matter on the outer rim of the accretion disk

where the impact with accreting matter occurs, known as dip; in this case, as it

is not possible to observe the eclipse, we speak of pure dippers. Increasing the

angle of inclination, for 75◦ <i< 80◦, it is possible to see both dip and eclipse.

For angle i> 80◦ it is not possible to see dip and eclipses will become partial.

LMXBs sources of this type are called Accretion Disk Corona(ADC); in these X-

ray sources radiation produced in the inner regions light up the inner part of the

disk causing evaporation of the superficial layers that form a corona that spreads

up, generally, to the outer radius of the disk. This corona diffuses radiation from

http//:xraypulsars.aip.de:8180/xraypulsars
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the central source making the eclipse partial (White and Holt, 1982) [9]. In the

event that the line of sight makes a big angle with the normal to the orbital plane

it will not be possible to observe directly the radiation coming from the source,

but it is observed a fraction of it diffused by the corona (Frank et al., 1987) [10].

Figure 1.3: A Low Mass x-ray Binary system seen from different angles. The angle i

is 0◦ along the direction perpendicular to the plane of the orbit (Credits: Frank, King

and Lasota (1987)).

1.4 Accretion onto X-ray binaries

The mass transfer in X-ray binaries can be done in two different ways depend-

ing on the nature of the system:

- in High Mass x-ray Binaries using the capture of the wind emitted from the

companion star by compact object (1.4.1);

- in Low Mass x-ray Binaries using the capture of matter of the companion

star which flows through the inner Lagrangian point that connects the two

Roche lobes10 (1.4.2).

10A Roche lobe is the equipotential surface tear-drop-shaped around a star in a binary system

(see figure 1.6)
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1.4.1 Accretion by capture of stellar wind

We have seen that (see 1.3.1) the stars of spectral type O or B have an intense

stellar wind. In systems where the companion star is of this type, the accretion

(see paragraph 1.2) occurs through the capture of such a wind by the compact

object (see figure 1.1) at a rate of about 10−6M�yr
−1 [11] during its motion

around the common center of mass. (see figure 1.4).

Figure 1.4: Accretion by capture of stellar wind (Credits: Shapiro and Teukolsky

(1983) - Black holes, white dwarfs and neutron stars: the physics of compact objects).

It is possible to calculate the radius beyond which the matter ejected from the

companion star cannot escape the compact object. In fact, let M∗ be the mass

of the compact object and v∗ be its orbital speed. Assuming that the emission of

stellar winds occurs radially at a speed vwind, then the stellar wind speed relative

to the compact object, vcomp, will simply be the vector sum of two speeds, or

v2
comp = v2

∗+v2
wind. We compute now the momentum of a stellar wind moving in a

gravitational field. The gravitational force per unit mass at a distance b from the

compact object is
GM∗
b2

and the duration of this force is
2b

vcomp
; then the variation

of momentum will be ∆p =
2GM∗
bvcomp

. The result will be that the stellar wind will

be deflected toward the axis of flow. As you can see in figure 1.5 at a distance l

from the compact object stellar wind particles will be on flow axis: at this point

the perpendicular component to the compact object of their speed will vanish.

Therefore the condition for the stellar wind from being captured by the com-

pact object is that at distance l, the gravitational potential energy of matter is
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Figure 1.5: Accretion mechanism of a compact object of mass M∗ through the capture

of stellar winds. In the figure stellar wind speed with respect to the compact object is

indicated with vt, where b is the distance of the stellar wind from the compact object, l

the distance along the axis of the flow where the stellar wind particles meet the axis of

flow and ∆p is the momentum of the particles of the stellar wind. (Credits: M.S.Longair

(2002) - High energy astrophysics - vol. II ).

greater than its kinetic energy. The kinetic energy per unit mass is about
1

2
v2
comp,

the distance l =
bvcomp
v⊥

, where v⊥ = ∆p, since we considered all quantities per

unit mass. From this we deduce that capture radius is:

Rcapt =
2GM∗
v2
comp

1.4.2 Accretion via Roche lobe overflow

Consider a binary system with a circular orbit. In a rotating reference frame

equipotential surfaces can be described by the following expression:

φR = − GM1

|~r − ~r1|
− GM2

|~r − ~r2|
− 1

2
(~ω × ~r)2

where ~ω is the angular velocity of the system orbital motion, while ~r1 and ~r2 are

position vectors of the two stars, of mass M1 and M2, considered to be point-like.
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Figure 1.6: Equipotential surfaces for a system consisting of two point-like masses

M1 and M2. The figure above shows the sections of the equipotential surface in the

orbital plane such that φR = cost. The surfaces are marked with numbers from 1

to 7 in order of increasing potential. The Roche lobe for the two stars is the ”eight

shape” highlighted in bold in figure and indicated with the number 3. The bottom

figure shows a three-dimensional representation of the potential φR (Credits: http:

// it. wikipedia. org/ wiki/ Lobo_ di_ Roche ; Frank, King and Raine - Accretion

power in astrophysics.)

The Roche lobes are the smallest among the equipotential surfaces describing the

gravitational potential of two objects that rotate around the center of mass of

http://it.wikipedia.org/wiki/Lobo_di_Roche
http://it.wikipedia.org/wiki/Lobo_di_Roche
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the system (see figure 1.6). Their contact point is called inner Lagrangian point,

denoted by L1 .

The shape of the Roche lobes are determined only by the mass ratio of the two

stars, q =
M2

M1

, whereas the binary separation a can be expressed from the third

Kepler’s law as:

a =

(
G (M1 +M2)P 2

orb

4π2

)1/3

(1.1)

where G is the gravitational constant, M1 and M2 are the masses of the two stars

and Porb is the orbital period of the system. A useful approximated expression

of the radius of the Roche lobe of a star, valid for q ≤ 0.8, is given by Paczynski

(1967) [12]:

RL = 0.46 a

(
M2

M1 +M2

)1/3

(1.2)

All LMXB accrete through transfer of matter from the inner Lagrangian point

at a rate between 10−10 ÷ 10−8M�yr
−1 [11]. In fact if one of the stars expands,

for istance due to stellar evolution and fills its Roche lobe up to the inner La-

grangian point, L1, a point of unstable equilibrium, due to the pressure of the gas

the matter tends to pass into the Roche lobe of the compact object. In this way

it is captured by the gravitational field of the other star and, since it possesses

a specific angular momentum, it does not fall directly on the compact object,

but begins to rotate around and forms an accretion disk. Due to viscous friction,

matter in the disk loses angular momentum (which is transported outward) until

it reaches the surface of the star. In the case of accretion from stellar wind, ac-

cretion disks may not form because the average angular momentum of the stellar

wind is lower.

1.4.3 Accretion onto magnetized neutron stars

In the event that the compact object has an intense magnetic field, the accret-

ing matter does not manage to directly reach the surface of the neutron star, but

at a certain radius, called Alfvén (or magnetospheric) radius, the pressure exerted

by the accreting matter, called ram pressure, equals the magnetic pressure and

the flow is channelled along the magnetic field lines until reaches the polar caps

(the magnetic field of neutron stars is of dipolar type). The resulting emission
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of radiation, if the magnetic axis is not aligned with the axis of rotation of the

compact object, is observed as a coherently pulsed signal (see figure 1.7).

Figure 1.7: Accretion onto a neutron star with a strong magnetic field. RM is the

radius at which accreting matter is channeled along the lines of the magnetic field.

(Credits: Frank, King and Raine - Accretion power in astrophysics.)

We calculate the magnetospheric radius as a function of the rate of accretion. We

assume that the accretion flow has spherical symmetry, or ṁ = 4πr2ρv and the

compact object magnetic field at the surface is dipolar, namely Bs =
µ

R3
∗
. The

magnetic field at a certain radius r from the object can be written in the form

B =
(R∗
r

)3

Bs. Magnetic pressure at distance r is pmag =
B2

8π
=

(R∗
r

)6

B2
s

8π
. The

ram pressure is pram = ρv2
ff , where vff is the free fall speed. Then, by equating

the two terms, you get:

ρv2
ff =

(R∗
rM

)6

B2
s

8π

With appropriate calculations and expressing the free fall energy density in

terms of rate of accretion, or ρvff =
ṁ

4πr2
M

we have:

rM =
( B4

sR
12
∗

8GM∗ṁ2

) 1
7

Assuming you have a solar mass neutron star that accretes matter at the

Eddington luminosity limit you get rM = 1000km, which is approximately 100
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times the radius of the compact object. Hence the accreting matter does not fall

directly on the surface of the star, but is channeled along the magnetic field lines

and reaches the polar caps.

1.5 The radiation from X-ray binaries

To evaluate the wavelength of radiation emitted by X-Ray binary systems

one should consider that the continuous spectrum of the emitted radiation can

be characterized by a temperature, Trad. In order to find an accretion luminosity

(see paragraph 1.2) we can define the black body temperature as that temperature

that the source should have if it emits radiation as a black body spectrum, i.e.:

Tb =
( Lacc

4πR2
∗σ

) 1
4 11

You can also define the temperature, Tth, that would have the accreting matter

if its gravitational potential energy is converted entirely into thermal energy:

Tth =
2GMmp

3K R∗
12

which is obtained by equating the gravitational potential energy of an accreting

proton, GMmp
R∗

, with the thermal energy 3kT
2

for each particle.

At this point we need to assess the nature of matter expanding on the surface

of the neutron star:

- If it is optically thick, radiation reaches thermal equilibrium with accreting

matter, then: Trad ∼ Tb;

- If it is optically thin, radiation will not interact with the accreting matter,

and will not loose its energy, which will be converted into thermal energy,

namely Trad ∼ Tth.

In the general case the temperature of the radiation will be between these two

values:

11Where σ = 5.67 × 10−5 erg cm−2 s−1K−4 is Stefan-Boltzmann costant, while with R∗

indicates the radius of neutron star.
12 mp = 1.672× 10−24 g indicates the mass of proton and with K= 1.38× 10−16 erg K−1 the

Boltzmann costant.
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Tb < Trad < Tth

In the case of a solar mass neutron star, the temperature of this radiation is

between 0.5 keV < Trad < 40MeV . Typically the accreting matter is optically

thick with a Trad ∼ 1 keV , that lies in the X-Ray band of the electromagnetic

spectrum.

1.6 Spectral analysis

The observed spectra of LMXBs consist of a black-body component which is

the emission from the neutron star and the inner parts of accretion disk (see left

panel of figure 1.8) and a Comptonized component, that when the angle between

the orbital plane and the line of sight prevents to directly observe the central

source, is produced in the accretion disk corona partially absorbed by interstellar

medium and by neutral local matter (see right panel of figure 1.8).

The instruments on X-ray satellites do not measure directly the spectrum of

a source, what they register are photon counts (C) within specific instrument

channels, (I). This observed spectrum is related to the actual spectrum of the

source (f(E)) by:

C(I) =
∫ +∞
−0

f(E)R(I, E) dE (1.3)

where R(I,E) is the instrumental response and is proportional to the probability

that an incoming photon of energy E will be detected in channel I. To obtain

the actual spectrum of a source, f(E), it is not possible to invert the equation

1.3. Usually it is assumed a model for the spectrum of the source (that can be

described in terms of some parameters) and a predicted count spectrum (Cp(I))

is calculated and compared to the observed data (C(I)) using a fitting procedure

to minimize the difference between the model and the data. The goodness of the

fit is quantified with the χ2-test, defined as follows:

χ2 =
∑ (C(I)− Cp(I))2

σ2(I)

where σ(I) is the error for channel I. For a given number of degrees of freedom

ν , which is calculated as the number of channels minus the number of model

parameters, it is possible to calculate the reduced χ2, i.e. χ2
ν = χ2/ν. This

provides a criterion for the goodness of the fit. In general χ2 ∼ ν, so if χ2
ν � 1
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Figure 1.8: Low Mass X-ray binaries spectrum. Left panel: The spectrum of the

source X1822-371 from BeppoSAX data: a blackboy component partially absorbed by

neutral local matter; there are also visible two emission lines. (Credits: Iaria et al.,

(2001)). Right panel: The variation of the comptonized component as a function of τ ,

the optical depth of the corona. (Credits:M.S.Longair (2002) - High energy astrophysics

- vol. I ).)

indicates that the model is not the correct one, but might also indicate that the

errors on the data have been under-estimated; conversely also a χ2
ν � 1 may

indicate that the errors on the data have been over-estimated.

1.6.1 Cyclotron lines

Young Neutron stars have magnetic fields of the order of 1012 Gauss, while in

old neutron star it is about 108 Gauss. The only way to determine the magnetic

field of a neutron star directly is to measure the energy of electron cyclotron

resonance lines sometimes present in their X-ray spectra, because the resonance

energy is proportional to the intensity of the magnetic field. In fact, an electron,

in the presence of a strong magnetic field B, uniform and directed along z, moves

along the field lines in a spiral trajectory of radius rg (See fig.1.9):
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Figure 1.9: Motion of an electron in a magnetic field B. (Credits:M.S.Longair (2002)

- High energy astrophysics - vol. I ).)

rg = c
v⊥me

eB
(1.4)

where v⊥ is the velocity of the electron in a direction perpendicular to the field,

me its rest mass, e its charge and c the speed of light. We need to introduce quan-

tum mechanics if rg is smaller than or comparable to the De Broglie wavelength

associated with the electron:

λ =
~

mev⊥
(1.5)

that is, for:

c
v⊥me

eB
<

~
mev⊥

(1.6)

then:

B >
m2
ev

2
⊥c

e~
=
(v⊥
c

)2 m2
ec

3

e~
=
(v⊥
c

)2

Bcr (1.7)

where Bcr = 4.41× 1013G and v⊥ is typically of the order of 0.01 c. In that case

the kinetic energy of an electron in the direction perpendicular to B is quantized

in the Landau energy levels. The n-th level of Landau has energy En = nEa (n

= 0,1,2, ...) where:

Ea =
eB~
mec

= 11.6× 10−12B keV (1.8)



16

is the energy of the fundamental cyclotron line. This result is valid in the non-

relativistic limit, i.e. for Ea < mec
2 or B < Bcr. The average lifespan of the

electrons in excited level is very small (∼ 10−16 s) so the collisional decay rate

is much smaller than the rate of radiative decay. Then an excited electron falls

immediately on the fundamental level by emitting a photon of the same energy.

This process is very similar to a scattering and the electrons are located most

of the time in the ground state (n = 0). For typical values of neutron star

magnetic field it is necessary to take into account the quantum effect, but the

non-relativistic approximation should be valid for small values of the quantum

number n.



Chapter 2

Evolution of close binary systems

2.1 Introduction

In the Galaxy about two thirds of stars are members of binary or multiple

systems (Garmany, Conti & Massey, 1980 [13]; Abt, 1983 [14]). There are three

possible mechanisms to form a binary system (Tohline, 2002) [15]: by capture,

when stars become grouped together in bound pairs through dynamical encoun-

ters; by fission, when the gas cloud where stars are forming spontaneously break

into pieces that are in orbit about one another and by delayed breakup, when

the process of fission happens, due to an instability, after the cloud has formed a

stable configuration. Binary systems can be classified as (see figure 2.1):

- Detached, when the distance between the two stars is much greater than

their radii;

- Semi-detached, when one star of the system has filled its Roche lobe and

mass transfer takes place (see 1.4.2);

- Contact, when both stars fill their Roche lobes.

2.2 Formation of neutron stars

In a binary system, where the components are well separated, the stars can

be considered to evolve indipendently; therefore, in detached binary systems the

evolution can be studied considering that the stars of the system do not affect

17
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Figure 2.1: Types of close binary systems: a) Detached, b)semi-detached, c)Contact

(Credits: Kopal, Z., 1959 - Close Binary Systems, The International Astrophysics Se-

ries, vol.5 )[16].

each other so much during the main sequence phase (case a-Detached) because

the radius of the stars does not change much and they do not fill their Roche

lobes. However, when hydrogen is exhausted in the most massive of the two stars,

the stellar core rapidly shrinks, external layers expand and mass transfer begins

(case b-Semi-detached) (Postnov & Yungelson, 2014 [17]).

Mass trasfer between the two stars allows to understand some processes at

the base of binary systems evolution. In fact, depending on principles of stars’s

evolution, in close binary systems, the neutron star or black hole can hardly

exist. This because the progenitor of neutron star must have been a massive

star that should evolve first and explode as a supernova, but in this way the

system should be distroyed if more than half of the total mass of the binary is

suddenly ejected (see e.g. Blaauw, 1961 [18] and Batthracharya et al., 1991 [19]).

Furthermore, another problem is about the separation between the two stars; in

fact the progenitor star must have had a radius much larger than the current

separation. So these systems must have lost a large amount of orbital angular
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momentum. (Tauris& van den Heuvel, 2006)[20].

A scenario that may explain the presence of neutron stars in binary systems

is that of the ”spiral-in+kick velocity”. When a massive star evolves off the

main sequence, it expands its radius. However, in close binary systems, the

gravitational field sets a limit (Roche lobe, see 1.4.2) on the radial growth of each

component. After having filled its Roche lobe, matter starts to flow from the

donor star to the compact object, or in some case even lost from the system; this

also results in angular momentum losses, in changes of the orbital parameters and

possibly in merging of the stars. The transfer rate is so high that the companion

star is eventually engulfed by the massive primary and a common envelope is

formed around the low-mass star and the core of the primary. Friction and tidal

torques cause the secondary to spiral-in to the envelope releasing orbital energy.

This energy is deposited in the common envelope that is ejected from the system.

This phase of the evolutionary process of binary systems is called: common

envelope phase. In this way a closer binary, consisting of the low-mass secondary

and the helium core of the primary, is formed, which can survive the supernova

explosion since the most of the mass is lost prior to the explosion with the ejection

of the envelope and if a kick velocity, in the right direction, is imparted to the

newly born compact star (Kalogera & Webbing, 1998 [21]). Another scenario

was suggested in 1973 by Whelan & Iben in 1973 ([22]). They showed that an

accretion-induced collapse of a massive white dwarf may lead to the formation

of a neutron star. In fact, after the core emerges from the spiral-in it evolves into

a massive white dwarf and avoids the supernova explosion. When mass transfer is

initiated, either by loss of angular momentum or by expansion of the secondary,

the white dwarf accretes mass until it overcomes the Chandrasekhar limit, at

which point it implodes with little mass losses. In this way the binary system

may survive and a neutron star is formed. Furthermore, the process just described

may explain also the presence of young neutron stars in old binaries. It is known

that the magnetic field of a neutron star decays on a time scale of a few million

years and this mechanism may explain why radio pulsars in old binary system

own magnetic field > 108 G (Verbunt et al., 1993 [23]).
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2.3 Formation of Low Mass X-Ray Binaries

Before analyzing a possible scenario that leads to the formation of a Low

Mass X-Ray Binary system, it is useful to remeber the time scales in which the

evolutionary processes in stars take place.

First the nuclear time scale, tn, or the time in which a star radiates away all

the energy that can be released by nuclear reactions

tn '
M/M�
L/L�

× 1010yr,

then the thermal time scale, tth, or the time in which a star would radiate away

all its thermal energy if the nuclear production were suddenly turned off

tth '
(M/M�)2

(R/R�)(L/L�)
3.1× 107yr,

and in the end the dynamical time scale, td, or the time in which a star would

collapse if the pressure supporting it against gravity were suddenly removed

td ' 0.04
(M�/M)1/2

(R/R�)3/2
days

In reference to figure 2.2 and following Postnov & Yungelson, 2014 [17], the step

leading to the formation of Low Mass X-Ray binaries are:

1- A pair of high-mass OB main-sequence stars is detached and are inside

their Roche lobes. The more massive star burns out hydrogen in its central

parts and forms a dense central helium core, while the tidal interactions

remove the possible eccentricity of the orbit. The duration of this stage is

determined by the hydrogen burning time of the primary, that is nuclear

time scale.

2- After core hydrogen exhaustion, the primary leaves the main-sequence and

starts to expand rapidly. When its radius approaches the Roche lobe, mass

transfer onto the secondary, less massive star, which still resides on the

main-sequence, begins. This stage proceeds on the thermal time scale of

the donor.
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Figure 2.2: The evolution of a binary system eventually leading to an LMXB and

finally the formation of a binary millisecond pulsar. Parameters governing the specific

orbital angular momentum of ejected matter, the common envelope and spiral-in phase,

the asymmetric supernova explosion and the stellar evolution of the naked helium star

all have a large impact on the exact evolution. Parameters are given for a scenario

leading to the formation of the observed binary millisecond pulsar PSR 1855+09. The

stellar masses given are in solar units.(Credits:Tauris & Van den Heuvel, 2003 [20]).

3- Common envelope phase. In this phase the companion of the mass-losing

star may find itself engulfed by the envelope of the donor. The envelope

removes angular momentum from the orbital motion and releases energy, so

the companion star starts to spiral-in, while the orbit shrinks and envelope

heats. The process continues until the envelope gains enough energy that

is expelled or the companion star merges with the core of the donor star.

Mass transfer ends when most of the primary’s hydrogen envelope is lost,

so a naked helium core is left.
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4- Now there are two possible scenario that lead to the formation of a neutron

star. In the first scenario the helium core that remains after the spiral-in

phase eventually explodes as supernova. This may lead to the destruction

of the system, but a properly oriented kick velocity can keep the system

bound. In the second scenario the helium star evolves into a massive white

dwarf and avoids the supernova explosion. Then a secondary mass transfer

is initiated, either by loss of angular momentum or by expansion of the

secondary, so the white dwarf accretes mass until it overcomes the Chan-

drasekhar limit, at which point it implodes with little mass losses and a

neutron star is formed.

5- Now the companion star evolves and starts to transfer matter onto the

compact object via the inner Lagrangian point. The matter that accretes

onto the neutron star has a specific angular momentum so it does not fall

directly onto the neutron star but forms an accretion disk that reprocess

the radiation originating from the central object and emits X-Ray. The

system has become a Low Mass X-Ray Binary.

It must be noted that the scenario just sketched applies only to close binaries and

that low-mass binaries with neutron stars can be dynamically formed in dense

stellar environments, for example in globular clusters.

2.4 Orbital evolution

Roche lobe overflow, and the consequent orbital evolution of the binary sys-

tem, can happen due to mass exchange or due to orbital shrinkage caused by

angular momentum losses. Mass transfer can happen in conservative way or in

a non conservative way, while angular momentum loss can take place by gravita-

tional radiation or by magnetic braking (Verbut, 1993 [23]).

2.4.1 Conservative and non-conservative mass transfer

The mass transfer is conservative when there are no mass losses from the

binary system. In this case all the mass lost by one star is gained by the other,

so:

Ṁ1 = −Ṁ2 (2.1)
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where the dot indicates a time derivative, consequently the conservation of mass

may be written as:

M1 +M2 = costant (2.2)

When mass is lost from the binary, the mass trasfer is called non-conservative;

the equations become more complicated and the equations 2.1 becomes:

Ṁ1 = −βṀ2 (2.3)

that we can write as:

Ṁ1 + Ṁ2 = (1− β) Ṁ2 (2.4)

i.e. a fraction β of the mass lost by the donor star is accreted onto its companion,

while the rest leaves the system.

2.4.2 Angular momentum loss

In the case of conservative mass transfer the conservation of angular momen-

tum of the binary assuming a circular orbit is:

Jb = M1M2

√
Ga

M1 +M2

= costant (2.5)

where G is the universal gravitational costant and a is the binary separation (see

eq.1.1). Of course we are assuming that both the spin angular momentun of

the single stars and that of the rotation of the accretion disk are negligible with

respect to the angular momentum of the orbital revolution. The time derivative

of the equation 2.5 can be written:

ȧ

a
= 2

J̇b
Jb
− 2

(
1− M2

M1

)
Ṁ2

M2

(2.6)

where the subscript 1 indicates the mass of the compact object and subscript 2

indicates the mass donor star. Consider first a binary system whose angular mo-

mentum is conserved: the donor star loses matter, that is Ṁ2 < 0 and, according

to equation 2.6, we have that if M2 > M1, ȧ < 0, namely the distance between the

star decreases. This is a situation that we can find in HMXBs, where the process

of accretion keeps the system bound. Conversely if M2 < M1, ȧ > 0, the distance

between the star increases and the binary detaches, stopping the mass transfer
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and accretion of matter onto the compact object. This is a typical case of LMXB,

where the companion star has M < 1M�. Thus to prevent the destruction of

the binary system it is required that the system loses angular momentum. In the

case of non-conservative mass transfer, the mass lost from the system will carry

angular momentum. If we write the specific angular momentum of the mass that

is lost as α times the specific angular momentum of the mass-losing star, the

Equation 2.5 becomes:

J̇Ṁ
J

= α(1− β)
M1

M1 +M2

Ṁ2

M2

(2.7)

where with J̇Ṁ we indicate the loss of angular momentum due to loss of matter.

2.4.2.1 Angular momentum loss by gravitational radiation

In compact binaries the orbital periods are short, so the orbital velocities must

be high. For this reason it is possible that these systems lose angular momentum

due to gravitational quadrupole radiation. The loss of angular momentum via

gravitational radiation may be written, using the Kepler’s law, as (see King, 1988

[24]):

−

(
J̇

J

)
GR

=
32G3

5c5

M1M2(M1 +M2)

a4
(2.8)

This formula holds for circular orbit, while for an eccentric orbit, this should be

multiplied by a function of the eccentricity. The strong dependence on the size

of the orbit (a4) means that this process is dominant in very close binaries (for

binary system of orbital period less than 2 hours).

2.4.2.2 Angular momentum loss by magnetic braking

The rotation of single stars is observed to slow down with age. This because

there is a loss of angular momentum via their stellar winds. In fact, although

the amount of mass lost in the wind is very small, due to the presence of the

magnetic field, that forces the wind matter to corotate to a large distance from

the stellar surface, the angular momentum’s losses may be important. The result

in a close binary system is that the losses of angular momentum of the donor star

are transferred to the entire system due to the tidal forces which force the star

to corotate with it. The formula describing the orbital angular momentum loss

due to magnetic braking is (see King, 1988 [24]):
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−

(
J̇

J

)
MB

≈ 4× 10−30scm−2G(M1 +M2)2R4
1

M2a5
(2.9)

This kind of mechanism become dominant for binary systems with orbital periods

greater than 2 hours. This is because, for short orbital periods, the companion

mass should be quite small. In particular for orbital periods less that about 3

hours the main sequence stellar companion should have a mass below 0.3M�. In

this case the companion star becomes fully convective and cannot sustain anymore

a dipole magnetic field (see Verbunt et al.,(1981) [25]).





Chapter 3

Direct measure of the magnetic

field of X1822-371

This chapter is adapted from the paper: A possible cyclotron resonance scat-

tering feature near 0.7 keV in X1822-371, by R.Iaria et al., 2015 ([26]).

3.1 Abstract

The aim of this work is to address the origin of the large residuals below 0.8

keV previously observed in the XMM/EPIC-pn spectrum of the source X1822-

371, a low-mass X-ray binary system (LMXB) viewed at a high inclination an-

gle. We analyse all available X-ray observations of X1822-371 made with XMM-

Newton, Chandra, Suzaku and INTEGRAL satellites. The Suzaku and INTE-

GRAL broad band energy coverage allows us to constrain the spectral shape

of the continuum emission well. We use the model already proposed for this

source, consisting of a Comptonised component absorbed by interstellar matter

and partially absorbed by local neutral matter, and we added a Gaussian feature

in absorption at ∼ 0.7 keV. This addition significantly improves the fit and flat-

tens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in

absorption as a cyclotron resonant scattering feature (CRSF) produced close to

the neutron star surface and derive the magnetic field strength at the surface of

the neutron star, (8.8± 0.3)× 1010G for a radius of 10 km. We derive the pulse

period in the EPIC-pn data to be 0.5928850(6) s and estimate that the spin pe-

riod derivative of X1822-371 is (−2.55±0.03)×10−12s/s using all available pulse

27
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period measurements. Assuming that the intrinsic luminosity of X1822-371 is at

the Eddington limit and using the values of spin period and spin period deriva-

tive of the source, we constrain the neutron star and companion star masses. We

find the neutron star and the companion star masses to be 1.69 ± 0.13M� and

0.46± 0.02M�, respectively, for a neutron star radius of 10 km.

3.2 Introduction

Neutron stars (NS) are thought to be born with magnetic fields (B-fields)

above 1012G. Direct measurements of the strength of these fields come from the

detection of cyclotron resonant scattering features (CRSFs). In accreting NS, X-

ray pulsations and CRSFs are common in systems containing a young high-mass

companion (HMXBs), with typical strengths of the NS B-field between 1012G−
1013G, whereas in binary systems containing a low-mass companion (LMXBs)

pulsations are detected only in a small fraction of systems, and no CRSF has

been detected to date. The most likely explanation is that in such systems, the

NS B-field is sufficiently decayed in the course of its evolution (see chapter 2) to a

value that, at accretion rates corresponding to a luminosity of 1035−1038erg s−1,

the corresponding magnetospheric radius becomes smaller than the NS radius.

In LMXBs when pulsations are detected, the inferred NS B-fields are of the

order of 108G − 109G, which is about three orders of magnitude less than the

typical values for HMXBs. Intermediate values of the NS B-field, between these

two ranges, are uncommonly observed, most probably for evolutionary reasons.

However, some notable exceptions exist, such as (i) the 11 Hz pulsar IGR J17480-

2446 (Papitto et al., 2011) [27], whose NS B-field was estimated in the range

2 × 108 − 2.4 × 1010G; (ii) the 2.1 Hz X-Ray pulsar GRO J1744-28, with an

estimated B-field of ∼ 2.4 × 1011G (Cui, 1997) [28]; and, finally (iii) the 1.7 Hz

X1822-371 (Jonker & Van der Klis, 2001) [29].

Despite the small sample that it belongs to, the peculiarity of X1822-371 still

stands out. Analysing the RXTE data of X1822-371, Jonker & Van der Klis, 2001

[29] detected for the first time a coherent pulsation at 0.593 s associated with the

NS spin period and inferred a spin period derivative of (−2.85±0.04)×10−12s s−1.

Analysing RXTE data from 51976 to 52883 MJD, Jain et al. (2010) [30] con-

strained the spin period derivative better, finding (−2.481± 0.004)× 10−12s s−1.

The ephemerides of X1822-371 has recently been updated by Iaria et al. (2011)
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[31], who estimated an orbital period of 5.5706124(7) h and an orbital period

derivative of (1.51 ± 0.08) × 10−10s s−1 when analysing X-ray data spanning 30

years. A similar sample of data was analysed by Burderi et al. (2010) [32] who

obtained an orbital period derivatice of (1.50 ± 0.07) × 10−10s s−1. In an inde-

pendent paper, Jain et al. (2010) [30], obtained an orbital period derivative of

(1.3± 0.3)× 10−10s s−1, from X-ray data and, studying the optical and UV data

of X1822-371,Bayless et al. (2010) [33] derived the new optical ephemeris for the

source finding an orbital period derivative of (2.1±0.2)×1010s s−1. Burderi et al.

(2010) [32] show that the orbital-period derivative is three orders of magnitude

larger than what is expected from conservative mass transfer driven by magnetic

braking and/or gravitational radiation. They conclude that the mass transfer

rate from the companion star is between 3.5 and 7.5 times the Eddington limit

(∼ 1.1× 1018erg s−1) for a NS mass of 1M� and NS radius of 10 km), suggesting

that the mass transfer has to be highly non-conservative, with the NS accreting

at the Eddington limit and the rest of the transferred mass expelled from the sys-

tem by the radiation pressure. Bayless et al. (2010) [33] show that the accretion

rate onto the NS should be ∼ 6.4× 10−8M�yr
−1 in a conservative mass transfer

scenario, again suggesting a highly non-conservative mass transfer. The large

orbital period derivative is a clear clue that the intrinsic luminosity of X1822-371

is at the Eddington limit, which is almost two orders of magnitude higher than

the observed luminosity (i.e. ∼ 1036erg s−1, see e.g. Hellier& Mason, 1989 [34],

Heinz& Novak, 2001 [35],Parmar et al.,2000 [36], Iaria et al., 2001 [37]).

This is also supported by the ratio Lx/Lopt of X1822-371. Hellier & Mason

(1989)[34] showed that the ratio Lx/Lopt for X1822-371 is ∼ 20, a factor 50

smaller than the typical value of 1000 for the other LMXBs. This suggests that

the intrinsic X-ray luminosity is underestimated by at least a factor of 50. Finally,

Jonker & van der Klis (2001) [29] show that for a luminosity of 1036erg s−1, the

NS B-field strength assumes an unlikely value of 8×1016G, while for a luminosity

of the source of ∼ 1038erg s−1, it assumes a more conceivable value of 8× 1010G.

Recently when analysing an XMM-Newton observation of X1822-371 and using

RGS and EPIC-pn data, Iaria et al. (2013) [38] fitted the X-ray spectrum of this

source to a model consisting of a Comptonised component CompTT1, absorbed by

1The names of the cited spectral models are consistent with those adopted in

the spectral fitting package XSPEC (Arnaud, 1996). The models are described in

http://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XspecModels.html
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interstellar neutral matter and partially absorbed by local neutral matter. The

authors took the Thomson scattering of the local neutral matter into account by

adding the cabs2 component and imposed that the equivalent hydrogen column

density of the cabs component is the same as the local neutral matter. The

adopted model is similar to the one previously used by Iaria et al. (2001) [37]

to fit the averaged BeppoSAX spectrum of X1822-371. Iaria et al. (2013) [38]

suggest that the Comptonised component is produced in the inner regions of

the system, which are not directly observable. The observed flux is only 1% of

the total intrinsic luminosity, the fraction scattered along the line of sight by an

extended optically thin corona with an optical depth τ ' 0.01. This scenario

explains why the observed luminosity of the source is ∼ 1036ergs−1, while the

orbital period derivative suggests an intrinsic luminosity of X1822-371 at the

Eddington limit. Furthermore, Iaria et al. (2013) [38] found that large residuals

are present in the EPIC-pn spectrum below 0.9 keV and fitted those residuals by

adding a black-body component with a temperature of 0.06 keV, although they

suggest that further investigations were needed to understand the physical origin

of this component. Recently, Sasano et al. (2014) [39] have analysed a Suzaku

observation of X1822-371 in the 1÷45 keV energy range. The authors detect the

NS pulsation in the HXD/PIN instrument at 0.5924337(1) s and inferred a spin

period derivative of (−2.43± 0.05)× 10−12s/s; they also suggest the presence of

a CRSF at 33 keV and inferred from this value a NS B-field of ∼ 2.8×1012G and

a luminosity of the source of ∼ 3 × 1037erg s−1. In this work we determine the

NS spin period of X1822-371 during the XMM-Newton observation and derive a

new estimation of the spin period derivative, also taking all the measurements of

the spin period reported in literature into account, including our derived value.

We analyse the combined spectra of X1822-371 obtained with XMM-Newton,

Chandra (the same data sets as analysed by Iaria et al. 2013 [38]), Suzaku (the

same data set as analysed by Sasano et al. 2014 [39]), and INTEGRAL. We show

the presence of large residuals close to 0.7 keV, while we do not find evidence of

a cyclotron feature at 33 keV, unlike what has been suggested by Sasano et al.

(2014) [39]. Moreover, we show that a CRSF at 33 keV would not be consistent

with the evidence that the NS in X1822-371 is spinning up. Fitting the residuals

near 0.7 keV with a CRSF centered at 0.72 keV, we determine a NS B-field

2The models are described in http://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XspecModels.html
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(surface) strength between 7.8× 1010G and 9.3× 1010G for a NS radius ranging

between 9.5 and 11.5 km.

3.3 Observations

3.3.1 The Suzaku observation

The X-ray satellite Suzaku observed X1822-371 on 2006 October 2 with an

elapsed time of 88 ks. Both the X-ray Imaging Spectrometers (0.2?12 keV, XISs;

Koyama et al., 2007 [40]) and the Hard X-ray Detector (10?600 keV, HXD;

Takahashi et al. 2007 [41]) instruments were used during these observations.

There are four XIS detectors, numbered as 0 to 3. XIS0, XIS2, and XIS3 all use

front-illuminated CCDs and have very similar responses, while XIS1 uses a back-

illuminated CCD. The HXD instrument includes both positive intrinsic negative

(PIN) diodes working between 10 and 70 keV and the gadolinium silicate (GSO)

scintillators working between 30?600 keV. Both the PIN and GSO are collimated

(non-imaging) instruments. During the observation, XIS0 and XIS1 worked in

1/4 Window option, while XIS2 and XIS3 worked in full window. The effective

exposure time of each XIS CCD is nearly 38 ks, and the HXD/PIN exposure time

is nearly 31 ks.

We reprocessed the data using the aepipeline tool provided by Suzaku FTOOLS

version 20 3 and applying the latest calibration available as of 2013 November.

We then applied the publicly available tool aeattcor.sl 4 by John E. Davis to

obtain a new attitude file for each observation. This tool corrects the effects of

thermal flexing of the Suzaku spacecraft and obtains a more accurate estimate of

the spacecraft attitude. For our observation, the above attitude correction pro-

duces sharper point-spread-function (PSF) images. With the new attitude file, we

updated the XIS event files using the FTOOLS xiscoord program. We estimated

the pile-up fractions using the publicly available tool pileup estimate.sl 5 by

Michael A. Nowak. The pileup fraction refers to the ratio of events lost via grade

or energy migration to the events expected in the absence of pile-up. The unfil-

tered pile-up fractions integrated over a circular region centred on the brightest

3For more details see: http://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/suzaku ftools.html
4see: http://space.mit.edu/ASC/software/suzaku/aeatt.html
5see: http://space.mit.edu/ASC/software/suzaku/pile estimate.sl
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pixel of the CCD and with a radius of 105” are 4.6%, 3.9%, 10.4%, and 9.9% for

XIS0, XIS1, XIS2, and XIS3, respectively. The large pile-up fraction in XIS2 and

XIS3 is due to the two CCDs working in full window during the observation. To

mitigate the pile-up effects in the spectra extracted from XIS2 and XIS3, we used

annular regions, while we adopted circular regions with a radius of 105” to extract

the spectra from XIS0 and XIS1. Adopting annulus regions with inner and outer

radii of 28 and 105 , respectively, the pile-up fractions are 4.8% for XIS2 and

4.6% for XIS3. The background spectra were extracted using the same regions

as were adopted to extract the source spectra and centred where the influence of

the source photons is weak (or absent) in the CCDs. The response files of the

XIS for each observation were generated using the xisrmfgen Suzaku tool, and

the corresponding ancillary files were extracted using the xisarfgen Suzaku tool,

suitable for a point-like source. Because the responses of XIS0, XIS2, and XIS3

are on the whole very similar, we combined their spectra and responses using the

script addascaspec. The XIS spectra were rebinned to have 1024 energy channels.

We also extracted the PIN spectra using the Suzaku tool hxdpinxbpi. The non

X-ray and cosmic X-ray backgrounds were taken into account. The non X-ray

background (NXB) was calculated from the background event files distributed

by the HXD team. The cosmic X-ray background (CXB) is from the model by

Boldt (1987) [42]. The response files provided by the HXD team were used. The

GSO data were not used, considering the low signal-to-noise ratio above 40 keV.

3.3.2 The XMM-Newton observation

The region of the sky containing X1822-371 was observed by XMM-Newton

between 2001 March 07 13:12:48 UT and March 08 03:32:53 UT (Obs. ID.

0111230101) for a duration of 53.8 ks. The European Photon Imaging Cam-

era (EPIC) on-board XMM-Newton consists of three coaligned high-throughput

X-ray telescopes. Imaging charge-coupled-device (CCD) detectors were placed in

the focus of each telescope. Two of the CCD detectors are Metal Oxide Semi-

conductor (MOS) CCD arrays (see Turner et al. 2001), while the third camera

uses pn CCDs (hereafter EPIC-pn, see Strüder et al. 2001 [43]). Behind the two

telescopes that have the MOS cameras in the focus, about half of the X-ray light

is utilised by the reflection grating spectrometers (RGSs). Each RGS consists of

an array of reflection gratings that diffracts the X-rays to an array of dedicated



33

CCD detectors (see Brinkman et al. 1998 [44]; den Herder et al. 2001 [?]). During

the observation, MOS1 and MOS2 camera were operated in fast uncompressed

mode and small window mode, respectively. The EPIC-pn camera was operated

in timing mode with a medium filter during the observation. The faster CCD

readout results in a much higher count rate capability of 800 cts/s before charge

pile-up become a serious problem for point-like sources. The EPIC-pn count

rate of the source was around 55 cts/s, thereby avoiding telemetry and pile-up

problems. Although the RGS and EPIC-pn data products were extracted and

analysed by Iaria et al. (2013) [38], we extracted the data products of the RGS

and EPIC-pn camera again using the very recent science analysis software (SAS)

version 13.5.0 and the calibration files available on 2013 Dec.17. We used the

SAS tools rgsproc, emproc, and epproc to obtain the RGS, MOS, and EPIC-pn

data products. Since the EPIC-pn was operated in timing mode during the obser-

vation, we extracted the EPIC-pn image of RAWX vs.PI to select appropriately

the source and background region. The source spectrum is selected from a box

region centred on RAWX = 38 with a width of 18 columns. The background

spectrum was selected from a box region centred on RAWX = 5 with a width of

two columns. We extracted only single and double events (patterns 0 to 4) for the

source and background spectra and applied the SAS tool backscale to calculate

the different areas of the source and background regions. We extracted the MOS1

source spectrum, adopting a box region centred on RAWX = 317 having a width

of 50 pixels. The MOS1 background spectrum is extracted from a source-free

region selected in one of the outer CCDs that collect photons in imaging mode

during the observation. We extracted the MOS1 spectrum and the corresponding

redistribution matrix and ancillary files using the standard recipe 6. We also ex-

tracted the source+background light curve, observing that the average count rate

during the observation is 15 c/s. The MOS2 source spectrum was extracted from

a circular region centred on the pixel showing the largest number of photons; the

radius of the region is 640 pixels. A circle with radius of 640 pixels was placed

in a source-free region to extract the background spectrum. We extracted the

MOS2 spectrum and the corresponding redistribution matrix and ancillary files

using the standard recipe 7. We also extracted the background-subtracted light

curve using the SAS tool Epiclccorr, and the average count rate is 15 c/s. Since

6see: http://xmm.esac.esa.int/sas/current/documentation/threads/MOS spectrum timing thread.shtml
7see: http://xmm.esac.esa.int/sas/current/documentation/threads/MOS spectrum thread.shtml
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the count-rate limit for avoiding pile-up for the MOS cameras is 100 c/s and 5

c/s for a point-like source in timing uncompressed and small window modes 8,

respectively, we expect that the pile-up effects are present in the MOS2 spectrum.

The RGS1, RGS2, MOS1, MOS2, and EPIC-pn spectra have an exposure time

of 53, 51, 51, 51, and 51 ks, respectively.

3.3.3 The INTEGRAL observation

The INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL Win-

kler et al., 2003 [45]) has repeatedly observed the X1822-371 region. We searched

the whole IBIS (Ubertini et al., 2003 [46]) and JEM-X (Lund et al., 2003 [47])

public catalogues, selecting only pointings (science windows, SCW) with sources

within six degrees of the centre of the field of view and with exposures longer

than 500 s to reduce the calibration uncertainties of the IBIS/ISGRI (Lebrun et

al., 2003 [48]) spectral response. The available IBIS data set covers the period

starting from 2003 March 21 until 2013 March 21 for a total usable on-source time

of 1271 ks and an effective dead-time corrected exposure of 874 ks. Because of the

smaller field of view, the total exposure of JEM-X1 (camera 1) is 330 ks, while the

dead-time-corrected exposure is 283 ks. The INTEGRAL data analysis uses stan-

dard procedures within the offline science analysis software (OSA10.0) distributed

by the ISDC (Courvoisier et al., 2003 [49]). In the catalogue used for the extrac-

tion of the IBIS spectra, we have included all the sources significantly detected in

the total image obtained by mosaicking the individual pointings. We exploited

a custom spectral binning optimised in the energy range 20?100 keV, and in the

detection of spectral features around 30 keV, weighted the time-evolving response

function according to the available data and excluded the data below 21 keV due

to the evolving detector?s low threshold. For JEM-X, we adopted the standard

16 bins spectrum provided by the analysis software and excluded the data below

5 keV and above 22 keV, which are affected by calibration uncertainties 9.

8see: http://xmm.esac.esa.int/external/xmm user support/documentation/uhb 2.1/node28.html
9The JEM-X2 unit was active only during a limited part of the mission, so the exposure

time is not enough to provide a significant spectral constraint.
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3.4 Search for the spin period in the XMM data

We used the EPIC-pn events to search for the spin period. We applied the

barycentric correction with respect to the source coordinates, given by Iaria et

al. (2011) [31], using the SAS tool barycen; subsequently, we corrected the data

for the orbital motion of the binary system using the recent X-ray ephemeris

of X1822-371 derived by Iaria et al. (2011) [31] (see eq.2 in that work) and the

projected semimajor axis asini of 1.006 lt-s (see Table 1 in Jonker & van der Klis,

2001 [29]). We selected the EPIC-pn events in the 2-5.4 keV energy range and

explored the period window between 0.592384 and 0.593384 s using the FTOOL

efsearch in the XRONOS package 10. We adopted eight phase bins per period

(a bin time close to 0.074 s) for the trial folded light curves and a resolution of

the period search of 1× 10−6s. We observed a χ2 peak of 41.89 at 0.592884 s, as

shown in Fig.3.1 (see appendix B).

We fitted the peak with a Gaussian function, assumed the centroid of the

Gaussian as the best estimation of the spin period, and associated the error de-

rived from the best fit. We find that the spin period during the XMM observation

is 0.5928850(6)s, and the associated error is at the 68% confidence level.

Considering that we have seven degrees of freedom, the probability of obtain-

ing a χ2 value greater than or equal to 41.89 by chance is 5.47 × 10−7. In our

search we adopted 103 trials (we span 10−3 s with a resolution of the period search

of 1 × 10−6s), consequently we expect a number of ' 5.5 × 10−4 periods with a

χ2-value greater than or equal to 41.89. This implies that our detection is signif-

icant at the 99.945% confidence level. Then, we folded the 2÷ 5.4 keV EPIC-pn

light curve using the spin period of 0.5928850(6) s and adopting 16 phase bins

per period. We used the arbitrary value of 51 975.85 MJD as epoch of reference.

The folded light curve is almost sinusoidal (see Fig.3.2).

Fitting the folded light curve with a constant plus a sinusoidal function with

period fixed at one, we obtain a χ2
d.o.f. of 13.9(13). Since the constant is 23.92(2)

c/s, the background count rate is close to 1.3 c/s and the amplitude of the sinu-

soidal function 0.17(3) c/s, we estimate that the pulse fraction is 0.75 ± 0.13 %

compatible within 3σ to the value of 0.25± 0.06% reported by Jonker& van der

Klis (2001) [29] using RXTE/PCA data in the same energy band.

We report in Table 3.1 the 13 values of the spin period of X1822-371 and the

10see: http://heasarc.gsfc.nasa.gov/ftools/xronos.html
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Figure 3.1: Folding search for periodicities in the 2 ÷ 5.4 keV EPIC-pn light curve.

We adopt 8 phase bins per period for the trial-folded light curves and a resolution of

period search of 1 × 10−6s. The peak of χ2 is detected at 0.592884 s. The horizontal

dashed line indicate the χ2 value of 18.47 at which we have the 99% confidence level

for a single trial.

corresponding errors previously estimated, together with the value found in the

present work. The corresponding times are the mean values between the start

and stop time of the observations in which the spin period was detected, the

associated errors are one half of the duration of the corresponding observation.

After deriving the geometric mean of the times in Table 3.1 (Col. 1) obtaining

Tmid = 52, 257.78MJD, we fitted the spin periods with respect to the times with

Tmid subtracted using a linear function to estimate the spin period derivative.

Unlike Jain et al. (2010) [30], we did not obtain a good fit, since the χ2
d.o.f. was

close to 105(12); however, we obtained a very high value of -0.9992 of the Pearson
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Figure 3.2: EPIC-pn folded light curves of X1822-371 using the folding period

0.5928850(6) s. The folded light curve is obtained using 16 phase bins per period.

correlation coefficient. The reason for the high χ2 value is not clear to us, but

it could be due to an underestimation of the errors (e.g. small differences in the

orbital ephemeris used to correct the data) or model complications (e.g. caused by

small fluctuations around an average linear trend), or other issues. The detailed

investigation of this aspect goes beyond the aim of this thesis. Considering the

high value of the χ2 for the linear fit and to estimate the error associated to the

spin period derivative, we fitted the 14 points without the estimated errors and

attributed the post-fit errors to the best-fit parameters under the assumption

that the model is reliable. In this way we at least get an estimation of the

averaged linear trend of the measured spin period with respect to time. Fitting

the data again with a linear function, we obtain a = 0.592826(6)s and b =

−2.20(3) × 10−7s/d, with the errors at 68% confidence level. This implies that
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Times (MJD) Spin period (s) Ref.

50352.9(6) 0.59325(2) 1

50,993.4(6) 0.59308615(5) 1

51975.9(3) 0.5928850(6) 2

51976.04(6) 0.59290132(11) 3

52094.80(6) 0.59286109(8) 3

52095.73(6) 0.59286421(12) 3

52432.62(18) 0.5927922(13) 3

52489.7(9) 0.5927790(6) 3

52491.61(15) 0.5927795(11) 3

52503.45(12) 0.5927737(10) 3

52519.41(18) 0.5927721(8) 3

52882.15(9) 0.5926793(15) 3

52883.15(9) 0.5926852(21) 3

54010.0(6) 0.5924337(10) 4

Table 3.1: Times and corresponding. (References:1 Jonker& van der Klis (2001)[29],

2 this work, 3 Jain et al. (2010) [30] e Sasano et al. (2014) [39]).

the spin period derivative, Ṗs, is −2.55(3) × 10−12s/s; this is compatible within

three sigmas with the previously reported values of −2.481(4) × 10−12s/s and

−2.43(5)× 10−12s/s given by Jain et al.(2010) [30] and Sasano et al. (2014)[39],

respectively. We show in Fig.3.3 (top panel) the 14 points and the corresponding

linear best fit. The corresponding residuals are shown in Fig.3.3 (bottom panel).

Furthermore, we search for the same periodicity in the MOS1 data (taken

in timing mode); unfortunately, the lower statistics with respect to the EPIC-

pn data do not allow us to detect the periodicity in this data set. We note

that the spin period obtained from the EPIC-pn events is inconsistent with the

value reported by Jain et al.(2010)[30] using RXTE/PCA observations simul-

taneous to the XMM observation that we analyse in this work (see Table 3.1

and Fig.3.3). To confirm the robustness of our results, we reanalysed the simul-

taneuous RXTE/PCA observations (P50048-01-01-00, 50048-01-01-01, P50048-

01-01-02, P50048-01-01-03, P50048-01-01-04, P50048-01-01-05, P50048-01-01-06)

spanning 2001 March 7 10:29:26 UT to 2001 March 8 4:47:44 UT. We applied the
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Figure 3.3: Top panel : spin period values shown in Table 3.1 vs. time in units of

days (see the text). The linear best fit is also plotted. The black squares, open green

squares, blue diamond, and red triangle indicate the spin period values reported by

Jonker & van der Klis (2001)[29], Jain et al. (2010)[30], Sasano et al.(2014)[39], and

this work, respectively. Bottom panel : the corresponding residuals in units of 10−6s.

barycentric correction with respect to the source coordinates and corrected the

data for the orbital motion of the binary system as done for the EPIC-pn data.

No energy selection was applied to the RXTE/PCA events file. We explored the

period window between 0.592384 and 0.593384 s using the FTOOL efsearch in

the XRONOS package. We adopted eight phase bins per period for the trial-

folded light curves and a resolution of the period search of 1×10−6s. We observe

a χ2 peak of 150 at 0.592884 s, as shown in Fig.3.4.

We fitted the peak with a Gaussian function, assumed the centroid of the
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Figure 3.4: Folding search for periodicities in the RXTE/PCA observations. The

peak of χ2 is detected at 0.592884 s.

Gaussian as the best estimation of the spin period, and associated the error de-

rived from the best fit. We find that the spin period during the RXTE/PCA

observations is 0.5928846(3) s and that the associated error is at the 68% con-

fidence level. This result confirms our detection in the XMM/Epic-pn data.

Finally, we note that the value of the spin period derivative obtained above does

not significantly change when using our value instead of the one reported in Table

3.1.

3.5 Energy range selection for the XMM-Newton,

Suzaku, Chandra, and INTEGRAL spectra

We rebinned the MOS1 and MOS2 spectra using the SAS tool specgroup to

have at least 25 counts per energy channel and with an over-sample factor of 5.
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To verify that the spectra are similar and see how the pile-up effects influence

the MOS2 spectrum, we fitted the two MOS spectra in the 0.6-10 keV energy

range using XSPEC (version 12.8.1). We adopted a very simple model consisting

of phabs*pcfabs*CompTT, similar to the model used by Iaria et al. (2001)[37]

to fit the BeppoSAX broad-band spectrum of X1822-371. The phabs compo-

nent takes the photoelectric absorption by the interstellar neutral mat- ter into

account, it is a multiplicative component defined as M(E) = exp[−NH ∗ σ(E)],

where σ(E) is the photo-electric cross-section (not including Thomson scatter-

ing). The free parameter, NH , is the equivalent hydrogen column density in units

of 1022atoms cm−2. The pcfabs component takes the photoelectric absorption

into account owing to the neutral matter near the source, and it is a multiplica-

tive component defined as M(E) = f ∗ exp[−NH ∗ σ(E)] + (1 − f), where NH

and f is a dimensionless free parameter ranging between 0 and 1 that takes the

fraction of emitting region occulted by the local neutral matter into account.

The CompTT component (Titarchuk, 1994 [50]) is a Comptonisation model of

soft photons in a hot plasma. For this component, the soft photon input spectrum

is a Wien law with a seed-photon temperature, KT0 that is a free parameter.

The other free parameters of the component are the plasma temperature, KTe,

the plasma optical depth τ , and the normalisation NCompTT . We used a slab

geometry for the Comptonising cloud. We fitted the 0.6-10 keV MOS1 and MOS2

spectra simultaneously with the aim of estimating the pile-up effects in the MOS2

spectrum. We obtained a large χ2
d.o.f. of 1716(540). The two spectra are consistent

with each other between 0.6 and 7 keV. Above 7 keV the pile-up distortion is

evident in the MOS2 spectrum. Furthermore, the presence of two emission lines

in the residuals at 6.4 and 6.97 keV is evident; finally, both the spectra are not

well fitted between 0.6 and 1 keV and show large residuals. We show the MOS1

and MOS2 residuals in Fig.3.5.

We sum the MOS1 and MOS2 spectra using a new recipe 11. In the follow-

ing the summed spectrum is called MOS12 spectrum. The MOS12 spectrum is

rebinned with an over-sample factor of 5. We added the first-order spectrum of

RGS1 and RGS2 together using the SAS tool rgscombine; hereafter, the summed

spectrum is called RGS12. We rebinned the RGS12 to have at least 200 counts

per energy channel. In the following, we analyse the RGS12 spectrum in the

11see: http://xmm.esac.esa.int/sas/current/documentation/threads/Epic merging.shtml



42

1 2 5

−
5

0
5

χ

Energy (keV)

Figure 3.5: MOS1 (black) and MOS2 (red) residuals with respect to the model de-

scribed in the text.

0.35-2 keV energy range. The EPIC-pn spectrum is rebinned using the SAS tool

specgroup imposing at least 25 counts per energy channel and an over-sample

factor of 5. To check the consistency of the EPIC-pn and MOS12 spectra, we

fit them simultaneously adopting the same model described above. We obtain a

large χ2
d.o.f. value of 3228(466). We show the two spectra (MOS12 and EPIC-pn

spectra) and the corresponding ratio (data/model) in Fig.3.6.

We observe a large absorption feature in both spectra at 0.7 keV. A mismatch

between the two spectra is evident below 1.5 keV; the EPIC-pn residuals show

an instrumental feature at 2.2 keV owing to the neutral gold M-edge. Finally,

we detect the presence of strong emission lines in the Fe-K region. The causes of

the mismatch between the EPIC-pn and MOS12 are not clear. However, we note



43

0.01

5×10−3

0.02

P
ho

to
ns

 c
m−

2  
s−

1  
ke

V
−

1

1 2 5

0.9

1

1.1

1.2

ra
tio

Energy (keV)

Figure 3.6: MOS12 (0.6?7 keV; black) and EPIC-pn (0.6?10 keV; red) spectra (top

panel) and ratio (data/model; bottom panel) with respect to the model described in

the text.

that the residuals close to 0.7 keV are present in both the EPIC-pn and MOS12

spectra (see Fig.3.6, lower panel). We adopt the 0.6-10 keV energy range for the

EPIC-pn spectrum. To fit the instrumental feature at 2.2 keV in the EPIC-pn

spectrum, we use an absorption Gaussian line with the centroid and the width

fixed at 2.3 and 0 keV, respectively. We fit MOS12 spectrum using the 0.6-7

keV or the 1.5-7 keV energy band. For the Suzaku/XIS data, we adopt a 0.5-10

keV energy range for the XIS0+XIS2+XIS3 (hereafter XIS023) and XIS1 spec-

tra. We exclude the energy interval between 1.7 and 2.4 keV in the XIS023 and

XIS1, because of systematic features associated with neutral silicon and neutral

gold edges. We group the HXD/PIN spectrum to have 25 photons per chan-
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nel and use the energy range between 15 and 36 keV. We show in Fig.3.7 the

HXD/PIN source spectrum and the summed HXD/PIN NXB and CXB spec-

tra (hereafter NXB+CXB spectrum). The NXB+CXB spectrum dominates the

source spectrum at energies higher than 36 keV. We analyse the Chandra/MEG

in the 0.5-7 keV energy range. Finally, we analyse the JEM-X and IBIS spec-

trum in the 5-22 and 21-60 keV energy band, respectively. The IBIS spectrum is

background-dominated above 60 keV.
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Figure 3.7: HXD/PIN source spectrum (black) and NXB+CXB spectrum (red) are

shown. The NXB+CXB spectrum overwhelms the source spectrum at energies larger

than 36 keV, the energy threshold is indicated with a dashed vertical line.
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3.6 Spectral analysis

We simultaneously fitted the XMM-Newton, Suzaku, Chandra and INTE-

GRAL spectra. We added a systematic error of 1% to take into account that

the observations are not simultaneous. Initially, we fitted spectra using 0.6-7 keV

energy range for the MOS12. We fitted the spectra using XSPEC version 12.8.1

(see Arnaud, 1996 [51]). Initially, to fit the continuum emission, we adopted the

model used by da Iaria et al. (2013) [38].

It is Ed*phabs*(f*cabs*phabs*(LN+CompTT)+(1-f)*(LN+CompTT)), which is a

Comptonised component (CompTT in XSPEC) absorbed by neutral interstellar

matter (the first phabs component) and partially absorbed by local neutral mat-

ter (the second phabs component). We used the abundances provided by As-

plund et al. (2009) [52] and the photoelectic cross section given by Verner et

al. (1996)[53]. We took the Thomson scattering of the local neutral matter into

account by adding the cabs component and imposed that the equivalent hydrogen

column density of the cabs component is the same as the local neutral matter.

The constant f gives the percentage of emitting region occulted by the local neu-

tral matter. Finally, LN and Ed in the model indicate all the Gaussian components

added to the model to fit the several emission lines observed in the spectrum and

the added absorption edges, respectively.

Since the XMM-Newton, Suzaku, Chandra, and INTEGRAL observations are

not simultaneous we left the values of the electron temperature and of the op-

tical depth of the CompTT component free to vary independently. The depths

of the absorption edges added above 7 keV were free to vary independently for

the XMM-Newton, Suzaku, and INTEGRAL spectra, whilst they were tied in

the Chandra spectrum to the values of the XMM-Newton spectrum because the

Chandra spectrum extends up to 7 keV. Several emission lines are detected and

identified with NV II , OV II intercombination line, OV III , NeIX intercombination

line, NeX ,MgXI intercombination line MgXII , SiXIV , FeIeFeXXV I . The emis-

sion lines are fitted with Gaussian components. We fixed the energies and widths

of the emission lines below 6 keV at their best-fit values because their analysis

is not the aim of this work; a detailed analysis of these lines is reported by Iaria

et al. (2013)[38]. Finally, we added two absorption edges at 7.2 and 8.4 keV.

Fitting the spectra we obtain a χ2
d.o.f. of 3024(2496) and large residuals between

0.35 and 1 keV are visible. We show the residuals in Fig.3.8 (top panel), the
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best-fit values of the continuum emission and absorption edges in Table 3.2, and

the best-fit parameters associated with the emission lines in Table 3.3.
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Figure 3.8: Residuals with respect to the best-fit models shown in Tables 3.2 and

3.3. The RGS12, EPIC-pn, XIS023, XIS1, MOS12, HXD/PIN, MEG, JEM-X, and

IBIS spectra are shown in black, red, green, blue, magenta, light-blue, yellow, grey,

and orange, respectively. The data are graphically rebinned. From top to bottom,

the residuals with respect to the continuum consist of: 1) a Comptt partially absorbed

by local neutral matter (large residuals are evident at 0.7 keV); 2) gabs*Comptt with

the energy of the gabs component close to 0.73 keV; 3) cyclabs*Comptt.The MOS12

spectrum covers the 0.6÷ 7 keV energy band.

To fit the large residuals between 0.4 and 1 keV, we added a Gaussian absorp-

tion line (gabs in XSPEC) that is a multiplicative component. The component

gabs is defined by three parameters, and its functional form is
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M(E) = exp[−(τ/
√

2πσ)exp(−((E − E0)/4σ)2)]

where τ , σ e E0 are the line depth, the line width in keV, and the line energy

in keV, respectively. We interpret this component as a CRSF in the spectrum.

The model becomes : Ed*phabs*(f*cabs*phabs*(LN+gC)+(1-f)*(LN+gC)), where

gC is gabs*CompTT and Ed takes the absorption edges into account. The addition

of the gabs component improves the fit. We obtain a χ2
(d.o.f.) of 2798(2493) with

a δχ2 of 226 and a F-statistics of 67.1. The residuals are shown in Fig.3.8 (the

second panel from the top). The best-fit parametes are shown in Tables 3.2 and

3.3.

We also fitted the residuals between 0.4 and 1 keV using, instead of a Gaussian

absorption line, an absorption line with a Lorentzian shape (Mihara et al., 1990

[54]). This multiplicative component (cyclabs in XSPEC) is defined by three

parameters, and its functional form is:

M(E) = exp[−τ(σE/E0)2/[(E − E0)2 + σ2]]

where τ , σ and E0 are the line depth, the line width in keV, and the line peak

energy in keV, respectively. We fixed the second harmonic depth to zero in the

model. In this case the adopted model is:

Ed*phabs*(f*cabs*phabs*(LN+cC)+(1-f)*(LN+cC)), where cC is the compo-

nent cyclabs*CompTT. The addition of the cyclabs component instead of the

gabs component gives an equivalent fit with a χ2
(d.o.f.) of 2795(2493). The best-fit

values are shown in Tables 3.2 and 3.3. The residuals are shown in Fig.3.8 (bot-

tom panel).

The residuals in Fig.3.8 show that the RGS12, XIS1, XIS023, MEG, and

EPIC-pn spectra are in good agreement below 1.5 keV, unlike in the MOS12

spectrum. For this reason we repeated the analysis described above excluding

the 0.6÷1.5 keV energy range in the MOS12 spectrum. Fitting the spectra using

the initial model, we find a χ2
(d.o.f.) of 2713(2466) and large residuals between 0.35

and 1 keV are visible (see Fig.3.9, top panel).

Using the model that includes the gabs component, we obtain a χ2
(d.o.f.) of

2565(2463) with a δχ2 of 148 and a F-statistics value of 47.4. The residuals

are shown in Fig.3.9 (middle panel). Using the model including the cyclabs

component, we obtain a χ2
(d.o.f.) of 2565(2463). The residuals are shown in Fig.3.9
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Figure 3.9: Residuals with respect to the best-fit models shown in Tables 3.2 and

3.3. The colours are defined as in other figures. The data are graphically rebinned.

From top to bottom, the residuals with respect to the continuum consist of: 1) a

Comptt partially absorbed by local neutral matter (large residuals are evident at 0.7

keV); 2) gabs*Comptt with the energy of the gabs component close to 0.72 keV; 3)

cyclabs*Comptt. The MOS12 spectrum covers the 1.5÷ 7 keV energy band.

(bottom panel). The unfolded spectra relative to the model including the gabs

component is shown in Fig.3.10. We show the data/model ratio with respect to

the best-fit model, but excluding the gabs component in Fig.4.1.

Furthermore, using the initial model with the MOS12 spectrum between 1.5÷7

keV, we look for the presence of CRSF at high energies, as suggested by Sasano et

al. (2014)[39], exploiting the availability of the JEM-X and IBIS spectra. Adding

to the model a cyclabs component with width and centroid fixed to 5 keV and
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Figure 3.10: Unfolded spectra relative to the model including the gabs component.

The MOS12 spectrum ranges between 1.5 and 7 keV. Colours as above.

33 keV (see Sasano et al., 2014 [39]), respectively, we find an upper limit on the

depth of 0.10 at 99.7% confidence level (3σ). This value is not consistent with

the 0.4+0.2
−0.1 obtained by Sasano et al. (2014 [39]).

We find that the energy and width of the CRSF at 0.7 keV are consistent

for the Lorentzian and the Gaussian shapes. The depth values of the absorption

edges at 7.2 keV are compatible for the XMM-Newton and INTEGRAL spectra,

while they are higher in the Suzaku spectrum. Finally, the optical depth of the

0.1 Comptonised component assumes similar values close to nine in the XMM-

Newton, Chandra, and Suzaku spectra, while it is 6.0 ± 0.2 in the INTEGRAL

spectrum. Finally, we note that including MOS12 spectrum between 0.6 and 1.5
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Figure 3.11: Data/model ratio with respect to the best-fit model shown in Tables

3.2 and 3.3, but excluding the gabs component. The data are graphically rebinned.

Colours as above. The MOS12 spectrum ranges between 1.5 and 7 keV.

keV only marginally affects the fit results. In the following we use the best-fit

values obtained when excluding the 0.6-1.5 keV energy range of MOS12.

3.7 Discussion

We used three non-simultaneous pointed X-ray observations of X1822-371: a

XMM-Newton observation (using RGS, MOS, and EPIC-pn spectra), a Suzaku

observation (using XIS and HXD/PIN spectra), and finally, a Chandra observa-

tion (using the first-order MEG spectrum). Moreover, we used all the available

INTEGRAL/JEM-X and INTEGRAL/ISGRI observations of X1822-371 and ex-

tracted the corresponding spectra to confirm or disprove a claimed CRSF at 33
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keV in the Suzaku/PIN spectrum (see Sasano et al. 2014)[39] 12. We adopted

the same model as proposed by those authors to fit the continuum emission (see

chapter 3.6). Iaria et al. (2013) found residuals in the EPIC-pn data between 0.6

and 0.8 keV and added a black-body component with temperature fixed to 0.06

keV, thereby improving the fit significantly. In this work we give a different inter-

pretation of the residuals in the EPIC-pn data between 0.4 and 1 keV, modelling

them with the addition of a CRSF close to 0.7 keV. The interpretation of residu-

als as a CRSF in the spectrum allows us to refine the scenario proposed by Iaria

et al. (2013) [38] for X1822-371. The authors suggested that the Comptonised

component originates in the inner region of the system, it is not directly observ-

able because of the large inclination angle of the system, and only 1% of its flux

arrives to the observer because of scattering by an extended optically thin corona

with optical depth ∼ 0.01. We now suggest that the Comptonised component

could be produced in the accretion column onto the NS magnetic caps.

Our results show that a CRSF at 0.7 keV agrees with the non-conservative

mass transfer scenario proposed for X1822-371 in the past three years by several

authors (see, for example, Iaria et al.(2013 e 2011) [38] e [31]; Burderi et al.(2010)

[32]; Bayless et al.(2010) [33]) and allows the NS mass of the binary system to

be between 1.61 M� and 2.32 M� (Muñoz-Darias et al.(2005)[55]). Burderi et

al.(2010) [32], Bayless et al.(2010) [33] e Iaria et al.(2011) [31] found a large or-

bital period derivative of X1822-371, and Burderi et al. (2010) [32] showed that

this indicates that X1822-371 accretes at the Eddington limit and that the rest

of the mass transferred by the companion star is expelled from the system.

Adopting the values for Ps e Ṗs derived in Sect.3.4 and assuming that X1822-

371 accretes at its Eddington limit, we show that the CRSF energy obtained by

our fits is consistent with a scenario in which the NS in X1822-371 is spinning up.

Since Ṗs is negative, the corotation radius rc, the radius at which the accretion disc

has the same angular velocity as the NS, has to be larger than the magnetospheric

radius rm , the radius at which the magnetic pressure of the NS B-field equals the

ram pressure of the accreting matter (see chapter 1.4.3). The corotation radius

can be expressed as:

rc = (GMNS/4π
2)1/3P

2/3
s

12See the paper for details 3
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where MNS is the NS mass and Ps is the NS spin period. Assuming a NS mass

of 1.44M�, we obtain rc ' 1180km; for a NS mass of 2M�, the corotation radius

is rc ' 1300km. The magnetospheric radius is given by the relation rm = φrA,

where rA is Alfvén radius and φ a constant close to 0.5 (see Ghosh & Lamb, 1991

[56]). We estimate rA using the Eq. (2) in Burderi et al.,(1998) [57]:

rA = 4.3× 103µ
4/7
30 R

−2/7
6 L

−2/7
37 ε2/7m1/7km (3.1)

where µ30 is the magnetic moment in units of 1030G cm3, R6 the NS radius in

units of 106cm, L37 the luminosity of the system in units of 1037erg s−1, m the

NS mass in units of solar masses, and finally, ε is the ratio between the luminosity

and the total gravitational potential energy released per second by the accreting

matter. Adopting the best-fit value of the CRSF energy, EkeV , obtained from the

gabs component, and assuming that this is produced at (or very close to) the NS

surface, we estimate the NS B-field using the relation EkeV = (1 + z)−111.6B12,

where:

(1 + z)−1 =
(

1− 2GMNS

RNSc2

)1/2

and B12 is the NS B-field in units of 1012G. We arrange the term (1 + z)−1 in

terms of m and R6 and obtain:

B12 =
EkeV
11.6

(
1− 0.295

MNS

R6

)−1/2

G (3.2)

We assume that the intrinsic luminosity of X1822-371 is the Eddington lumi-

nosity, L = 1.26 × 1038(MNS/M�)erg s−1, which we rewrite as L37 = 12.6MNS,

which is the Eddington luminosity in units of 1037erg s−1. Substituting this

expression of luminosity and the expression of B12 of Eq.3.2 into Eq.3.1 and

assuming a NS radius of 10 km, we obtain:

rA = 4.3× 102(1− 0.295MNS)−2/7M
−1/7
NS km

For NS masses of MNS = 1.4M� and MNS = 2M�, we obtain rA ' 490km

and rA ' 510km respectively. Since rm = φrA, with φ ' 0.5 then for a NS mass

of MNS = 1.4M� and MNS = 2M�, we obtain rm ' 245km and rm ' 255km,

respectively. This means that, for a NS mass between 1.4-2 M�, rm is always

smaller than rc by a factor five. This implies that the accreting matter gives

specific angular momentum to the NS, which increases its angular velocity and
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spins it up.

Next we adopt the set of relations shown by Ghosh & Lamb, (1979) [58] (Eqs.

from (15) to (18)) to establish a relation for the derivative of the spin period, the

spin period, the luminosity, and the NS mass. This set of equations is valid for the

fastness parameter ωs = Ωs/ΩK(r0) < ωmax ' 0.95, where Ωs is the NS angular

velocity, ΩK(r0) is the Keplerian angular velocity at r0, and r0 is the radius that

separates the boundary layer from the outer transition zone (see discussion in

Ghosh & Lamb, 1979 [58]). Using Eq.3.2 and assuming that the NS accretes at

the Eddington limit (L37 = 12.6MNS), the parameter Ωs of the Eq.(16) in Ghosh

& Lamb, (1979)[58] becomes:

ωs ' 0.456
(EkeV

11.6

)6/7(
1− 0.295

MNS

R6

)−3/7

R
15/7
6 M

−5/7
NS P−1

s (3.3)

Using the value of EkeV shown in Table 3.2, the spin period value shown in

chapther 3.4, and finally, imposing that R6 = 1, we find that ωs is between 0.063

and 0.083 for MNS between 1 and 3 M�. This implies that the values of NS

B-field and luminosity satisfy the spin-up condition.

Using Eq. (15) of Ghosh & Lamb (1979)[58], we constrained the NS mass.

We adopted the expression of the NS moment of inertia given by Lattimer &

Schutz (2005)[59] in Eq. (16) of their work. The expression is valid for many NS

equation of states and for a NS mass higher than 1M�. Rewriting the expression

in terms of MNS and R6 we obtain:

I45 ' (0.471± 0.016)MNSR
2
6

(
1 + 0.42

MNS

R6

+ 0.009
M4

NS

R4
6

)
(3.4)

where I45 is the NS moment of inertia in units of 1045g cm2. The Eq.(15) of

Ghosh & Lamb (1979)[58] can be rewritten as:

−Ṗ−12 ' 29.51R
−2/7
6 M

−4/7
NS B

2/7
12 δ

−1P 2
s n(ωs) (3.5)

where −Ṗ−12 is the spin period derivative in units of 10−12s/s, δ is the term

in parenthesis in Eq.3.4, B12 is given by Eq.3.2 and, finally, the function n(ωs) in

its useful approximate expression is (see Eq.10 in Ghosh & Lamb (1979)[58]):

n(ωs) ∼ 1.391− ωs[4.03(1− ωs)0.173 − 0.878](1− ωs)−1
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Initially, we impose that R6 = 1 and find how Ṗ−12 changes in function of

MNS. The error associated with Ṗ−12 is mainly due to the term n(ωs), that

has an accuracy of 5% (see Ghosh & Lamb (1979)[58]); we also take the errors

associated with I e EkeV into account. We adopt the 1σ error for EkeV . We show

the values of Ṗ−12 vs. MNS in Fig.3.12.
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Figure 3.12: Spin period derivative, Ṗ−12 vs. MNS for a NS radius of 10 km (red

curve); the black curves represent the upper and lower limit values of the spin derivative.

The grey box indicates the mass range allowed for X1822-371 according to Muñoz-

Darias et al.(2005)[55]. The horizontal blue strip indicates the value of Ṗ−12 as derived

in Sect.3.4

For a range of MNS between 1.3 and 2.5 M�, the Ṗ−12 changes from -3.4 up to

-1.6. The grey box in Fig.3.12 limits the allowed NS mass between 1.61÷2.32M�

according to ñoz-Darias et al.(2005)[55].

Furthermore, the value of the spin period derivative Ṗ−12 = −2.55± 0.03s/s

that we obtained in chapter 3.4, is shown, as are the uncertainties associated with

Ṗ−12. We find a NS mass of 1.69 ± 0.13M�, assuming R6 = 1, which is inside

the range suggested by Muñoz-Darias et al.(2005)[55]. Consequently, using the
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Eq.3.2, we find that the NS B-field is (8.8 ± 0.3) × 1010G, a value that is very

similar to the one suggested by Jonker & van der Klis (2001) [29] assuming a

luminosity of∼ 1038 for X1822-371. Using the mass function (2.03± 0.03)× 10−2
�

and an inclination angle of X1822-371 of 82.5
◦

(see Jonker et al., 2003 [60]),

we infer the companion star mass, Mc = 0.46 ± 0.02M�, which is close to the

value of 0.5M� suggested by Muñoz-Darias et al.(2005)[55]. Using only optical

observations, Somero et al. (2012) [61] estimate that the mass ratio of X1822-371

is q = Mc/MNS = 0.28. Using this relation, we find that the companion star

mass is Mc = 0.47 ± 0.04M� for a NS mass of 1.69 ± 0.13M�, and that value is

compatible with the one inferred by us using the mass function.

Assuming different NS radii for Eq.3.5, we obtain different values of the NS

mass. We show the NS masses for several values of the NS radius ranging from

8 to 11.5 km in Table 3.4. The NS radius in X1822-371 cannot be larger than

11.5 km because the NS mass would be lower than 1.61M� which is the lower

limit given by Muñoz-Darias et al.(2005)[55]. This result further constrains the

NS mass range between 1.46M� and 1.81M�.

The NS B-field ranges between 7.8× 1010G and 10.5× 1010G and, finally, the

companion star mass ranges between 0.41M� and 0.48M�.

We compared the results in Table 3.4 with those obtained by Steiner et

al.(2010)[62], which determined an empirical dense matter equation of state from

a heterogeneous data set of six neutron stars: three Type-I X-ray busters with

photospheric radius expansion and three transient low-mass X-ray binaries. Our

comparison was done with the results reported in Table 7 by Steiner et al.(2010)[62].

They are valid for a NS radius equal to the photospheric radius of the NS. The

authors find that for a NS mass 1.6M�, 1.7M� and 1.8M� the corresponding

radius is 10.8+0.6
−0.9km, 10.7+0.8

−1.2km and 10.7+0.7
−1.1km, respectively, with the errors

at 95%. If the NS in X1822-371 is similar to those of the sample studied by

Steiner et al.(2010)[62], we can exclude from Table 3.4 the solutions for NS

radii smaller than 9.5 km. This implies that the NS mass range is between

1.61 ± 0.15M� and 1.70 ± 0.13M�, that the NS B-field in units of 1010G is be-

tween 8.1±0.3×1010G and 9.0±0.3×1010G and finally that the companion star

mass is between 0.44± 0.03M� and 0.46± 0.02M�.

We note that the estimation of the CRSF energy is model dependent. The

CRSF energy is 0.72 and 0.68 keV, adopting the gabs and cyclabs components,
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respectively, to fit the averaged spectrum. However, the values of the NS mass,

NS magnetic-field strength, and companion star mass at different NS radii are

the same as shown in Table 3.4 even using the CRSF energy obtained from the

cyclabs component, since this energy and the NS magnetic-field strength, B12,

are linearly dependent (see Eq.3.2) and because the spin period derivative weakly

depends on B12 (see Eq.3.5). The gabs component allows us to estimate the

temperature of the plasma where the CRSF originates, assuming that the broad-

ening of the line has a thermal origin. At the cyclotron resonance frequency ωc,

electrons at rest absorb photons of energy ~ωc. For thermal Doppler broadening,

∆ωD is predicted to be (see Mészáros (1992)[63]):

∆ωD
ωc

=
(2kTe
mec2

)1/2

|cosθ|

where ~∆ωD = σgabs, ~ωc = Egabs, KTe is the electron temperature and mec
2

is the rest electron energy.

The angle θ measures the direction of the magnetic field with respect to the

line of sight. Outside the range ωc ±∆ωD , the cyclotron absorption coefficient

decays exponentially, and other radiative processes become important. Substi-

tuting the values of σgabs and Egabs shown in Table 3.2 (for MOS12 spectrum

ranging between 1.5 and 10 keV), we obtain a lower limit on the plasma temper-

ature of kT = 8± 2keV with the error at 68% confidence level, which is a factor

of two or three larger than the electron temperature of the Comptt component,

but the values are consistent at the 2σ level. This suggests that the Comptonised

component is probably produced in the accretion column onto the NS magnetic

caps-

We do not observe cyclotron harmonics in the spectrum. To date, the low-

est energy measured for a CRSF produced by electron motion around the NS

magnetic-field lines is 9 keV in the source XMMU J054134.7-682550 (Manousakis

et al.(2009)[64]); also in that case, harmonics are not visible in the spectrum. The

cyclotron line observed in the spectrum of the Be/X-Ray Binary Swift J1626.6-

5156 has an energy of 10 keV and only a weak indication of a harmonic at 19

keV (see DeCesar et al.(2013)[65]). The source KS 1947+300 has been recently

observed with Nuclear Spectroscopy Telescope Array (NuSTAR) and Swift/XRT

in the 0.8-79 keV energy range (Fürst et al.(2014)[66]); a CRSF at 12.5 keV has

been observed but no harmonics have been detected. Finally, the anomalous

X-ray pulsar SGR 0418+5729 shows a CRSF produced by proton motion, with
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centroid at 1 keV, and no harmonics are observed (see Tiengo et al.(2013)[67]).

To now, only the isolated NS CCO 1E1207.4-5209 shows a CRSF also and its first

harmonic at 0.7 and 1.4 keV, respectively (Sanwal et al.(2002)[68]; Mereghetti et

al.(2002)[69]). These results show that, although peculiar, it is possible to ob-

serve only the fundamental harmonic of the CRSF.

Finally, we note that the presence of a CRSF at 0.7 keV shown in this work

contrasts with the recent result suggested by Sasano et al. (2014)[39], who find a

CRSF at 33 keV when analysing the same Suzaku data as presented in this work.

First of all, we note that a CRSF at 33 keV is detectable including the HXD/PIN

data up to 40 keV. However, we have shown that the HXD/PIN source spectrum

is overwhelmed by the NXB+CXB spectrum at energies higher than 36 keV (see

Fig.3.7). Furthermore, we note that, at 33 keV, the HXD/PIN effective area is

nearly 50cm2, while the HPGSPC and PDS instruments on-board BeppoSAX had

an effective area of ∼ 200cm2 and ∼ 500cm2, respectively. Iaria et al. (2001)[37]

analysed a broad band spectrum of X1822-371 using the narrow-field instruments

on-board BeppoSAX and did not find any evidence of a CRSF at 30 keV with a

PDS exposure time of 18.7 ks. The HXD/PIN spectrum has an exposure time of

37.7 ks, which is a factor of two longer than the PDS exposure times, but it has

an effective area a factor of 10 smaller at 33 keV. The presence of a CRSF at 33

keV in the Suzaku data is therefore unrealistic when assuming that it does not

change in time.

To verify the presence of a CRSF at 33 keV, we have also analysed the IBIS

and JEM-X spectra for an effective dead-time-corrected exposure of 874 ks and

283 ks, respectively. We fitted both the spectra, adopting the same model as

used to fit the XMM-Newton/Suzaku data and found no evidence of CRSF at 33

keV. We also note that a CRSF at 33 keV is not consistent with the observed

spin-up of the NS. Assuming that the NS is spinning-up and using the NS B-field

value inferred by a CRSF at 33 keV, Sasano et al. (2014)[39] obtain an intrinsic

luminosity of the system of∼ 3×1037erg s−1 needed to have the measured spin-up

rate.

In case of spin-up, we expect that the corotation radius rc has to be larger

than the magnetospheric radius rm. The values of rc is 1180 km and 1300 km for a

NS mass of 1.4M� and 2M�, respectively, assuming the value reported by Sasano

et al. (2014) [39] as spin period. To estimate the magnetospheric radius, we used
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the Eq.3.1 assuming a NS radius of 10 km and a NS B-field of 2.8× 1012G (vedi

Sasano et al.(2014)[39]). we find that rA ' 5940km and rm = φrA ' 3000km,

with φ = 0.5. We infer that rm ' 3rc, and this implies that matter cannot

accrete onto the NS; this scenario corresponds to that discussed by Ghosh &

Lamb (1979)[58] for ωs � ωmax, with ωmax ' 0.95. Infact:

ωs ' 1.35B
6/7
12 M

−2/7
NS P−1

s L
−3/7
37

for a NS radius of 10 km (see Eqs. (16) and (18) in Ghosh & Lamb (1979)[58]).

Using the values of luminosity, spin period, and NS B-field reported by Sasano

et al.(2014)[39], we find that ωs ' 3.2, for a NS mass of 1.3M�, and ωs ' 2.5 for

3M�.

This result suggests that the scenario is not self-consistent because the values

of luminosity and NS B-field would contradict the observed spin-up of the NS.

3.8 Conclusion

We analysed the broadband X-ray spectrum of X1822-371 to understand

the nature of the residuals between 0.6 and 0.8 keV previously observed in the

XMM/EPIC-pn data by Iaria et al. (2013)[38]. To fit the residuals between

0.6 and 0.8 keV, we added an absorption feature with Gaussian profile (gabs in

XSPEC). Alternatively, we adopted an absorbing feature with Lorentzian profile

(cyclabs in XSPEC). In both cases the addition of a CRSF to the model im-

proved the fit. We found that the improvement does not depend sensitively on

the exact shape used to model the absorption profile.

We also detected the spin period of X1822-371 in the EPIC-pn data. We ob-

tained the value of 0.5928850(6) s. Using all the measurements known of the

spin period of X1822-371, we estimated that the spin period derivative of the

source is−2.55(3)× 10−12s/s, and this confirms that the neutron star is spinning

up. Folding the EPIC-pn light curve, we derived a pulse fraction of 0.75% in the

2-5.4 keV energy band.

Using the best-fit values of the CRSF parameters, under the assumption that

the system is accreting at the Eddington limit, we estimate a NS B-field between

(8.1± 0.3× 1010)G and (9.0± 0.3× 1010)G for a NS radius ranging between 9.5

and 11.5 km.

We subsequently constrain the NS mass assuming that the CRSF is produced
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at the NS surface. We find that, for a Gaussian profile of the CRSF, the NS

mass is between 1.61± 0.15M� and 1.70± 0.13M�. The companion star mass is

constrained between 0.44± 0.03M� and 0.46± 0.02M�.

Finally, we note that our conclusions contrast with the recent results reported by

Sasano et al. (2014)[39], who report detecting a CRSF at 33 keV (and a corre-

sponding NS-B field of 3× 1012G) in the Suzaku data also used in this work. To

address this point, we have selected the whole IBIS and JEM-X public data set

of the X1822-371 region. We extracted the JEM-X and IBIS spectra of X1822-

371 having an exposure time of 330 and 874 ks, respectively. The INTEGRAL

spectrum combined with the XMM, Suzaku, and Chandra spectra does not show

a CRSF at 33 keV. Furthermore, we also show from theoretical arguments that

a CRSF at 33 keV is not consistent with the evidence that the NS in X1822-371

is spinning up.
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MOS12 spectrum in 0.6-7 keV MOS12 spectrum in 1.5-7 keV

Line E(keV) σeV I(×10−4) E(keV) σeV I(×10−4)

Model: CompTT

NV II 0.5 (fixed) 1 (fixed) 2.8± 0.9 0.5 (fixed) 1 (fixed) 2.5± 0.9

OV II (i) 0.5687 (fixed) 1.5 (fixed) 19± 2 0.5687 (fixed) 1.5 (fixed) 17± 2

OV III 0.6536 (fixed) 1 (fixed) 1.8± 0.5 0.6536 (fixed) 1 (fixed) 1.6± 0.5

NeIX (i) 0.915 (fixed) 3 (fixed) 2.5± 0.3 0.915 (fixed) 3 (fixed) 2.6+0.9
−0.3

NeX 1.022 (fixed) 3 (fixed) 0.9± 0.2 1.022 (fixed) 3 (fixeda) 0.9+0.5
−0.2

MgXI (i) 1.3434 (fixed) 3 (fixed) 0.72± 0.14 1.3434 (fixed) 3 (fixed) 0.69+0.48
−0.13

MgXII 1.4726 (fixed) 3 (fixed) 0.40± 0.06 1.4726 (fixed) 3 (fixed) 0.34+0.27
−0.09

SiXIV 2.005 (fixed) 3 (fixed) 0.35± 0.10 2.005 (fixed) 3 (fixed) 0.35+0.27
−0.08

FeI 6.408 (fixed) 20± 15 2.31± 0.15 6.408 (fixed) 22± 15 2.30± 0.15

FeXXV I 6.98± 0.03 50 (fixed) 0.59± 0.13 6.98± 0.03 50 (fixed) 0.60± 0.14

Model: gabs*CompTT

NV II 0.5 (fixed) 1 (fixed) 1.7± 0.8 0.5 (fixed) 1 (fixed) 1.7± 0.8

OV II (i) 0.5687 (fixed) 1.5 (fixed) 14.8± 1.5 0.5687 (fixed) 1.5 (fixed) 14.6± 1.5

OV III 0.6536 (fixed) 1 (fixed) 1.8± 0.5 0.6536 (fixed) 1 (fixed) 1.8± 0.5

NeIX (i) 0.915 (fixed) 3 (fixed) 2.6± 0.4 0.915 (fixed) 3 (fixed) 2.6+1.1
−0.4

NeX 1.022 (fixed) 3 (fixed) 0.7± 0.2 1.022 (fixed) 3 (fixed) 0.8+0.4
−0.2

MgXI (i) 1.3434 (fixed) 3 (fixed) 0.68± 0.14 1.3434 (fixed) 3 (fixed) 0.66+0.36
−0.13

MgXII 1.4726 (fixed) 3 (fixed) 0.39± 0.06 1.4726 (fixed) 3 (fixed) 0.34+0.21
−0.10

SiXIV 2.005 (fixed) 3 (fixed) 0.40± 0.05 2.005 (fixed) 3 (fixed) 0.36+0.25
−0.08

FeI 6.408 (fixed) 23± 10 2.4± 0.2 6.408 (fixed) 24± 15 2.3± 0.2

FeXXV I 6.98± 0.03 50 (fixed) 0.62± 0.13 6.98± 0.03 50 (fixed) 0.62± 0.14

Modello: cyclabs*CompTT

NV II 0.5 (fixed) 1 (fixed) 1.6± 0.8 0.5 (fixed) 1 (fixed) 1.6± 0.8

OV II (i) 0.5687 (fixed) 1.5 (fixed) 14.8± 1.5 0.5687 (fixed) 1.5 (fixed) 14.6± 1.5

OV III 0.6536 (fixed) 1 (fixed) 1.8± 0.5 0.6536 (fixed) 1 (fixed) 1.8± 0.5

NeIX (i) 0.915 (fixed) 3 (fixed) 2.6± 0.4 0.915 (fixed) 3 (fixed) 2.6+1.0
−0.4

NeX 1.022 (fixed) 3 (fixed) 0.8± 0.2 1.022 (fixed) 3 (fixed) 0.8+0.5
−0.2

MgXI (i) 1.3434 (fixed) 3 (fixed) 0.64± 0.14 1.3434 (fixed) 3 (fixed) 0.63+0.37
−0.13

MgXII 1.4726 (fixed) 3 (fixed) 0.32± 0.10 1.4726 (fixed) 3 (fixed) 0.32+0.21
−0.10

SiXIV 2.005 (fixed) 3 (fixed) 0.37± 0.09 2.005 (fixed) 3 (fixed) 0.37+0.27
−0.08

FeI 6.408± 0.005 26± 15 2.4± 0.2 6.408± 0.005 26± 15 2.4± 0.2

FeXXV I 6.98± 0.03 50 (fixed) 0.64± 0.14 6.98± 0.03 50 (fixed) 0.65± 0.14

Table 3.3: Best-fit values of the emission lines. Uncertainties are at the 90% confidence

level for a single parameter. The line intensities are in units of fotoni cm−2 s−1.
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RNS(km) MNS(M�) B(1010G) Mc(M�)

8 1.70± 0.11 10.2± 0.3 0.46± 0.02

8.5 1.71± 0.12 9.7± 0.3 0.46± 0.02

9 1.71± 0.12 9.4± 0.3 0.46± 0.02

9.5 1.70± 0.13 9.0± 0.3 0.46± 0.02

10 1.69± 0.13 8.8± 0.3 0.46± 0.02

10.5 1.67± 0.14 8.5± 0.3 0.45± 0.03

11 1.64± 0.14 8.3± 0.3 0.45± 0.03

11.5 1.61± 0.15 8.1± 0.3 0.44± 0.03

Table 3.4: Values of RNS , MNS , B1010G and Mc obtained from the cyclotron line

energy found adopting the gabs component (see chapter 3.6). Uncertainties are dis-

cussed in the text. For clarity we also show the values of MNS , B1010G and Mc for

RNS=10 km. The errors are at 68% confidence level.



Chapter 4

A third body orbiting around XB

1916-053

This chapter is adapted from the paper: Signature of the presence of a third

body orbiting around XB1916-053, by R.Iaria et al., 2015 ([70]).

4.1 Abstract

The aim of this work is investigate the nature of the orbital period derivative

of the source XB 1916-053. This derivative was estimated to be 1.5(3)×10−11s/s

through analysing the delays associated with the dip arrival times obtained from

observations spanning 25 years, from 1978 to 2002. This value is extremely large

and can be explained by invoking an extreme, non-conservative mass transfer rate

that is not easily justifiable. We extended the analysed data from 1978 to 2014,

by spanning 37 years, to verify whether a larger sample of data can be fitted with

a quadratic term or a different scenario has to be considered. From the analysis

of the delays associated with the dip arrival times, we find that we have to invoke

the presence of a third body to explain the observed sinusoidal modulation. We

propose that XB 1916-053 forms a hierarchical triple system.

4.2 Introduction

The X-ray source XB 1916-053 is a low-mass X-ray binary (LMXB) showing

dips and type-I X-ray bursts in its light curves. Using OSO 8 data, Becker et

63
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al., (1977) [71] observed type-I X-ray bursts, implying that the compact source

in XB 1916-053 is a neutron star. Assuming that the peak luminosity of the

X-ray bursts in XB 1916-053 is at the Eddington limit, Smale et al., (1988) [72]

derived a distance to the source of 8.4 kpc or 10.8 kpc, respectively, depending on

whether the accreting matter has cosmic abundances or is extremely hydrogen-

deficient. Yoshida (1993) [73] inferred a distance to the source of 9.3 kpc studying

the photospheric radius expansion of the X-ray bursts in XB 1916-053 (see also

Barret et al., 1996 [74]). XB 1916-053 was the first LMXB in which periodic

absorption dips were detected (Walter et al., 1982 [75]; White & Swank, 1982

[76]). These dips represent a decrease in the count rate in the light curve caused

by periodic absorption of the X-ray emission produced in the inner region of the

system. The photoelectric absorption occurs in a bulge at outer radius of the

accretion disc where the matter streaming from a companion star impacts.

Accurate analysis of data sets from many X-ray satellites in the last 30 years

have found different values for the X-ray period: Walter et al. (1982) [75] found

a period close to 2985 s, using Einstein data; White & Swank (1982) [76] es-

timated a period of 3003.6 ± 1.8 s for the strongest dips, while Smale et al.

(1989)[72], analysing GINGA data, derived a period of 3005.0 ± 6.6 s. Church

et al. (1997)[77], analysing ASCA data, found an orbital period of 3005 ± 10 s.

The X-ray light curve of XB 1916-053 also shows secondary dips occurring ap-

proximately half a cycle away from the primary dips with a certain variability in

phase (see Grindlay 1989)[78]. No eclipses were found; this constrains the orbital

inclination of the system between 60◦ and 80◦.

The optical counterpart of XB1916-053 was discovered by Grindlay et al.

(1987)[79], a star with a V magnitude of 21 already noted by Walter et al.

(1982)[75]. Using thermonuclear flash models of X-ray bursts, Swank et al. (1984)

[80] argued that the companion star is not hydrogen exhausted and suggested a

companion star mass of 0.1M�. Furthermore, Paczyński & Sienkiewicz (1981)[81]

showed that X-ray binary systems with orbital periods shorter than 81 min cannot

contain hydrogen-rich secondary stars.

A modulation in the optical light curve with a period of 3027.4 ± 0.4 s was

discovered by Grindlay et al. (1988)[82]. The 1% discrepancy between the optical

and X-ray period of XB 1916-053 was explained by Grindlay et al. (1988)[82]

invoking the presence of a third body with a period of 2.5 d and a retrograde

orbit that influences the matter streaming from the companion star. The same
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authors also suggested the alternative scenario in which the disc bulge precesses

around the disc with a prograde period equivalent to the beat period between

the optical and X-ray period. White (1989)[83] suggested the possibility that

a precessing elliptical disc exists in XB 1916-053, and that the variation in the

projected area of this disc causes optical modulation. Callanan et al. (1995)[84]

showed the stability of the optical period over seven years. Chou et al. (2001)[85],

analysing Rossi X-ray Timing Explorer (RXTE) data taken in 1996, found several

periodicities including one at 3026.23 ± 3.23 s, which was similar to the optical

modulation at 3027 s. The centroid of these peaks in the periodogram associated

with the 3000 s period implies that there is a modulation with a fundamental

period close to 3.9 d, as already noticed by Grindlay (1992)[86] also in the optical

band. The period of 3.9 d is interpreted as the beat period between the optical

and X-ray periods. Furthermore, Chou et al. (2001)[85], folding the RXTE

light curves at the 3.9 d period, found changes in the dip shape following this

modulation. Those authors also indicated that the dip-phase change, with a

sinusoidal period of 6.5±1.1 d from Ginga 1990 September observations (Yoshida

1993 [73]; Yoshida et al. 1995 [87]), may be associated with the subharmonic of

the 3.9 d period. Retter et al. (2002)[88] detected a further independent X-ray

period at 2 979 s in the RXTE light curves of XB 1916-053, which was mistakenly

identified by Chou et al.(2001)[85] with a 3.9 d sideband of the 3000 s period.

Retter et al.(2002)[88] suggested that the period at 2979 s could be explained

as a negative super-hump assuming the 3000 s period is the orbital period with

a corresponding beat period of 4.8 d. The same authors suggested that the 3.9

and 4.8 d periods could be the apsidal and nodal precession of the accretion disc,

respectively.

Finally, the source also showed a long-term 198.6 ± 1.72 d periodicity in X-

rays (Priedhorsky & Terrel, 1984)[89], which has not been confirmed by further

observations (see Retter et al. 2002)[88]. To date the spin period of the neutron

star in XB 1916-053 is not known. Galloway et al. (2001)[90], analysing a Type-I

X-ray burst, discovered a highly coherent oscillation drifting from 269.4 Hz up

to 272 Hz. Interpreting the asymptotic frequency of the oscillation in terms of a

decoupled surface burning layer, the neutron star could have a spin period around

3.7 ms. Hu et al. (2008)[91] inferred that Ṗorb/Porb = (1.62±±0.34)× 10−7yr−1

by analysing archival X-ray data from 1978 to 2002 and adopting a quadratic

ephemeris to fit the dip arrival times. In this work, we update the previously
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determined ephemeris using data from 1978 to 2014. We show that the quadratic

ephemeris does not fit the dip arrival times and find that a sinusoidal component

is necessary to fit the delays. We suggest the presence of a third body that

influences the orbit of the X-ray binary system XB 1916-053.

4.3 Observations and data reduction

We used all the available X-ray archival data of XB 1916-053 to study the

long-term change of its orbital period. The last ephemeris of the source was

reported by Hu et al. (2008) who used archival data from 1978 to 2002. We

analysed more than 37 years of observational data from 1978 to 2014. The data

have been obtained from the HEASARC (NASA’s High Energy Astrophysics Sci-

ence Archive Research Center) website and have been reduced using the standard

procedures. In particular, we reanalysed the data used by Hu et al. (2008)[91],

collected from 1998 to 2002, and added new data spanning up to 2014 (see Ta-

ble 4.1). We obtained 27 points from all the analysed observations. The data

collected by RXTE, Ginga, EXOSAT, Einstein, and OSO-8 were downloaded

from HEASARC in light-curve format. We used the standard-1 RXTE/PCA

background-subtracted light curves, which include all the energy channels and

have a time resolution of 0.125 s. All the pointing observations were used except

for P70034-02-01-01, P70034-02-01-00, and P93447-01-01-00 due to the absence

of dips in the corresponding light curves.

The EXOSAT/ME light curves cover the energy range between 1 and 8 keV

and have a time bin of 16 s. The Ginga/LAC light curves cover the 2-17 keV en-

ergy band. We only used the data from the top layer and the light curves binned

at 16 s. We downloaded the ROSAT/PSPC events, and extracted the correspond-

ing light curve using the FTOOLS xselect. The Medium Energy Concentrator

Spectrometer (MECS) onboard the BeppoSAX satellite observed XB 1916-053

two times, in 1997 Apr 27-28 and 2001 Oct 01-02. Using xselect, we extracted

the source light curves from a circular region centred on the source and with a

radius of 4’, no energy filter was applied to the data. The BeppoSAX/MECS light

curves were obtained using a bin time of 2 sec. ASCA observed XB 1916-053 in

1993 May 02-03; we used the events collected by the GIS3 working in medium

bit rate to extract the corresponding light curve. The OSO-8 light curve was

obtained using the combined observation of the B and C detectors of the GSFC
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Point Satelite/Instrument Observation Start Time (UT) Stop Time (UT) Tfold (MJD,TDB)

1 OSO-8/GCXSE 1978 Apr 07 21:16:05 1978 Apr 14 22:20:37 43609.408575724435

2 Eistein/IPC 1979 Oct 22 04:52:01 1979 Oct 22 06:58:30 44168.24670380917

3 Eistein/IPC 1980 Oct 11 04:08:51 1980 Oct 11 09:07:19 44523.27644368849

4 EXOSAT/ME 1983 Sep 17 15:07:25 1983 Sep 17 21:29:49 45594.765324269885

5 EXOSAT/ME 1985 May 24 12:26:21 1985 May 24 21:30:23 46209.612747685185

6 EXOSAT/ME 1985 Oct 13 13:53:16 1985 Oct 13 22:34:04 46351.75944524423

7 Ginga/LAC 1988 Sep 09 15:47:56 1988 Sep 10 16:01:16 47414.165911835925

8 Ginga/LAC 1990 Sep 11 15:04:35 1990 Sep 13 09:18:11 48146.51075733274

9 ROSAT/PSPC RP400274N00 1992 Oct 17 13:05:47 1992 Oct 19 15:24:20 48913.59379352164

10 ASCA/GIS3 40004000 1993 May 02 18:11:00 1993 May 03 09:46:17 49110.082393510115

11 RXTE/PCA P10109-01-01-00, P10109-01-02-00, 1996 Feb 02 00:14:56 1996 May 23 11:20:00 50174.74129123185

P10109-01-04-01, P10109-01-04-00,

P10109-02-01-00, P10109-02-02-00,

P10109-02-03-00, P10109-02-04-00,

P10109-02-05-00, P10109-02-06-00,

P10109-02-07-00, P10109-02-08-00,

P10109-02-09-00, P10109-02-10-00,

P10109-02-10-02

12 RXTE/PCA P10109-01-05-00, P10109-01-06-00, 1996 Jun 01 17:38:40 1996 Oct 29 11:00:34 50130.596956288645

P10109-01-07-00, P10109-01-08-00,

P10109-01-09-00

13 BeppoSAX/MECS 20106001 1997 Apr 27 21:00:06 1997 Apr 28 19:51:02 50566.35264963594

14 RXTE/PCA P30066-01-01-04, P30066-01-01-00, 1998 Jun 23 23:06:40 1998 Jul 20 15:35:55 51001.306447481845

P30066-01-01-01, P30066-01-01-02,

P30066-01-01-03, P30066-01-02-00,

P30066-01-02-01, P30066-01-02-02,

P30066-01-02-03

15 RXTE/PCA P30066-01-02-04, P30066-01-02-07, 1998 Jul 21 07:11:44 1998 Sep 16 02:52:32 51043.70980975036

P30066-01-02-08, P30066-01-03-00,

P30066-01-03-01, P30066-01-03-02,

P30066-01-03-03, P30066-01-03-04,

P30066-01-03-05, P30066-01-04-00,

16 RXTE/PCA P30066-01-05-01, P30066-01-05-00, 2001 May 27 08:14:47 2001 Jul 01 19:15:33 52074.07302734295

P30066-01-06-00, P30066-01-06-01,

P30066-01-07-00, P30066-01-07-01,

17 BeppoSAX/MECS 21373002 2001 Oct 01 03:40:16 2001 Oct 02 07:01:06 52183.72270184033

18 RXTE/PCA P50026-03-01-00, P50026-03-01-01, 2001 Oct 01 10:35:44 2001 Oct 01 22:16:03 52183.684644754605

19 RXTE/PCA P70034-02-02-01, P70034-02-02-00, 2002 Sep 25 00:43:12 2002 Sep 25 09:31:12 52542.21332826887

20 XMM/Epic-pn 0085290301 2002 Sep 25 04:18:29 2002 Sep 25 08:28:27 52542.266295747205

21 INTEGRAL/JEM-X 2003 Nov 09 09:04:11 2003 Nov 20 12:18:01 52957.945226848465

22 Chandra/HETGS 4584 2004 Aug 07 02:34:45 2004 Aug 07 16:14:53 53224.59478392645

23 Suzaku/XIS0 401095010 2006 Nov 08 06:09:51 2006 Nov 09 02:42:02 54048.3655207864

24 RXTE/PCA P95093-01-01-00, P95093-01-01-01, 2010 Jun 19 13:41:52 2010 Jun 21 07:21:46 55367.43875650959

25 Chandra/LETGS 15271, 15657 2013 Jun 15 13:56:17 2013 Jun 18 05:13:17 56459.89915961875

26 Swift/XRT 00033336001 2014 Jul 15 08:04:57 2014 Jul 15 22:36:46 56853.63959388178

27 Suzaku/XIS0 409032010, 409032020 2014 Oct 14 16:49:56 2014 Oct 22 02:40:56 56949.56345974802

Table 4.1: Observation Log.

Cosmic X-ray Spectroscopy experiment(GCXSE). The light curve covers the 2-60

keV energy range. The Einstein light curve was obtained from events collected

by the Image Proportional Counter (IPC) in the 0.2-3.5 keV energy range.

We applied barycentre corrections to the whole data set adopting the source

position of XB 1916-053 shown by Iaria et al. (2006)[92]. For the RXTE/PCA

light curves we used the ftools faxbary. The barycentre corrections for the ASCA

and ROSAT data were obtained using the ftool timeconv and the tool bct+abc,

respectively. All the other data sets were corrected using the ftool earth2sun.
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Finally, we excluded the time intervals containing X-ray bursts from each analysed

light curve.

The Chandra satellite observed XB 1916-053 three times. The first time was

on 2004 Aug 07 from 2:34:45 to 16:14:53 UT (obsid 4584). The observation had

a total integration time of 50 ks and was performed in timed graded mode. The

spectroscopic analysis of this data set was discussed by Iaria et al. (2006)[92].

We reprocessed the data and applied the barycentre corrections to the event-2

file using the Chandra Interactive Analysis of Observations (CIAO) tool axbary.

In addition, we extracted the summed first-order medium energy grating (MEG)

and high energy grating (HEG) light curves filtered in the 0.5-10 keV energy

range using the CIAO tool dmextract. The last two Chandra observations of XB

1916-053 (obsid 15271 and 15657) were performed between 2013 June 15 13:56

and June 18 5:13 UT and have exposure times of 60 and 30 ks, respectively.

We reprocessed the data and applied the barycentre corrections to the event-

2 file using axbary. Moreover, we extracted the first-order low energy grating

(LEG) light curve in the 0.5-5 keV energy range using dmextract. We show the

Chandra/LEG light curve in Fig. 4.1. Very intense dipping activity is present

during the two observations. A type-I burst occurred during the obsid. 15271.
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Figure 4.1: Chandra/LEG light curves of XB 1916-053 during the two observations

performed in 2013, i.e. obsid. 15271 (left) and 15657 (right). The bin time is 64 s. A

type-I X-ray burst that occurred during the obsid. 15271.

The X-ray Multi-Mirror Mission-Newton (XMM-Newton) observed XB 1916-

053 on 2002 Sep 25 from 3:55 to 8:31 UT and the European Photon Imaging
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Camera (Epic-pn) collected data, in timing mode, over ∼ 17 ks of exposure. An

extensive study of this observation was performed by Boirin et al. (2004)[93]. We

reprocessed the data, extracted the 0.5-10 keV light curve, and applied barycentre

corrections to the times of the EPIC-pn events with the Science Analysis Software

(SAS) tool barycen. Suzaku observed XB 1916-053 twice, the first time on 2006

Nov 8 (obsid. 401095010) and the second time from 2014 Oct 14 to 22 (obsid.

409032010 and 409032020). The first observation has already been analysed by

Zhang et al. (2014)[94], while a study of the second observation has not been pub-

lished yet. For both observations, we extracted the X-ray Imaging Spectrometer

0 (XIS0) events from a circular region centred on the source and with a radius

of 130”. We applied the barycentre corrections to the events with the Suzaku

tool aebarycen. We do not show the light curve of the first Suzaku observation

since it was already shown by Zhang et al. (2014) (Fig. 1 in their paper)[94],

however, we show in Fig.4.10 the XIS0 light curve of the observation performed

in 2014 Oct. The light curve indicates that a bursting activity is present in the

first 200 ks of the observation and the persistent count rate decreases from 20 to

10 counts s−1. In the second part of the observation, the persistent count rate is

quite constant at 7 counts s−1 and an intense dipping activity is present. For the

aim of this work, we selected and used the events from 250 ks to the end of the

observation.

Swift/XRT data were obtained as target of opportunity observations per-

formed on 2014 Jul 15 from 07:55:53 to 22:27:58 UT (ObsID 00033336001) for a

total on-source exposure of ∼ 6.3 ks and on 2014 Jul 21 from 07:32:00 to 16:11:5

UT (ObsID 00033336002) for a total on-source exposure of ∼ 9.0 ks. The count

rate in the first observation reaches 15 counts s−1, with a mean at about 10

counts s−1, due to the dips seen down to 2 counts s−1; the second observation

shows no dips and has a mean count rate of 7 counts s−1. Since the data from

ObsID 00033336002 do not show dips we only used the first observation in our

analysis. The XRT data were processed with standard procedures (xrtpipeline

v0.13.1), and with standard filtering and screening criteria with FTOOLS (v6.16).

Source events (selected in grades 0-2) were accumulated within a circular region

with a radius of 20 pixels (1 pixel ∼ 2.36”). For our timing analysis, we also

converted the event arrival times to the solar system barycentre with barycorr.

We selected a public data set of INTErnational Gamma-Ray Astrophysics

Laboratory (INTEGRAL Winkler et al. 2003) [45] observations performed in
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staring mode on XB 1916-053. Then, we analysed the data collected by the X-

ray telescope JEM-X2 (Lund et al. 2003)[47]. A total amount of 87 pointings

(the total observation elapsed time is ∼ 310 ks) covered the INTEGRAL revo-

lutions 131, 133, and 134, which were carried out on 2003 November 9-20. We

performed the JEM-X2 data analysis using standard procedures within the Of-

fline Science Analysis software (OSA10.0) distributed by the ISDC (Courvoisier

et al. 2003)[49]. We extracted the light curves with a 16 seconds binsize in the

energy range 3-10 keV, and after that we applied the barycentre corrections to

the events using the tool barycent.

4.4 Data analysis

We analysed 27 light curves and folded the barycentric-corrected light curves

using a trial time of reference and orbital period, Tfold and P0, respectively.

For each light curve, the value of Tfold is defined as the average value between

the corresponding start and stop time. We fitted the dips with a simple model

consisting of a step.and-ramp function, where the count rates before, during,

and after the dip are constant and the intensity changes linearly during the dip

transitions. This model involves seven parameters: the count rate before, during,

and after the dip, called C1, C2 and C3, respectively; the phases of the start and

stop time of the ingress (φ1 and φ2) and, finally, the phases of the start and stop

time of the egress (φ3 and φ4). The phase corresponding to dip arrival time φdip

is estimated as φdip = (φ4 +φ1)/2. The corresponding dip arrival time is given by

tdip = Tfold+φdipP0. To be more conservative, we scaled the error associated with

φdip by the factor
√
χ2
red to take a value of χ2

red of the best-fit model larger than

1 into account. To obtain the delays with respect to a constant period reference,

we used the values of the period P0 = 3000.6511 s and reference epoch T0 =

50123.00873 MJD reported in Hu et al. (2008)[91]. We show the values of Tfold

in Tab.1 (see 4). The best-fit parameters of the step-and-ramp function and the

corresponding χ2
red are shown in Tab. 4.2.

The inferred delays, in units of seconds, of the dip arrival times with respect

to a constant orbital period are reported in Tab.4.3.

For each point we computed the corresponding cycle and the dip arrival time

in days with respect to the adopted T0 . We show the delays vs. time in Fig. 4.2.

Initially we fitted the delays with a quadratic function:
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Figure 4.2: Dips’s arrival time delays versus time. The magenta, blue, black and

green curves are the best-fit curves obtained using the linear+quadratic (LQ), lin-

ear+sinusoidal (LS), linear+quadratic+sinusoidal (LQS), and linear+sinusoidal func-

tion taking into account a possible eccentricity (LSe), respectively.

y(t) = a+ bt+ ct2

where t is the time in days with respect to T0, a=∆T0 is the correction to T0

in units of seconds, b = ∆P/P0 in units of sd−1 with ∆P the correction to the

orbital period, and finally, c = (1/2)Ṗ /P0 in units of sd−1, with Ṗ that is the

orbital period derivative. The quadratic form does not fit the data, we obtained

χ2(d.o.f.) of 194.6(24). Here, and in the following, we scaled the uncertainties to

take a value
√
χ2
red to take a value χ2

red of the best-fit model larger than 1 into

account. The best-fit parameters are shown in the second column of Tab.4.4. The

corresponding quadratic ephemeris (hereafter LQ ephemeris) is:
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Tdip(N) = MJD(TDB)50123.0096(3) +
3000.65094(14)

86400
N + 2.37(12)× 10−13N2

(4.1)

where N is the number of cycles, 50123.0096(3) MJD is the new Epoch of

reference, the revised orbital period is P =3000.65094(14) s, and the orbital pe-

riod derivative obtained from the quadratic term is Ṗ = 1.36(7) × 10−11s/s.

The obtained quadratic ephemeris is compatible with that reported by Hu et

al.(2008)[91].
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Figure 4.3: Observed minus calculated delays in units of seconds. The residuals, from

the top to the bottom, correspond to the LQC, LS, LQS, and LSe function, respectively.

We show the best-fit curve in Fig.4.2 and the corresponding residuals in units

of seconds in Fig. 4.3. As we obtained a large value of the χ2 , we fitted the

delays vs. time adding a cubic term to the previous parabolic function, i.e.:

y(t) = a+ bt+ ct2 + dt3

where a, b and c are above defined whilst the cubic term, d, is defined as

P̈ /(6P0), and P̈ indicates the temporal derivative of the orbital period derivative.

Fitting with a cubic function, we obtained a χ2(d.o.f.) of 92.4(23) with a ∆χ2
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of 101.2 and an F-test probability of chance improvement of 4.2 × 10−5 with

respect to the quadratic form. The best-fit values are shown in the third column

of Tab.4.4. The corresponding ephemeris (hereafter LQC ephemeris) is:

Tdip(N) = MJD(TDB)50123.008700.00005
−0.00026+

3000.65239(3)

86400
N + 2.97(12)× 10−13N2 − 2.2(4)× 10−22N3

(4.2)

in this case we find an orbital period derivative of 1.71(7)× 10−11s/s and its

derivative is P̈ = −3.8(0.7)× 10−20s/s2. We also fitted the delays using a linear

plus a sinusoidal function having the following terms:

y(t) = a+ bt+ Asin

[
2π

Pmod
(t− tφ)

]
where a and b are defined as above, A is the amplitude of the sinusoidal

function in seconds, Pmod is the period of the sine function in days, and, finally,

t is the time in days referred to T0 at which the sinusoidal function is null. We

obtained a value of χ2(d.o.f.) of 63.7(22) with a ∆χ2 of 131 with respect to

the quadratic form. The best-fit parameters are shown in the fourth column

of Tab.4.4. The best-fit function is indicated with a blue curve in Fig.4.2 and

the corresponding residuals are shown in Fig.4.3. The residuals are flatter than

those obtained in the previous case. Using the sinusoidal function, the dip time

obtained from the OSO-8 observation is distant ∼ 200 s from the expected value.

The corresponding ephemeris (hereafter LS ephemeris) is:

Tdip(N) = MJD(TDB)50123.01549(18) +
3000.6496(8)

86400
N + Asin

[
2π

Nmod

N − φ
]

(4.3)

where Nmod = Pmod/P0 = 587659.53 ± 97351.67 and φ = 2πtφ/Pmod with

Pmod = 55.9 ± 9.3yr. This functional form significantly improves the fit, even

though it does not take the possible presence of an orbital period derivative into

account. We added a quadratic term to take the possible presence of an orbital

period derivative and fitted the delays into account, using the function:

y(t) = a+ bt+ ct2 + Asin

[
2π

Pmod
(t− tφ)

]
We obtained a value of χ2(d.o.f.) of 39.4(21) and a F-test probability of chance

improvement with respect to the LS ephemeris of 1.7 × 10−3. The best-fit pa-

rameters are shown in the fifth column of Tab.4.4. The best-fit function is in-

dicated with a black curve in Fig.4.2 and the corresponding residuals are shown
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in Fig.4.3. The corresponding linear+quadratic+sinusoidal ephemeris (hereafter

LQS ephemeris) is:

Tdip(N) = MJD(TDB)50123.0089(3) +
3000.65126(10)

86400
N+

+2.50(12)× 10−13N2 + Asin

[
2π

Nmod

N − φ
] (4.4)

with Nmod = 267837.87 ± 21652.90 and φ = 0.92 ± 0.16. The corresponding

orbital period derivative is Ṗ = 1.44(7)×10−11 s/s and the period od the modula-

tion is Pmod = 25.5± 2.1 yr. Our analysis of the delays suggests that a quadratic

or a quadratic plus a cubic term do not fit the delays. A better fit is obtained

using a sinusoidal function with a period close to 20000 d and, finally, adopting

a sinusoidal plus a quadratic term, we obtain the best fit of the delays. In this

latter case, the sinusoidal function has a period of 9300 d, about half of that ob-

tained using only the sinusoidal function. Moreover, the orbital period derivative

Ṗ = 1.44(7)× 10−11 s/s (compatible with Ṗ = 1.5(3)× 10−11 s/s obtained by Hu

et al. 2008 [91]) is extremely high to be explained by a conservative mass transfer

and loss of angular momentum from the binary system for gravitational radiation

(see section 4.5 and paragraph 2.4.2.1). This awkward result can be bypassed if

the quadratic term is merely an approximation of a further sinusoidal function

with a larger orbital period with respect to 9300 d. Under this assumption, the

best fit obtained using the LQS ephemeris could be explained using a different

scenario, where the quadratic term mimics the fundamental harmonic of a series

expansion whilst the sinusoidal term is the first harmonic. This seems also sug-

gested by the best fit obtained using the LS function (eq. 4.3), since we obtain a

modulation period, which is almost twice that obtained using the LQS function

(eq.4.4). If we assume that XB 1916-053 is part of a hierarchical triple system

then the measured delays are also affected by the influence of a third body. If

the orbits of the third body and of the X-ray binary system around the common

centre of mass are slightly elliptical then the delay ∆DS(t) associated with the

Doppler shift can be expressed as:

∆DS(t) = A
{
sin(mt +$) +

e

2
[sin(2mt +$)− 3sin$]

}
+

+A

{
e2

4
[2sin(3mt +$)− sin(mt +$)cos(2mt + 1)− 2sin(mt)cos$]

} (4.5)

where
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mt =
2π

Pmod
(t− tφ)

is the mean anomaly; e is the eccentricity of the orbit; Pmod is the orbital period

of both the X-ray binary system and the third body around the common centre

of mass; $ denotes the periastron angle; tφ is the passage time at the periastron;

and A = asini/c is the projected semi-major axis of the orbit, described by the

centre of mass of the X-ray binary system around the centre of mass of the triple

system. We neglect third and higher order terms in Eq.4.5. Limiting Eq.4.5 to

the first-order terms, it becomes the expression shown by van der Klis & Bonnet-

Bidaud (1984)[95]. Then, we fitted the delays using:

y(t) = a+ bt+ ∆DS(t)

Because the 27 available points do not cover a whole period, we arbitrarily

fixed the value of Pmod at 18600, 17100 and 20100 d, which are the best, lower,

and upper value of the period obtained from the LQS ephemeris multiplied by a

factor of two. The best-fit parameters are shown in Tab.4.4 (columns 6, 7, and 8).

The χ2d.o.f. are similar for the three adopted periods and the F-test probability

of chance improvement with respect to LS function is 4.1 × 10?2, 1.7 × 10?2 and

0.9 × 10?2 for a Pmod value of 17100, 18600 and 20100 d, respectively. In the

following, we discuss the case of Pmod = 18600 d. The best-fit function is indicated

with a green curve in Fig.4.2. The corresponding residuals are shown in Fig.4.3.

The corresponding ephemeris (hereafter LSe ephemeris) is:

Tdip(N) = MJD(TDB)50123.010(3) +
3000.6512(6)

86400
N + ∆DS(N). (4.6)

To verify the robustness of our results, we produced the folded light curves in

the 3-5 and 5-12.2 keV energy bands of XB 1916-053 obtained from the All Sky

Monitor (ASM) on board RXTE using the ephemeris shown above. We inferred

those ephemeris using only pointing observations from which we obtained 27

points spanning from 1978 to 2014, whilst the RXTE/ASM light curves cover

from 1996 Sep 01 to 2011 Oct 31. We applied the barycentre corrections to the

RXTE/ASM events. As a first step, we folded the RXTE/ASM light curves of

XB 1916-053 using the LQ ephemeris reported by Hu et al., (2008)[91] and by

us (Eq. 4.1), adopting 60 phase-bins per period corresponding to ∼ 50 s per bin.
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Figure 4.4: Folded RXTE/ASM light curve of XB 1916-053 in the 3-5 and 5-12.2 keV

energy range (top and middle panels). The corresponding hardness ratios (HRs) are

plotted in the bottom panels. The left and right plots show the folded RXTE/ASM

light curve using the ephemeris discussed by Hu et al. (2008) and LQ ephemeris (eq.

4.1) shown in the Sect.4.4, respectively. Each phase-bin is about 50 s.

The folded light curves and the corresponding hardness ratios (HRs) are shown

in Fig.4.4.

None of the HR show an evident increase at phase zero as we would ex-

pect if the ephemerides well define the dip arrival times. This implies that

those ephemerides do not correctly predict the dip arrival times contained in the

RXTE/ASM light curve. Adopting the LQC ephemeris (eq. 4.2), the maximum

value of HR (that is 2.8) is reached at phase 0.1 (see Fig. 4.5, left panels).

Also in this case, the LQC ephemeris does not predict the dip arrival times in

the ASM light curves of XB 1916-053. Using the LS ephemeris (Eq. 4.4) to fold

the light curves, we obtained that the maximum value of HR is reached at phase

zero and is close to 3.4 (see Fig. 4.5, right panels). In contrast, with the LQS

ephemeris (Eq. 4.6) the maximum value of the HR falls in two phase-bins close

to phase zero (see Fig. 6, left panels) and the maximum value of HR is 3.2, which

is smaller than the value obtained with the LS ephemeris. Finally, we folded the

RXTE/ASM light curves using the LSe ephemeris (eq. 4.6). We show the folded

light curves and the corresponding HR in Fig. 4.6 (right panel).

In this last case the maximum value of the HR falls in only one phase bin

at phase zero and the maximum value of the HR is about 4.5. We also folded
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Figure 4.5: Left and right plots show the folded RXTE/ASM light curve using LQC

ephemeris (eq. 4.2) and LS ephemeris (eq. 4.4), respectively. Each phase-bin is about

50 s.
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Figure 4.6: Left and right plots show the folded RXTE/ASM light curve using LQS

ephemeris (eq. 4.4) and LSe ephemeris (eq. 4.6) with Pmod = 18600 d, respectively.

Each phase-bin is about 50 s.

the RXTE/ASM light curve (not filtered in energy) using the LQS and LSe

ephemerides once we selected the events from the Scanning Shadow Cameras

(SSCs) 1 and 2. Adopting 40 phase-bins per period (that is each bin is 75 s),

the folded light curves are very similar (see Fig. 4.7), indicating that the two

ephemerides are statistically equivalent. The dip is clearly observed at phase
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zero, the ASM count rate is reduced during the dip of 60% with respect to the

persistent emission. Finally, the goodness of the two ephemerides allows us to

observe the presence of a secondary dip at phase 0.55, which is typically observed

in several dipping sources (see Grindlay 1989 [78], for XB 1916-053).
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Figure 4.7: Folded RXTE/ASM light curve of XB 1916-053 selecting the events from

SSC1 and SSC2. No energy filter is applied. Each phase-bin correspond to 75 s. Left

panel: folded light curve using the LQS ephemeris (see 4.4). Right panel: folded light

curve usig the LSe ephemeris (see 4.6)

4.5 Discussion

From the study of the 27 dip arrival times obtained from the pointed obser-

vations of XB 1916-053 and of the RXTE/ASM light curves, we find that the

quadratic and cubic ephemerides do not correctly predict the dip arrival times

on a long time span; whilst to well fit the delays, we need to use a function that

contains at least linear and sinusoidal terms (LS ephemeris, see Eq. 4.3). The

addition of a quadratic term to the LS ephemeris (Eq. 4.4) gives a probability

of chance improvement obtained with a F-test of 1.7 × 10−3 with respect to the

LS ephemeris. Finally, using the ephemeris shown in Eq. 4.6, the probability of

chance improvement, also with respect to the LS ephemeris, is 1.7 × 10−2. The

LQS and LSe ephemerides paint two different physical scenarios for XB 1916-

053. In the first case the orbital period derivative of the X-ray binary system is

Ṗ = 1.44(7) × 10−11 s/s and the observed delays associated with the dip arrival
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times are affected by a relatively low-amplitude (∼ 130 s) sinusoidal modulation

with a period close to 26 yr. In the second case the orbital period derivative is

fixed to zero and the modulation of the delays is solely sinusoidal with an ampli-

tude of ∼ 550 s and an orbital period close to 51 yr. We explain in the following

the sinusoidal modulation for both the scenarios, assuming the presence of a third

body forming a hierarchical triple system with XB 1916-053, which alters the ob-

served dip arrival times.

We start by discussing the plausible values of the companion star mass M2. We

know that the companion star is a degenerate star and its radius R2 has to be

equal to its Roche lobe radius RL2 since the binary system is in the Roche lobe

overflow (RLOF) regime. Rearranging the Eq. 3.3.15 in Shapiro & Teukolsky

(1983) [96] the mass-radius relation for a degenerate star can be written as:

R2

R�
= 0.04

(
Z

A

)5/3(
M2

M�

)−1/3

= 0.0126(1 +X)5/3m
−1/3
2

where Z and A are the atomic number and the atomic weight of the matter

composing the star and where we assumed that the matter is only composed of

hydrogen and helium. The factor is the average of Z/A for matter composed of

hydrogen and helium, X is the fraction of hydrogen in the star and, finally, m2 is

the companion star mass in units of solar mass. This equation has to be corrected

for the thermal bloating factor f; which is the ratio of the companion star radius

to the radius of a star with the same mass and composition, that is completely

degenerate and supported only by the Fermi pressure of the electrons; then the

factor f is 1. The Roche lobe radius of the companion star can be written as:

RL2 = 0.46224a

(
m2

m1 +m2

)13

where a is the orbital separation of the binary system and m1 is the neutron

star (NS) mass in unit of solar mass. We can write a in terms of the orbital

period P, m1 and m2, using Kepler’s third law. Combining the last two equations

and Kepler’s third law, we obtain:

m2 = 0.0151(1 +X)5/2f 3/2 (4.7)

Nelemans et al. (2006)[97], analysing the optical spectrum with the European

Southern Observatory Very Large Telescope, detected a He-dominated accretion
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disc spectrum and suggested direct evidence for a helium donor. The authors

found a good match with an LTE model consisting of pure helium plus overabun-

dant nitrogen. For this reason, we assume X = 0 in the rest of the discussion.

The bolometric X-ray flux of XB 1916-053 was estimated by several authors.

Galloway et al. (2008)[90], analysing a RXTE/PCA observation of XB 1916-053,

determined a persistent flux in the 2.5-25 keV of (3.82±0.04)×10−10erg s−1cm−2.

The authors corrected the flux for a bolometric factor cbol = 1.37 ± 0.09 to esti-

mate the bolometric flux in the 0.1-200 keV energy range, obtaining a bolometric

flux of (5.2±0.3)×10−10erg s−1cm−2. Recently, Zhang et al. (2014)[94], analysing

a Suzaku observation of XB 1916-053, found a value of Fbol in the 0.1-200 keV

energy range between 5.5 × 10−10erg s−1cm−2 and 6.1 × 10−10erg s−1cm−2. Fi-

nally, analysing the persistent emission of the source during a BeppoSAX ob-

servation, Church et al. (1998)[77] estimated a value of Fbol in the 0.5-200 keV

energy range of 6.2 × 10−10erg s−1cm−2. Since the RXTE/ASM light curve of

XB 1916-053 shows that the count rate of the source is almost constant over

more than ten years, we adopt a conservative value for the bolometric flux of

(5.5± 0.5)× 10−10erg s−1cm−2.

The distance d to the source was estimated by Galloway et al.(2008)[90] mea-

suring the peak flux during the photospheric radius expansion (PRE) in type-I

X-ray bursts. Equation 8 in Galloway et al.(2008)[90] can be rewritten as:

d = 8.32

(
Fpk,PRE

3× 10−8erg s−1cm−2

)−1/2

m
1/2
1

(
1− 0.296

m1

rPRE

)1/4

(1 +X)−1/2kpc

(4.8)

where rPRE is the photospheric radius of the neutron star in units of 10 km

and Fpk,PRE is the flux at the peak of the type-I X-ray burst during the PRE.

The authors measured Fpk,PRE = (2.9± 0.4)× 10−8erg s−1cm−2 and rPRE ' 1.1

for XB 1916-053 and concluded that the distance to the source is d = 8.9±1.3kpc

(adopting X = 0) for a NS mass of 1.4M�.

The X-ray luminosity can be expressed as Lx = 4πd2Fbol, where we roughly

assume that the emitted flux is isotropic. We obtain Lx ' 5.2× 1036erg s−1 for a

NS mass of 1.4M�, whilst we find Lx ' 6.6×1036erg s−1 for a NS mass of 2.2M�.

Rappaport et al. (1987)[98] predicted the X-ray luminosity for highly compact

binary systems under the reasonable hypothesis that the main mechanism to lose

angular momentum is gravitational radiation. Combining the Eqs. 8 and 13 in
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their work, we obtain:

Lx '
5.2× 1042

1− 1.5α(1− β)
m

5/3
1 P

−14/3
m (1 +X)5βηf 3erg s−1 (4.9)

where Pm is the orbital period in units of minutes, β is the fraction of matter

yielded by the companion star and accreted onto the NS, η is the efficiency for

converting gravitational potential energy into X-ray emission, and α is the specific

angular momentum carried away by the mass lost from the system, in units of

2πa2/Porb, where a is the orbital separation (see Rappaport et al. (1987)[99]). In

Eq.4.9 we assume that the NS radius is 10 km. Using the orbital period value of

3000.65 s, assuming η = 1 and a conservative mass transfer scenario (β = 1) (see

chapter 2), we find that Lx ' 1.1×1035f 3ergs−1 and Lx ' 2.3×1035f 3ergs−1 for

a NS mass of 1.4M� and 2.2M�, respectively. Comparing the observed luminosity

and the predicted luminosity, we estimate that f = 3.6±0.4 and f = 3.0±0.3 for

a NS mass of 1.4M� and 2.2M�, respectively. Substituting the obtained values of

f in eq. 4.7, we obtain that the companion star mass is M2 = 0.10± 0.02M� and

M2 = 0.078 ± 0.012M� for a NS mass of 1.4M� and 2.2M�, respectively. The

mass ratio q = M2/M1 of XB 1916-053 is between 0.036±0.009 and 0.071±0.009.

Hu et al. (2008)[91] inferred the mass ratio of XB 1916-053 from the negative

super-hump period and found q ' 0.045, which is compatible with our estimated

range of values of q. Chou et al. (2001)[85] estimated a value of q ' 0.022 using

the period of the apsidal precession of the accretion disc of Pprec = 3.9087(8) d.

The value of q obtained by Chou et al. (2001)[85] is outside the range that we

find.

To estimate the orbital period derivative we use the eq. 11 shown in Rappaport

et al. (1987)[98] that we rewrite as:

Ṗ ' 1.54× 10−9

1− 1.5α(1− β)
m

2/3
1 P

−8/3
m (1 +X)5/2f 3/2s s−1 (4.10)

Using the value of Ṗ ' 1.44 × 10−11s s−1 (LQS ephemeris) and the orbital

period value of 3000.65 s, we find that the thermal bloating factor f is 40 and 32

for a NS mass of 1.4M� and 2.2M�. These values of f are not physically plausible

and suggest that, in a conservative mass transfer scenario, the value of the orbital

period derivative cannot be that obtained from the LQS ephemeris. On the other

hand, adopting an orbital period of 3000.65 s and a factor f of 3.6 and 3.0 for a NS

mass of 1.4M� and 2.2M� we find Ṗ = (3.9± 0.2)× 10−13s s−1 and Ṗ = (3.98±
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0.15)× 10−13s s−1 for a NS mass of 1.4M� and 2.2M�, respectively. The orbital

period derivative normalised to the orbital period is Ṗ /P ' 4.2 × 10−9yr−1 and

weakly depends on the NS mass. We conclude that the conservative mass transfer

scenario with a thermal bloating factor of the companion star between three and

four allows us to explain the discrepancy between the predicted and observed X-

ray luminosity, but it does not solve the discrepancy between the predicted and

measured orbital period derivative obtained from the LQS ephemeris. For this

reason, we investigate the non-conservative mass transfer scenario. Combining

the eqs. 4.9 and 4.10, we obtain:

Lx

Ṗ
' 3.38× 1051m1P

−2
m βηf 3/2erg s−1 (4.11)

Adopting Lx ' 5.2 × 1036erg s−1 , Ṗ = 1.44 × 10−11s s−1 , P =3000.65 s and

fixing η = 1, we find that βf 3/2 = 0.191 for a NS mass of 1.4M�. Since f 1, we

expect that more than 81% of the mass yielded by the companion star leaves the

system. Furthermore, since the measured values of Lx and Ṗ are positive, the

term 1− 1.5α(1− β) in eqs. 4.9 and 4.10 should be positive. Solving for α while

taking β < 0.191, we obtain that α < 0.823. Because α is in units of 2πa2/Porb,

we find that the matter should leave the binary system from a distance d from

the neutron star of d 6 α1/2a; the point of ejection in unit of orbital separation

is x = d/a < α1/2 . In the rest of the discussion, we assume that the matter is

ejected at the inner Lagrangian point xL1 of the binary system. We rewrite the

eq. 4.9 as function of f using the condition βf 3/2 = 0.191. We find:

Lx '
5.2× 1042

1− 1.5xL1(1− 0.191f−3/2)
m

5/3
1 P

−14/3
m 0.191f 3/2erg s−1 (4.12)

where xL1 is the position of the inner Lagrangian point in units of orbital

separation. Using eq. 4.7 and a NS mass of 1.4M�, xL1 can be written as a cubic

function of f for values of the thermal bloating factor between 1 and 10. We find:

xL1 = 0.915− 6.87× 10−2f + 6.61× 10−3f 2 − 2.88× 10−4f 3

with an accuracy of 2× 10−3. Combining the last equation and eq. 4.12, we

infer the luminosity as function of f. We show Lx in units of 1036erg s−1 versus f

for a NS mass of 1.4M� (purple colour) in Fig. 4.8.
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Figure 4.8: X-ray luminosity of XB 1916-053 in units of 1036erg s−1 versus the thermal

bloating factor f of the companion star. The four curves correspond to different values

of the NS mass: purple, green, light blue, and gold colours correspond to a NS mass of

1.4, 2, 2.1, and 2.2 M�, respectively. The peaks in the curves are at f ' 1.5.

Since the observed luminosity for a NS mass of 1.4M� is larger than the

predicted one for each value of f, also taking the corresponding error into account,

we conclude that this specific non-conservative mass transfer scenario fails for a

NS mass of 1.4M�. We repeat the same procedure for NS masses of 2, 2.1, 2.2 M�,

finding that the predicted and observed luminosities are only compatible in the

case in which the NS mass is > 2.2M�. In this case, we find that βf 3/2 = 0.154,

α < 0.784 and:

xL1 = 0.927− 6.02× 10−2f + 5.66× 10−3f 2 − 2.88× 10−4f 3

with an accuracy of 2 × 10−3. The luminosity for a NS mass of 2.2M� (gold

colour) is shown in Fig.4.8. Furthermore, we plot the orbital period derivative as

function of f for a NS mass of 2.1M� (brown colour) and 2.2M� (purple colour)

in Fig.4.9.

We note that that only for a NS mass of 2.2M� the predicted and measured

Ṗ are compatible for f ' 1.5. We conclude that this non-conservative mass

transfer scenario predicts the observed values of luminosity and orbital period
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Figure 4.9: Orbital period derivative of XB 1916-053 in units of 10−11s s−1 versus

the thermal bloating factor f of the companion star. The brown and purple curves are

obtained using a NS mass of 2.1 and 2.2 M�. The red and green lines indicate the

best-fit value and the values at 68% confidence level of the orbital period derivative

obtained from the LQS ephemeris. The purple curve is compatible at 1σ with the

measured orbital period derivative for f ' 1.5.

derivative only for NS masses larger than 2.2 M�. For a NS mass of 2.2M�, the

companion star has a mass of 0.028M� and β is close to 0.084, which is more

than 90% of the matter, yielded from the companion star, that leaves the binary

system. In this scenario, we suggest that XB 1916-053 could be considered as a

possible progenitor of the ultra-compact ”Black Widow” pulsars with very low-

mass companions.

Benvenuto et al. (2012)[100] proposed that a binary system with an initial orbital

period of 0.8 d, composed of a 1.4M� NS and a companion star mass of 2M�,

evolves in ∼ 6.5 Gyr forming a binary system that well fits the known orbital

parameters of the black widow millisecond pulsar PSR J1719-1438. We note that

the same evolutive path fits the orbital parameters of XB 1916-053 at ∼ 5 Gyr

from the initial time. At 5 Gyr, the predicted orbital period is 0.035 d, the

predicted companion star mass is 0.03M�, the NS mass is slightly larger than

2.2 M� (Benvenuto, private communication) and the companion star is helium
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dominated. These values are very similar to those of XB 1916-053 shown in

this work for a non-conservative mass transfer scenario, although a discrepancy

between our estimation of Ṁ2 ∼ 4.1 × 10−9M�yr
−1 and the value suggested by

Benvenuto et al. (2012)[100] at 5 Gyr ( ∼ 10−10M�yr
−1) is present. Furthermore,

we note that as the spin period of PSR J1719-1438 is 5.7 ms (see Bailes et al.

2011, and references therein)[101] the spin period of the NS in XB 1916-053

could also be extremely short. Indeed, Galloway et al. (2001)[90] interpreted the

asymptotic frequency of the coherent burst oscillations in terms of a decoupled

surface burning layer and suggested that the NS could have a spin period around

3.7 ms. Nevertheless, we note that our solution for a non-conservative mass

transfer scenario is not supported by a robust physical mechanism to explain the

large quantity of matter ejected from the inner Lagrangian point. To date, only

two physical mechanisms are known to be able to eject the transferred matter

partially (or totally) . The first mechanism predicts that when a super-Eddington

mass transfer occurs, the X-ray luminosity has to be at the Eddington limit.

Then, the radiation pressure from the compact object pushes away part of the

transferred matter from the binary system. This mechanism was recently invoked

to explain the large orbital period derivative measured in the accretion disc corona

(ADC) source X1822-371 by Burderi et al. (2010)[32], Iaria et al. (2013)[38], and

Iaria et al. (2015) [26]. However, this mechanism cannot be applied in the case

of XB 1916-053 because type-I X-ray bursts are observed in the light curve of

the source (see e.g. Fig.4.10), whilst the stable burning sets in at high accretion

rate values that are comparable to the Eddington limit (see Bildsten 2000, and

references therein)[102].

Consequently, the mass transfer rate cannot be super-Eddington and this mecha-

nism cannot justify a non-conservative mass transfer scenario. The second mech-

anism supposes that the X-ray binary system is a transient source and during the

X-ray quiescence it is ejecting the transferred matter from the inner Lagrangian

point due to the radiation pressure of the magneto-dipole rotator emission. This

mechanism, which we call radio ejection after Burderi et al. (2001)[103], was pro-

posed by Di Salvo et al. (2008)[104] to explain the large orbital period derivative

measured in SAXJ1808.4-3658. However, this mechanism also fails to explain our

results because XB 1916-053 is a persistent X-ray source.

Finally, we discuss the sinusoidal modulation observed in the LQS and LSe

ephemerides. If we assume a conservative mass transfer scenario, the predicted
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Figure 4.10: Suzaku XIS0 light curve of XB 1916-053 during the long observation on

2014 Oct.

orbital period derivative is close to 4 × 10−13s s−1 independent of the NS mass.

Then we added a quadratic term to the LSe ephemeris to take the predicted value

into account. We fitted again the delays using the relation:

y(t) = a+ bt+ ct2 + ∆DS(t)

where the term c is fixed to 5× 10−7s/d2. The fit parameters are reported in

Tab. 4.5.

We note that the addition of the quadratic term does not significantly change

the best-fit parameters. An explanation of the sinusoidal modulation obtained

from the LSe ephemeris could be the presence of a third body gravitationally

bound to the X-ray binary system. Assuming the existence of a third body of

mass M3, the binary system XB 1916-053 orbits around the new centre of mass

(CM) of the triple system. The distance of XB 1916-053 from the new CM

is given by ax = abinsini = Ac, where i is the inclination angle of the orbit

with respect to the line of sight, A is the amplitude of the sinusoidal function

obtained from the ephemeris of eq. 4.9, and c is the light speed. We obtained

ax = (1.60± 0.13)× 1013 cm for Pmod = 18600 d. We can write the mass function

of the triple system as:
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M3sin i

(M3 +Mbin)2/3
=

(
4π2

G

)1/3
ax

P
2/3
mod

where M3 is the third body mass, Mbin the binary system mass, and finally,

Pmod is the orbital period of XB 1916-053 around the CM of the triple system.

Substituting the values of Mbin, Pmod , ax and assuming an inclination angle for

the source of 70◦, we find that M3 is ∼ 0.10M� and ∼ 0.14M� for a NS mass

of 1.4M� and 2.2M�, respectively. We used also Pmod of 17100 d and 20100 d

finding that the values of M3 are substantially independent of the value of Pmod.

For a non-conservative mass transfer scenario, we discuss the sinusoidal modu-

lation obtained from the LQS ephemeris assuming a NS mass of 2.2M�. In this

case we find that ax = (3.9±0.5)×1012 cm and M3 ∼ 0.055M� for an inclination

angle of 70◦.

4.6 Conclusions

We have systematically analysed all the historically reported X-ray light curves

of XB 1916-053, which span 37 years. We find that the previously suggested

quadratic ephemeris for this source no longer fits the dip arrival times.

We studied the conservative mass transfer scenario of the system, finding that the

thermal bloating factor of the degenerate companion star is 3.6 and 3 for a NS

mass of 1.4 and 2.2M�. In this scenario, the predicted and observed luminosity

are compatible (∼ 5−7×1036erg s−1 ), although the orbital period derivative is a

factor of 40 smaller than the value of 1.44×10−11s s−1 obtained fitting the delays

with a quadratic plus a sinusoidal function (LQS ephemeris). If the conservative

mass transfer scenario is correct, we conclude that the modulation of the delays

associated with the dip arrivals time are solely due to a sinusoidal modulation

caused by a third body orbiting around the binary system.

In this case we estimate the third body mass is 0.10 and 0.14 M� for NS masses

of 1.4 and 2.2 M�, respectively. The orbital period of the third body around XB

1916-053 is close to 55yr and the orbit shows an eccentricity e = 0.28± 0.15.

In a non-conservative mass transfer scenario where the mass is ejected away from

the inner Lagrangian point, we find that the observed luminosity and the or-

bital period derivative from the LQS ephemeris are possible only from a NS mass

> 2.2M�. In this case we obtain that the thermal bloating factor of the de-

generate companion star is f ' 1.5, the companion star mass is 0.028M�, and
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the fraction of matter yielded by the companion star and accreting onto the NS

is β = 0.084. In this scenario, the sinusoidal modulation of the delays can be

explained by the presence of a third body orbiting around XB 1916-053 with an

period of 26 yr. We find that the third body mass is 0.055M�. Finally, if the

non-conservative mass transfer scenario is valid, we suggest that XB 1916-053

and the ultra-compact black widow system PSR J1719-1438 could be two differ-

ent stages of the same evolutive path discussed by Benvenuto et al. (2012)[100].

If it is true, then the age of XB 1916-053 is close to 5 Gyr, whilst PSR J1719-1438

is ∼ 6.5 Gyr old.
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Point Dip Time (MJD;TDB) Cycle Delay (s)

1 43609.4168(12) -187551 772± 74

2 44168.2535(5) -171460 792± 28

3 44523.2941(5) -161237 641± 42

4 45594.7744(3) -130385 449± 18

5 46209.6271(13) -112681 193± 112

6 46351.7778(9) -108588 352± 52

7 47414.193(2) -77997 162± 132

8 48146.539(3) -56910 47± 182

9 48913.6127(10) -34823 −140± 59

10 49109.1148(12) -29165 −48± 76

11 50174.7555(5) 1490 −50± 46

12 50310.6187(4) 5402 −17± 37

13 50566.3680(4) 12766 −69± 39

14 51001.3241(5) 25290 −15± 40

15 51043.7292(5) 26511 −9± 45

16 52074.0935(3) 56179 151± 29

17 52183.7349(3) 59336 107± 28

18 52183.7008(2) 59335 162± 19

19 52542.2168(4) 69658 227± 39

20 52542.2860(11) 69660 202± 98

21 52957.9679(8) 81629 327± 69

22 53224.6246(4) 89307 467± 34

23 54048.3791(5) 113026 411± 39

24 55367.45218(15) 151007 593± 13

25 56459.9129(3) 182463 721± 20

26 56853.6454(8) 193800 821± 67

27 56949.84670(10) 196570 814± 8

Table 4.3: Journal of the X-ray dip arrival times of XB 1916-053. Epoch of reference

50 123:00873 MJD, orbital period 3000.6511 s.



91

P
ar

am
et

er
s

L
Q

L
Q

C
L

S
L

Q
S

L
S
e

a
(s

)
78
±

23
−

2.
7+

2
.1

1
1
.2

58
4
±

15
7

16
±

22
22

9
±

33
6

56
±

32
2

1.
1
±

29
9.

2

b
(×

10
−

3
sd
−

1
)

−
4
±

4
37
.1
±

0.
4

−
43
±

23
−

4
±

3
3
±

20
3
±

19
5
±

22

c
(×

10
−

5
sd
−

2
)

1.
70
±

0.
09

2.
13
±

0.
03

-
1.

79
±

0.
09

-
-

-

d
(×

10
−

9
sd
−

3
)

-
−

1.
35
±

0.
12

-
-

-
-

-

A
(s

)
-

-
65

8
±

20
6

13
0
±

15
51

9
±

47
54

8
±

43
57

7
±

43

t φ
(d

)
-

-
38

97
±

33
2

13
56
±

20
3

−
37

23
±

11
00

−
31

50
±

11
16
−

29
23
±

10
34

P
m
o
d

(d
)

-
-

20
40

9
±

33
81

93
02
±

75
2

17
10

0
(fi

x
ed

)
18

60
0

(fi
x
ed

)
20

10
0

(fi
x
ed

)

$
(d

eg
)

-
-

-
-

19
5
±

26
21

0
±

28
21

7
±

27

e
-

-
-

-
0.

26
±

0.
20

0.
28
±

0.
15

0.
32
±

0.
13

χ
2

(d
.o

.f
.)

19
4.

6(
24

)
92

.4
(2

3)
63

.7
(2

2)
39

.4
(2

1)
51

.8
(2

1)
48

.2
(2

1)
45

.8
(2

1)

T
ab

le
4.

4:
B

es
t-

fit
va

lu
es

of
th

e
pa

ra
m

et
er

s
of

th
e

fu
nc

ti
on

s
us

ed
to

fit
th

e
de

la
ys

.T
he

re
po

rt
ed

er
ro

rs
ar

e
at

68
%

co
nfi

de
nc

e
le

ve
l.

T
he

fit
pa

ra
m

et
er

s
of

th
e

de
la

ys
ar

e
ob

ta
in

ed
us

in
g

L
Q

(c
ol

um
n

2)
,

L
Q

C
(c

ol
um

n
3)

,
L

S
(c

ol
um

n
4)

,
L

Q
S

fu
nc

ti
on

(c
ol

um
n

5)
,

an
d

L
Se

(c
ol

um
ns

6,
7,

an
d

8)
,

re
sp

ec
ti

ve
ly

.



92

Parameters Pmod = 17100 d Pmod = 18600 d Pmod = 20100 d

a (s) 180± 332 21± 307 −27± 285

b (×10−3 s/d) 2± 20 2± 19 4± 21

A (s) 506± 46 534± 43 562± 43

e 0.26± 0.20 0.28± 0.15 0.32± 0.13

$(deg) 198± 27 213± 28 219± 27

tφ (d) −3594± 1129 −3036± 1131 −2825± 1042

χ2(d.o.f.) 51.3(21) 47.9(21) 45.5(21)

F-test prob. 3.5× 10−2 1.5× 10−2 0.8× 10−2

Table 4.5: Best-fit parameters of the delays assuming the presence of the third body in

eccentric orbit and taking a quadratic term c=5×10−7s/d2 into account. The reported

errors are at 68% confidence level. The F-test probability is estimated with respect to

the value of the LS ephemeris (the fourth column of Tab.4.4).



Chapter 5

Final conclusions

In this work we analyzed two low-mass binary systems containing neutron

stars viewed at high inclination angle (an eclipsing source and a dipping source).

These are X1822-371 and XB 1916-053, respectively. The study of high-inclination

systems is very important to gain information on LMXBs in general, since their

light curve show periodic signals, such as dips or eclipses, at the orbital period

of the system. These periodic signals can be used infer the orbital period of the

system and eventually to study its evolution or, more in general, to infer changes

of the orbital period, which have a physical origin. The two sources of our sam-

ple are very interesting LMXBs. 4U 1822-371 is an eclipsing source, which also

shows dips in the light curve, and is observed at a high inclination angle, more

than 80 degree. It also shows coherent X-ray pulsations at the spin period of the

neutron star, at about 0.5 s, and probably has an intermediate magnetic field. It

is therefore a not yet recycled neutron star, and few sources like this are known

in literature to date. The other source, XB 1916-053, is a dipper, with a less

extreme inclination angle with respect to the previous one. It, however, belongs

to the class of ultra-compact LMXB, with an orbital period of less than 1 h.

This gives us the possibility to accurately study its orbital period changes, since

relatively short observations can catch many orbital cycles and the statistics in

the orbital light curve can be increased using folding techniques. In the following

I describe in detail the conclusions of our study for both these sources.
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5.0.1 X1822-371

We analysed the broadband X-ray spectrum of X1822-371, using all the presently

available data sets, to understand the nature of the residuals between 0.6 and 0.8

keV previously observed in the XMM/EPIC-pn data by Iaria et al.,(2013) [38].

To fit the residuals between 0.6 and 0.8 keV, we added an absorption feature

with Gaussian profile (gabs in XSPEC). We interpret the Gaussian feature in

absorption as a cyclotron resonant scattering feature (CRSF) produced close to

the neutron star surface and derive the magnetic field strength at the surface of

the neutron star, (8.8±0.3)×1010G for a radius of 10 km. This is the first direct

measurement of the magnetic field strength in this source and clearly indicates

that the magnetic field in this source has an intermediate value between the very

weak magnetic field of LMXBs, about 108−109G, and the strong field of HMXBs,

typically above 1012G. These intermediate-magnetic field systems are quite rare

in nature. Also, this is up to that the lowest magnetic field that has been di-

rectly measured through the detection of a cyclotron line, since cyclotron line are

produced for magnetic field above 1011G.

We also detected the spin period of X1822-371 and we obtained the value of

0.5928850(6) s. Using all the measurements known of the spin period of X1822-

371, we estimated that the spin period derivative of the source, that is −2.55(3)×
10−12s/s, and this confirms that the neutron star is spinning up.

We constrain the neutron star (NS) mass assuming that the CRSF is produced

at the NS surface. We find that the NS mass is between 1.61 ± 0.15M� and

1.70± 0.13M�. The companion star mass is constrained between 0.44± 0.03M�

and 0.46± 0.02M�.

Finally, we note that our conclusions contrast with the recent results reported

by Sasano et al. (2014)[39], who report a CRSF at 33 keV (and a corresponding

NS-B field of 3× 1012G) in the Suzaku data also used in this work.

To address this point, we have analized the INTEGRAL spectrum combined

with the XMM, Suzaku, and Chandra spectra. These do not show significant

evidence of a CRSF at 33 keV. Furthermore, we also show from theoretical argu-

ments that a CRSF at 33 keV is not consistent with the evidence that the NS in

X1822-371 is spinning up.
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5.0.2 XB1916-053

In this work we have analysed all the historically reported X-ray light curves

of XB 1916-053, which span 37 years, and we find that the previously suggested

quadratic ephemeris for this source no longer fits the dip arrival times. We

conclude that the modulation of the delays associated with the dip arrival times

are probably due to a sinusoidal modulation caused by a third body orbiting

around the binary system. We estimate the third body mass is 0.10 and 0.14 M�

for NS masses of 1.4 and 2.2 M�, respectively. The orbital period of the third

body around XB 1916-053 is close to 55yr and the orbit shows an eccentricity

e = 0.28± 0.15.





Appendix A

Orbital timing method

To analyze the periodic signatures in the light curve of the X-Ray sources it is

to use the ”Orbital timing method”. The method consists to extract the dip (or

eclipse) arrival times, calculate the number of cycles and the delays, construct a

diagram of delays vs. cycles and then fit it to obtain the parameters that allow

to understand the orbital period variation of binary systems.

Analysing the steps in details we have:

1- Extracting the dip (or eclipse) arrival times From light curves we

isolate a dip (or eclipse) we fit the dips with a simple model consisting

of a ”step and ramp” function, where the count rates before, during, and

after the dip are constant and the intensity changes linearly during the dip

transitions. This model involves seven parameters: the count rate before,

during, and after the dip, called C1 , C2 and C3 , respectively; the start and

stop time of the ingress (t1 and t2) and, finally, the start and stop time of

the egress (t3 and t4 ). The time of dip for each light curve was, therefore,

calculated as the mean value of the two times t2 e t3, where the bottom of

the dip strats and ends:

Tdip =
t2 + t3

2

2- Calculating the number of cycles and the delay Suppose to have an

estimate of the orbital period of the source, we denote this value with PTrial,

or trial period; we also choose an arbitrary instant of time, TTrial, in which,

for istance, a minimum is observed, that can be a dip (or an eclipse) in
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the light curve. Since the dip (or eclipse) occurs periodically, with a period

that we supposed to be equal to PTrial,then we expect the dip (or eclipse)

is observed again at a time:

Tdip = TTrial + PTrial ×N

where N is a number which can vary from 0 to ∞. The integer part of

N corresponds to the number of cycles, elapsed at the time of the dip,

while the decimal part of N represents the delay in phase. This decimal

part, converted in time, is the correction time (delay) with respect to the

expected arrival time of the dip that is an integer number N of orbital period

PTrial after the starting time TTrial, and is due to the fact that PTrial does

not coincide with the actual period of the system; in this way we obtain the

real arrival time of the dip and therefore the phase of the dip with respect

to the trial ephemeris.

3- Delay-cycles diagram, fit and determination of the actual orbital

period The delay-cycles diagram for a binary system without appreciable

changes in period is a straight line. If PTrial is compatible with the orbital

period any delay would be around zero. Consequently, building a diagram

of phase delays as a function of the number of cycles we would obtain all

the points on an horizontal line, with a scattering caused by statistical

uncertainties, around zero. If PTrial is not compatible with the orbital

period, but differs from it of a costant quantity, the straight line in the

delay-cycles plot will be downward or upward and the angular coefficient of

the linear trend is the correction to the trial period in order to get the real

period.

Performing a linear fit, you can get the values of the slope and the intercept

of the straight line that interpolates points. These values represent, respec-

tively, the correction to the orbital trial period, ∆P , and correction to the

test time of the first dip, ∆T . Hence the orbital period and the actual time

of the first dip can be calculated through the following simple relationships:

Preal = PTrial + ∆P Treal = TTrial + ∆T
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If you repeat the procedure using Treal and Preal as new reference time and

period, iterating the process, the slope of the line gradually decreases, until

all points will follow a constant trend close to zero.

In systems in which a mass transfer takes place, as we have seen in preced-

ing paragraphs (see chapter 2), the orbital period is not constant, its time

derivatives will be different from zero and the plot will not be a straight

line. If the delay-cycles plot can be represented by a second-order poly-

nomial, then the period of the binary system is changing linearly, that is

with a costant first derivative. If the plot is a parabola with a concavity

facing up, the period would be increasing, conversely, if the concavity is

face down the period is decreasing and the quadratic term is proportional

to the orbital period derivative; in this case the actual time of the first dip

can be calculated through the following relationship:

Tdip = TTrial + PTrial ×N +
1

2
PTrialṖTrial ×N2

A sinusoidal curve in the phase delays versus cycles would instead indicate

a sinusoidal modulation of the orbital period which may be an indication

of an other body orbiting the binary system and the actual arrival time of

the dip will be:

Tdip = TTrial + PTrial ×N +
1

2
PTrialṖTrial ×N2 + Asin

[
2π

Nmod

N − φ
]

where Nmod = Pmod/PTrial and Pmod is the period of the sine function, while

φ = 2πtφ/Pmod and tφ is the time referred to TTrial at which the sinusoidal

function is null.





Appendix B

Folding method

Suppose to have a light curve, or counts versus time. The counts in each bin

time δT in which the light curve is divided follow the Poisson statistic. In the

bin δTi we have therefore Ni counts with a standard deviation σ =
√
Ni. Assume

that the source has a periodicity superimposed to a stable signal, for example,

a peak that is repeated every period P. If the source is weak (or the period P

is very small, so that few counts are present) the peak may be indistinguishable

from statistical fluctuations associated with the counts. One way to highlight a

periodic signal is significantly reduce statistical fluctuations. If it is known the

period P of the signal, just divide the light curve in intervals of length P which

can then be added together coherently. In making the average, the standard

deviation associated with the single channel is reduced by a factor
√
N in order

to obtain σi,new = σi/
√
N . If the exact period it is not known and it is wrong by

an amount δt, where ∆t is a bin in the folded light curve, then at every period the

signal is moved by the amount δt with respect to the previous one, that is, the

signal is completely spreaded across all channels of folded light curve. The more

we reduce the error on the determination of the period (δP � δt) the more the

different signals will be added together coherently. Then you will see the signal

go from a situation in which it is scattered in all channels to a situation in which

it is correctly found in the right channel. In practice, we see how you make an

operation of folding. We take a reference time T0, called epoch, and such that,

for example, it is near the beginning of the observation. For each channel we can

calculate the phase:

I.α =
ti − T0

P
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where ti is the arrival time of the i-th signal, I is an integer and corresponds to

the integer number of periods with respect to the beginning of the observation

(not important) and α is the decimal part that represents the phase of the i-th

channel in the signal profile (for t ranging from 0 to P, the phase will go from

0 to 1). Doing this for all channels and coherently summing those that fall in

the same phase bin the folded light curve is obtained which corresponds, if the

assumed period is the correct one, to the signal profile. We estimate the step

δP with which it is appropriate to vary the trial period. Suppose we have an

observation of total duration T and ask ourselves what is the maximum variation

of the period δP which does not have any effect on the folded light curve. This

should be such that the last channel of the last period (the one that suffers the

most the error δP since these will sum up at every period) falls in the last channel

of the folded light curve. So we find δP such that the last channel of the last

period is shifted by one channel in the folded light curve. In the folded light curve

we have n channels: n =
P

δT
, where δT is the width of the channel in the folded

light curve. In our observation we have a number of periods given by: N = T/P .

If we make a mistake δP on the period, the total error on the last period will

be NδP . We impose that NδP = δT (the final error is equal to the shift of one

channel in the folded light curve):

δP =
δT

N
=

P

nN
=
P 2

nT

So the step values δP <
P 2

nT
will shift the last interval by less than one channel

in the folded light curve, which therefore does not produce appreciable changes

in the shape of the profile. On the other hand a coarse step on the period search

is the one that corresponds to a shift of one period of the folded light curve:

NδP = P

therefore:

δP =
P

N
=
P 2

T

Usually the search starts with a coarse step and then be refined to improve

the measurement.
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