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Abstract 
 
 
 

Long non-coding RNAs (lncRNAs) are emerging as essential regulators of genetic 

and epigenetic networks, and their deregulation may underlie complex diseases, 

such as carcinogenesis. Several studies have described lncRNAs alterations in 

patients with solid tumors. In particular, in Gastrointestinal Stromal Tumors (GIST), 

upregulation of HOTAIR has been associated with tumor aggressiveness and 

metastasis, and poor patients’ survival. In order to gain more detailed insight on 

the molecular role of lncRNAs in GIST, we analyzed in vivo the expression levels 

of lncRNAs H19, HOTAIR and MALAT1 in tissue specimens of both surgically 

resected and metastatic GIST patient. The expression of the lncRNAs H19, 

HOTAIR and MALAT1 was evaluated in a total of 40 patients with GIST using 

quantitative real-time reverse transcriptase (qRT-PCR). H19 was overexpressed in 

50% (20/34) GIST patients (p-value: 0.0496). MALAT1 was overexpressed in 

45,15% (14/31) GIST patients (p-value: 0.032). Furthermore, the up-regulation of 

H19 has been found in 74% (17/23) patients harboring cKIT mutations compared 

to 4/7 (57%) wild type patients (p-value: 0.042). Conversely the up-regulation of 

MALAT1 has been found in 76% (13/17) patients harboring cKIT mutations 

compared to 4/4 (100%) wild type patients (p-value: 0.027). Finally, the up-

regulation of H19 has been found in 100% (5/5) patients with TTP < 3 months 

compared to 25% (1/4) patients with TTP >3 months, while the up-regulation of 

MALAT1 has been found in 25% (1/4) patients with TTP < 3 months compared to 

75% (4/5) patients with TTP >3 months.  

H19 and MALAT1 appear upregulated in GIST patients according to the KIT-

mutation status. These data would suggest a potential, opposite prognostic value 

of both H19 and MALT1 lncRNAs in these patients. Further analyses are needed 

to confirm these data, and evaluate the potential role of such lncRNAs, as 

prognostic/predictive biomarkers. 



	

 

CHAPTER 1 

 
 
 
 
 

Background Rationale and Objectives 
 
 
 
 

1.1 Introduction 
 

“We are more than the simply sum of our genes”.  Over the last decade, this is the 

idea that characterized the post-genomic era and it will likely allow us to understand 

the molecular cellular identity. Indeed every type of cell shows the same single 

genome but different epi-genomes able to determine the final cellular identity4. 

Therefore the “personality of cells” becomes definite by its epigenome that is the result 

of both the classic Mendel’s laws of genetic inheritance and epigenetic, whose basic 

unit is the nucleosome5,6. The nucleosome structure together with non-histone 

proteins and RNAs constitute the plasticity of chromatin architecture (Figure 1). 

Indeed, the set of ATP-dependent chromatin remodeling complexes covalent 

modifiers, and non-coding RNAs, seem to play a key role in the network of epigenetic 

regulation being able to make modification beyond the DNA sequences7. Although 

these events take place physiologically, it was also observed that aberrations arising 

at RNA or protein levels, may influence the tumor phenotype without generating any 

changes in genes coding8,9 (Figure 2). Recent data have shown that several emerging 

classes of non-coding RNA, such as HOTAIR, Xist ed AIR long non coding RNA 

(lncRNA) interact with chromatin remodelling complexes in order to direct themselves 

toward gene targets10-13. LncRNAs are emerging as essential components of gene 

regulatory networks, including cancer14. In the current scenario, characterized by a 

spasmodic research of new biomarkers and the advent of advanced technologies, the 

lncRNAs represent a new, valid and largely unexplored field of investigation, that I like 

wildly think as “super-natural or epi-DNA”.  
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1.2 The little world of long non-coding RNA (LncRNA) 
 

It is the versatile molecule of RNA that, always considered as a simple mediator 

between DNA and proteins, in the last decades has received favorable consensus, 

being recognized as a centerpiece of the complex world that goes around the life of 

the cell15,16. Indeed, recently the scientific community has re-considered all the 

potential scenarios in which the lncRNAs and their related mechanisms of action could 

shed light on organismal complexity17,18. LncRNAs belong to a class of regulatory RNA 

noncoding for proteins that, as it has been estimated, represent approximately 1.5% of 

the eukaryotic genome, almost entirely transcribed19-21. The NONCODE human 

lncRNA database annotated 527,336 transcripts that are antisense, intergenic, sense 

intronic, and processed transcript22. Differently from toother transcriptome and 

epigenome data sets the lncRNAs are generated through a molecular pathway similar 

to that used for protein-coding genes 23. LncRNAs have been arbitrary defined 

according to their size, as transcribed RNA molecules greater than 200 nt in length in 

their mature form. In contrast to the small ncRNAs (siRNAs, miRNAs, and piRNAs), 

which are highly conserved in commonly studied species, and act as negative 

regulator of gene expression, lncRNAs are modestly conserved, and regulate gene 

expression through mechanisms that are mostly poorly understood24-28.  

1.3 LncRNAs as subject: features and functions  
 

As mRNA, lncRNAs are often multi-exonic21 and lack an open reading frame of 

significant length (less than 100 amino acids)29-31. LncRNAs are preferentially localized 

in the chromatin and nuclear RNA fractions, but also in cytoplasm fractions. They may 

have or not 3’poly(A) motif and 5’ capped, showing canonical splices sites. LncRNAs 

are subjected to transcriptional and post-transcriptional regulation, thus lacking any 

protein-coding potential23,32. Despite the majority of lncRNAs’ functions remain 

unknown, it seems that their effects are likely due to a synergistic interaction with other 

components33-35.  Indeed their peculiar structure allows them to easily interact with 

DNA, RNA nucleic acids and proteins36,37. Thus far, it has not beenclarified yet the 

specific molecular mechanisms used by lncRNAs to regulate such processes and if they 

play an active or a passive role in this context21. Thanks to their structure, they play a 



5	
	

critical role in a plethora of biological functions at transcriptional, post-transcriptional 

and translation levels, including also epigenetic processes 27,28,35,38. 

This wide range of cellular functions are not mutually exclusive21 (Figure 3). 

ü As signal, the expression of lncRNAs responds to intra- and extracellular stimuli 

in a specific space-time (Figure 3 I). 

In mammals, lncRNAs can act as signals for the regulation of gene expression during 

the development process, or in stress conditions, or during the splicing of pre-mRNA. 

They can recruit chromatin-modifying factors on their target gene promoters inducing 

transcriptional active euchromatin or silent heterochromatin status. They can also 

contribute merely in a signaling pathway21,39.For example, the overexpression or down-

regulation of lincRNAs induces high or low levels of induced pluripotent stem cells 

(iPSCs), respectively, and their absence is associated with dysregulation of p53, in 

response to a particular stress as DNA damage (confirming the key role of lincRNAs in 

the induction of pluripotency)40.  

ü As Decoy, lncRNAs tighten the interaction with ribonucleoproteins structure 

(RBPs) on chromatin, into nuclear subdomains or in the cytoplasm21,41 (Figure 3 

II). 

LncRNAs can recruit transcriptional factors, chromatin modifiers or other regulatory 

factors21. Also, they can interact with DNA to cause a triple helix structure that block the 

maturation of pre-initiation mRNA complex42. Instead, at post-transcriptional level, 

lncRNA-mRNA double helix complex can grow the stability of mRNA and it may prevent 

the degradation of mRNA 43. Furthermore, lncRNAs can bind regulatory microRNAs44. 

The interaction microRNA-lncRNA can cause the degradation of lncRNAs or can 

promote the creation of small microRNA. Thanks to their “miRNA-sponge” action 

lncRNAs can block the microRNA function or may act as endogenous competitor for the 

binding with mRNA targets45,46 (not shown on figure). 

ü As Guide, lncRNAs form RBP complexes in cis or in trans position of their 

production site (Figure 3 III).  
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lncRNAs can bind the proteins involved in the transport activity likely to facilitate the 

localization in the specific chromosome sites or to recruit chromatin-modifying enzymes  

ü As Scaffold, in the same space and time (Figure IV),  

lncRNAs can bring together several different proteins, to make cellular substructures or 

protein complexes that has an effect on chromatin inside or outside the cell 18. 

So, they take part to both local and global changes in chromatin packaging. 

Since lncRNAs regulate several biological processes, their overexpression may be 

essential in the switch towards pathological conditions43,47. They may be involved in the 

development of different human diseases48,49such as cancer28,49,50. They may act as 

pro-oncogenic and/or tumor suppressor factors, modulating both tumor initiation, 

progression and metastatic pathways10. The majority of validated hypothesis suggested 

that the aberrant expression of lncRNAs related to the activation of oncogenes such as 

Myc and p5347.  

Experimental evidences suggested that dysregulation of lncRNAs promotes 

tumorigenesis and metastasis of several human cancers (Figure 4).  Among the 

different lncRNAs identified in solid tumors, H19, HOTAIR and MALAT1 represent those 

better studied and characterized as described below 12,27,51. 

1.4 LncRNA H19  
  

LncRNA H19 has been one of the first to be identified. It is mostly expressed in the 

embryonic and fetal tissues, but its expression is reduced in adult tissues52. The H19 

locus encodes a 2.3 kb noncoding and it maps on 11p15.5 chromosome in humans. 

This gene belongs to a subgroup of imprinted genes. The loss of H19 maternally 

expressed gene and its consecutive expression alteration has been observed in 

different solid tumors53. qRT-PCR analyses on gastric cancer cells and tissues, 

obtained during surgical resection, has shown a higher expression of lncRNA H19 

than that observed in adjacent normal gastric cancer (GC)54, non-small cell lung 

cancer (NSCLC),  renal cell carcinoma (RCC), ovarian cancer (OC), gallbladder 

cancer (GBC), laryngeal squamous cell cancer (LSCC), colorectal cancer (CRC), 

esophageal cancer (EC) and hepatocellular carcinoma (HCC) tissues. Its 
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dysregulation has been correlated with worse survival, poor DFS, histological grade, 

positive lymph node metastasis and advanced TNM stage55. Also, in plasma of pre-

operative patients with GC, the H19 plasma levels were high far more than healthy 

control patients although in no way there were conformity with clinico-pathological 

characteristics. It’s different the situation/analyses using paraffin-embedded tissues. 

There was no different H19 expression levels between cancerous tissues and paired 

non-cancerous tissues56. Despite the molecular mechanisms remain unclear, in GC 

tissue and cell lines, H19 acts rarely as tumor suppressor57,58, more as an oncogene 

through its mature product mir-67559,60. They directly or indirectly act on different 

target genes modulating different molecular pathways. Probably, the activation of 

Akt/mTOR pathway for the progression of GC seems to be mediated by inactivation of 

tumor suppressor RUNX1 (runt domain transcription factor 1), which is a target of mir-

67561,62.  Even the inactivation of p53 seems to grow the H19 expression level in 

hypoxic condition, likely through HIF1a, supporting the proliferation of gastric cancer 

cells54. The consequent epithelial–mesenchymal transition (EMT) phenomenon may 

be responsible of metastatic phenotype and/or pharmacoresistance events63. From a 

meta-analysis results, high H19 level expression was inversely correlated with OS and 

prognosis in many types of cancer, that could make it a negative prognostic 

biomarkers55.  

1.5 LncRNA HOX antisense intergenic RNA (HOTAIR)  
  

HOX antisense intergenic RNA (HOTAIR) encodes a large intergenic lncRNA. It is 

located within the HOXC locus in antisense orientation relative to the HOXC genes. 

Thanks to its peculiar archytecture it plays a key role as scaffold for the formation of 

different complexes. HOTAIR consists of two modules and a linker sequence. Both this 

modules bind a chromatin remodelling factor at target locus: the Polycomb Repressive 

Complex 2 (PRC2) and the lysine-specific demethylase 1 (LSD1), promoting the gain of 

trimenthylate lysine 27 of histone H3 (H3K27me3), which is a well-known repressive 

mark, and the loss of H3K4me2methylation, considered asan active trascription mark. 

Thereby, it is able to establish the silent eterochromatin state (essential to silence the 

locus HOXD located in trans on a different chromosome64 to alter other genes’ 

expression patterns65.  HOTAIR is considered a prognostic unfavorable marker in 

various kinds of cancer despite there has been not any significant association between 
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its abnormal expression and the clinical-pathological features of analyzed patients. 

Higher HOTAIR expression has been observed in breast, gastroenteric, liver, lung, 

prostate, pancreatic, sarcoma cancer tissues compared to the adjacent normal 

tissues12,66. In some tumor types higher levels of HOTAIR have been detected in 

plasma of cancer patients66 compared to healthy controls, but in GC patients the 

plasma levels of such lncRNA ) were similar to the normal population56. 

1.6 LncRNA MALAT1  

MALAT1 is the most expressed within the lnc transcripts. Its transcript is long 6.7 kb. It 

localizes into nuclear speckles67-69 reaching the citoplasmatic compartment as RNA of 

few nt70. Nuclear-localized lncRNA MALAT1 shuttles to transcription start sites where it 

functions as scaffold to guide transcription and alternative pre-mRNA splicing in a target 

gene. It acts as oncogenic factor. In stress condition it has been found upregulated in 

common site of metastasis from different solid tumors first of all lung cancer71. In this 

type of tumor it plays a role as negative prognostic marker 72,73. As shown by a recent 

meta-analysis, also in breast, ovarian, colon, pancreatic and digestive cancer, the high 

expression of MALAT1 positively correlated with worse patients’ prognosis while in B 

cell lymphoma the condition was the opposite. Indeed, high level of MALAT1 1 

expression was associated to a good patients’ prognosis74. Similarly to HOTAIR, 

MALAT1 plasma levels in GC patients were no different compared to the healthy control 
56.  

1.7 LncRNAs and GIST  
 

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumor 

belonging to the class of sarcoma. We usually find them in gastrointestinal tract at a 

percentage of 60-70% in the stomach or even of 30% in small bowel, with lower 

frequency up to esophagus. GISTs can develop sporadic mutations in the c-KIT 

receptor and platelet-derived growth factor receptor alpha (PDGFRα) proto-oncogenes, 

which encode both KIT and PDGFRα proteins, respectively. Mutations of c-KIT exons 

9/11 are reported in about 80 % of GISTs, making them sensitive to the targeted 

therapy with the multi-target tyrosine kinase inhibitor (TKI) imatinib mesylate, whose 

advent has revolutioned the natural history of such disease. Conversely PDGFRα 

mutations are described in about 5-8% of GISTs and are associated with the 
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occurrence of primary resistance to the TKI imatinib. Finally about 15% of all GISTs 

don’t report any mutations in both c-KIT and PDGFRα genes and are defined as “wild-

type”. For GIST patients with localized disease who underwent the surgical treatment, 

the evaluation of cKIT/ PDGFRα molecular alterations together with other clinical-

pathological factors, including tumor size/site, mitotic rate, and proliferation index, is 

crucial to predict the potential risk of recurrence and ultimately decide if patients are 

candidate to receive adjuvant therapy with imatinib. As regards patients with advanced 

disease harboring c-KIT activating mutations imatinib mesylate represents the standard 

first-line treatment, while sunitnib and regorafenib are two multi-target TKIs usually 

administered after imatinib failure. Currently both c-KIT and PDGFRα mutations 

represent the only approved molecular biomarkers taken into account by clinicians to 

decide the medical therapy. In this scenario the identification of lncRNA as new 

potential diagnostic, prognostic, and predictive molecular biomarkers represent a new 

challenge for current translational research, especially in rare tumors such as GISTs75. 

Few working groups have studied, in vivo and in vitro, the expression of lncRNAs in 

GISTs. Niinuma et al. in 2012 described the deregulation of the HOTAIR expression in 

GIST patients. In particular, HOTAIR was up-regulated in high-risk malignancy samples 

from frozen GIST tissues. The lnc-RNA tissue overexpression was associated with 

metastasis and poor overall survival, even it was not statistically significant. This 

analysis was not confirmed in FFPE specimens, likely due to the low quality of RNA. In 

vitro, knockdown of HOTAIR in GIST-T1 cells influences the expression of target genes 

and the invasive ability of cells though not the cell viability. The dysregulation of both 

HOTAIR and other downstream genes expression in cancer cells, need to be ascribed 

to an epigenetic mechanism. Looking to the chromatin status of GIST-T1 cells, the 

histone codes show an enrichment of a marker of active gene transcription, H4K4me3, 

in the transcription start sites of genomic regions of interest76. Alternatively, the 

overexpression of HOTAIR can mediate the trimethylation of the histone H3 at lysine 27 

and the subsequent silencing of the target gene. An additional study by Lee et al. has 

recently confirmed such evidences, showing that if the target gene subjected to 

silencing is a tumor suppressor as PCDH10, the final result will be the failure of the 

mechanisms which control both tumor invasion and progression77. Even if very 

interesting, these are the only published data currently available regarding lncRNAs 

expression in GISTs. 
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1.8 Rationale and Objectives 
 

An increasing number of studies described lncRNAs expression alteration in different 

solid tumors, suggesting their potential involvement in tumorigenesis and metastatic 

processes, as well as their role as prognostic/predictive biomarkers for clinical use. 

However very few data are currently available on lncRNAs dysregulation in rare tumors 

such as GISTs. Our work represents one of the few studies evaluating lncRNAs 

expression in GISTs. Indeed, in order to gain more detailed insight on the molecular 

role of lncRNAs in GIST, we analyzed in vivo the expression levels of lncRNAs H19, 

HOTAIR and MALAT1 in tissue specimens of both surgically resected and metastatic 

GIST patients. Identifying reliable biomarkers of both cancer risk 

development/recurrence and prognosis, and treatment sensitivity/resistance predictors, 

represents an area of intense investigation in the cancer research. Therefore we 

subsequently tried to assess the potential prognostic role of these lncRNAs in relation to 

other clinical-pathological parameters in GIST patients as well as the possible 

association between their upregulation  and the targeted therapy efficacy.   
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CHAPTER 2 

 
 
 
 
 

Materials and Methods 
 
 
 
 
 

2.1 Study population  
 
 
From January 2009 and November 2016 a total of 40 patients were enrolled within a 

single-institutional translational research study at the Oncology Department of 

Palermo University Hospital, including 35 patients with localized disease and 15 

patients with advanced disease. Written informed consent was obtained from all 

patients before inclusion in such study and specimens collection. All patients with 

diagnosis of metastatic disease harboring cKIT activating mutations received oral 

imatinib mesylate at 400/800 mg daily until progression (PD) or unacceptable toxicity. 

Among the patients with localized disease subjected to surgical treatment, only those 

defined at high risk of recurrence according to the risk definition system proposed by 

Miettinen's et al.78 received oral imatinib mesylate at 400/800 mg daily for 3 years. All 

the patients underwent a CT-scan every 3 months and responses were classified 

according to RECIST criteria. Clinical and pathological characteristics of all GIST 

patients included in our study were retrieved from the clinical records available and 

were assessed retrospectively. 

2.2 Tumor samples  
 
A total of 40 pairs of disease formalin-fixed paraffin-embedded (FFPE) tissue and 

adjacent normal tissue from 40 patients with GIST were collected from Pathology 

Department of Palermo University Hospital between 2009 and 2016. Resected GISTs 

specimens were fixed in buffered formalin and embedded in paraffin for pathological 

examination. The same standard methods were used for pathological assessment of 
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the tissue biopsies from patients with metastatic onset. After that all sample sections 

(10 µm thick) were received at the laboratory of Genetic and Clinical Molecular 

Oncology, where they were subjected to the molecular analysis of KIT exon 9, 11, 13, 

17 mutations and PDGRFa exon 12, 14 and 18 mutations. Furthermore, we have 

obtained other sections of the tumor and simultaneously of the countparters healthy, 

which were used for gene expression analysis.  

2.2 DNA preparation and mutation screening 
  

Genomic DNA was extracted from formalin-fixed, paraffin-embedded sections using a 

QIAamp DNA FFPE Tissue Kit (Qiagen). To detect hotspot mutations, we amplified 

exons 9, 11, 13, 17, and 18 of the KIT gene by PCR in a preparation of genomic DNA. 

The primer sequences are listed in Table 2. We purified PCR products with PureLink® 

PCR Purification Kit (Thermo Fisher SCIENTIFIC), and directly sequenced them using 

BigDye XTerminator® Purification Kit (Thermo Fisher SCIENTIFIC) on an ABI 3130 XL 

Genetic Analyzer automated sequencer (Applied Biosystems). Sequence data were 

analyzed using Sequencing Analysis software 5.2 (Applied Biosystems). 

2.3 lncRNA isolation  
 

Formalin-fixed, paraffin-embedded tissues samples were deparaffinized and underwent 

total RNA and lncRNA extraction using miRNeasy FFPE Kit (Qiagen Inc., Valencia, CA, 

USA) according to the manufacturer’s instructions. LncRNA yield was determined 

through a Qubit™ 3.0 Fluorometer (Thermo Fisher SCIENTIFIC), and the quality 

assessed by agarose gel electrophoresis. The lncRNA concentration and quality were 

assessed with the Bioanalyzer 2100 (Agilent Technologies, CA) using the Agilent Small 

RNA Analysis kit (Agilent, CA).  

2.4 Reverse Transcription (RT) and quantitative Real time Polyme- 
rase chain reaction (qRT-PCR)  

 

Quantitative real-time PCR was used to measure lncRNA expression levels in 40 

disease/normal-paired GISTs samples. 500 nanograms of total RNA were reverse 

transcribed using High-Capacity cDNA Reverse Transcription Kit (ThermoFisher 

SCIENTIFIC) according to manufacturer’s instructions. RT reactions contained RNA 

sample, 1 × 1 mL of 10X RT Buffer, 1 × 1 mL of 10X RT Random Primers, 1 × 0.2 mL of 
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25X dNTP Mix (100 mM), 2 × 0.1 mL of MultiScribe® Reverse Transcriptase (50 U/µL) 

(all from ThermoFisher SCIENTIFIC) and nuclease-free water. The 50-µl reactions were 

incubated in a Thermocycler (Eppendorf, North Ryde, New South Wales, Australia) for 

10 min at 25°C, 120 min at 37°C, 5 min at 85°C and then held at 4°C.  

The following Applied Biosystems assays were used for TaqMan analysis of H19 

(Assay ID Hs00399294_g1); HOTAIR (Assay ID Hs03296631_m1); MALAT1 (Assay ID 

Hs00273907_s1) as potential prognostic biomarkers. The reactions were incubated in a 

96-well plate at 95°C for 10 min followed by 40 cycles of 95°C for 15 s and 60°C for 1 

min. The quantitative PCR was performed on an Applied Biosystems 7900HT fast RT-

PCR system, and data were collected and analyzed using ABI SDS version 2.3. 

Triplicate reactions were performed on all samples. To normalize qRT-PCR reactions, 

parallel reactions were run on each sample for GAPDH (Assay ID Hs03929097_g1). 

Changes in lncRNA expression levels were determined using a comparative CT 

method.  

2.5 Statistical Analysis  
 

Statistical analysis was performed using Microsoft Excel and Prism GraphPad software 

(GraphPad software, CA). 

A Fold Change > 1 (logarithmic scale) cut-point was used to define lncRNA up-

regulation in analyzed tumor tissues. 

Time to progression (TTP) was calculated from the date of admission to the date of first 

radiologic progression. Survival analysis was performed using Kaplan–Meier method, 

providing median and 95% confidence interval (CI) 

To compare two independent samples, X2 test was used for intergroup comparison of 

categorical variables, while the Mann Whitney test was used for statistical analysis of 

continuous variables. A p-value < 0.05 was used as a threshold for statistical 

significance 
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CHAPTER 3 

 
 
 
 
 

Results 
 
 
 
 
 
 

3.1 Clinical characteristics of the patients 
  
  
Forty patients with histopathological diagnosis of GIST were included into the study. 

Median age of the patients was 59 years. Majority of the patients were male (n.26, 

65%). More than half (n.25, 64%) of the cases had localized disease at diagnosis, so 

36% represented with stage IV disease. C-KIT mutations were detected in 27/40 

(67%) of patients, 17/25 patients with localized disease and 10/15 patients with 

metastatic disease at baseline. Consequently 8/25 (32%) patients with localized 

disease harboring c-KIT mutations received adjuvant treatment with imatinib for 3 

years because of high risk of relapse. Conversely 10/15 (66%) patients with metastatic 

disease received first-line therapy with imatinib mesylate until PD or unacceptable 

toxicity. Clinical and pathological characteristics of patients included in the study are 

summarized in Table 1.  

3.2 Expression of lncRNAs H19, HOTAIR, MALAT1 in GISTs 
  
Among the 40 patients included 34 were evaluable for lncRNA H19 expression 

analysis in tumor tissue. As shown in figure 5 the up-regulation of H19 has been found 

in 20/34 (50%) patients with GIST with median log2 fold-change of 5 (Table 3). 

Furthermore the up-regulation of H19 was significantly higher in tumor tissue of GIST 

patients than in normal tissue of the same individuals with p-value: 0.0496. 

Among the 40 patients included 31 were evaluable for lncRNA MALAT1 expression 

analysis in tumor tissue. As shown in figure 6 the up-regulation of MALAT1 has been 
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found in 14/31 (45,15%) patients with GIST with median fold-change of 4 (Table 3). 

Furthermore the up-regulation of MALAT1 was significantly higher in tumor tissue of 

GIST patients than in normal tissue of the same individuals with p-value: 0.032. 

Among the 40 patients included none of them was evaluable for lncRNA HOTAIR 

expression analysis in tumor tissue (Table 3). 

No statistically significant difference has been detected for the up-regulation of both 

lncRNAs H19 and MALAT1 in relation to the different clinical-pathological 

characteristics analyzed, including site/size of tumor, mitotic index, stage at diagnosis, 

and risk stage according to Miettinen's criteria (Table 4, 5). 

A statistically significant difference has been detected for the up-regulation of both 

lncRNAs H19 and MALAT1 between the KIT-mutated and wild type tumors. Indeed 

the up-regulation of H19 has been found in 17/23 (74%) patients harboring cKIT 

mutations compared to 4/7 (57%) wild type patients (p-value: 0.042) (Table 4). 

Conversely the up-regulation of MALAT1 has been found in 13/17 (76%) patients 

harboring cKIT mutations compared to 4/4 (100%) wild type patients (p-value: 0.027) 

(Table 5). 

3.3 Relation of lncRNA upregulation and treatment efficacy  
  
To investigate the predictive value of both lncRNAs H19 and MALAT1 in GIST patients 

we evaluated the up-regulation of such lncRNAs in tumor tissues of 10/40 patients 

with advanced disease who received first-line therapy with imatinib.  

A statistically significant difference has been detected for the up-regulation of both 

lncRNAs H19 and MALAT1 between patents with early PD compared to those with 

late PD. Indeed the up-regulation of H19 has been found in 5/5 (100%) patients with 

TTP < 3 months compared to 1/4 (25%) patients with TTP >3 months (Table 4). 

Conversely the up-regulation of MALAT1 has been found in 1/4 (25%) patients with 

TTP < 3 months compared to 4/5 (75%) patients with TTP >3 months (Table 5).  

Furthermore a statistically significant difference has been detected for the median TTP 

between patients with lncRNA H19 up-regulation vs those with lncRNA H19 down-

regulation (7,5 weeks vs 22,5 weeks; p-value: 0.025) (Table 4). Similarly a statistically 

significant difference has been detected for the median TTP between patients with 
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lncRNA MALAT1 up-regulation vs those with lncRNA MALAT1 down-regulation (15 

weeks vs 3 weeks; p-value: 0.036) (Table 5). 
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CHAPTER 4 

 
 
 
 
 

Discussion 
 
 
 

Several evidences identified lncRNAs dysregulation in tumor pre-clinical models, 

suggesting their potential involvement in cancer development79,80. We have evaluated 

the expression of H19, HOTAIR, MALAT1 because theywere better studied among the 

different lncRNAs identified in solid tumors as an hallmark of poor prognosis. They 

contribute to oncogenesis in cancer as oncogenic and/or tumor suppressor factors81. 

They play essential biological functions including chromatin modification, 

transcriptional and post-transcriptional processing82,83. Dysregulation of H19, HOTAIR 

and MALAT1 was observed in many kind of cancers. Their upregulation was 

associated with tumor cell proliferation, invasion and metastasis suggesting that these 

lncRNAs may be potential prognostic biomarkers. Indeed, studies in vitro showed that 

their knockdown could inhibit invasions and metastasis. Therefore the identification of 

lncRNAs as new biomarkers for clinical use could represent an important finding in the 

context of rare tumors as GISTs. Although the lncRNAs have already attracted the 

attention of the scientific community77, however the clinical significance of the lncRNA 

expression has been not yet understood. In this study, for the first time, we found that 

both lncRNAs H19 and MALAT1 were upregulated in tumor specimens of patients with 

GIST and that the up-regulation of both lncRNAs H19 and MALAT1 was significantly 

associated with the KIT-mutation status. Indeed the percentage of H19 upregulation 

was significantly higher in mutated vs wild-type patients, while the percentage of 

MALAT1 upregulation was lower in mutated vs wild-type patients. According to the 

known negative prognostic role of c-KIT mutations in GIST, these data would suggest 

a potential, opposite prognostic value of both H19 and MALT1 lncRNAs in these 

patients. This suggestion has been confirmed by the analysis of the TTP in the 

subgroup of patients with advanced disease who received first-line therapy with 
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imatinib. Indeed the percentage of H19 upregulation was significantly higher in 

patients with TTP < 3 months, suggesting a negative prognostic role of H19, which 

seems to be associated with an early PD to imatinib. By contrast, the percentage of 

upregulation of MALAT1 was significantly higher in patients with TTP > 3 months, 

suggesting a positive prognostic role of MALAT1, which seems to predict a longer 

treatment efficacy. Also, we demonstrated a significant lower median TTP in patients 

with H19 up-regulation as well as a significantly higher median TTP in patients with 

MALAT1 upregulation vs those with H19 and MALAT1 down-regulation, respectively.  

According to these evidences the evaluation of lncRNAs expression could allow to 

select among all c-KIT mutated GIST patients eligible to receive first-line therapy with 

imatinib those patients who could really benefit from this treatment reserving a more 

effective therapy to the others, with interesting implications for their clinical 

managment. 

However the low number of patients included in the study limits of course the scientific 

validity of our results, which need to be explored and confirmed in prospective studies 

including larger patients’ cohort. 

Furthermore the determination of H19, MALAT1 and HOTAIR could has been partially 

influenced by the following factors: FFPE tissues stability, formalin-fixation and 

paraffin-embedding may have influenced the stability of lncRNAs; heterogeneity of 

included population and their clinicalpathological parameters; heterogeneity of 

information and low amount of lncRNA expression levels to correlate with the 

clinicalpathological characteristics.  Determination principle was the same, analysis 

type was qRT- PCR. As regards the lncRNA HOTAIR, it has a longer amplicon (152 

bp) than H19 and MALAT1. Analysis with bioanalyzer, a software tool designed to help 

scientists in estimating the integrity of total RNA samples, have shown a RNA Integrity 

Number < 7, because of the poor quality of RNA, extracted from paraffin tissue. The 

results of HOTAIR expression levels were indeterminated in all analyzed tumor 

samples. Through qRT-PCR method, the probe couldn’t bind, amplify and express its 

target, probably because HOTAIR has been degraded during its isolation. By contrast, 

we tried to analyze the HOTAIR expression levels trough digital real time PCR. We 

have compared a FFPE GIST sample to its healthy counterpart, using H19 expression 

level as control. Although we have confirmed the expression of lncRNA H19, obtained 
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by qRT-PCR, we have not detected any expression of HOTAIR with this third 

generation method. 

Our results indicate that upregulation of H19 and MALAT1 could contribute to 

oncogenesis of GIST suggesting their potential role as prognostic/predictive 

biomarkers for clinical use.  

Even if very interesting, these preliminary observations need to be confirmed by 

subsequent larger prospective studies. Of course it will be necessary to expand the 

study population, establishing collaborations with other centers of reference for rare 

tumors, to fine tuning the analysis of expression levels through third generation 

machineries and to confirm our data in fresh tissue. Recent evidences identified 

lncRNAs in plasma exosome or also in complex with circulating microRNAs. Although 

these studies clearly demonstrate that there are many functional circulating lncRNA, 

key questions remain to be solved84,85. As recently shown in other tumor types, it would 

be also interesting evaluating the expression levels of circulating lncRNAs  in plasma of 

GIST patients and comparing them with the results obtained in tumor tissue.  In the last 

years, groups of reasercher have walked roads to identify biomarkers which could help 

the early detection and screening, the choice of surgical or medical treatments, and the 

monitoring during the follow- up period.  This represents a small but interesting 

contribute to this research which aims to further personalize the management and 

treatment of patients with GIST.
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CHAPTER 5 
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Figure 1| The triple-code hypothesis. The triple-code model includes genetic, epigenetic and nuclear 
architecture and it determines the functional biological identity of each cell. The genetic code respects 
Mendel’s laws of heredity, but a wrong letter of a gene’s nucleotides or other genetic mutation can encodes 
an aberrant protein. Finally, the epigenetic code is the combination of changes in epigenetic marks (DNA 
methylation, histone tail modifications) that occur on the nucleosome structure. Moreover, the action of 
noncoding RNAs molecules contributes to epigenetic phenotype.  Image reproduced by Lomberk GA et al., 
2015, Surg Clin North Am.3 
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Figure 3| Schematic cellular functions of lncRNAs. I (signal): in a specific space and time, lncRNAs can 
regulate gene expression recruiting chromatin-modifying factors (colored ovals) or participating in a molecular 
pathway; II (decoy): lncRNAs can tear off proteins from chromatin, into nuclear subdomains or cytoplasm; III 
(guide): lncRNAs can recruit, in cis or in trans, RBP complexes  or chromatin modifying enzymes to target genes; 
IV (scaffold): lncRNAs can form ribonucleoprotein complexes. Image reproduced by Wang et al., 2011, Mol Cell.21  

Figure 2| Gen-epigenetic tetris model. Each cell accumulates genetic and epigenetic events that may or may 
not cause the aberrant state. As in Tetris game, the human organism is planned to correct the genetic errors. If 
these are not repaired, they may cause the tumor phenotype (left). Instead, the epigenetic events occur 
physiologically. They tears down the wall of incorrect combination because they are essential for our correct 
development (right vs left). Otherwise, the tumor phenopype is a resultant of genetics and epigenetics 
mechanisms. The latter can participate with the arrival of epigenetic marks which can contribute to the 
development and tumor progression without necessarily notch the gene sequence (right). 
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Figure 4|LncRNAs in a different tumoral hystotypes. Even before next generation sequencing, RNA-seq. and 
successive overlap of sequencing lncRNAs libraries have shown a large number of lncRNAs differentially 
expressed, both up (red) and down (blue), in different tumoral hystotypes if compared with normal tissues1,2. 
(Image riproduced by Bartonicek N. et al., 2016, Mol Cancer 
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Table2| Primers used for analysis of KIT and PDGFRα  genetic aberrations 
 
Exon Primer Set 
9 F:5’-AGC CAG GGC TTT TGT TTT CT-3’ 

R:5’-CAG AGC CTA AAC ATC CCC TTA-3’ 
11 F:5’-CCT TTG CTG ATT GGT TTC GT-3’ 

R:5’-ACC CAA AAA GGT GAC ATG GA-3’ 
13 F:5’-GTT CCT GTA TGG TAC TGC ATG CG-3’ 

R:5’-CAG TTT ATA ATC TAG CAT TGC C-3’ 
17 F:5’-CTG AAT ACT TTA AAA CAA AAG TAT TGG-3’ 

R:5’-TTA TGA AAA TCA CAG GAA ACA ATT T-3’ 
12 F:5’-AAG CTC TGG TGC ACT GGG ACT T -3’ 

R:5’-ATT GTA AAG TTG TGT GCA AGG GA -3’ 
14 F:5’-CAG GAT TAG TCA TAT TCT TGG TTT TT -3’ 

R:5’-TTC TAT TCC CTG CCA TGT GT -3’ 
18 F:5’-TAC AGA TGG CTT GAT CCT GAG T -3’ 

R:5’-AGT GTG GGA GGA TGA GCC TG -3’ 

Table1| Clinical features of the GIST samples 
  

Sex 

Male 26 

Female 14 

Median age, years 

 

59 

Mitotic rate 

<5/50 HPF: 
 

10 

≥5/50 HPF  
 

12 

Tumor size 

<5 cm 14 

≥5 cm 9 

Tumor site 

Gastro-intestinal 24 

Colon-rectal 2 

Risk classification (Miettinen's criteria) 
Low risk-very low risk 8 

Intermediate-high risk 8 

Analysis mutation  

Wild type 13 

Mutated 
cKIT 25 

PDGFR 2 

Onset 

Localized 25 

Metatstatic 15 

Imatinib 400/800 mg Mutated cKIT 
Ajuvant 8 

1st line 10 
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Table3| up, down, undetermined lncRNA H19, MALAT1 and HOTAIR  in GIST patients and 

mean of their relative expression values.   
 

lncRNA-

ID 

Up 
regulated 

n (%) 

mean 

log2(fold change) 

Down 
regulated 

 

Mean 

log2(fold change) 

Undetermined 

n (%) 

H19 20 (50%) 5 14 (35%) -3 6 (15%) 

 

MALAT1 

 

14 (45,15%) 4 

 

10 (32,25%) -0,65 7 (22,6%) 

 

HOTAIR 

 
N.A N.A N.A N.A 40 (100%) 

Table	3:	N.A.:	not	available	

Figure 5| H19 expression levels (log2 2−ΔΔCT) in GIST groups. Relative expression 
levels are represented for each group. Each sample was normalized using the 
corresponding normal counterpart.  
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Figure 6| MALAT1 expression levels (log2 2−ΔΔCT) in GIST groups. Relative expression 
levels are represented for each group. Each sample was normalized using the 
corresponding normal counterpart. 
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Variable  H19 expression level 

  >1 <1 

Total 34 14 (41%) 20 (59%) 

Mitotic rate: n.(%) <5/50 HPF: 9 (45%) 
≥5/50 HPF: (55%) 
 

4 (44,44%) 
4 (36,4%) 

5 (55,6%) 
7 (63,6%) 

Tumor size: n.(%) <5 cm: 12( %) 

≥5 cm: 8 (%) 
 

6 (50%) 
3 (37,5%) 

6 (50%) 
5 (62,5%) 

Tumor site Gastro-intestinal: 22 (91,66%) 

Colon-rectum: 2 (%) 

 

13 (59%) 
2 (100%) 

9 (41%) 
0 

Risk classification 
(Miettinen's criteria) 

Low risk-very low risk: 7 (50%) 

Intermediate-high risk: 7 (50%) 

 

3 (42,9%) 
4 (57,1%) 

 

4 (57,1%) 
3 (42,9%) 

Onset Localized: 24 (%) 

Metastatic:  10(%) 

 

14 (%) 
6 (%) 

10 (%) 
4 (%) 

Analysis mutation Wild type.: 7 (23,3%)   

Mutated.: 23 (76,7%)    

4(57,1%) 
 

17 (74%) 
 

3 (42,9%) 
 

6 (26%) 

 TTP:  Early (< 3 months): 5 (50%)  
 
Late (> 3 months): 5  (50%)     
                               

5 (100%) 
 

1 (20%) 
 

0 
 

4  (80%) 
 
 

TTP: median (weeks)  
 

7,5 22,5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table4| Results of the association of clinicalpathological parameters with lncRNA-
H19 expression level according to group of study 
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Table 5| Results of the association of clinicalpathological parameters with 
lncRNA-MALAT1 expression level according to group of study 

 

Variable  MALAT1 expression level 

  >1 <1 

Total 24 10 (41,6%) 14 (58,4%) 

Mitotic rate <5/50 HPF: 5 (38,5%) 
≥5/50 HPF: 8 (61,5%) 
 

3 (60%) 
5 (63,5%) 

2 (40%) 
3 (37,5%) 

Tumor size <5 cm: 7( 58,4%%) 

≥5 cm: 5 (41,6%) 
 

6 (85,7%) 
3 (60%) 

1 (14,3%) 
2 (40%) 

Tumor site Gastro-intestinal: 13(%) 

Colon-rectum: 2 (%) 

 

7 (%) 
2 (100%) 

6 (%) 
0 

Risk classification 
(Miettinen's criteria) 

Low risk-very low risk: 4(50%) 

Intermediate-high risk: 4(50%) 

 

2 (50%) 
3 (75%) 

2 (50%) 
1 (25%) 

Onset Localized: 24 (60,6%) 

Metastatic: 10 (29,4%) 

 

13 (54,2%) 
5 (50%) 

11 (45,8%) 
5 (50%) 

Analysis mutation Wild type.: 4 (19%) 

Mutated.: 17 (80,9%) 

 

4 (100%) 
 

13 (76,5%) 

- 
 

4 (23,5%) 

 TTPI Early (< 3 months): 5 (50%) 
Late (> 3 months): 5 (50%) 
                                
 

1 (20%) 
3 (60%) 

 

4 (80%) 
2 (40%) 

 

TTP: median (weeks)  
 

15 3 
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“Bisogna sempre credere alle nostre osservazioni, per quanto bizzarre possano 
essere.  

forse stanno cercando di dirci qualcosa” (Barbara McClintock) 

 
 
 
 
 
 
 
 
 
 
 


