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INTRODUCTION 

 

Plants, as sessile organisms, have developed different and sophisticated mechanisms to 

face adversity environmental conditions and biotic challenges, which affect their biological 

processes. Stress signals detected by plants are then transduced by a complex network of cell 

biological molecules that finally generate the observed phenotypic responses (Pandey et al., 

2016). Nowadays the greatest challenge is to dissect this very complicated molecular systems 

in order to identify which points and steps play important roles in the final expression of 

phenotypic traits (i.e. plant biotic and abiotic responses). 

Genomics is the discipline that deals with the structure, sequence, function and 

evolution of the genome. It investigates how the genetic information contained in DNA 

(deoxyribonucleic acid) is inherited and explains the phenotypic expression of traits in living 

organisms. Genomics mainly includes two sub-areas, a structural and functional. The structural 

genomics deals with the genetic and physical mapping and sequencing of genomes. Particularly 

it studies the size of the genome, the number and position of genes contained therein vary 

between living organisms and how they are associated together in the chromosomes. Structural 

genomics investigates the shapes of proteins and other biomolecules encoded by genes through 

experimental and computational methodologies. Structural genomics can help in revealing how 

transcription and translation are regulated through the study of promoter sequences and other 

DNA regulation regions and the computational and modeling analysis of the structure of 

transcription factors.  

Functional genomics aims to understand the ways in which genes direct the 

development and functioning of cells and how their failure may affects the expression of key 

traits (i.e. plant environmental responses). It is a field of molecular biology that has tremendous 

technological progresses in the techniques used to study how biological molecules interact and 

function in cell system. Particularly it gain insight into the functions of genes, how they interact 

each other, their expression patterns, how their modulation affect the phenotype. The transfer 

of knowledge and discoveries obtained in organism models into crops is one of the main issues 

in plant functional genomics. The enormous quantity of data has to be compared and integrated 

into the breeding programs in order to identify which genes have to be selected in parents to 

obtain improved progenies. 

Functional genomics measures expression levels of RNAs and protein on a global scale 

(genome-wide or system-wide) to understand the relationship between genotype and phenotype 
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investigating gene function, focusing on gene transcription, translation, epigenetic regulation 

and protein-protein interactions, and often involving high-throughput methods (Fig. 1). 

Gene function can have a meaning at different livels, such as biochemical, cellular, 

developmental or adaptive role (e.g. its contribution to the fitness). (Bouchez and Höfte, 1998). 

 

 

Fig. 1| Functional genomics integrates information from various molecular methodologies to 

understand how DNA sequence is translated into complex information in a cell (DNA → RNA → 

Proteins → biological process). From EMBL-EBI website (http://www.ebi.ac.uk/). 

 

 

All the informations collected by specific techniques and processes that operate on 

genome wide analysis should facilitate the development of plants more resistent to abiotic and 

biotic stress (Al-Khayri et al., 2016; Campos-De Quiroz, 2002).  

Thanks to the development of bioengineering methodologies occurred mainly in the last 

30 years, several biomolecular disciplines have been promoted that have the "-omics" suffix, 

such as genomics, metabolomics. The complex of molecular regulatory networks modulating 

plant stress adaptation, resistance and tolerance may be deeply understood through different 

"omics" approaches (Chawla et al., 2011). Fig. 2 shows the four main tecnologies of the 

“omics” science: transcriptomics, proteomics, metabolomics and phenomics that allow gain 

insights into the understanding of plant system biology.  

The identification of key genes, proteins and metabolites associated with a stress 

response allows improving presymptomatic diagnosis of diseases and disorders (Dandekar et 

al., 2010). 

In detail, transcriptomics includes structural and functional analyses of coding and non-

coding RNA or transcriptome. This is mainly obtained by two different highthrouput 

methodologies: microarrays and next generation sequencing.  

In a cell, the proteome is defined as the complete set of its proteins. Proteomics is a 

branch of functional genomics that studies the proteins at both level, structure and function, 
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with the purpose to elucidate what role is played by the protein in the cell (ISAAA, 2006). 

Proteomics deals with protein and post-translational protein modification along with their 

regulatory pathway.  

Metabolomics is another “omic” large scale analysis aiming at investigating the 

metabolic networks occurring in cells and living organisms (Gupta et al., 2013) by the analysis 

of all small molecules in a biological system (Fiehn, 2001). 

At last, phenomics analyze many phenotipic traits at the same time allowing to 

determine how, in a organism, these traits are translated by the informations present in a gene 

or in a whole genome (NSF, 2011).  

 

 

Fig. 2| Schematic diagram explaining the complexity of cellular function from DNA to phenotype 

(modified from Arbona et al., 2013). 

 

 

These “omic” technologies provide a large amount of data that are difficult to interprete 

and render meaningful. The development of potent computational methods and the progress of 

bioinformatics have allowed analyzing large-scale heterogenous dataset and integrating them 

to understand key points of metabolic regulations occurring in cells (Bieda, 2012; Kohl et al., 

2014; Schumacher et al., 2014). 

The increased knowledge on function of all plant genes affects many aspects of the 

stages necessary to gain plant improvement (Somerville and Somerville, 1999). 
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TRANSCRIPTOMICS 

Transcriptomics deals with the large-scale analysis of transcripts at whole organism, 

organ, tissues and cell level at a particular development stage and under specific environmental 

conditions. Two are the main methodologies used in transcriptomic analysis: microarrays and 

next-generation sequencing. 

Microarrays technology converts the information from raw sequence data into an 

extensive understanding of gene function. The advantage of microarray-based expression 

analysis is the simultaneous monitoring of a large number of different genes using a small 

amount of biological sample material (Holtorf et al., 2002). The accumulation of microarray 

data from many different experiments creates the opportunity to assign functional informations 

to unknown genes based on the concept that if the gene has a similar sequence and trend of 

expression to a known one; the two genes should play the same role in the cell and have the 

same annotation. (Somerville and Somerville, 1999). Exploiting the gene expression similarity 

in response to different stimuli or conditions, it is possible to use known function of genes to 

assign functions to many unknown genes of the cluster (Chu et al., 1998; Eisen et al., 1998). 

Microarray technology has been used to characterize some plant biotic responses (Albrecht and 

Bowman, 2008). However, microarrays lack the range and sensitivity of qRT-PCR and the 

relationships between expressed genes and symptom development are unknown. Microarray 

analysis is also limited to those genes present on the microarray, a subset of the studied plant 

genome. It is a transcriptomic technology that allows providing detailed information on a 

genome- wide scale thorugh the analysis of thousands of genes at the same time. It is a technique 

that is characterized by a high speed of analysis and comprehensiveness (Brandl and Anderson, 

2015). The analysis consists in comparing the gene expression of different cells, development 

stages, environmental conditions at a specific time and linked to a particular phenotype or by 

determining the co-expression known genes (Mingzhu et al., 2015). DNA microarray is a solid 

surface (chip or slide) composed by attached fixed single DNA molecules that after exposion 

to a dye-labelled nucleic acid target forms a duplex. Signals analysed by a scannering are 

analyzed using specific bioinformatics softwares. Two types of microarrays are present: one is 

made by automated robotic spotting or by the other through in situ synthesis. Spotted 

microarrays are obtained using PCR products or oligonucleotide molecules that are directly 

spotted on glass slides. The DNA molecules present into the chip are named probes. Their 

attachment on the solid support takes place though two types of bonds: 1) covalent through the 

aliphatic amine group added to the 5-end of cDNA, 2) non-covalent by electrostatic attraction 

between amine groups and phosphate of the DNA structure. Microarray chip can be divided in 
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two cDNA or oligonucleotide microarrays. In the first type, cDNAs are linked to more than one 

position in amino-labelled slides while oligonucleotide microarrays are characterized by shorter 

DNA molecules binded with covalent bond using the amine group added during their 

production. In in situ microarray, these oligo probes are synthesized directly, base by base 

thorugh the typical bond between the phosphate linked to the 5’-OH of the nucleotide and the 

‘3-OH of the previous one. The accuracy and analitical efficiency of oligo microarrays depend 

on the specific sequence and length, Cyanine dyes are usually employed to label the target RNA 

through direct and indirect labelling methodologies. The accuracy of hybridization between the 

probe and target is a critical step and depends on many factors. Scanning with excitation wave- 

lengths of the two dyes is performed by a laser scanner via the determination of fluorescence 

signals in accordance with their concentration. Through the analysis of signal intensity the 

expression of genes is determined. The comprehension of a large quantity of gene expression 

data is a very important step for the practical use of this technique. During the recent 20 years, 

many bioinformtic softwares have been created for data processing, quality filtering and 

functional mining (i.e. microarray Suite5 and Robust Multi Array Average (RMA). The 

networks between genes can allow us to dissect gene regulatory networks in plants coping with 

the changing environment. Microarray-based research have been particularly developed with 

the creation of new chip methodologies. Many types of gene chips have been formulated with 

the increase of genomic sequences that have been characterized, analyzing oligonucleotide, 

DNA methylation, single nucleotide polymorphisms and miRNAs. Oligonucleotide microarray 

is the most widely used to investigate the gene expression at the genomic and transcriptomic 

level, technology for almost all model plants and important crops, such as wheat, barley, apple, 

citrus.   

Next-Generation Sequencing (NGS) is a revolutionary transcriptomic technology 

developed in the recent 10 years. It detects rare, splice variants or unknown transcripts that are 

not present in microarrays (Martinelli et al., 2012). This technique allows in isolating genes of 

interest and to quantife their expression in more accurate way than microarrays (Garq and Jain, 

2013). Indeed, NGS Sequencing produces a more detailed picture of the transcriptome at a 

particular developmental and environmental stage.  

There are different NGS technologies such as 454 sequencing (used in 454 Genome 

Sequencers, Roche Applied Science, Basel), Illumina technology and the SOLiD platform 

(Applied Biosystems; Foster City, CA, USA) (Shendure and Hanlee, 2008). While these 

platforms rather differ in array generation mode, they are analogous workflows concept that 

consist on cDNA preparation, DNA random fragmentation, library preparation and PCR-based 

amplification with in vitro ligation of appropriate adapters (Shendure and Hanlee, 2008). 454 
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technology provides longer reads at higher accuracy and greater throughput than Illimina and 

SOLiD machines. For this reason it is frequently used for de novo assembly and sequencing of 

novel organisms. The technology is characterized by the use of DNA coated beads and 

Emulsion PCR. Although base calling is more than 90% a constraint consists on the presence 

of INDELs that induces errors and need high work in data processing. Illumina platform 

employs the sequencing by synthesis approach. It is the most commonly used platform. The 

system uses a sequencing technology and novel reversible terminator chemistry optimized to 

achieve unprecedented levels of cost effectiveness and throughput. It has the advantage of 

generating superior reads. Illumina platform consists on MiSeq and HiSeq machines able to 

generate over 2000Gb per run. Call base accuracy is more than 99% and the quality filtering 

can reduce it more.Data processing is less complex than 454 technology.  

SOLiD platform employs the Sequencing By Ligation (SBL) approach. It consists in the 

processing of two slides at a time, and providing data of high quality. The library preparation 

obtained with an emulsion PCR as 454 prior to sequencing, is highly labour and time 

consuming. The new next-generation sequencing technologies are still more powerful because 

they allow to reduce bias (i.e. due to PCR procedure) and perform more accurate studies at both 

structural and functional level. The Single Molecule Sequencing (SMS) technology allows 

reading of a sequence at very fast rates and thus reduces costs of analysis. This technology is 

being developed by a diverse number of platforms. Pacific Biosciences created a single single 

molecule sequencing technology based on flourescence detection that analyzes nucleotides 

marked with diverse colors. New improvement are quickly obtained in detecting the activity of 

polymerase enzyme forming the DNA strand in sequence by synthesis approach. LightSpeed 

Genomics is creating a new detection system using electron microscopy in analyse the signals.  

A general assumption is that the transcriptomic response to any particular environmental 

factor is represented in the complexity of the RNA population, including both coding (mRNA) 

and noncoding (small RNA) sequences. Rapid and specific induction of messenger and small 

RNAs is a potential early biomarker to characterize a particular response (i.e. biotic stress 

responses). This complexity can now be analyzed to an unprecedented depth using new DNA 

sequencing methods which reveal very rare mRNA, splice variants, allelic variants, and SNPs. 

Analysis of the deep transcriptome using network theory will help define gene regulatory 

networks and identify key genes modulating consistent parts of the regulatory networks. 

Table 1 shows a comparison between microarray and RNA-seq. From this table is 

evident that RNA-seq need a low quantity of material compared to microarray. It has also the 

capacity to distinguish allelic expression and known splice forms, and the ability to discover 

new genes. 
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Table 1| Microarray vs. RNA-seq. Pros and cons of these two transcriptomics tecnlogies. (modified 

from Bauer et al., 2014). 

 Microarray RNA-seq 

Principle Hybridization Cloning & sequencing 

Required amount of RNA High Low 

Resolution Several to 100 bp Single base 

Distinguish Allelic expression? Limited Yes 

Distinguish splice forms? Limited Yes 

Discover new genes? No Yes 

Strandedness? No Yes 

Dynamic range Few hundred-fold > 8000-fold 

Reproducibility Yes Yes 

Re-analyzable data No Yes 

Cost Medium High (due to computation) 

 

 

PROTEOMICS 

Much of the cell physiology is determined by gene products (particularly proteins) 

rather than by nucleic acid. Proteomics is the branch of functional genomics that investigates 

proteins at lage extent, their sequence and functional actuality. Many of the key expression 

regulation mechanisms occur at post-transcriptional, translational and post-translational stage 

and needed the use of proteomics to identify genes play a key role in a important phenotypic 

response. A proteomic analysis characterizes the full protein present in a particular organism, 

organ, tissue or cell (Witzel et al., 2015). The term proteome represents the protein complex 

expressed by a genome. Proteome has a dynamic meaning on contrast of the static concept of 

the genome. The expression products of the genome can vary greatly in response to external 

and internal factors. Therefore a genome corresponds to a multiplicity of proteomes whose until 

now are not easy to be definable. Proteomics, therefore, can be defined as the study, in their 

complexity, of proteomes. As genomics, two proteomic sub-areas can be considered. The first 

is structural proteomics that refers to specific objectives dealing with ultimately and purely 

structural aspects. The second is functional proteomics that deals with the elucidation of protein 

functions and roles in the cells. The typical workflow of quantitative proteomic approaches deal 

with protein and peptide labeling mixed by stable isotopes followed by combined sample 
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processing and mass spectrometer analysis. The comparison of ion signal intensities or peak 

areas of isotope- encoded peptide pairs allows a quantitative analysis of protein expression. 

There are three principal areas in which proteomics can be differentiated: first, proteins 

identification on large-scale by connecting structural informations; second, identification of 

proteins post-translational modifications and finally, identification of protein-protein 

interactions by using mass spectrometry, the yeast two-hybrid system or other molecular 

genetic techniques (Pandey and Mann, 2000). 

Furthermore, different high-throughput techniques have been developed to identify and 

study proteins function such as mass spectrometry analysis of nuclear pore (Rout et al., 2000) 

or spliceosome (Neubauer et al., 1998). 

Some techniques have been developed to allow the differential expression analysis of 

proteins and the most accurate are based on Isotopic Labeling. Among these, the iTRAQ 

(Isobaric Tag for Relative and Absolute Quantitation) technology labels the primary amines of 

peptides through the use of isobaric reagents allowing by tandem mass spectrometry (MS/MS 

or MS2) to identify quantitative changes in the proteome (Vélez-Bermúdez et al., 2016). This 

technique consists essentially in these different steps (Fig. 3): cell lysis to extract proteins, 

enzymatic digestion using normally trypsin, peptides labeling with different iTRAQ reagents, 

combination of them into a mixture and analysis by LC-MS/MS for identification and 

quantification (www.creative-proteomics.com). 
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Fig. 3| Different steps of iTRAQ workflow: proteins extraction, enzymatic digestion, labeling and 

LC-MS/MS analysis (from www.creative-proteomics.com/services/itraq-based-proteomics-

analysis.htm). 

 

The iTRAQ technology also exploits an N-hydroxysuccinimide ester derivative to 

modify primary amino molecules by binding a carbonyl group and a reporter molecule (based 

on N-methylpiperazine) to proteolytic peptides. Differentially labeled peptides are shown as 

single peaks in mass spectrometer scans decreasing the probability of peak overlapping. Using 

four different iTRAQ reagents, comparative analysis of four samples is possible in single MS 

run. A drawback of iTRAQ approaches consists on enzymatic digestion of proteins before 

labeling, increasing sample complexity. ITRAQ approaches is proposed to be an applicable 

approach to obtain quantitative infor-mation for those peptides that are subjected to MS/MS 

analyses.  

 

METABOLOMICS 

Metabolomics is concerned with the metabolism, identifying the amounts of different 

metabolites as well as the activity of enzymes at cell, tissue, organ, organism level. The 

metabolomic approach is based on the analysis of global metabolites in a cell or biological fluid, 

not guided by a priori hypothesis. This allows characterize the metabolic profile of a given 
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condition and allows identify which metabolites or pattern of metabolites may be useful in 

discriminating between different study groups. Through the analysis of spectroscopic data and 

multivariate statistical analysis tools it is possible to extrapolate the relevant metabolic data in 

the characterization of specific physiological and stress conditions in living organisms such as 

plants. Furthermore, this approach needs low amounts of biological sample, rendering it 

applicable to multiple biological samples. Metabolomics is a complementary science to the 

most developed functional genomics sciences, proteomics and transcriptomics. Compared to 

these other omics sciences, metabolomics should allow producing even more directly practical 

information, since changes regarding transcriptome and proteome not always reflected in an 

equally direct changes in the biochemical phenotype (metabolome). Metabolomics is one of the 

most important new omics sciences to contribute to the study of systems biology. In the context 

of already decoded crop genomes metabolomics may play a central role for the gene-function 

studies in plants. Most of metabolomes of plants, are not well accurately defined. A number of 

unidentified compounds, which are the product of metabolic pathways, have unknown 

functions. Two hundred thusands of diverse metabolites are estimated to be in plants. The 

metabolites vary from inorganic species to carbohydrates and lipids and secondary metabolites. 

The chemical diversity and complexity of the metabolome is so high that there is no single 

analytical technique that can address the complete metabolome.  

Since the analytical nature of the metabolomic analysis it is "inherently" incomplete, the 

analysis of only a small fraction of the metabolome in which most of the metabolites are not 

detected is a limiting factor. Taking into account that the analysis of the whole of metabolites 

present system is not possible at the moment, the use of at least the metabolite profiling 

approach, consisting in a simultaneous analysis of several hundreds of metabolites is an 

essential tool for the study of systems biology.  

Metabolites influence the phenotype much more directly than the transcripts or proteins, 

and the metabolome changes are often more amplified than transcriptome or proteome. The 

metabolomic analysis is extremely valuable in estimating the effects of environmental or 

agronomic factors on the composition of the products (Martinelli et al., 2012). 

Metabolite profiles are typically measured by using techniques such as gas 

chromatography plus mass spectrometry (GC/MS) and high performance liquid 

chromatography (HPLC). Also, the combination of GC and HPLC with time-of-flight (TOF) 

mass spectrometers and nuclear magnetic resonance (NMR) spectroscopy-based techniques 

have been applied for biochemical profiling applications (Glassbrook and Ryals, 2001; Bligny 

and Douce, 2001; Raamsdonk et al., 2001). 
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Therefore, metabolomics can improve plants metabolic engineering because enable to 

better understand plant biochemical networks and their regulation by characterizing low-

molecular-weight chemicals (Holtorf et al., 2002). 

 

PHENOMICS 

The important ability of an organism, especially sessile organisms (plants), to change 

its phenotype in response to environmental changing is called “phenotypic plasticity” 

(Großkinsky et al., 2015). Phenomics is then a functional genomics technology that studies how 

genetic, environment and their interaction influence the phenotype of an organism using a large 

scale approach. The improvement of the accuracy and celerity of phenotypic estimation is the 

principal objective of phenotyping. Second aim is to decrease costs and labor through 

automation, remote sensing, and improving data integration (Cobb et al., 2013). 

To investigate plant growth and development, automated-imaging and software 

solutions have been used recently for several high-throughput phenotyping studies (Cobb et al., 

2013).  

Particularly, digital imaging is an innovative non-destructive technology that is used in 

plant to control all morphological changes basing on leaf area index (LAI), tillering and 

compactness parameters (Neilson et al., 2015). Recently, new imaging technique has been 

created to examine photosynthetic responses to abiotic stresses such as drought in plants, called 

pulse-modulated chlorofyll fluorescence imaging (Jansen et al., 2009). 

L-systems is, instead, a set of mathematical approaches used to develop 3D models that 

mimic the development of the plant organs and which is particularly effective in the case of 

cereals (Prusinkiewicz et al., 1996; 2002). 

 Two important abiotic stresses are drought and salinity that produce stomatal closure 

due to the the osmotic effect caused by the root’s ability to uptake water from the soil (Munns 

and Tester, 2008). Therefore, to select genotypes able to cop with this problem in presence of 

osmotic stress, infrared thermography (IR) has been used in wheat and barley seedling (Sirault 

et al., 2009)  

 Phenomics have allowed to closely link genetics and physiology to reveal the molecular 

mechanisms of regulation of a wide range of important metabolic processes and pathways 

(Furbank and Tester, 2011). 
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ABIOTIC AND BIOTIC STRESS 

Plants are exposed to abiotic or biotic stresses, or a combination of these, which are a 

major cause of economic loss and instability of agricultural production. Plants sense and 

respond to these stresses through the development of a series of molecular mechanisms that 

depart from the perception of an environmental change condition. The signal is then transduced 

by molecular cascades that amplify it, to determine a final response. The understanding of these 

molecular mechanisms is fundamental to obtaining varieties which ensure production stability 

even in unfavorable environmental conditions. Most of the signaling molecules are proteins 

such as G-protein, kinases, phosphatases, transcription factors, transporters and receptors 

(Yamaguchi-Shinozaki and Shinozaki 2006; Pareek et al. 2010; Pandey 2012, 2013). 

Among signal transduction components, ROS (Reactive Oxygen Species) are crucial 

molecules involved in abiotic stress responses and in the defense against pathogens (Jalmi and 

Sinha 2015) while calmodulin and calmodulin-like proteins (Ca2+ sensors) have, especially, a 

role in the regulation of abiotic stress responses (Zeng et al. 2015; Virdi et al. 2015). 

It is well known that transcription factors (TFs) regulating stress responses in plants. 

For example, NACs and WRKYs are involved in plant development and biotic and abiotic 

stresses responses (Shao et al. 2015). In cotton Yan et al. (2015) have identified a WRKY gene 

that has a different functional role, it regulates in a negative way drought tolerance and 

positively the resistance to R. solani pathogen. A peculiar class of plants transcription factors 

is called HD-Zip. Many of the genes in this class are probably involved in the regulation of 

development of the plant in relation to environmental conditions and responses to stress. 

Also phytohormones, chemical molecules, are involved in plant development and stress 

responses. Among these, jasmonic acid (JA) has a functional role in regulation of abiotic stress 

responses such as salinity and drought (Riemann et al. 2015) while ABA modulates both abiotic 

and biotic responses by two different pathways, the ABA-independent and the ABA-dependent 

cascades. 

Different functional genomic approaches allow identify those genes involved in 

signaling cascades and understand the function of these genes in response to certain stimuli, 

through the use of high-throughput techniques it is possible to greatly understand how the stress 

signal transduction pathways are modulated by the environmental stress. Expression genomics, 

mutant analysis, microarrays, RNA-seq and proteomics are usually used to identify stress 

responsive genes and their mechanism. The greater understanding of regulatory networks 

involved in the adaptation of the plants to the environmental conditions provides knowledge 
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and tools for the genetic improvement with the aim of increasing stress tolerance but also 

implementing the nutrient content. 

The results of these approaches will determine new ways of using biotechnology to 

develop and improve food and agricultural products in terms of quality, yield and environmental 

impact. In this thesis several omic techniques were employed to gain insight into the gene 

regulatory networks modulating plant molecular responses to environmental stresses. The 

integration of different platforms is the real weak point of this kind of analysis. Due to the costs 

of their analysis per single sample, it is difficult to include all omic tools in a single study and 

this reduces the possibility to determine which key players (genes, miRNAs, proteins, 

metabolites) modulate the phenotypic expression of a particular plant trait.  
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AIM OF THIS WORK 

 

The objective of my PhD thesis is to use innovative functional genomics techniques, to 

gain insight into the molecular mechanisms of regulation of crop responses to abiotic and biotic 

stress.  

Particularly the following specific subjects in plant stress biology were addressed.  

Biotic stress responses:  

1. Large-scale analysis of the gene regulatory networks of Phoenix canariensis (Chabaud) 

in response to the attacks of Rhynchophorus ferrugineus (Olivier) (Chapter 3); 

2. Microarray analisys in grapevine to elucidate early responses and recovery mechanisms 

to "stolbur" infection (Chapter 4). 

3. Molecular responses to small regulating molecules against Huanglongbing disease in 

Citrus (Chapter 5) 

4. Proteomic responses of two Citrus genotypes with variabletolerance to HLB, in order 

to identify proteins playing a key role in the diverse phenotypic sensitivity to the disease 

(Chapter 6). 

Abiotic stress responses in durum wheat:  

1. Annotation and characterization of miRNAs and their targets in response to drought 

stress, mycorrhizal inoculations and the combination of the two treatments (Chapter 7);  

2. Analyze the agronomic and key molecular responses to salt stress and mycorrhizal 

inoculation (cv. Anco Marzio) (Chapter 8). 
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TRANSCRIPTOME ANALYSIS OF Phoenix canariensis CHABAUD IN RESPONSE 

TO Rhynchophorus ferrugineus OLIVIER ATTACKS1 

Antonio Giovino1, Edoardo Bertolini2, Veronica Fileccia3,4, Mohamad Al Hassan5, Massimo 

Labra6 and Federico Martinelli3, 4*  
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Background: Red Palm Weevil (RPW, Rhynchophorus ferrugineus Olivier) threatens most 

palm species worldwide. Untilnow, no studies have analyzed the gene regulatory networks of 

Phoenix canariensis (Chabaud) in response to RPW attacks. The aim of this study was to fill 

this knowledge gap. Providing this basic knowledge is very important to improve its 

management.  

Results: A deep transcriptome analysis was performed on fully expanded leaves of healthy 

non-infested trees and attacked trees at two symptom stages (middle and late infestation). A 

total of 54 genes were significantly regulated during middle stage. Pathway enrichment analysis 

showed that phenylpropanoid-related pathways were induced at this stage. More than 3300 

genes were affected during late stage of attacks. Higher transcript abundances were observed 

for lipid fatty acid metabolism (fatty acid and glycerolipids), tryptophan metabolism, 

phenylpropanoid metabolism. Key RPW-modulated genes involved in innate response 

mediated by hormone cross talk were observed belonging to auxin, jasmonate and salicylic acid 

(SA) pathways. Among transcription factors, some WRKYs were clearly induced. qRT-PCR 

validation confirmed the upregulation of key genes chosen as validation of transcriptomic 

analysis. 

Conclusion: A subset of these genes may be further analyzed in future studies to confirm their 

specificity to be induced by RPW infestations.  

 

 

                                                             
1 Published to Frontiers in Plant Science, 2015, 6:817. doi: 10.3389/fpls.2015.00817 
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1_INTRODUCTION 

Rhynchophorus ferrugineus Olivier (commonly known as the Red Palm Weevil, RPW) 

is considered the worst pest threat for palm species worldwide. More than 30 palm species are 

attacked by this insect, including Phoenix canariensis Chabaud, P. dactylifera L. and Cocos 

nucifera L. (Ju et al., 2011). RPW was first reported in tropical Asia and then spread worldwide, 

reaching several Middle Eastern countries, Africa and the Mediterranean basin in the 1980s 

(Faleiro, 2006). In Europe, including Spain, especially the Canary Islands, and Southern Italy, 

RPW inflicted great economic damage in areas where palm distinguishes the scenic beauty of 

the public and private gardens of the cities and countryside. In the United States a species of 

RPW has been identified (Rugman-Jones et al., 2013). RPW belongs to the Curculionidae 

family of Coleoptera. The damage caused to palm is due to the large larvae that make large 

tunnels within soft and terminal plant tissues. The larvae can achieve a size of 5 cm, and 

different generations can be present in the same infected tree. Adults may deposit approximately 

200 eggs at the base of leaves or in wound tissues, and larvae migrate within all parts of trees, 

including the roots, destroying all the plant organs and structures (Gutierrez et al., 2010).  A 

major issue in the management of pest attacks is the late detection of infestations. Usually, 

symptoms are only visible when the larvae have reached the latest developmental stage and 

when plant organs are already compromised (Ju et al., 2011). Indeed, at this point, it is too late 

to save the infected trees. The symptoms of infestation include a gnawing sound caused by 

larvae feeding inside infested trees, chewed plant material at the external entrances of tunnels 

generating particular smells, the presence of empty pupal and dead adult bodies close to infested 

palms, the breaking of the palm crown and trunk (Faleiro, 2006) and the asymmetry of the palm 

crown. These symptoms are not visible prior to 5-6 months of infestation, when any prophylaxis 

is useless (Failero, 2006). The evaluation of the signs of larval mines and chewed material at 

the leaf bases is the typical way to detect signs of early infestation. However, early infestations 

can be difficult to detect in adult palms because actively growing portions are usually at the top 

of the plants. Therefore, a wide range of physical, chemical and biological methodologies are 

under development to detect the insect inside the palms as soon as infestations occur. Computer-

assisted tomography shows interesting results for the inspection of the granary weevil in wheat 

(Haff and Slaughter, 2004). However, these methods are expensive and difficult to be applied 

in infected palms where the whole tree needs to be inspected. Indeed, these methods may not 

be used for the large-scale scouting of infestations. The analysis of volatiles that are emitted by 

the fermentation processes of infested trees was also addressed by means of trained dogs that 

recognized the characteristic odors of plants that were attacked by RPW (Nakash et al., 2000). 
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However, the low selectivity and reliability due to the presence of several volatiles that are 

unrelated to the RPW infection limit the use of such methods (Mielle and Marquis, 1999). 

Bioacoustic sensors could represent an alternative system for early detection (Gutierrez et al., 

2010). However, this detection is still expensive and requires trained technical staff to 

discriminate the RPW noise from others. Moreover, these methods are not very effective at 

early feeding phases. Until now, no large-scale analyses of palm responses to RPW attacks have 

been conducted. Transcriptomics represent a powerful tool not only to elucidate the 

physiological effects of RPW attacks on infected palms but also to the identify biomarkers that 

are usable to improve detection when symptoms are still unclear. In addition, transcriptomics 

is essential to develop therapeutics based on gene biotechnology. Next-Generation Sequencing 

(NGS) has revolutionized transcriptomic studies because this technology can detect rare and 

unknown transcripts and splice variants that are not present in microarrays, offering a more 

detailed and profound analysis of the transcriptome. The power of this method is fully 

exploitable when extensive genomic information is available for the organism under 

investigation. In plants, RNA-seq has proven effective in studying the transcriptomic profile 

after pathogenic infections (Martinelli et al., 2012, 2013; Chen et al., 2014; Zhang et al., 2014) 

and in identifying possible targets for their early detection (Tremblay et al., 2013). 

Recent studies have been published on the genomic analysis of P. dactylifera L. A 

genome assembly was performed for Khalas, an elite cultivar (Al-Dous et al., 2011). The 

assembled sequence was approximately 380 Mb spanning mostly gene-rich regions (90% of 

genes were covered) and including >25,000 gene models. Another genome sequence of date 

palm is available (Al-Mssallem et al., 2013).    

The aim of this study was to gain insight into gene regulatory networks of responses to 

RPW attack in Phoenix canariensis. This research will allow us to (1) clarify the gene regulation 

mechanisms of leaf metabolism in response to RPW attacks at different stage of infestations 

and (2) identify possible host biomarkers that may confirm RPW typical symptomatology. 
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2_MATERIALS AND METHODS 

2.1_Plant Material and Experimental Design 

This study was performed on Phoenix canariensis Chabaud. We selected 15-20-year-

old trees with a diameter of 70-90 cm. Analyzed leaves were 4-5m long with 80-100 segments 

on each side of the spine. The plants were field-grown in a former cultivation of approximately 

2 ha, located in Trabia (Palermo, Italy). These plants were genetically different although they 

have a similar genetic background since they were derived from the same mother plant. No 

specific permissions were required for these locations and activities. The field studies did not 

involve endangered or protected species. These are the GPS coordinates of the area where plants 

were analyzed: 38°00′00″N 13°39′00″E; 38°00′00″N 13°39′00″E. 

The plants were arranged on the sides of the private driveway. The trees were divided 

into three groups: Healthy unattacked trees (He); stage 1 (the middle stage of infection – S1) 

and stage 2 (plants with late symptoms – S2). The pathogen presence was visually confirmed. 

No plants were available at very early stage of infection. Although trees at S1 showed 

symptoms, analyzed leaves were green and did not show any symptoms such as the healthy 

ones.  

The He category was composed of palm trees with no symptoms of Red Palm Weevil 

attacks and no signs of other common diseases or pathogen attacks (Fig. 1). The sampled 

individuals showed fully expanded leaves without any sign of gnawing. To exclude sampling 

errors (i.e., sampling asymptomatic infested plants instead of healthy uninfected plants), we 

monitored the sampled He trees for the following 90 days from sampling. This period was 

defined based on the timing needed to show early symptoms of infestations (Ju et al., 2011). 

The S1 category represents trees that showed anomalous behavior of the canopy with 

the beginning of characteristic retracted asymmetry of the crown. Individuals showed fully 

expanded leaves without any sign of gnawing at the sampling time; however, after 30-40 days, 

some of the leaves showed a flattened and nibbled vegetative apex. Moreover, after 50 days, 

some larvae were detected in the S1 individuals. The S2 category included trees with loss of 

leaves for subsidence of foliar rachis. In these trees, most of the leaves showed the typical 

recline induced by RPW. Foliar desiccation was much more apparent than in S1. While 

analyzed leaves of S1 looked green as the healthy ones, S2 leaves showed evident yellowing.  

Each of the three conditions was analyzed in duplicate; thus, a total of six samples 

(biological replicates) were analyzed by deep sequencing. Each biological replicate was 

composed of 10-15 leaf portions of three distinct trees. The leaf portions were collected from 



27 
 

the middle of the palm leaves at the same time during the day. The samples were immediately 

frozen in liquid nitrogen and stored at – 80 °C. 

 

 

 

Fig. 1| Palm trees of the three analyzed categories: (A) healthy (He); (B) stage S1 (middle stage of 

infestation); (C) stage S2 (intense level of infestation) 

 

 

2.2_Analysis of the Plant Health Status  

The rhizosphere was analyzed to identify any other pathogenic organisms in addition to 

RPW. The soil samples were collected from all four plant sides at a depth of 30 cm (500 g per 

plant). The pathogens were isolated through different traditional techniques. Substrates of the 

soil, roots and bark were prepared for both generic and selective pathogen isolation. The soil 

samples were repeatedly mixed, and 10 g was taken, dissolved in 100 ml of sterile distilled 

water and agitated for 15 min. A 1 ml aliquot of the suspension was inoculated in Petri dishes 

with cultured generic potato dextrose agar (PDA). The root and bark tissues were previously 

superficially sterilized and immersed in an aqueous solution of sodium hypochlorite at 10% for 

3-5 min, rinsed in sterile distilled water and dried. The tissue fragments were placed on the 
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culture substrates PDA, corn meal agar (CMA) plus streptomycin (20-30 mg/L) and PARPNH 

substrate-selective culture. All the plates were dark-incubated at 24 ± 1 °C. The developed 

fungal colonies were grown in purity and characterized based on both macroscopic 

(morphology, color, and speed of growth of the colony) and microscopic features (fruiting 

bodies, spores, and conidia). The genera and species were identified based on dichotomous 

recognized keys. All the analyzed palms were tested for the presence of common bacterial and 

fungal pathogens (i.e., Penicillium sp., Alternaria sp., Mortierella sp., Aspergillus sp.). None of 

these common pathogens were present.  

 

2.3_RNA Extraction  

The total RNA from each biological replicate was isolated using a rapid RNA extraction 

method that was developed by Gambino et al. (2008). The RNA concentrations were 

determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE). The RNA quality and purity were assessed by an Agilent Bioanalyzer 

(Folsom, CA). 

 

2.4_RNA-seq Analysis 

The RNA samples were processed using the TruSeq RNA-seq sample prep kit from 

Illumina (Illumina, Inc., CA, USA). Briefly, the poly-A containing mRNA molecules were 

purified using poly-T oligo-attached magnetic beads and fragmented into small pieces using 

divalent cations at an elevated temperature. The cDNA was synthesized by reverse 

transcription, and standard blunt-ending plus add ‘A’ was performed. Then, Illumina TruSeq 

adapters with indexes were ligated to the ends of the cDNA fragments. After the ligation 

reaction and separation of the unligated adapters, the samples were amplified by PCR to 

selectively enrich those cDNA fragments in the library with adapter molecules at both ends. 

The six samples (RNA pools of 10-15 leaves of three individual plants) were loaded into one 

lane of an Illumina flow cell, and clusters were created by Illumina cBot. The clusters were 

sequenced at ultra-high throughput on the Illumina HiSeq 2000 (Illumina Inc.). One lane in 6-

plex was run, obtaining between approximately 21.1 and 29.8 million single reads per sample, 

each 50 bp long. The data were produced on an IGA Technology Services Srl (Udine, Italy) 

Illumina platform. All the sequenced reads were compared to the Date Palm Genome Draft 

Sequence Version 3.0 (http://qatar-weill.cornell.edu/). The gene prediction from the Date Palm 

Genome Draft Sequence Version 3.0 (file PDK30-mrna.fsa.gz downloaded from http://qatar-

weill.cornell.edu/) was used. The Software CLC Genomic Workbench 5.5.1 (CLC Bio, 
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Denmark) was used for reads trimming and alignment on the reference. The reads were quality 

trimmed using the modified-Mott trimming algorithm (parameter: trim using quality score = 

0.05). The alignment on a reference parameters were set-up in CLC Genomics Workbench as 

following: Mismatch cost = 2; Insertion cost = 3; Deletion cost = 3; Length fraction = 0.9; 

Similarity fraction = 0.95. BLASTx was used to determine the date palm gene predictions of 

the putative orthologous Arabidopsis thaliana genes (e < 10-4). DESeq 2 package from 

Bioconductor in the R statistical software suite (Love et al., 2014) was used to estimate the 

euclidean sample distance and the expression level of transcripts among different conditions. 

DEseq program performs normalization, variance estimation and differential expression of the 

raw read counts and works best with experiments with replicates. The log2-fold ratio and 

adjusted p-values (FDR) based on the t-distribution for each gene for the two pairwise 

comparisons (He-S1 and He-S2) were calculated. Genes with a log2-fold ratio > 1 or < -1 and 

with an adjusted p-value (FDR) below 0.1 were considered differentially expressed. RNA-seq 

and details of the samples were submitted on Sequence Read Archive (NCBI) 

(SAMN04031658). 

 

2.5_Functional Categorization of the Predicted RPW-regulated Transcripts 

The sequenced transcripts were mapped to the Date Palm Genome Draft Sequence 

Version 3.0 and used as a reference genome. For each of the palm genes, the gene length, unique 

and total gene reads, annotation and RPKM expression values were obtained. The closest 

Arabidopsis putative orthologs were determined for each gene to allow the use of functional 

genomics tools. The integrated data-mining approach used different web tools, such as 

MapMan, PageMan, PathExpress and Cytoscape to dissect the transcriptome responses and 

decipher the gene regulatory networks. A list of predicted transcripts that were differentially 

expressed at a significant level (p < 0.05 and an absolute value of log2-fold change > 1 or < - 

1) was obtained for each of the two pairwise comparisons (S1 vs. He and S2 vs. He). These 

input data files were used for all the data mining tools.  

The functions of the differentially expressed genes (as Arabidopsis putative orthologs) 

were visualized using the MapMan web-tool (Thimm et al., 2004; 

http://mapman.gabipd.org/web/guest/mapman) through the 

Ath_AGI_isoform_model_Tair10_Aug2012.m02 mapping file that was downloaded from the 

MapMan server. The PageMan visualization tool was used for GSEA analysis using the 

Wilcoxon test (no correction and ORA cutoff = 1.0). A pathway enrichment analysis was 
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performed using PathExpress (Goffard and Weiller, 2007) using the Arabidopsis putative 

orthologs of the differentially expressed palm transcripts.  

 

2.6_RT-PCR Validation 

Nine genes were chosen for qRT-PCR validation of RNA-seq data. Four biological 

replicates were considered for each of three conditions (Healthy, S1 and S2).  Each replicate 

was a pool of 10-15 mature leaves from the same plant. The four chosen plants belonged to 

those used for RNA-seq analysis: two belongs to the first replicate and the other two belonged 

to the second replicate of deep sequencing analysis. Primers were designed basing on each 

target sequence using Primer Express software (Applied Biosystems, Foster City, CA, Table 

S1). RNA was extracted as previously described. Retrotranscription was performed following 

the Quantitect Reverse Transcription Kit (Qiagen) instructions. A standard curve was generated 

for each gene. Amplifications used 25 ng cDNA in a 15 µL final volume were performed on a 

Biorad iQ5 PCR system (Biorad) using standard amplification conditions: 10 min at 95°C; 40 

cycles of 15 s at 95°C; and 1 min at 60°C. All PCR reactions were performed in duplicate 

(technical replicates). Fluorescent signals were collected during the annealing step and CT 

values extracted with an auto calculated threshold followed by baseline subtraction. 18S 

(AF206991.1) was used as an endogenous reference and ΔΔCT was calculated by subtracting 

the average of 18S from the average CT of the gene of interest. The reference gene was tested 

on the 12 analyzed samples and any significant changes of expression were observed between 

the three samples categories.  

 

 

3_RESULTS 

3.1_Illumina RNA Sequencing  

RNA-seq was used to evaluate palm responses to RPW attack by comparing the 

expression profiles of healthy trees (He) with infected trees during the middle and late stages 

of infection (S1 and S2). The genome sequence of Phoenix dactylifera was used as referred 

genome for sequence annotation (Al-Dous et al., 2011). This allowed obtain a list of palm genes 

correspondent to the assembled sequences. Then we identified the correspondent Arabidopsis 

ortholog to each of these genes. We obtained a total of 21.3-29.8 million raw reads for the six 

palm samples (Table 1). Of them 21.1-29.5 were trimmed. A total of approximately 8.6-12.3 
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million 50-nt single-end reads from each cDNA library were uniquely mapped to the genome 

published by Al-Dous et al. (2011). Unique mapped reads were approximately 40.6-41.6 % of 

the corresponding total trimmed reads per sample. Multiple mapped reads were approximately 

1.1 % and they were discarded from the analysis.  

The gene expression data of the two pairwise comparisons (S1 vs. He and S2 vs. He) 

were provided in Table S2, S3. Fig. 2 showed a Venn diagram of up- and down-regulated genes 

by RPW in both pairwise comparisons. A total of 44 genes were upregulated, and 10 were 

downregulated in S1 vs. He comparison. Most of them were reported in Table 2. A total of 

3373 genes were differentially expressed in S2 vs. He comparison (approximately 13.5 % of 

the predicted genes in the genome reference); 1938 were upregulated and 1435 were 

downregulated. A dendrogram was constructed based on the overall transcriptome analysis of 

the six analyzed samples (Fig. 3). As expected He and S1 were grouped together while S2 

showed to be clearly distinguished by the other two sample categories. Volcano plots were 

performed for both S1/He and S2/He comparisons (Fig. 4). In the S1/He comparison, although 

many genes have a log fold ratio higher than 1, they had a non significant FDR. In the S2/He 

comparison a considerable portions of the analyzed genes were significantly regulated. These 

genes were mainly those that presented a higher fold ratio. 

 

Table 1| Number of raw reads, trimmed raw reads, mapped reads (unique), mapped reads 

(multiple).  

 
Percentages of mapped reads (unique or multiple) were calculated from trimmed raw reads. 
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Table 2| List of the main differentially regulated genes during stage 1 (FDR < 0.1).  

Annotation AGI Log2 fold 

ratio 

REDOX PATHWAYS 

 Peroxidase superfamily protein  AT1G05260.1  -4.0 

 Peroxidase superfamily protein  AT1G68850.1  2.4 

 (2OG) and Fe(II)-dependent oxygenase protein  AT5G05600.1  3.0 

 (2OG) and Fe(II)-dependent oxygenase protein  AT4G10490.1  1.7 

LARGE ENZYME FAMILIES 

 GDSL-like Lipase/Acylhydrolase protein  AT1G74460.1  2.6 

 Glutathione S-transferase TAU 18  AT1G10360.1  2.0 

 Cytochrome P450 superfamily protein  AT5G07990.1  -3.9 

 Cytochrome P450 family 94 C polypeptide 1  AT2G27690.1  3.4 

SIGNAL PERCEPTION AND SIGNALING 

 Protein kinase superfamily protein  AT1G18670.1  1.6 

 Calcium-dependent protein kinase 16  AT2G17890.1  1.5 

 Protein of unknown function (DUF604)  AT2G37730.1  -3.3 

 Protein of unknown function (DUF616)  AT1G53040.1  1.6 

 Calcium-dependent protein kinase 28  AT5G66210.2  2.0 

TRANSCRIPTION FACTORS 

 WRKY40 AT1G80840.1 2.8 

 WRKY51 AT5G64810.1 2.7 

 NAC domain containing protein 32  AT1G77450.1  1.8 

PROTEIN MODIFICATIONS 

 RING/U-box superfamily protein  AT1G78420.1  -7.6 

 RING/U-box superfamily protein  AT1G53820.1  3.1 

 RING/U-box superfamily protein  AT2G18650.1  -4.1 

 U-box domain-containing protein kinase protein  AT2G45910.1  1.6 

SECONDARY METABOLISM 

 Cinnamate-4-hydroxylase  AT2G30490.1  3.0 
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 Laccase 7  AT3G09220.1  2.9 

 Laccase 12  AT5G05390.1  2.3 

 Chalcone and stilbene synthase protein  AT5G13930.1  1.8 

 Leucoanthocyanidin dioxygenase  AT4G22880.1  -3.6 

DEFENSE RESPONSES 

 Disease resistance family protein / LRR protein  AT2G34930.1  1.7 

 Pathogenesis-related thaumatin protein  AT2G17860.1  1.8 

 Lipid-transfer protein/seed storage 2S albumin  AT3G22600.1  2.5 

CELL WALL MODIFICATIONS 

 Xyloglucan endotransglycosylase 6  AT4G25810.1  2.1 

 Beta-1 3-glucanase 5  AT5G20340.1  2.1 

 D-arabinono-1 4-lactone oxidase family protein  AT2G46740.1  3.4 

 Pectin lyase-like superfamily protein  AT3G62110.1  -3.7 

HORMONE-RELATED 

 Ethylene response factor 110  AT5G50080.1  1.2 

Auxin amidohydrolase AT1G51760.1 3.4 

OTHERS 

 Nitrate transporter 1.5  AT1G32450.1  1.3 

 LOB domain-containing protein 1  AT1G07900.1  2.2 

 Amino acid permease 3  AT1G77380.1  1.8 

 Formin homology5  AT5G54650.1  1.5 

 HXXXD-type acyl-transferase protein  AT5G41040.1  2.4 

 Alpha/beta-Hydrolases superfamily protein  AT2G39420.1  3.4 

 P-loop nucleoside triphosphate hydrolases protein  AT3G45080.1  -2.7 

 Glutamate receptor 2.8  AT2G29110.1  1.5 

 Glutamate receptor 2.7  AT2G29120.1  1.8 

 Di-glucose binding protein Kinesin motor domain  AT2G22610.1  -3.1 

 Integrase-type DNA-binding protein  AT4G36920.1  -1.9 

 Glycosyl hydrolase superfamily protein  AT4G16260.1  2.1 

The Log FD (Fold Ratio) was indicated. The complete list with the palm gene ID and Arabidopsis 

putative orthologs is available in the supplemental material (Table S2). 
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Fig. 2| Venn diagrams of RPW-regulated genes at He vs. S1 and He vs. S2 comaprisons. Numbers 

of up- or down-regulated genes were shown. 

 

 

 

 

Fig. 3| A dendogram based on mapped read counts was constructed for the six analyzed samples 

belonging to Healthy (He), Stage 1 (S1) - middle stage of infestation, Stage 2 (S2) - intense level of 

infestation.  
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Fig. 4| (A) Expression changes for each analyzed palm gene in the two pairwise comparisons (He 

vs. S1 and He vs. S2). In abscissa axis mean expression and in ordinate axis log fold changes were 

shown. (B) Volcano plots for both He/S1 and He/S2 comparisons were shown. In abscissa axis log2 

fold change while in ordinate axis log10 p-value were shown for each identified gene. 

 

 

3.2_Metabolomic Pathway and Gene Set Enrichment Analysis 

The metabolic pathway enrichment analysis indicated that at stage S1 of infestation, 

phenylalanine metabolism, phenylpropanoid biosynthesis, flavonoid biosynthesis and 

xenobiotic metabolism mediated by citochrome P450 were significantly upregulated by RPW 

attacks (Table 3). In contrast, flavone and flavonol biosynthesis were significantly repressed at 

S1. At S2, RPW significantly induced lipid-related pathways such as fatty acid, sphingolipid, 

glycerolipid metabolism. In contrast RPW repressed starch and sucrose metabolism and 

inositol-related pathways.  

Key primary metabolism pathways were influenced by RPW at S2, such as the sucrose 

(upregulated) and callose metabolism (downregulated) (Fig. 5). Interestingly key players in 

transcription regulation of biotic stress responses were upregulated such as WRKYs. Genes 

encoding receptor kinases (including leucine rich repeat III) and cell organization-related 

proteins were repressed.  
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Table 3| PathExpress analysis of the up and downregulated genes in each of the two pairwise 

comparisons.  

 

S1 vs. He P-values 

UPREGULATED  

Phenylalanine metabolism 4.1*10-3 

Phenylpropanoid biosynthesis 5.1*10-3 

Flavonoid biosynthesis 7.9*10-3 

Metabolism of xenobiotics by citochrome P450 2.6*10-2 

DOWNREGULATED  

Flavone and flavonol biosynthesis 1.3*10-2 

S2 vs. He P-values 

UPREGULATED  

Fatty acid metabolism 3.3*10-4 

Sphingolipid metabolism 3.6*10-2 

Glycerolipid metabolism 3.7*10-2 

Tryptophan metabolism 0.05 

Alkaloid biosynthesis 0.05 

DOWNREGULATED  

Starch and sucrose metabolism 2.1*10-3 

Phosphatidylinositol signaling system 3.6*10-3 

Inositol phosphate metabolism 9.3*10-3 

Glycosaminoglycan degradation 0.04 

Pathways with P < 0.05 (no corrections) were affected by the RPW attacks. He, Healthy; S1, stage 1; 

S2, stage 2. 
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Fig. 5| Gene set enrichment analysis of the transcriptomic changes during stage 2 (S2). Pageman 

web-tool was used. Wilcoxon test with ORA cut off = 1 was used. A scale bar between -4 and 4 was 

chosen. Increased intensity of red and green respectively represented higher level of upregulation 

and downregulation. 

 

3.3_Secondary Metabolism, Transcription Factors, Signaling, Redox 

At S1, some genes involved in phenylpropanoids were upregulated (Table 2). At S2, a 

high number of genes belonging to secondary metabolism were induced. Some 

phenylpropanoid genes were strongly activated during the late stage S2 such as O-

methyltransferasefamily protein 1 and 2, 3-coumarate-CoAligase, ferulic acid 5-hydroxylase 1, 

cinnamoyl-CoA reductase. 

A list of differentially regulated genes at S2 encoded transcription factors was provided 

(Table S4). Regarding signal perception and transduction signaling, different classes of receptor 

kinases showed different trends of expression (Table S4). At S1, genes encoding a specific 

category of signal receptors DUF were differentially regulated: DUF616 was slightly enhanced 

and DUF604 was repressed (-3.3). At S2, most of the genes of DUF26 protein kinases and 

LRK10-like (serine/threonine protein kinases) were more abundant while leucine-rich repeat 

III, VI, and XII were mostly repressed. In addition, post-translational modifications seemed to 

be positively affected. The transcript abundance of genes of large enzyme families (thioredoxin-
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related and cytochrome-related) that are involved in redox was severely affected by RPW 

attack.  

 

3.4_Hormone-related Pathways 

At S1, Auxin amidohydrolase and ethylene response factor 110 were slightly higher in 

abundance. At S2, significant transcriptional changes were observed for a group of genes that 

are involved in auxin signal transduction (PIN2 and PIN4) (Table S4). ABA-related pathways 

were affected as demonstrated by the induction of HVA22J and two GRAM-domain-containing 

proteins. In contrast, the expressions of ABA1 and AREB3 were lower at S2 compared to He. 

In general hormone-related pathways were drastically affected by RPW at S2. Two ACC 

oxidases that are involved in ethylene biosynthesis were upregulated. Two cytokinin receptors 

were significantly repressed, HK2 and HK3. Some significant increases in transcript abundance 

were observed for genes that were involved in jasmonate synthesis (allene oxide synthase and 

OPR2) and salicylic acid-mediated response (glucosyltransferases).  

 

3.5_Biotic Stress Responses 

Defense-related pathways were activated at S1 as shown by the upregulation of genes 

encoding a pathogenesis-related thaumatin protein and a disease resistance/LRR protein. An 

overview of the transcriptomic changes involved in biotic stress pathways at stage 2 was 

provided (Fig. 6). Extensive induction of genes encoding enzymes involved in redox state and 

peroxidases was observed in response to RPW at both disease stages. Two peroxidase genes 

were differentially regulated at S1: one was induced (Log FD = 2.4) and the other was repressed 

(Log FD = -4.0). Key genes encoding antioxidant enzymes were slightly upregulated at S1 

(Table 2).  

As far as it concerns, cell wall modification genes were upregulated at S1. Two laccase 

genes were induced at both S1 and S2. At S2, five genes involved in cell wall restructuring and 

encoding five beta-1,3,- glucan hydrolases were enhanced. 

Pathogenesis-related (PR) proteins were mostly repressed although three disease-

resistance family proteins were upregulated at late symptomatic stage. At S1, two WRKYs were 

upregulated. At S2, several WRKY genes were clearly enhanced, such as WRKY9, WRKY14, 

WRKY40, WRKY47, WRKY28, WRKY72, WRKY75 and WRKY51. In contrast, WRKY2 was 

downregulated.  
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Fig. 6| Transcriptomic changes involved in biotic stress responses at stage S2. The same scale bar 

used for the other figures was shown. Negative values represented repressed genes (green) at S2 

in comparison to He and positive values (red) represented upregulated genes. 

 

 

3.6_qRT-PCR Analysis 

qRT-PCR were performed to validate expression trend of nine RPW-regulated genes 

(Table 4). Statistical differences of 15 of the 18 pairwise comparisons of gene expressions 

observed by RNA-seq were confirmed by qRT-PCR analysis. Alpha-amylase and invertase 

belonged to sugar and starch metabolism. RNA-seq analysis showed that both these two genes 

were not regulated at stage S1 while they were induced at stage S2. qRT-PCR confirmed data 

on S2 but showed that they were also significantly induced at S1. UDP-glycosyltransferase was 

confirmed to be induced at S2 while UDP-glucose-SA glycosyltransferase was enhanced at both 

S1 and S2. Laccase7, involved in secondary metabolism, was upregulated at S1.  Auxin 

amidohydrolase was upregulated at both stages of infestation. WRKY72 and WRKY75 were 

confirmed to be higher in abundance at S2. 
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Table 4| qRT-PCR analysis of 9 chosen genes.  

 

Date Palm ID 

 

Description 

ANOVA 

(RNA-seq) 

ANOVA 

(qRT-PCR) 

  He vs. S1 He vs. S2 He vs. S1 He vs. S2 

PDK_30s654931g003 Alpha-Amylase   n.s. 6.4 (*) 1.5 (*) 4.9 (*) 

PDK_30s705371g005  UDP-Glycosyltransf.   n.s.  5.6 (*)  n.s. 80.9 (*) 

PDK_30s888011g002 Laccase 7  2.9 (*) n.s.  0.37 (*)  n.s. 

PDK_30s835131g001 WRKY 75  n.s. 7.5 (*) n.s. 4.3 (*) 

PDK_30s883821g030 UDP-glucose-SA 

glycosyltransf. 

 n.s. 1,5 (*) 2.4 (*) 3.2 (*) 

PDK_30s936891g001 WRKY 40  2.8 (*) 2,7 (*) 9.2 (*) 1.4 (*) 

PDK_30s1151561g006 Invertase  n.s.  3,0 (*) 0.8 (*) 1.4 (*) 

PDK_30s1173851g004 Auxin amidohydrolase  3.4 (*) 1.7 (*) 10.1 (*) 1.2 (*) 

PDK_30s1138471g004 WRKY 72  n.s. 3.3 (*) n.s. 0.7 (*) 

Statistical analysis using ANOVA (P < 0.05) was shown: * means significant, n.s. means not significant. 

Log2 fold ratio were indicated. 

 

 

3.7_Protein-protein network analysis 

A protein-protein interaction network (PPI) was generated between the proteins that are 

encoded by RPW-regulated genes and their predicted interactions at stage S2 (Appendix S7). 

Only pairwise interactions among the RPW-regulated genes and their partners reduced the 

network complexity. The network was highly complex, and more than 2000 pairwise 

interactions were detected. Some important hub proteins that are encoded by a RPW-regulated 

genes were identified (Appendix S7). Around 20 proteins (with more than 50 pairwise 

interactions) are responsible for most of the changes at predictive protein-protein interaction 

level in the gene regulatory network in response to RPW attacks.  
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4_DISCUSSION 

In this work, we addressed the lack of knowledge on transcriptomic responses to RPW 

attacks. Plant secondary metabolites are well-known compounds involved in plant-insect 

interactions (Becerra, 2007). Phenylpropanoid genes were strongly affected by RPW attacks. 

This evidence highlight that palms are activating counteracting responses to RPW from the 

middle stage of infection. We observed that BACT3 and IIL1 genes and other genes (allinase 

and TAR2) involved in the biosynthesis of sulfur-containing compounds  were enhanced. These 

compounds have well-known defensive properties. Plants have been engineered to produce a 

cyanogenic glycoside, obtaining enhanced resistance to Phyllotreta nemorum in Arabidopsis 

(Tattersall et al., 2001). These genes were not induced at S1 implying that palm responses to 

RPW attacks are activated too late and in an inefficient manner. Genes encoding strictosidine 

synthases were clearly enhanced only in response to RPW during the late stage. These genes 

are involved in alkaloid metabolism, a pathway that is generally stimulated in defense against 

insect herbivory. Flavonoids are known to be important compounds playing a key role in plant-

insect interactions (Treutter, 2006). We observed an unclear pattern of expression of some 

members of this pathways. Flavanone isomerase was repressed while chalcone synthase was 

induced. Taken together all these data related to secondary metabolism let us to conclude that 

Phoenix canariensis did not trigger appropriate defenses to promptly counterbalance RPW 

attacks.  

This is might be due to two factors: (1) the RPW-induced genes involved in 

phenylpropanoids are induced only at late stage when plants are already compromised, (2) it is 

possible that the genes playing a major roles in the transcriptional regulation of secondary 

metabolism were not sufficiently enhanced at middle stage of infection (S1). 

Other key genes involved in volatile biosynthesis were differentially regulated. The 

emission of plant volatiles may represent a direct defensive benefit by precluding oviposition 

(De Moraes et al., 2001) or attracting predators (Kessler and Baldwin, 2001). The important 

transcript changes that were observed in volatile pathways confirmed that infestations may lead 

to drastic changes in the volatile profiles detectable by biological methods (Nakash et al., 2000). 

Novel methods based on detection of induced volatile organic compounds have been recently 

proposed and should be applied to detect RPW attacks (Dandekar et al., 2010; Martinelli et al., 

2015).  

Fig. 7 summarized a global view of the main changes that were detected in leaf 

metabolism considering both analyzed symptom stages. We identified some RPW-induced 

genes encoding receptor kinases belonging to receptor kinase VIII, DUF26 protein kinases, 
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RLK10-like, and S-locus glycoprotein-like categories. LRR receptor like serine/threonine-

protein kinase, S-locus receptor kinase, and TIR-NBS-LRR resistance proteins have been 

previously found to be upregulated by aphid attacks (Coppola et al., 2013). Interestingly LRR 

III and LRR XII were mostly repressed. It is possible that the repression of some of these classes 

might be involved in a delay or complete lack of signal perception of RPW attacks and 

consequently in inadequate immune responses to RPW infestations. However, the size and 

complexity of these gene families make it extremely difficult to understand which family could 

be involved in susceptible reactions to RPW. 

 

 

Fig. 7| Global view of the transcriptomic changes in palm leaves in response to RPW attacks. The 

genes, pathways, and cell functions that were differentially expressed are indicated with a square 

(red for upregulated and green for downregulated). 

 

Plant-induced defense responses are modulated by a network of interconnecting 

hormone crosstalk in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play 

pivotal roles (Glazebrook, 2001). Jasmonic-related genes were induced by RPW attacks at S2. 

The synthesis of jasmonic acid (JA) and its precursors and derivatives (collectively termed 

jasmonates) occurs when plant are wounded. Jasmonates play a central role in regulating 

defense responses to herbivores (Heil and Ton, 2008). It is expected that a trauma caused by 
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chewing insects or mechanical damage results in the rapid accumulation of JA at the site of 

wounding. Previous data have demonstrated that the repression of JA responses induce 

susceptibility to herbivorous insects (Kessler et al., 2004). Here, we observed the upregulation 

of two key genes (AOS and OPR2) that are involved in JA biosynthesis during S2. Interestingly, 

jasmonic-related genes were not upregulated during the middle stage (S1), although their roles 

in herbivore attack have been demonstrated. This evidence is another clue that demonstrates 

the inefficient response of Phoenix canariensis to RPW infestations. Although crosstalk 

between defense signaling pathways presents a powerful regulatory instrument, it may also 

represent a weakness. Here, we observed that a UDP-glucosyltransferase that is involved in the 

conversion of SA to methyl-salicylate was induced during S2. qRT-PCR showed that this gene 

was significantly upregulated at both stages. It is well known that systemic acquired resistance-

against biotroph attacks is antagonist to JA-mediated responses to necrotrophs such as insects. 

It is possible that the induction of salicylic acid methyl transferase would benefit the insect by 

regulating negatively jasmonic acid-mediated responses. However, previous transcriptomic 

studies highlight the upregulation of SA-related genes in response to aphid attacks while the 

effect on JA-related genes showed a more complex regulation (Coppola et al., 2013). The 

differences in hormonal plant responses may be due to their diverse type of insect feeding. ABA 

is connected to the SA-JA-ET network, stimulating JA biosynthesis and antagonizing the onset 

of SA-dependent defenses. Here, we report that RPW induced genes that are involved in ABA 

metabolism and response (HVA22J, C3HC4-type ring finger, two GRAM-domain-containing 

proteins). The antagonistic effect of auxin on SA signaling has been documented (Pieterse et 

al., 2009).  

PR proteins were associated with the induction of both locally and systemically induced 

resistance to pathogens (Van Loon, 1997). Here, we showed that PR genes were differentially 

regulated by RPW infestations. The majority of PR genes were downregulated implying again 

a probably weak and inefficacious response to RPW invasion. WRKY proteins are a well-

known family of transcription factors involved in biotic stress responses and comprise more 

than 70 members in Arabidopsis (Rushton et al., 2010). Induction of WRKY members have 

been observed in longitudinal studies of Macrosyphum euphorbiae aphid attacks (Coppola et 

al., 2013). Upregulation of some members of this family was observed mainly at S2. However, 

WRKY40 and WRKY51 were enhanced also at S1 and might be considered candidate host 

biomarkers for RPW infestations. WRKY40 gene has been linked to response to the aphid B. 

brassicae attack (Kusnierczyk et al., 2008). A total of 8 WRKY members were significantly 

enhanced by RPW at stage S2. This important evidence indicates that palms activate a 

transcription induction of defense responses to RPW larvae feeding although these responses 
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are too late. WRKY51 transcript was the most abundant (log FD = 7.7). Gao et al. (2011) showed 

that WRKY51 plays a key role in stimulating SA-mediated responses and inhibiting JA-

inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to 

necrotrophs. Basing on these data, we may speculate that the induction of this gene as observed 

in RPW-attacked trees may have negative effects on host plant.  

Laccases are enzymes leading to the polymerization of monolignol precursors of lignin.  

The activation of these genes at middle stage of infestation confirmed that attacked 

palms responded to RPW invasion. A large number of peroxidase genes were induced at stage 

S2. Two of them were differentially regulated also at stage S1. These transcript changes were 

expected since peroxidases are well-known to be involved in ROS-detoxifying reactions, in the 

modulation of the redox and Ca2+ homeostasis as well as the regulation of defense-related 

genes (Kawano, 2003). Peroxidases act against biotic attacks in a passive way building up 

stronger walls or actively producing ROS against pathogens (Moura et al., 2010). When the 

attacking organism overcomes lignin barriers, peroxidases may be important to isolate the 

intruder. The evidence that these genes were induced at S1 is a clue that palmare activating 

defense responses against pathogen colonization. 

The ability to rapidly identify RPW infestations is of particular interest because it would 

allow to rapidly activate the management practices against RPW. In addition, the qRT- PCR 

analysis of RPW-regulated genes might help in speeding up detection of infestations. Genes 

upregulated at S1, involved in biotic stress responses, may be further analyzed to check their 

specificity for RPW attacks such as WRKY40 and WRKY51. A panel of genes may be analyzed 

in response to abiotic stresses and other typical biotic attacks to check their level of reliability 

in improving RPW management. 

Some possible short-term therapeutic approaches might be proposed. A first approach 

could focus on boosting JA-mediated defense responses by applying molecules, such as methyl 

jasmonate, JA, and linolenic acid, which would most likely shift the hormone crosstalk to JA, 

penalizing SA and allowing trees to localize efforts to pathways that might impair the larvae 

feeding aptitude. Another possible strategy could be the over-expression of genes playing a key 

role in the production of compounds that are repellant or not attractive to larvae or adults. 

Because auxin-responsive genes are antagonists of SA, a worthwhile experiment would be to 

test the effects of auxin inhibitor compounds on an attacked tree. It is possibly worthwhile to 

test the combination of sucrose with agents that stimulate xenobiotic responses through ROS 

signaling induction as previously suggested (Sulmon et al., 2006). Although an effective RPW 

management is still absent, the data presented in this work may lead to novel methods of 
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detection of infestations and offer an essential contribution to save palms from RPW attacks, 

especially in designated World Heritage areas.  

 

SUPPLEMENTARY MATERIAL  

The Supplementary Material for this article can be found online at: 

http://journal.frontiersin.org/article/10.3389/fpls.2015.00817 
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After providing a picture of the global transcriptomic changes of grapevine responses to 

“stolbur” phytoplasma, the recovery status and the molecular responses to phytoplasma and 

virus co-presence were analyzed. NimbleGen® Vitis vinifera genome arrays were used. Lower 

transcript abundance of the genes involved in photosynthesis, trehalose, phospholipids was 

observed in response to the presence of “stolbur” phytoplasma. The expression of genes 

involved in tetrapyrrole increased. The recovered plants showed that the transcripts involved in 

ATP synthesis and amino acid metabolism, secondary metabolism and biotic stress-related 

pathways increased. Recovery was associated with tetrapyrrole pathway repression. Co-

infection with viruses induced the genes involved in the hormone categories (cytokinin, 

gibberellin, salicylic acid and jasmonates).  
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1_INTRODUCTION 

Vitis vinifera is severely affected by “grapevine yellows” (GY) disease, a syndrome 

associated with the different phytoplasmas related with diseases that are associated with several 

agricultural crops. They are wall-less prokaryotes belonging to Mollicutes, and they survive in 

phloem plant tissues and insects [1]. The main grapevine phytoplasma diseases are “flavescence 

dorée” (FD - groups 16SrV-C and 16SrV-D) and “stolbur” (STOL - group 16SrXII-A), the 

phytoplasma involved in “bois noir” disease (BN) [2]. FD is a quarantine pathogen that is 

restricted to a number of European grape-producing countries, whereas “bois noir” is 

distributed worldwide and causes serious epidemics in several susceptible grapevine varieties.  

The symptoms of the two phytoplasma diseases are very similar and depend on grape 

varieties, environmental conditions and agronomic practices. Symptoms may appear on the 

whole plant or are limited to a sector or cane. They consist in downwardly rolled leaves with 

yellowing in the white-berried varieties, and a purple-reddish coloring in the red-berried 

varieties. Discolorations may affect some sectors or the whole blade, which becomes thicker 

and brittle. Internodes may shorten or new leaves are produced in summer months. Berries may 

ripen unevenly and be dry [3].  

Vineyard management against “bois noir” vector Hyalesthes obsoletus Signoret is not 

effective because this insect spends most of its life cycle on the wild plants that grow around 

vineyards. Different strategies have been followed; e.g. the specific elimination of the host wild 

plants, infected grapevine eradication and using healthy propagation material.  

In some phytoplasma-infected plant hosts, recovery implies the complete remission of 

symptoms in previously symptomatic plants. This phenomenon is linked with the disappearance 

of phytoplasmas from the crowns on infected trees. Cytochemical analyses have shown that 

recovery is associated with biochemical changes in the phloem [4]. Recovery has been reported 

in several grapevine varieties affected by FD and/or BN in different viticultural regions, and 

depends on environmental conditions, grape varieties, rootstocks, and agronomic practices. It 

can be induced when grapevines are subjected to abiotic stress, such as uprooting plant followed 

by immediate transplanting, partial uprooting or plant pulling, and also by pruning or pollarding 

[4]. Although recovered plants show overproduced hydrogen peroxide in phloem tissue [5], the 

physiological causes of the recovery process have still not been elucidated. “Stolbur” infection 

negatively regulates key primary pathways, such as photosynthesis, carbohydrate and lipid 

metabolism [6,7]. It also induces the genes involved in defense mechanisms, represses cell wall 

degradation and alters the balance of growth regulators [8-10]. The physiological response of 

grape plants to phytoplasma infection can be strongly modified by co-infection with one viruses 
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or more. Viral infections are very common in all grape varieties, and can either induce specific 

symptoms or correlate with a latent infection state. Some of the commonest viruses that affect 

grape plants are phloem-limited, which therefore make plant responses to phytoplasma 

infection more complex and significantly influence host/pathogen interactions.  

This paper presents a picture of the global transcriptomic changes for grapevine  leaf 

responses to “stolbur” infection before and after symptoms appear, and in the recovery status 

and with the co-presence of the phloem virus.  

 

 

2_MATERIALS AND METHODS 

2.1_Plant material and experimental design 

The analysis was performed on the grapevine cultivar Montepulciano. Analyzed plants 

were located in a vineyard in Giulianello (province of Latina, Latium, central Italy; GPS 

coordinates: 41.683, 12.867), and showed typical yellows symptoms for 4 sequential years (Fig. 

1).  

For monitoring year 1, two vineyard rows (128 plants) were analyzed by nested-PCR to 

verify presence of phytoplasma, as described in the literature [11,12]. Absence of “flavescence 

dorée” (FD) was observed in all the samples. Serological tests (ELISA) were also performed to 

detect phloem viruses: Arabis mosaic virus - ArMV;  Grapevine Leafroll-associated Virus type 

1, 2 and 3 -GRLaV-1, GLRaV-2, GLRaV-3; Grapevine virus A - GVA; Grapevine virus B - 

GVB; Grapevine Fleck virus - GFkV; and Grapevine Fanleaf virus - GFLV.  

During year 1, four symptomatic plants, solely infected by the “stolbur” phytoplasma, 

were uprooted and replanted to induce recovery [4]. They were classified as recovered because 

they had never shown any symptoms, and “stolbur” phytoplasma was never detected during a 

4-years period. The plant material analyzed here was collected between the end of August and 

September and was divided into the following plant categories: healthy (He; no phytoplasma 

and viruses - three replicates); asymptomatic plants infected only by “stolbur” (Phy AS - two 

replicates); symptomatic plants infected only by “stolbur” (Phy SY - two replicates); 

symptomatic plants co-infected by “stolbur and GLRaV-3 and GVA viruses (Phy plus virus - 

two replicates); recovered plants (Re - two replicates). Each replicate comprised six medial 

leaves from two branches of three plants. The petioles and leaf midribs of each sample were 

frozen in liquid nitrogen and maintained at -20°C. 
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Fig. 1| Symptoms on “bois noir”-infected ‘Montepulciano’ plants. Leaves show reddish 

discoloration and downwardly rolled margins. 

 

 

2.2_Microarray and functional analyses 

RNA was extracted with the RNeasy Plant mini kit (Qiagen Inc., Valencia, CA). 

NimbleGen® V. vinifera genome array (Roche NimbleGen® Inc., Madison, WI, USA) was used 

for the microarray analysis. All the procedures for labeling and microarray hybridizations were 

performed following the NimbleGen® Inc. kit instructions. To retrieve additional functional 

annotations, probesets were associated with their homologous Arabidopsis thaliana genes. 

Robust Multiarray Average (RMA) data were analyzed with an additional normalization step 

(cubic spline) to remove the batch effect, such as the non-linear bias between duplicated arrays 

from different batches. Microarray data were submitted to NCBI’s Gene Expression Omnibus 

(GEO), under the accession number GSE52540. 

Functional classifications were based on those found in the MapMan software [13]. 

Differentially expressed genes were viewed using a mapping file constructed for the Vitis 

genome sequence [14]. Differentially regulated genes (log2> 1 and log2 < -1; p-value < 0.05) in 

each pairwise comparison were shown in a different color based on a gradient legend of green 

(down-regulated) and red (up-regulated). The Pageman analysis was run with the list of the 

differentially regulated genes with a Wilcoxon test (ORA cut-off value = 1).  
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2.3_Array validation 

Quantitative SYBRGreen real-time PCR (qRTPCR) was performed to validate the 

expression profiles obtained by the NimbleGen® Chip V. vinifera genome array. Five genes 

were selected from the panel of the differentially expressed genes in the pair-wise comparison: 

Phy/He SY and Re/He. The housekeeping gene used to normalize gene expression was V. 

vinifera actin (AF369524). The primers for each assayed gene were designed using the Primer3 

software (http://primer3.sourceforge.net/). The Welch two-sample t-test was employed to 

compare the relative expression ratios of the infected and healthy samples (p-value < 0.05). 

RNAs were extracted from three replicates from each experimental conditions using the 

RNeasy Plant mini kit (Qiagen Inc., Valencia, CA). Amplifications were performed with 20 

ng/μl of RNA extracted by the SensiMixTM one-step kit with ROX (Bioline - UK) according 

to the manufacturer’s instructions. The primer sequences are provided in Table S1. The Ct value 

of each gene was normalized with actin to obtain the ΔCt value.  

 

 

3_RESULTS AND DISCUSSION 

3.1_Grapevine responses to “stolbur” phytoplasma infection 

3.1.1_Gene set enrichment analysis  

Phytoplasmas-repressed photosynthesis were shown by the inhibition of the light 

reactions of Photosystem II, light harvesting complex II, Photosynthesis II and ATP synthase 

(Fig. 2). The mevalonate pathway, terpenoid and simple phenol gene set categories were 

significantly induced while lignin biosynthesis was repressed. The S-locus glycoprotein-like 

kinases were significantly induction.  
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Fig. 2| The Pageman gene set enrichment analysis of leaf transcriptomic changes in response to 

phytoplasma infection (asymptomatic and symptomatic stages) and co-infection with viruses. 

 

3.1.2_Primary metabolism 

The MapMan software was used to identify which gene was regulated by “stolbur” on 

the significantly regulated pathways shown by the gene set enrichment analysis. Some key 

genes involved in aromatic amino acid synthesis and degradation were affected by  presence, 

such as tryptophan synthase, prephenate dehydrogenases and 3-hydroxyisobutyrate 

dehydrogenase. The tetrapyrrole pathway was generally induced by the presence of “stolbur” 

(Fig. 3).  
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Fig. 3| Metabolism overview of the transcriptomic changes in response to “stolbur” phytoplasma 

presence in different disease stages. The phytoplasma-regulated genes were divided into five 

different categories: up-regulated or down-regulated in symptomatic leaves, up-regulated or 

down-regulated in asymptomatic leaves or regulated in both stages. 

 

The transcript abundance of the genes involved in light reactions generally reduced (Fig. 

S1 A). These data agree with previous studies, which have emphasized the strong negative 

correlation between the repression of light reactions and pathogen infection [5]. In addition, the 

downregulation of ATP synthase protein I-related confirmed the data found in previous works 

[8]. The transcripts for starch synthase 2 and ADP-glucose pyrophosphorylase 1 decreased in 

the “stolbur”-infected grapevines. The genes involved in starch metabolism transcripts 

generally increased (beta-amylase 1, alpha-gluca phosphorylase 2) (Fig. S1 B). The transcript 

abundance of the sugar and starch metabolism genes generally coincided with the modified 

levels of sugars in the infected mature leaves [15,16]; these altered genes have been linked with 

responses to phloem-limited pathogens [17,18]. Studies on transgenic plants with altered 

carbohydrate accumulation have emphasized the importance of sugars for inducing defense 

responses against biotic stresses [19]. Phytoplasma has been shown to drastically alter the 

translocation of carbohydrates and amino acids [20], which could affect photosynthesis, as 

regulated by a feedback mechanism: chlorosis occurs when carbohydrates levels increased. 

This has been hypothesized by Albertazzi et al. [8] via a mechanism of inhibition of several 

Calvin-cycle enzymes. The redistribution of carbohydrate reserves might be linked to the up-

regulation of genes by converting sucrose and starch into fructose and glucose. A study [9] on 

cv. 'Chardonnay' has highlighted the role of sugar metabolism changes in relation to their 
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importance for phytoplasma nutrition. Albertazzi et al. [8] confirmed these findings by 

observing the up-regulation of vacuolar invertase, sucrose synthase and alpha amylase in 

infected samples. One piece of contrasting evidence provided herein, compared with previous 

studies, was invertase repression. This enzyme plays an important role in the regulation of stress 

responses, in addition to the possible extracellular signal for pathogen infection [16]. Invertase 

regulation depends on pathogen type [21]. However, it is hard to make comparisons because 

each member of this large family is finely modulated by different environmental signals and 

developmental stages. Raffinose metabolism was affected by phytoplasma infection, as shown 

by the induction of phosphofructokinase 2, 3 and 5, pyruvate kinase 3 and phosphoglycerate 

mutase (only in the symptomatic stage) (Fig. S1 C). The glycolitic and TCA pathways were 

slightly affected by the disease, as shown by the up-regulation of key genes, such as pyruvate 

kinase, phosphofructokinases, aconitate hydratase and succinate dehydrogenase. Two genes 

implicated in glycolysis were repressed in the infected Chardonnay plants: nonphosphorylating 

glyceraldehyde-3-phosphate dehydrogenase and fructose-bisphosphate aldolase [9].  

 

3.1.3_Secondary metabolism 

The secondary metabolism (Fig. S2) was severely affected by “stolbur” in both 

asymptomatic and symptomatic stages. Some important terpene synthases and the genes 

involved in phenylpropanoids were enhanced. The genes involved in the shikimate pathway, 

such as laccase 14, laccase17, L-ascorbate oxidase, were up-regulated. Some key genes were 

repressed, such as cycloartenol synthase 1, beta-amyrin synthase 1, dihydroflavonol-4-

reductase, and cinnamoyl-CoA reductase.  

 

3.1.4_Transcription factors, protein modifications, signaling, redox and hormone-related 

pathways  

Fig. 4 highlights how “stolbur” affected hormone biosynthesis, transcription, protein 

modifications, signaling and redox pathways. A complex and interconnected network between 

sugar, hormones, and environmental factors has been shown in plants [22].  

The majority of auxin-related genes were induced in the asymptomatic stage. ABA-

related and brassinosteroid genes were induced, e.g. benzodiazepine receptor, HVA22 and 

DWF1. Most ethylene-related genes were up-regulated in the asymptomatic stage. ACS8 was 

also induced. Ethylene signaling appeared to be a key metabolic pathway in “stolbur” 

responses. Its role in hormone crosstalk is 2-fold in biotic stress responses is. EIN2 

synergistically acts with salicylic acid responses by activating ROS. ERF1 is linked with the 
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up-regulation of jasmonic acid signaling [23]. ERF1 up-regulation suggested that jasmonic acid 

signaling is stimulated by phytoplasma infection. This is corroborated by the induction of some 

key JA-related genes in jasmonate (JA) synthesis such as lox3, allene oxide synthase and allene 

oxide cyclase 4. Taken together, these findings are intriguing since phytoplasma should not be 

the target of a jasmonic acid response if we consider its biotrophic nature. Although S-adenosyl 

methionine-dependent methyl transferase, involved in salicylic acid biosynthesis, was more 

abundant in the asymptomatic stage, the up-regulation of the jasmonic acid-related genes may 

negatively counterbalance this effect.  

 

 

Fig. 4| “Stolbur” induced transcriptional reprogramming on transcription, protein-related, 

signaling, redox and hormone-related pathways. 

 

 

3.1.5_Biotic stress-related responses and signaling 

The majority of genes related to stress responses were boosted in the asymptomatic stage 

(Fig. S3). Key heat shock proteins were induced in the asymptomatic stage; e.g. HSP81-4, 

DNAJ, HSA32, HSP70-1 and TMS1. Some were repressed in both disease stages. The 

expressions of the genes involved in oxygen binding, thioredoxin, ascorbate/galactose, 

glutaredoxin, peroxiredoxin and dismutase/catalase were affected by presence of phytoplasma. 

Marker transcript abundance was observed for WRKY11 and WRKY23 (in the asymptomatic 
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stage), WRKY40 and WRKY7 (in the symptomatic stage), and WRKY48 (in both stages). The 

most affected category of receptor-like kinases was that which corresponded to S-locus 

glycoprotein like proteins: ATP binding/kinase, S-locus lectin protein kinases and PR5K.  

 

3.2_Recovery from “stolbur” infection 

Recovered plants were analyzed when they presented no symptom, which was why the 

induction of defense responses was much lower. 

Compared to the control healthy status, the Pageman analysis showed that recovery 

status was associated with the induction of several secondary metabolism categories such as 

terpenoids, phenylpropanoids, lipid biosynthesis, sulfur-containing compounds 

(glucosinolates), flavonoids and simple phenols (Fig. 5). Polyamine biosynthesis and 

metabolism (particularly arginine decarboxylase) were significantly induced compared to the 

control. Some categories of transcription factors were inhibited only in the recovered 

grapevines. Regarding signaling, leucine-rich repeat proteins (III and XI) were repressed, while 

S-glycoprotein-like proteins and kinases were up-regulated. 
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Fig. 5| The transcriptomic gene set enrichment analysis of the differentially regulated 

phytoplasma-infected (asymptomatic and symptomatic) and recovered plants compared to 

healthy leaves. 

 

 

In metabolism terms, the recovered plants showed fewer genes to be involved in 

photosynthesis and amino acid biosynthesis and metabolism. Particularly in the primary 

metabolism (Fig. 6), very few important up-regulated genes were involved in starch and sucrose 

metabolism (alpha-amylase, hexokinase-like 3), in glycolysis (phosphofructokinase, 

phosphoglycerate/biphosphoglycerate mutase) and in tetrapyrrole (NDB2, NAD4).  

Given the importance of cell wall modifications in plant-microbe interactions, the down-

regulation of cellulose synthase, xyloglucan transferase, expansin B17, pectate lyases and 

polygalacturonases was noteworthy. Callose was synthesized in different plant organs and in 

response to environmental stress. Cellulose and callose production may require sucrose 
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synthase activity. Evidence that Susy2 was repressed in the recovered meant the presence of 

the pathogen in the phloem should be less aboundant. 

 

 

Fig. 6| Primary metabolism overview of recovered status. Up-regulated genes are in red, while 

down-regulated genes are in green on a log-fold ratio scale. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article). 

 

 

Some key important changes were observed in terpenoids, flavonoids and 

phenylpropanoids (Table S2). The up-regulation of the secondary metabolism genes could 

allow plants to be less susceptible to further infection. The roles suggested for phenylpropanoid 

compounds in plant defenses have been traditionally based on biological activities in vitro, and 

on correlations between accumulation rates and reduced susceptibility in vivo. Yet as plant 

defense responses are multicomponent, it is not easy to define which components are both 

necessary and sufficient to confer protection. 

Regarding the hormone pathways (Table S3), two ethylene genes were highly induced 

(2OGFe(II) oxydase, AP2 domain TF) as well as a GRAM-domain contacting protein (the 

abscissic acid pathway), IPT5 (cytokinins). Many down-regulated genes belonged to ABA, 

auxins and jasmonic acid and ethylene responses (Table S3). Clearly the entire picture of 

hormone crosstalk differed completely from the infected status where all these pathways 
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(except ABA) were substantially induced. As expected, the genes that encode the transcription 

factors induced in infected plants, were strongly repressed (Table S4).  

Regarding the biotic stress related pathways, it is noteworthy that very few key genes, 

such as HSC70, terpene synthase 14 (TPS14), a protein kinase family protein (Fig. S4) were 

up-regulated by recovered. The recovered plants showed repression of oxidases, glucosidases, 

glutathione-S-transferase compared to the infected plants. Regarding signaling reception, 

receptor kinases-S-locus glycoproteins seemed to be more involved in signal transduction. This 

evidence was confirmed by the down-regulation of these genes in the recovered plants. 

Transcription factors, such as WRKYs, AP2-EREBP, MYB, bHLH, were clearly induced in 

the asymptomatic infected plants, but were mainly down-regulated at the recovered status when 

healthy behavior returned. In conclusion, we speculate that recovery was gained mainly through 

the induction of those genes involved in the secondary metabolism.  

 

3.3_Transcriptomic changes in response to co-infection with GLRaV-3 and GVA viruses 

The transcriptome analysis of the plants co-infected by viruses (GLRaV-3 and GVA) 

and phytoplasma enabled us to identify common and different transcriptional responses. 

Comparing with solely the “stolbur” phytoplasma infection, the gene set enrichment analysis 

showed that presence of viral infections reduced the transcript abundance of the genes involved 

in starch debranching. Glucosinolates were induced in secondary metabolism terms, while 

flavonoids were generally repressed. Viruses induced extensive transcriptional reprogramming 

in hormonal crosstalk, as highlighted by the induction of the pathways involved in auxin, 

cytokinin, ethylene, gibberellins and salicylic acid. Moreover, a different signaling mechanisms 

was shown through the activation of lectin receptor kinases.  

The phytoplasma and viruses co-infection induced more of the genes involved in 

tetrapyrrole than solely phytoplasma infections. Tetrapyrroles are important molecules in plant 

processes like photosynthesis and respiration [24]. As it remains whether the strenght of these 

genes could be a potential danger for grapevine plants, further research is needed.  

Viruses and phytoplasma co-infections caused a significant induction of protein amino 

acid phosphorylation and oxidative stresses, alteretions in the specific genes involved in cell 

wall modifications, up-regulated pathogenesis-related pathways and reduced lipid metabolism 

and transport (Fig. 7). Presence of viruses (GLRaV-3 and GVA) up-regulated other genes 

involved in sucrose degradation, amino acid synthesis, glucosinolate synthesis and degradation, 

and tetrapyrrole. Some key genes were down-regulated, such as those involved in starch 

metabolism (starch synthase 2, alpha-amylase, starch synthase 3) and light reactions (PSII 
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center core and subunits, NADPH dehydrogenase). The data suggest that sugars play a role in 

not only the repression of photosynthetic genes [25], but also in the induction of defense 

responses. Sheen [23] suggested the common mechanism of sugar sensing in the repression of 

photosynthetic genes and the activation of stress-related genes. The results obtained for the co-

infected plants agreed with the data obtained for the plants solely by phytoplasma. However it 

is noteworthy that the key players in the glycolytic pathway and raffinose were up-regulated 

only when viruses were present.  

 

 

Fig. 7| Metabolism overview of the transcriptomic responses to “stolbur” phytoplasma (Phy), 

viruses and “stolbur” + viruses (both pathogens). The differentially regulated genes were divided 

into six different categories: up-regulated or down-regulated in response to only “stolbur” 

phytoplasma infections, up-regulated or down-regulated in response to only virus infections, up-

regulated or down-regulated in the co-infections of both phytoplasma and viruses. 

 

 

Regarding the hormone-related pathways, the co-presence of phytoplasma and viruses 

induced a larger number of genes related to cytokinin, gibberellin and salicylic acid (Fig. 8). 

Several key ethylene responsive genes were highly induced, such as flavonol synthase and 

ethylene response 2. Some other key genes were up-regulated: auxin-responsive protein 

(SAUR_C), PIN7 (auxins), abscissic acid responsive proteins, LOX3 (jasmonic acid) and 2OG 

Fe (II)-oxygenase.  



65 
 

Some key genes encoding transcription factors were induced only by viruses, e.g. a few 

MYB factors and WRKYs (WRKY75, WRKY7, WRKY49 - Table S5; Fig. S5). WRKY70 was 

down-regulated by the virus and phytoplasma co-presence. The effect of the down-regulation 

of WRKY70 in response to phytoplasma and viruses needs further investigation. It was most 

interest that some MYB genes were repressed. MYB proteins play a transcriptional regulation 

role in different pathways of the primary and secondary metabolism, or in cell development and 

the cell cycle, environmental stress responses, hormone biosynthesis and signaling [26].  

 

 

Fig. 8| Hormone-related genes that were differentially regulated by solely phytoplasma infections, 

by phytoplasma and GLRaV-3 and GVA viruses and by phytoplasma and virus coinfection. 

 

3.4_qRT-validation of the microarray data 

Five genes were chosen for the qRT-PCR analysis to validate the microarray data. Three 

genes were up-regulated in the infected and recovered samples compared to the uninfected 

ones: Photosystem I P-Subunit (PSI-P), Glutamyl-tRNA reductase 1 chloroplastic like 

(LOC100259052), and probable galactinol-sucrose galactosyltransferase 2-like 

(LOC100245094) (Fig. S5). Two genes were repressed in the infected and recovered samples 

compared to the uninfected ones: a plasma membrane-associated protein-like (XM003631860) 

and a polygalacturonase (AY043233). The expression trend of all five genes was consistent 

with the transcript abundance observed in the microarray data.  
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4_CONCLUSIONS 

This study provides an overall picture of the main metabolism changes in grapevine in 

response to phytoplasma infection and in the co-presence with two grapevine viruses. The 

transcriptome of the recovered plants was characterized. Interestingly, the recovered plants 

shoewed that the transcripts involved in ATP synthesis and amino acid metabolism increased. 

The gene set enrichment analysis results highlight that the secondary metabolism 

(phenylpropanoids, isoprenoids, glucosinolates, flavonoids) was clearly induced. Higher levels 

of the secondary metabolism genes are very important for grapevine resistance to “stolbur” 

phytoplasmas. In agreement with the data observed for other diseases caused by phloem-

restricted pathogens, a determinant role in symptom appearance and, consequently, in plant 

decline is played by imbalances in molecular transport through the phloem system, which then 

cause sink-source disorders. Although the complexity of the gene regulatory networks behind 

this phenomenon requires further studied, this work identified important players in this 

network, such as the genes involved in tetrapyrrole pathways, which can contribute to develop 

early disease diagnostics and new control strategies [27].  These findings will help to uncover 

disease mechanisms, and to facilitate the development of early diagnostic tools and short-term 

control strategies [28].  

Future studies conducted under controlled conditions are necessary to complement these 

field approaches, to reduce environmental variability and to focus on specific factors.  

 

 

SUPPLEMENTARY DATA 

Supplementary data related to this article can be found at 

http://dx.doi.org/10.1016/j.pmpp.2016.01.001. 
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Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No 

cure is yet available for this disease and infected trees generally decline after several months. 

Disease management depends on early detection of symptoms and chemical control of insect 

vectors. In this work, different combinations of organic compounds were tested for the ability 

to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule 

regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with 

gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral 

solution and was tested at two different concentrations. Two trials were conducted: one in the 

greenhouse and the other in the orchard. In the greenhouse study, responses of 42 key genes 

involved in sugar and starch metabolism, hormone-related pathways, biotic stress responses, 

and secondary metabolism in treated and untreated mature leaves were analyzed. TGA5 was 

significantly induced by arginine. Benzyladenine and gibberellins enhanced two important 

genes involved in biotic stress responses: WRKY54 and WRKY59. Sucrose combined with 

atrazine mainly upregulated key genes involved in carbohydrate metabolism such as sucrose-

phosphate synthase, sucrose synthase, starch synthase, and α-amylase. Atrazine also affected 

expression of some key genes involved in systemic acquired resistance such as EDS1, TGA6, 

WRKY33, and MYC2. Several treatments upregulated HSP82, which might help protect 

protein folding and integrity. A subset of key genes was chosen as biomarkers for molecular 

responses to treatments under field conditions. GPT2 was downregulated by all small-molecule 

treatments. Arginine-induced genes involved in systemic acquired resistance included PR1, 

WRKY70, and EDS1. These molecular data encourage long-term application of treatments that 

combine these regulating molecules in field trials. 

                                                             
3 Published to PLoS ONE, 2016, 11(7):e0159610. doi: 10.1371/journal.pone.0159610 
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1_INTRODUCTION 

Plant pests and diseases threaten agricultural systems. Huanglongbing (HLB) disease 

endangers the citrus industry and citrus cultivation worldwide [1]. Neither genetic resistance 

nor short- or long-term therapeutic strategies to mitigate HLB has been found. Huanglongbing 

disease is associated with three Candidatus liberibacter (C. Las) species: asiaticus, americanus, 

and africanus. C. Las is a member of the alpha subdivision of the proteobacteria based on 

ribosomal region sequence data [2]. Symptoms have been extensively described and all citrus 

species are susceptible to HLB to varying degrees [3,4]. 

Microarray analysis identified key genes and pathways affected by HLB at the 

transcriptomic level in mature, symptomatic leaves [5,6]. RNA-seq was applied to describe 

molecular responses in fruit with different degrees of HLB symptoms [7]. This allowed a 

comprehensive analysis of gene regulatory networks on source and sink tissues at different 

developmental stages [8,9]. Effects of C. Las infection on key genes involved in sugar and 

starch metabolism, disrupting source-sink relationships, was a key cause of the metabolic 

dysfunction. Fruits of infected plants remained immature and photosynthesizing while mature 

leaves became yellow and accumulated starch [9]. Protein expression has been linked to the 

nutritional condition of grapefruit plants before and after symptom appearance. C. Las-

upregulated proteins were involved in redox reactions, cell wall modification, and biotic stress 

responses [10]. Isobaric tags for relative and absolute quantitation (iTRAQ) identified which 

pathways are affected post-transcriptionally by pathogen infections [11]. A predictive proteome 

analysis of C. Las has been conducted [12]. Because no toxins or other pathogenic substances 

were clearly identified in the genome [13], the pathogenetic mechanisms of HLB disease are 

still unclear, nor is it clear whether the HLB-associated changes in sugar and starch metabolism 

are a cause or an effect of the disease [9].  

Current management procedures consist mainly of visual scouting for symptoms, PCR-

based detection of the pathogen, and insecticides for vector control [14]. Although application 

of insecticides can reduce disease spread, the disease can spread with only a few infected 

psyllids in the orchard. Early disease detection and psyllid control are critical practices in areas 

where neither disease nor vector has yet been discovered [1]. At present, no chemical 

compounds have been tested to beneficially modulate Citrus host responses and eventually 

extend the life and production of HLB-infected trees, reducing high economic costs due to lost 

production. Research has focused only on testing compounds targeting the pathogen. A 

combination of two antibiotics (penicillin and streptomycin) applied by either root soaking or 

foliar spray decreased C. Las titer in infected plants [15]. Antimicrobial compounds have been 
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delivered through graft-based chemotherapy [16]. Nanoemulsion formulations were evaluated 

for their ability to increase permeability of antimicrobial molecules with success dependent on 

the citrus cultivar and degree of HLB symptoms [17]. Small-molecule inhibitors designed by 

molecular docking were significantly effective in inhibiting SecA ATPase in vitro [18]. 

Extensive use of antibiotics in open fields is not desirable due to environmental and human 

health concerns. Host-based treatments that modulate key genes involved in metabolic HLB 

syndrome are highly desirable. Data on citrus molecular responses to HLB can now be exploited 

to design small-molecule combinations to ameliorate the devastating symptoms. The aim of 

this study was to determine if small molecules are effective in modulating expression of key 

HLB-regulated or innate response genes after three to six days of treatment.  

 

 

2_MATERIALS AND METHODS 

2.1_Plant material  

Greenhouse trial. In 2011, Valencia orange scions on Kuharske Carrizo rootstocks were grown 

in one-gallon plastic nursery containers and kept in the greenhouse under natural light at 17 to 

25°C. Graft inoculations were performed using a standard inverted “T” budding technique with 

C. Las-infected budwood tested as described [19]. Starting three months after budding, each 

plant was tested monthly using quantitative RT-PCR for C. Las species as described [19]. Each 

control or treatment was represented by nine to 10 trees. The control consisted of trees sprayed 

with distilled water. The first treatment consisted of a Silwet (0.12%), DKP3XTRA (32.5 

mL/20 L) and LK-phite spray (2 mL/20 L). The other six spray treatments were composed of 

three different small-molecule combinations at two different concentrations each: 1) L-arginine 

at 1 mM or 0.5 mM, 2) 120 μM 6-benzyl adenine in combination with 15 or 30 μM gibberellin, 

and 3) 80 mM sucrose combined with the herbicide atrazine (2 μM or 1 μM). All seven 

treatments contained the surfactant Silwet and LK-phite at the same concentration used for the 

first treatment. Phenotypes were evaluated to determine any phytotoxic effects of these sprays. 

All treatments were sprayed on the citrus foliage; the volume sprayed per tree was enough to 

wet both upper and lower leaf surfaces just to the point of runoff. Gene expression analyses 

were conducted on RNA extracted three days following treatment. Three biological replicates 

of nine mature leaves harvested from three trees (three leaves per tree) were analyzed for each 

treatment. Collected leaves were immediately frozen in liquid nitrogen and kept at -80°C until 
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RNA was extracted. Forty-two host genes were analyzed in mature symptomatic leaves of 

treated and untreated trees. 

Field trial. The same treatments were applied during the field experiments, which were 

conducted in a commercial citrus orchard in Indian Ricer County, FL, composed of Valencia 

orange scions on Swingle rootstocks. The study was conducted on private land and the owner 

of the land gave permission to conduct the study on the site of our experiments. We also confirm 

that the field studies did not involve endangered or protected species. Twenty-four trees of 

medium height, 12 trees per row, were selected. These trees were mildly HLB-symptomatic 

and confirmed infected by C. Las through the same qPCR assay used for the greenhouse trial. 

The experimental design was a completely randomized blocks. There were eight treatments 

with three single-tree replicates. Samples were collected at three and six days following 

treatment. Each replicate was a pool of 10 mature symptomatic leaves per tree. 

RNA extraction and qRT-PCR analysis. Total RNA was extracted from mature, fully-

expanded leaves of plants grown in the greenhouse or orchard using the Rneasy Plant RNA 

Isolation kit (Qiagen Inc., Germany). The RNA concentration and purity were assessed by 

Nanodrop (Thermo Fischer Scientific Inc., MA, USA). RNA was stored at −80°C until 

analyzed. For each target gene, PCR primers were designed using Primer Express software 

(Applied Biosystems, Foster City, CA; S1 Table). DNase treatment and cDNA synthesis were 

completed following a combined protocol based on the Quantitect Reverse Transcription Kit 

(Qiagen Inc., Germany). A standard curve determined the linearity of amplicon quantity vs. 

initial cDNA quantity for each gene. Five µL cDNA at five ng/µL was diluted to a 12-µL final 

volume using Sybr Green Master Mix (Bio Rad Laboratories, Hercules, CA, USA). 

Amplifications were performed using standard conditions: 2 min at 50°C, 10 min at 95°C, 40 

cycles of 15 s at 95°C, and 60 s at 60°C. Fluorescent signals were collected during the annealing 

temperature and ΔCT was calculated. Elongation factor 1 alpha (EF-1a, accession AY498567) 

was used as reference gene. ΔΔCT was determined by subtracting the average EF-1a CT from 

the average CT of the studied gene [9]. 

 

2.2_Phenotypic measurements 

Four phenotypic parameters for all treated and untreated trees were measured in the 

field: trunk diameter (mm), trunk height (m), width drill (m), and width row (m). These 

measurements were taken on 5/21/2014 and 6/28/2014 during the vegetative season. 
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2.3_Statistical analysis 

All statistical analyses of gene expression and phenotypic data were performed using 

SAS II (2008) SAS/STAT software (SAS Institute). Gene expression and phenotypic data were 

analyzed using ANOVA and a post-hoc test to identify significant differences among 

treatments. Principal component analysis (PCA) was used to reduce the dimensionality of the 

gene expression data. Data analysis was performed to alleviate possible bias caused by the 

collected material for each class or by other confounding factors. Principal component analysis 

was applied to the ratio matrix of gene expression data to examine the contribution of each 

target parameter to the separation of the sample classes. A biplot was constructed based on the 

first two principal components. 

 

 

3_RESULTS  

Gene expression analyses were conducted in the greenhouse and orchard. First, in 

greenhouse-grown plants, we quantified transcript abundance of 42 genes selected for their link 

with for being strongly up- or down-regulated by HLB syndrome [7,9] or for having a well-

known role in plant responses to pathogen attacks [20]. Second, we selected a subset of five 

particularly representative genes to be analyzed in field-grown trees, to which we added an 

additional two genes previously linked with HLB syndrome in published data [5,9]. The 

presence of leaf drop or discoloration and other morphological features of trees were measured 

to check whether these treatments had deleterious effects on important vegetative parameters. 

At advanced stages, HLB blocks sugar transport out of leaves, leading to starch 

accumulation in leaves, reduced photosynthesis and disrupted source-sink relationships [9]. 

Anatomical analysis showed that HLB caused phloem disruption, increased sucrose, and 

plugged sieve pores [6]. The disease also negatively modifies JA-SA crosstalk, leading to an 

ineffective innate immune response [7,9]. The three small-molecule treatments were selected 

for the potential to beneficially modulate these negative HLB-regulated responses. The 

combination of atrazine and sucrose upregulates genes associated with reactive-oxygen-species 

(ROS) defense mechanisms and sucrose metabolism [21,22]. We postulated that this treatment 

might upregulate genes that reduce sucrose and starch accumulation. Because L-arginine is the 

precursor of nitric oxide, which is involved in the SAR response and upregulates genes involved 

in secondary metabolism [23], we designed a second treatment consisting of two concentrations 



76 
 

of L-arginine to induce upregulation of genes for secondary metabolic pathways such as 

phenols and terpenoids. Gibberellins boost systemic acquired resistance [20], favoring the 

resistance response against biotrophs such as C. Las [20]. Benzyladenine downregulates hexose 

transport in leaves, based on data deposited in the Genevestigator database. Indeed, we 

postulated that the combination of gybberellins and L-benzyladenine should have two 

synergistic effecs: 1) it should beneficially induce genes involved in the innate response against 

C. Las such as WRKYs, MYC2 and salycilic acid methyl transferase, and 2) it should repress 

the expression of GPT2 in symptomatic leaves, mitigating the deleterious HLB-driven 

upregulation [9]. 

 

3.1_Greenhouse trial 

Atrazine combined with sucrose treatment. The transcript abundance of genes related to 

carbohydrate metabolism varied significantly in response to atrazine combined with sucrose 

(Table 1).  

The sucrose synthase (Susy) and starch synthase transcripts were more abundant in 1 

μM atrazine-treated plants. Sucrose-phosphate-synthase and water dikinase starch degradation 

(GWD) gene were upregulated by 2 μM atrazine + sucrose. Taken together, these findings 

highlight that activation of sucrose synthase should counter the accumulation of sucrose in 

symptomatic leaves, while the upregulation of GWD should promote degradation of 

accumulated starch. 

Defense responses and hormone-related genes were affected by atrazine + sucrose 

treatments. WRKY33 was upregulated by 1 μM atrazine + sucrose (Table 2).  

A zinc ion binding transcription factor, heat shock protein 82 (HSP82) and ERF1 were 

strongly induced by 2 μM atrazine (Tables 2 and 3).  

JIN1 was induced by 1 μM atrazine + sucrose (Table 4).  

Salicylic acid methyl transferase and 12-oxophytodienoate reductase 1-like were 

upregulated by 2 μM atrazine + sucrose. 
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Table 1| Relative transcript abundance of genes involved in carbohydrate metabolism.  

 

 

 

Gibberellin and benzyl-adenine treatment. GA + BA treatments were tested to determine 

their effects on key genes involved in plant innate immune responses and carbohydrate 

metabolism. Among carbohydrate metabolism genes, alpha-amylase was significantly induced 

by 120 μM gibberellins combined with 30 μM benzyl-adenine (Table 1). Among innate 

immune response genes, WRKY54 was upregulated in response to 120 μM gibberellins + 15 

μM benzyl-adenine while WRKY59 was enhanced by 120 μM gibberellins + 30 μM benzyl-

adenine (Table 2). Sulfotransferase 1 was enhanced by both gibberellin and benzyl-adenine 

treatments. MYC2 was upregulated by benzyladenine + gibberellin. 

Among the secondary metabolism and stress response genes, 120 μM gibberellins + 15 

μM benzyl-adenine enhanced expression of HSP82 and two genes encoding pectate lyases 

involved in cell wall metabolism (Table 3). β-amyrin was enhanced by 30 μM gibberellins 

combined with benzyl-adenine.  

BA + GA treatments induced SA methyl transferase (Table 4). BA + GA partially 

induced HLB-related changes to SA-mediated defense response, but EDS1 was not altered by 

the treatment, so the plant probably still can’t downregulate jasmonic antagonistic signaling.  

Ka02 involved in cytokinin metabolism was higher in response to 15 μM than to 30 μM benzyl-

adenine.  

Arginine treatment and K-phite treatments. 0.5 mM L-arginine upregulated HSP21 and 

terpene synthase3 (Table 3). Arginine treatments did not alter the expression of terpene 

synthase14 and terpene synthase21, so the treated plant is still unable produce important terpene 

compounds.  TGA5 and HSP82 were enhanced by 1 mM L-arginine. K-phite treatment 
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repressed glucose-phosphate-transporter 2 (GPT2). This downregulation may have a beneficial 

effect since this gene allows glucose import into the chloroplast and starch accumulation.  

K-phite significantly induced HSP21, a chaperone involved in functional protein 

stability.  

 

Table 2| Relative transcript abundance of genes involved in plant innate immune responses.  

 

 

 

Table 3| Relative transcript abundance of genes involved in stress responses and secondary 

metabolism.  
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Table 4| Relative transcript abundance of genes involved in hormone-related pathways.  

 

 

 

 

Principal component analysis. Two principal component analyses were conducted to 

independently assess two gene subsets: 1) genes involved in sucrose and starch metabolism 

(PCA-1; Fig. 1) and 2) genes involved in hormone-related proteins and biotic stress responses 

(PCA-2; Fig. 2).  

In PCA-1, the first two principle components explained 47 and 28% of data variability, 

respectively. The 2 μM atrazine + sucrose treatment separated from the rest of the treatments. 

SPS greatly contributed to this separation. 120 μM BA + 30 μM GA was also highly 

discriminated from the rest of the treatments. The other treatments were not distinct from the 

untreated controls.  

PC 1 and PC 2 of PCA-2 (Fig. 2) explained 36 and 17% of data variability, respectively. 

The 1 mM L-arginine treatment was not distinct from untreated conditions, but the 2 μM 

atrazine + sucrose treatment was highly distant. GA2-oxidase, zinc ion binding, and cysteine-

histine rich domain C1 gene contributed significantly to the separation of 2 μM atrazine + 

sucrose treatment. WRKY33 highly contributed to the separation of the 1 μM atrazine + sucrose 

treatment.  
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Fig. 1| Overall analysis of HLB-regulated changes in carbohydrate metabolism. Principal 

component analysis of treated and untreated Citrus categories in relation to genes involved in 

sucrose and starch pathways. UNT = Untreated with hormones (Control), CK = treated with K-

phite, 30G = 30 μM gibberellin, 15G = 15 μM gibberellin, 1R = 1 mM L-arginine, 0.5R = 0.5 mM 

L-arginine, 2AS = sucrose combined with 2 μM atrazine, 1AS = sucrose combined with 2 μM 

atrazine. SPS = sucrose-phosphate-synthase. 

 

 

 

Fig. 2| Overall analysis of HLB-regulated changes in biotic stress response. Principal component 

analysis of treated and untreated Citrus categories in relation to genes involved in biotic stress 

responses. UNT = Untreated with hormones (Control), CK = treated with K-phite, 30G = 30 μM 

gibberellin, 15G = 15 μM gibberellin, 1R = 1 mM L-arginine, 0.5R = 0.5 mM L-arginine, 2AS = 

sucrose combined with 2 μM atrazine, 1AS = sucrose combined with 2 μM atrazine. GA20 = Ga2-

oxidase, HSP21 = Heat shock protein 21. 
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3.2_Field trial 

Small-molecule regulating treatments investigated in the greenhouse were also applied 

to HLB-symptomatic trees in a young orchard where disease symptoms were frequently 

present. The aim of this trial was to determine whether the same treatments used in the 

greenhouse could modulate the expression of key host genes at three and six days after their 

application. Seven key genes were selected to monitor the transcriptomic regulation of the 

treatments for two reasons: 1) previous data found them highly characteristic of an HLB-

induced response [7,9] and 2) they play a key role in innate immune responses. A gibberellin 

responsive gene was used as a marker to determine the efficacy of GA + BA treatments to 

modulate gene expression under field conditions. GPT2 is a key HLB-regulated gene involved 

in glucose import into the chloroplast and is linked to the increased accumulation of starch in 

symptomatic leaves. The other genes were involved in plant defense and hormonal-mediated 

innate responses. WRKY70 and EDS1 are key points of regulation of JA-SA crosstalk. PR1 

upregulation is a beneficial against C. Las since this gene is involved in the systemic acquired 

resistance response. WRKY48 and WRKY54 were induced by HLB in previous studies [7,9].  

At three days after treatment, 1 μM atrazine + sucrose induced the gibberellin-

responsive protein and PR1 and repressed WRKY48 (Fig 3).  

In addition, 30 μM GA + 120 μM BA induced WRKY48 and WRKY54. This finding may 

have positive effects on infected Citrus since the two genes are involved in salicylic acid-

mediated responses against biotrophs. 0.5 mM L-Arginine upregulated WRKY48 and EDS1.  

WRKY70 was enhanced by 1 mM arginine and 15 μM GA combined with 120 μM BA. 

At six days following treatment, some important changes in expression of the seven host 

biomarkers were observed. 1 μM atrazine upregulated PR1. 2 μM atrazine and 0.5 mM L-

arginine repressed WRKY48. A general inhibition of GPT2 was observed in all treated trees at 

both three and six days after treatment. This repression was particularly evident in leaves 

sprayed with gibberellins + benzyladenine. 
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Fig. 3| Expression of seven host genes in response to spray treatments in field conditions. Relative 

expression of each gene and treatment was shown as average of three biological replicates. 

Standard deviations were indicated. 
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Phenotypic measurements and pathogen qPCR detection. No obvious symptoms of a 

harmful spray as leaf drop or discoloration was observed in treated trees. The tree trunk 

diameter, height, width drill, and width row of the treated trees grown under field conditions 

were measured in May and June 2014 (Table 5).  

The aim of this analysis was to determine whether treatments were detrimental to tree 

growth or had undesirable phenotypic effects. No significant phenotypic differences were 

observed among untreated and treated trees except width row, which was significantly lower in 

untreated trees than in trees treated with 30 μM GA + 120 μM BA. There were no visible 

discolorations or other signs of plant distress from the spraying. No set of trees had visibly 

different vegetative vigor.   

The quantification of pathogen titer was performed after three months from treatments as 

previously indicated to check if it was not changed in response to treatments.   

 

Table 5| Phenotypic measurements in response to the seven treatments and control (untreated).  

 

 

 

4_DISCUSSION 

Our objective was to test the ability of six combinations of small-molecule compounds 

to modulate expression of key genes involved in HLB syndrome and innate immune responses 

shortly after treatment. We did not pretend to reduce pathogen titers or cure the plants with 

only one treatment. Before performing a long-term study, we wanted to evaluate the ability of 

the treatments to modulate expression of a subset of key genes that are altered during HLB 

syndrome. As we expected pathogen titers did not significantly differ among treated and 
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control trees. A long-term study will reveal if repetitive and continuous applications will 

reduce pathogen concentrations and symptom severity. 

Treatments were designed based on previously proposed hypotheses. Sucrose-induced 

protection against atrazine effects was linked to upregulation of reactive oxygen species 

(ROS) defence and repair mechanisms [21].  

Nitric oxide (NO) is produced by l-arginine. Treatment with arginine provoked 

resistance against Botrytis cinerea in tomato at three to six days after treatment. Endogenous 

NO concentrations correlated positively with induction of key enzymes involved in biotic 

stress responses such as phenylalanine ammonia-lyase, chitinase, β-1,3-glucanase and 

polyphenoloxidase [23].  

Gibberellins regulate plant growth by modulating degradation of growth-repressing 

DELLA proteins that promote susceptibility to biotrophic pathogens and resistance to 

necrotrophic pathogens [24].  This is accomplished by modulating the relative strength of the 

SA and JA signaling pathways [24]. Through regulation of DELLA stability, gibberellins 

affect the SA-JA-ET network and plant immune response. Genevestigator showed that benzyl-

adenine downregulated the glucose-phosphate transporter in Arabidopsis. Since this gene is 

induced by HLB metabolic syndrome [5,9], benzyl-adenine treatments might help mitigate 

the negative effects of HLB on leaf metabolism. In combination, the two hormones may 

beneficially modulate key HLB-regulated genes involved in carbohydrate metabolism [7,9].  

K-phite mineral solution was also tested, alone or in combination with the three small 

molecule compounds. This treatment was considered because of contrasting published reports 

on the effects of nutrient solutions such as K-phite [25]. Mineral solutions increased the 

concentrations of important N, Mn, Zn and B ions in leaves and long-term application reduced 

pathogen titer, leaf size, and leaf weight [25]. Although enhanced nutritional solutions 

composed of essential micronutrients did not improve fruit production and quality of C. Las-

infected trees [26], others results support the hypothesis that the pathogen severely affects 

nutrient patterns [27]. In addition, foliar nutrition and soil conditioners helped reduce 

economic and production losses due to HLB [28,29].  

To determine how the treatments affected the metabolism of infected trees, 42 genes 

were selected from previously published Citrus transcriptome data [7,9]. These genes fell into 

three subsets involved in: 1) carbohydrate metabolism and signaling, 2) innate immune 

responses, including key players in JA-SA signaling, crosstalk and induced responses, or 3) 

other genes involved in biotic stress responses such as those involved in hormone-related 

pathways, secondary metabolism and stress-preventing factors. From these biomarkers, we 
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chose seven representative biomarkers to be followed under field conditions in response to the 

same treatments. Treated plants were tested for the presence of C. Las using qPCR and showed 

clear HLB symptoms. 

QRT-PCR analyses were conducted at three to six days after treatment. As expected, 

we observed no significant changes in pathogen titer. Repeated applications of treatments (at 

least weekly) should eventually affect the titer. Since we only treated infected trees once, an 

analysis of pathogen titer after treaments was outside the scope of this study. Long-term 

studies on the effects of repeated applications of these treatments should test pathogen titer 

using qPCR. 

 

4.1_Atrazine combined with sucrose 

The first small-molecule treatment tested was the combination of sucrose and the 

herbicide atrazine. Atrazine is a well-known photosystem II inhibitor that affects plant gene 

expression, seedling physiology, and potentiality impairs protein translation and the ROS 

defense mechanism [30]. However, in combination with sucrose, atrazine induces xenobiotic 

and ROS signaling. In addition, this treatment upregulated important classes of antioxidant 

enzymes [21,22]. These findings were consistent with our unpublished findings that 

glutathione-S-transferases are upregulated in more tolerant Citrus genotypes.  

Here we observed that atrazine combined with sucrose drastically affected some key 

genes responsible for HLB-induced carbohydrate changes. Increased sucrose concentrations 

have been found in in C. Las-infected leaves [6,11]. 1 μM atrazine + sucrose enhanced sucrose 

synthase while 2 μM atrazine + sucrose upregulated the water dikinase starch degradation 

gene and sucrose-phosphate-synthase. Atrazine upregulated alpha-amylase, which was 

repressed in mature HLB-infected Citrus leaves [9] but upregulated in infected Citrus stems 

[31]. Taken together, these findings lead us to speculate that atrazine + sucrose might help 

sucrose degradation by activating sucrose synthase. In addition, upregulation of alpha-

amylase may increase starch degradation in HLB-infected plants where its accumulation is 

advanced.  

Atrazine (1 μM) combined with sucrose upregulated WRKY33. Brassica napus plants 

overexpressing BnWRKY33 had increased resistance to Sclerotinia sclerotiorum infection 

[32]. This effect was mediated by SA [32]. WRKY33 upregulation allowed resistance to the 

necrotroph Botrytis cinerea in Arabidopsis [33].  Loss of WRKY33 function induces salicylic 

acid (SA)-mediated responses, increases salicylic acid and represses jasmonic acid (JA)-

mediated responses [34].  
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Overall, our results support the hypothesis that this treatment could beneficially 

modulate key HLB-regulated genes associated with the well-known HLB carbohydrate 

metabolic syndrome [9]. The changes to expression of some key genes involved in sugar and 

starch metabolism could beneficially modulate the metabolic responses of HLB disease in 

photosynthesizing Citrus leaves, restoring a more normal source-sink relationship and 

potentially inhibiting the characteristic and deleterious syndrome in the fruit. 

 

4.2_Gibberelllins combined with benzyl adenine treatments 

A mixture of gibberellin (GA3) and 6-benzyladenine (BA) was tested to modulate 

jasmonic acid-salicylic acid (JA-SA) crosstalk in favor of responses to biotrophs such as C. 

Las. Our hypothesis was that gibberellin treatments may activate SAR responses through 

positive regulation of hormone-mediated crosstalk regulating biotic stress responses [19]. 

Some key genes in hormone-related pathways and JA-SA crosstalk were chosen as indicators 

of treatment effects.  

MYC2 was significantly induced by both 15 and 30 μM gibberellin treatments. MYC2 

is a transcription factor composed of a basic helix-loop-helix (bHLH) domain that activates 

and represses specific JA-responsive gene expression in Arabidopsis [35]. MYC2 also induced 

responses to abiotic stress mediated by abscissic acid in Arabidopsis [36] and suppressed 

salicylic acid-mediated responses in Arabidopsis [37]. Upregulation of WRKY54 in 

gibberellin-treated field trees is also interesting because this gene is a positive regulator of 

resistance against Erwinia amylovora, the agent of fire blight in the Rosaceae family.  

The plant immune regulator EDS1 (Enhanced Disease Susceptibility1) plays a 

fundamental role in resistance mechanisms to biotrophs and hemi-biotrophs [38,39]. This role 

is due to the formation of complexes with PAD4 and SAD101 in both cytoplasm and nucleus 

[40]. The 15 μM GA + BA treatment enhanced EDS1 at six days after treatment in the field. 

The increase in EDS1 transcripts after application of these small molecules could help activate 

SAR response against pathogen infections. Mutant screening showed that upregulation of 

EDS1 induces non-host resistance against E. amylovora in Arabidopsis by activating WRKY46 

and WRKY54 genes [41].  

Our hypothesis was partially confirmed. GA + BA may beneficially increase innate 

responses by inducing EDS1 and MYC2. Although long-term field trials are required, we 

speculate that continuous application of this small molecule mixture could stimulate improved 

SA-JA crosstalk.  
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4.3_L-arginine treatments 

The third small-molecule treatment was composed of L-arginine, used in two 

concentrations. L-arginine positively regulates key genes involved in innate immune 

responses [23]. L-arginine may act on nitric oxide and directly upregulate key genes in 

salicylic acid signaling. Increased endogenous NO concentrations after L-arginine treatment 

in pre-harvest tomatoes correlated positively with increased defensive enzyme activity and 

postharvest disease resistance [15]. PR1, WRKY70 and WRKY54 were upregulated by1 mM 

L-arginine under field conditions. WRKY transcription factors are important regulators of 

responses to abiotic and biotic stresses. WRKY54 and WRKY70 play a key role in a regulatory 

network that affects leaf senescence by interacting with another WRKY factor [42]. In our 

field trial, arginine induced some key important gene regulation that should benefit SAR 

responses. 

 

4.4_Common effects among treatments 

Glucose accumulation induced by C. Las infection is transported to the plastid by 

hexose transporters [5,9,43]. GPT2 is a key player in HLB-mediated starch accumulation in 

leaves because this gene mediates glucose import into the chloroplast in infected leaves [5,9]. 

GPT2 was significantly repressed by all spray applications at both three and six days after 

treatment under field conditions. This inhibition may reduce the amount of glucose carried 

into the plastid and thus starch accumulation, with consequent improvement of disrupted 

source-sink relationships. 

Gene expression changes observed in this work corroborated the hypothesis that these 

spray treatments may help stimulate systemic acquired resistance responses by activating key 

genes involved in innate responses (Fig. 4).  

PR gene induction is mediated through interaction with TGA transcription factors [15]. 

The observed upregulation of TGA5 and TGA6 by L-arginine and 2 μM atrazine + sucrose, 

respectively, might help stimulate defense responses against C. Las infection.  

Arginine and atrazine sprays upregulated the PR1 gene under field conditions. PR1 

protein is the hallmark of the defense response induction mediated by salicylic acid through 

systemic acquired resistance [44]. Molecular action of this protein against pathogens is still 

unclear, although antifungal properties have been attributed to it [45]. PR1 also interacted with 

fungal toxin activities, mediating necrosis in sensitive wheat [31]. This gene was not activated 

in response to C. Las infections in orchard trees [9].  
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Interestingly, all three treatments upregulated HSP82. Previous data on C. Las-infected 

citrus leaves and fruits showed that C. Las caused a significant repression of genes encoding 

chaperones [7-9]. Modified expression of these genes plays a key role in general stress 

conditions [46,47]. A link between reduced HSP protein amount and HLB symptoms was also 

confirmed by analysis [10].  

 

Fig. 4| Key differentially regulated genes in response to treatments involved in biotic stress 

responses. 
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5_CONCLUSIONS 

Present data confirmed our hypothesis that these small-molecule sprays may affect 

transcript abundance of key genes involved in HLB carbohydrate metabolic syndrome and 

innate responses. As expected, there were no phenotypic changes in response to treatments at 

one to two months after treatment. Treatment sprays did not cause negative effects such as leaf 

drop or discoloration. As expected, tree measurements showed almost no differences between 

treated and untreated trees in field conditions. We believe that beneficial effects are likely to be 

seen only if treatments are applied frequently before or at the onset of visible HLB symptoms. 

Here, our aim was to analyze the molecular effects of these treatments on gene expression 

several days after treatment. Future studies should examine long-term molecular and 

phenotypic improvements associated with ongoing applications to young trees infected with C. 

Las.   
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Background: Huanglongbing (HLB) disease is still the greatest threat to citriculture 

worldwide. Although there is not any resistance source in the Citrus germplasm, a certain level 

of moderated tolerance is present. A large-scale analysis of proteomic responses of Citrus may 

help: 1) clarifying physiological and molecular effects of disease progression, 2) validating 

previous data at transcriptomic level, and 3) identifying biomarkers for development of early 

diagnostics, short-term therapeutics and long-term genetic resistance.  

Results: In this work we have conducted a proteomic analysis of mature leaves of two Citrus 

genotypes with well-known differing tolerances to HLB: Navel orange (highly susceptible) and 

Volkameriana (moderately tolerant). Pathway enrichment analysis showed that amino acid 

degradation processes occurred to a larger degree in the Navel orange. No clear differences 

between the two genotypes were observed for primary metabolic pathways. The most important 

finding was that four glutathione-S-transferases were upregulated in Volkameriana and not in 

Navel orange. These proteins are involved in radical ion detoxification.  

Conclusions: Upregulation of proteins involved in radical ion detoxification should be 

considered as an important mechanism of increased tolerance to HLB.  
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1_INTRODUCTION 

Huanglongbing disease currently threatens areas where Citrus cultivation is important 

in the agricultural economy such as East Asia, the Middle East, and the Americas. 

Huanglongbing disease is caused by three species of Candidatus liberibacter asiaticus (CaLas), 

americanus and africanus [1]. The pathogen is transmitted by two species of psyllids: 

Diaphorina citri and Trioza erytreae. Recently, Trioza erytreae was found for the first time in 

Europe (Galicia, Spain). Typical symptoms of Huanglongbing disease in leaves include shoot 

yellowing and blotchy, mottled leaves. Although most of the fruits are still of commercial 

quality, fruits from severely affected branches are unmarketable: small, lopsided, green, and 

acidic, with many aborted seeds. Leaves accumulate starch, phloem is damaged and cell wall 

lamellae swell during CaLas infection [1, 2]. Candidatus liberibacter spp. belong to the alpha 

subdivision of the proteobacteria based on ribosomal region sequence data [3]. The bacterium 

has not yet been definitively cultured despite attempts to do so [4]. Koch’s postulates have not 

been fulfilled for this disease, so possible interactions with other microrganisms cannot be ruled 

out. The pathogen lives in the insect and in the phloem of Citrus trees. Once acquired, it 

typically persists for the rest of the life of the host. Insecticides can decrease psyllid populations, 

but since the pathogen remains in the vector, disease spread can occur with the presence of just 

a few infected psyllids in the orchard. All genotypes within the genus Citrus are susceptible to 

HLB to varying degrees although species of other close-related genera showed some sort of 

resistance [5]. There is variability in disease severity and symptoms among Citrus genotypes 

[6]. Murraya paniculata (orange jasmine), an ornamental Citrus closely-related plant, showed 

fewer symptoms of the disease [7]. A study examining the responses of 30 genotypes to HLB 

disease grouped them based on phenotypic analysis of induced symptoms [5]. Another recent 

study has evaluated 65 Citrus accessions and 33 accessions belonging to other closely related 

genera. Resistance was reported in accessions not belonging to Citrus genera [8]. Another work 

have screened Citrus germplasm susceptibility to HLB analyzing sixteen Citrus genotypes [9]. 

Results showed that Citrus macrophylla and C. medica were the most susceptible while 

complex genetic hybrids ‘US 1-4-59’ and ‘Fallglo’ were the least susceptible. A metabolomic 

investigation was conducted comparing five different tolerant hybrids and a highly susceptible 

cultivar to identify potential metabolites linked with diverse response [10]. The causes of the 

disease have been studied using different “omic” approaches to identify which genes, proteins 

and metabolites may be targeted by innovative diagnostic and therapeutic methods. The genome 

of the pathogen was sequenced using a metagenomic approach, both from infected plants [11] 

and the insect vector [12]. No toxins or other secreted proteins have been linked to the disease 
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and the mechanisms of its pathology are still unclear. Large scale microarray analysis revealed 

significant modulation of genes involved in transport, cell defense and carbohydrate metabolism 

[13,14].  Photosynthesis is diminuished in both young and mature leaves, but it is upregulated 

in infected fruits [14]. Starch accumulation was linked to the upregulation of genes involved in 

glucose import into the chloroplast and starch biosynthesis [15,16]. A modulated Jasmonic 

(JA)-Salicilic acid (SA) crosstalk of innate responses may lead to a misdirected defence 

response. An integrated approach of 2-DE and mass spectrometry showed that changes in levels 

of several proteins involved in photosynthesis and protein synthesis were linked to reduced 

concentrations of Ca, Mg, Fe, Zn, Mn and Cu in infected grapefruit leaves [17]. Proteins 

upregulated in infected samples were involved in redox stage and cell defense such as Cu/Zn 

superoxide dismutase, peroxidases, chitinases and lectin-related proteins [18]. ‘Madam Vinous’ 

sweet orange plants infected by CaLas showed increased miraculin-like proteins, chitinase, 

Cu/Zn superoxide dismutase and lipoxygenase. Some key metabolites modulated by HLB 

include proline, β-elemene, (−)-trans-caryophyllene, and α-humulene [19]. Increased 

accumulation of some amino acids (L-proline, L-serine, and L-aspartic acid) and organic acids 

was linked to greater susceptibility of ‘Madam Vinous’ sweet orange compared to Carrizo 

citrange [20]. However, it is worthy to notice that these trees were highly infected with many 

secondary effects so it will be necessary to confirm these results with newly infected trees. An 

increased amount of most amino acids, involved in plant defense to pathogens was observed in 

tolerant varieties in such as phenylalanine, tyrosine, tryptophan, lysine, and asparagine [21].  

This study examines proteomic changes in fully photosynthesizing leaves to determine 

how disease mechanisms and susceptibility vary between two Citrus genotypes, using an 

integrated approach of principal component analysis (PCA), gene set and pathway enrichment 

analysis. The purpose was to characterize key proteins and post-transcriptionally modulated 

pathways in different Citrus genotypes at a late symptomatic stage of HLB.  
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2_MATERIALS AND METHODS 

2.1_Material and experimental design 

Citrus plant materials used in this study were propagated from disease free bud wood 

obtained from the California Citrus Clonal Protection Program (CCPP). Two-year old 

Volkameriana (V) (Citrus × volkameriana) and Navel orange (N) (Citrus × sinensis) trees were 

grafted on Carrizo citrange rootstocks (Citrus sinensis [L.] Osb.× Poncirus trifoliata [L.] Raf.). 

Trees were grown in pots in the greenhouse under natural light at 17 to 25°C in the Contained 

Research Facility (CRF) at UC Davis. Around 10 trees per genotype were infected with CaLas 

through graft inoculations using a standard inverted “T” budding technique with infected 

budwood from Lisbon Lemon (Citrus limon Burm.f.), with uninocculated trees maintained as 

an uninfected control. Starting at 3 months after budding, each plant was tested monthly using 

quantitative RT-PCR for CaLas species as described [43]. Three to four biological replicates of 

healthy and infected symptomatic trees were chosen for proteomic analysis based on health, 

phenotype and symptom severity. A pool of five to seven fully expanded leaves at the same 

developmental stage from each tree was sampled at eight months, constituting a biological 

replicate. From infected trees, leaves with characteristic yellowing and blotchy mottled 

appearance were sampled. Healthy leaves at the same developmental stage were harvested from 

the uninfected control trees. Petioles from four to six leaves sampled from different parts of 

each tree were tested by PCR for the presence of CaLas at the time of collection. Midribs and 

petioles were cut, frozen in liquid nitrogen and stored at –80°C for protein extraction and 

iTRAQ analysis. The other parts of the leaves were used to test for pathogen presence. Ct values 

of infected trees were < 30 while control trees showed no amplified product. 

 

2.2_Protein extraction 

Proteins were extracted using a previously described phenol-based procedure [44]. 

Leaves were ground in a mortar and pestle in liquid nitrogen with 1% (w/w) PVPP. One 

hundred mg plant material was resuspended in 600 µL extraction buffer (0.7 M Sucrose, 0.1 M 

KCl, 0.5 M Tris-HCl pH7.5, 0.5 M EDTA, 1 mM PMSF and 2% -mercaptoethanol). Samples 

were homogenized twice (one min each) with a MM300 TissueLyser (Qiagen). An equal 

volume of UltraPure Buffer-Saturated Phenol (Invitrogen) was added and the mixture was 

rehomogenized as described above. After centrifugation at 12,000 x g for 15 min at 4°C, the 

upper phenol phase was eliminated and the pellet used for re-extraction in the same buffer. 

Protein was precipitated from the phenol phase using five volumes saturated ammonium acetate 

(100 mM) in methanol overnight at -20°C followed by centrifugation at 12,000 x g for 15 min 
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at 4°C. Pellets were washed four times with four mL saturated ammonium acetate (100 mM) in 

methanol and dried 10 min. Proteins were dissolved in urea buffer (7 M urea, 2 M thiourea, 40 

mM Tris, 2% Chaps and 18 mM DTT). The protein concentration was determined using 

Bradford’s method with BSA as a standard.  

 

2.3_Protein sample preparation and digestion  

Samples were precipitated using the ProteoExtract Protein Precipitation Kit 

(CalBiochem). The resulting protein pellet was solubilized in 400µL of 50mM triethyl 

ammonium bicarbonate (TEAB) and a 100 µL aliquot was taken for digestion. 500mM tris (2-

carboxyethyl)-phosphine (TCEP) (Pierce, Rockford, IL) was added to a final concentration of 

10 mM and samples were incubated for 10min at 90 °C to reduce disulfide bonds. Next, 110 

mM iodoacetamide (IAA) was added to a final concentration of 15mM and incubated for 1hr 

at room temperature, followed by the addition of 20 µL DTT to quench the IAA reaction. 

Trypsin (Promega) was next added in a 1:25 ratio (enzyme: protein) and incubated at 37 °C for 

overnight. The following day, samples were desalted using C18 Macro Spin columns (Nest 

Group) and dried down by vacuum centrifugation.  

 

2.4_Tandem mass tag labeling  

Desalted and lyophilized samples were resuspended in 50mM TEAB and ~30ug of 

tryptic digested peptides were taken for TMT labeling. TMT labeling was performed on each 

aliquot with reporter ions m/z = 126.1, 127.1, 128.1, and 129.1 in 41µL ethanol, and aliquots 

were incubated for 60 min at room temperature. 8 µL hydroxylamine 5% (v:v) was added to 

quench the reaction and samples were vacuum-centrifuged prior to desalting using C18 Macro 

Spin columns (Nest Group). Samples were vacuum-centrifuged once more prior to strong cation 

exchange fractionation.  

 

2.5_SCX Fractionation of Pooled TMT-Labeled Samples 

Strong cation exchange (SCX) was carried out using the SCX SpinTips Sample Prep 

Kit (ProteaBio). Each aliquot was resuspended in 50µL of the designated buffer and ~10 µg of 

each sample was pooled prior to SCX fractionation. Samples were fractionated by stepwise 

addition of 20, 40, 60, 80, 100, 150, 250, and 500 mM ammonium formate in 10% acetonitrile. 

All eight fractions, including the initial binding flow through, were vacuum-centrifuged to 

remove any acetonitrile and desalted using C18 Macro Spin columns (Nest Group).  

 



100 
 

2.6_LC-MS/MS Analysis 

LC separation was done on a Waters Nano Acquity UHPLC (Waters Corporation) with 

a Proxeon nanospray source. Each SCX fraction (9 total) was reconstituted in 2% acetonitrile / 

0.1% trifluoroacetic acid and loaded onto a 100 µm x 25 mm Magic C18 100 Å 5U reverse 

phase trap. Peptides were eluted using a gradient of 0.1 formic acid (A) and 100 % acetonitrile 

(B) with a flow rate of 300 nL/min. A 60 min gradient was run with 5 to 35 B over 50 min, 35 

to 80 B over 3 min, 80 B for 1 min, 80  to 5 B over 1 min, and finally held at 5% B for 5 min.  

Mass spectra were collected on an Orbitrap Q Exactive Plus mass spectrometer (Thermo 

Fisher Scientific). A dynamic exclusion of 15 s was used. MS spectra were acquired with a 

resolution of 70,000 and a target of 1 × 106 ions or a maximum injection time of 30ms. MS/MS 

spectra were acquired with a resolution of 17,500 and a target of 5 × 104 ions or a maximum 

injection time of 50ms, and a fixed first mass of 110 m/z. Peptide fragmentation was performed 

using higher-energy collision dissociation with a normalized collision energy value of 30. 

Unassigned charge states as well as +1 and ions > +5 were excluded from MS/MS 

fragmentation.  

 

2.7_Data Analysis  

Tandem mass spectra were extracted and charge states were deconvoluted and 

deisotoped.  All MS/MS samples were analyzed using X! Tandem (The GPM, thegpm.org; 

version X! Tandem Sledgehammer (2013.09.01.1)). X! Tandem was set up to search the Citrus 

sinensis genome (http://www.ncbi.nlm.nih.gov/protein/?term=txid2706 March 2014) and the 

NCBInr citrus database (155,237 entries, March 2014) assuming the digestion enzyme trypsin. 

X! Tandem was searched with a fragment ion mass tolerance of 20 PPM and a parent ion 

tolerance of 20 PPM. TMT6plex of lysine and the n-terminus was specified in X! Tandem as a 

fixed modification.  

Scaffold Q+ (version Scaffold_4.4.0, Proteome Software Inc., Portland, OR) was used 

to quantitate Label Based Quantitation (iTRAQ, TMT, SILAC, etc.) peptide and protein 

identifications. Peptide identifications were accepted if they could be established at a 99.0 % 

probability by the Scaffold Local FDR algorithm, which corresponded to a 0.20 spectra decoy 

FDR and a 5.0% protein decoy FDR with 1 identified peptides per protein. Protein probabilities 

were assigned by the Protein Prophet algorithm [45]. Proteins that contained similar peptides 

and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the 

principles of parsimony. Proteins sharing significant peptide evidence were grouped into 

clusters.  Proteins sharing significant peptide evidence were grouped into clusters according to 
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the algorithm described in i-Tracker [46]. Individual quantitative samples were normalized 

within each acquisition run. Intensities for each peptide identification were normalized within 

the assigned protein. All normalization calculations were performed using medians to 

multiplicatively normalize data. Differentially expressed proteins were determined using 

Permutation Test analysis. 

 

2.8_Statistical and functional data mining 

Scaffold 4 was used to perform the first functional, annotation and quantitative analysis 

of the proteomic data. Arabidopsis orthologs, annotations, unique peptides and spectrum 

counts, and normalized quantitative values were determined for each sequenced and identified 

peptide. Data were blasted against the Citrus x sinensis (L.) and Candidatus liberibacter 

asiaticus (strain psy62) genomes. Arabidopsis orthologs were determined for each sequenced 

peptide by blastx (e-value < 10–4) to the TAIR database of predicted proteins in Arabidopsis 

(TAIR10_- pep_20101028; [47]). Blastx output was processed using custom scripts to calculate 

the best correspondence between individual citrus peptide sequences and Arabidopsis proteins, 

based on alignments over the entire length of each sequence. Lists of significantly differentially 

expressed proteins (p < 0.05, absolute value of log2 fold change > 0.5 or <- 0.5) were 

determined in pairwise comparison (infected/healthy) for each genotypes. This statistical 

analysis was performed using MeV software. Functions of differentially regulated proteins (as 

Arabidopsis orthologs) were visualized using MapMan [48]. Gene set enrichment analysis was 

performed using DAVID Bioinformatics resource 6.7 based on KEGG maps. The 

corresponding Arabidopsis orthologs of each protein upregulated or downregulated during 

infection for each genotype was loaded as a gene list in DAVID (p < 0.05). Arabidopsis 

orthologs were determined for each citrus proteins and the gene set enrichment analysis was 

obtained comparing the list of differentially regulated proteins with all those identified by the 

proteomic analysis. 

The PageMan visualization tool was used for GSEA with the Wilcoxon test (no 

correction and 1.0 as ORA cutoff). Principal component analysis (PCA) was performed using 

SAS II (2008) SAS/STAT software (SAS Institute). Principal component analysis was applied 

to the ratio matrix of gene expression data to examine the contribution of each target gene to 

the separation of sample classes. A biplot was constructed based on the first two principal 

components.  
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3_RESULTS AND DISCUSSION 

Navel orange (Citrus sinensis (L.)) is an HLB-sensitive cultivar while Volkameriana is 

moderately tolerant [5]. Different techniques (2-DE, mass spectrometry and ICP mass  

spectroscopy) have been used to identify key proteins differentially regulated by HLB in Citrus 

leaves [19, 20]. Over 4000 proteins were analyzed using isobaric tags for relative and absolute 

quantitation (iTRAQ) for both genotypes (4557 in Volkameriana and 4521 in Navel orange). 

In Navel orange, 599 proteins were differentially regulated between infected and healthy tissue 

(P-value < 0.05 and Log2 FD > 0.5 and < -0.5) (Additional file 1: Table S1). In Volkameriana, 

411 differentially regulated proteins were found between infected and healthy tissue 

(Additional file 2: Table S2).  

 

3.1_PCA analysis 

PCA was used to visualize differences between the four analyzed genotypes x disease 

status, subdividing the entire proteomic profile into three important subcategories: biotic stress 

responses, overall cell metabolism and transcriptional regulation pathways (Fig. 1). All 

identified proteins belonging to these important functional categories were used for the PCA 

plots. The four categories of samples (healthy V, healthy N, infected V and infected N) were 

clearly separated in all three PCA plots, implying significant protein changes in all three gene 

categories related to species and health status. For biotic stress-related proteins, PC1 and PC2 

accounted for 40 and 24% of the data variability, respectively. Important proteins associated 

with each functional category that contributed to separation between sample types (indicated 

by directions of vectors) are listed in Fig. 1. Some key proteins involved in redox state 

significantly contributed in the separation of Infected V from the rest of the other categories. In 

the general metabolism PCA plot, the PC1 and PC2 accounted for 49 and 24% of the data 

variability, respectively. Key proteins involved in primary metabolism associated with the 

separation of Healthy V from the Infected V include malate dehydrogenase and pyruvate 

dehydrogenase (TCA cycle-glycolysis), sucrose synthase and AGPase (sucrose and starch 

metabolism). The third PCA plot was generated based on the expression of proteins involved 

in transcriptional regulation, signaling, hormone and redox state. PC1 and PC2 accounted for 

37 and 27% of data variability, respectively. Interestingly, the regulation of few important 

proteins seems to specifically characterize the infected vs. healthy state of Navel orange. These 

include MAP kinase 4, UDP-glucosyl transferase, and aspartyl protease. No changes were 

observed for MAPK6. Proteins that appear in the three PCA plots were highly regulated in the 

comparison between infected and control in both Citrus genotypes. Indeed, they may be 
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considered as putative candidate biomarkers of a clear symptomatic status in Citrus at 

proteomic level. Their HLB-regulated pattern of expression greatly contributed in 

distinguishing the four different leaf sample types. Further analysis will need to validate these 

data and confirm the role in the pathogenesis of HLB disease. 
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Fig. 1| Principal component analysis of differentially regulated proteins of four types of leaf tissues 

(Control Navel orange, Control Volkameriana, Infected Volkameriana and Infected Navel 

orange). Proteins that contribute highly to the separation of the the four samples are numbered 

and listed next to each graph. 
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3.2_Gene set and pathway enrichment analysis 

The Pageman web tool highlighted which gene categories were up- or down-regulated 

in each pairwise comparison (Fig. 2). Both infected genotypes exhibited repressed amino acid 

biosynthesis and protein synthesis. In Navel orange, photosynthesis, isoflavone pathways, 

tetrapyrrole synthesis, and galactose metabolism were significantly inhibited by HLB. In 

Volkameriana, S-assimilation, isoprenoids, RNA binding and amino acid activation were 

specifically diminished. In both genotypes, HLB enhanced starch-related pathways, biotic 

stress-related proteins, beta 1,3 glucan hydrolases, and protein degradation pathways. Some 

distinct differences were observed between genotypes in HLB response. In Volkameriana, cell 

wall modifications, galactose metabolism, and heat shock proteins were upregulated. In Navel 

orange, amino acid degradation, lipid metabolism, jasmonates, and PR-proteins were 

upregulated. 

 

 

Fig. 2| Gene set enrichment analysis using Pageman web-tool. Upregulated and downregulated 

pathways at proteomic level in infected Volkameriana (V) and infected Navel orange (N) in 

comparison to respective healthy controls 
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A pathway enrichment analysis was performed using the DAVID bioinformatic resource 

to determine which metabolic pathways were commonly or specifically affected by HLB 

disease in both genotypes (Table 1). Some metabolic pathways were altered by HLB in both 

species. Amino acid metabolism (glycine, serine, threonine, phenylalanine and tryptophan) was 

significantly downregulated.  Other key inhibited pathways include biosynthesis of plant 

hormones, terpenoids, and phenylpropanoids. On the other hand, tyrosine metabolism was 

upregulated in both genotypes. In Navel orange, fatty acid biosynthesis and nitrogen 

metabolism were diminished while alpha-linolenic acid metabolism was enhanced. In 

Volkameriana, alkaloids and pyruvate metabolism-related proteins were repressed while 

galactose metabolism and fatty acid metabolism were upregulated. 

 

Table 1| Pathway enrichment analysis using DAVID Bioinformatics Resources 6.7. Pathways that 

were upregulated and downregulated for the healthy/infected comparison for each genotype are 

indicated with the corresponding p-value 
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3.3_Primary metabolism 

The integration of the two pairwise comparisons into a unified Mapman visualization 

allowed us to identify proteins that were commonly or specifically regulated in response to HLB 

in the two species. Some proteins involved in cell wall modifications were upregulated by HLB 

only in Volkameriana: expansin A1, expansin A8, expansin-like B1, xyloglucan 

endotransglycosylase 6, and xyloglucanxyloglucosyltransferase (TCH4) (Additional file 3: 

Figure S1). In Navel orange, proteins involved in fatty acid biosynthesis and elongation were 

generally repressed while several key proteins involved in amino acid degradation were 

upregulated: arginase, pyrroline-5-carboxylase reductase, lactoylglutathione lyase, and 3-

hydroxylmethylglutaryl-CoA lyase. The increase of protein degradation indicates that 

senescence processes may be more highly activated in HLB-diseased Navel orange than in 

Volkameriana.  

Sucrose metabolism was only slightly affected by HLB at the protein level; only sucrose 

synthase was repressed. Starch metabolism was more altered (Fig. 3a). The first enzyme of 

starch biosynthesis, ADP-glucose pyrophosphorylase, was inhibited by HLB in both genotypes. 

In Volkameriana, starch synthase was upregulated while 1,4-alpha-glucan starch branching 

enzyme was slightly downregulated. Among starch degradation enzymes, glucan 

phosphorylase and heterogycan glucosidase 1 were upregulated in both genotypes. Alpha-

amylase was upregulated in Volkameriana while beta-amylase 6 was enhanced in Navel orange. 

Taken together these findings showed that starch metabolism was highly affected in both 

genotypes at the protein level. No clear association between differing susceptibility to HLB is 

evident from starch pathway regulation alone.  

A significant downregulation in HLB-infected samples was observed for proteins 

involved in photosynthetic reactions [17]. The altered transcription of sugar and starch 

metabolism genes caused by HLB [16] mostly agreed with the corresponding protein changes 

presented in the present work. The observed changes in starch-related pathways were consistent 

with the transcriptomic analysis [16]. Increased starch degradation was observed probably due 

to the increased starch concentrations in infected leaf tissues. ADP glucose-pyrophospholyase 

(ADPase) was repressed in both infected species. This enzyme is rate-limiting for starch 

biosynthesis, catalyzing the conversion of glucose-1-phosphate to ADP-glucose that is 

polymerized into amylopectin or amylose [22]. Starch accumulation in infected leaves is a 

typical symptom of HLB [1]. However, the greatest occurrence of this process may occur at an 

early, asymptomatic stage. Indeed we may speculate that the accumulation of starch may be a 

secondary effect of the disease instead of being the cause of symptoms. When symptoms are 
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already evident and yellowing is present, starch biosynthesis may slow down and starch 

degradation is expected to be activated as a response of the plant to limit damage to cell 

structures. However, some differences in primary metabolism were observed between 

transcriptomic and proteomic approaches. Changes in invertase gene expression were observed 

[16], but not its protein levels. Sucrose, the substrate of invertase, is produced by photosynthesis 

in leaves and then transported to sink tissues (immature fruits and young leaves) through the 

phloem. Involvement of sucrose in signaling of innate responses has been described recently 

[23]. Invertase plays an important role in plant stress responses, possibly serving as an 

extracellular signal of pathogen attacks [24]. It is possible that expression of this gene in 

response to HLB depends on genotype, plant physiological conditions and age, tissue 

developmental conditions, type of infection (psyllid inoculation or graft-mediated) and/or 

environmental conditions (field or controlled environment). Taken together all these primary 

metabolism results concur with previous findings showing significant modification of transcript 

abundance in minor carbohydrate metabolism [16] but do not suggest a clear link to the well-

known difference in tolerance between the two genotypes.  

GPT2 has been linked with HLB disease: this gene is responsible for glucose import 

into the chloroplast and consequently for starch accumulation [13, 16]. The protein was not 

found among those extracted and characterized by iTRAQ, therefore no conclusions can be 

made about changes in protein levels due to HLB. However, the protocol used to analyze the 

Citrus proteome favored detection of soluble cell proteins over membrane proteins such as 

GPT2. 

Expression of key proteins involved in the TCA cycle and PEP metabolism were 

affected by HLB. ATP-citrate lyase subunit B2 was repressed in both species (Fig. 3b). Alcohol 

dehydrogenase 1 which converts aceltaldehyde to ethanol, was upregulated in both genotypes. 

In infected Navel orange, isopropyl malate isomerase, which converts citrate to isocitrate and 

pyruvate decarboxylase involved in fermentation, was more abundant than in healthy tissue. In 

Volkameriana, pyruvate decarboxylase was repressed while aconitate hydratase involved in 

TCA cycle was upregulated.  

Raffinose metabolism was drastically altered by the disease (Fig. 3c). In Navel orange, 

expression of alpha-galactosidase 1, UDP-glucose-4-epimerase, glucose-6-phosphate 

isomerase, and alpha-galctosidase 1 were enhanced by HLB. In Volkameriana, raffinose 

synthase, phosphofructokinase 3 and phosphoglucomutase were upregulated. Sucrose synthase 

4 and phosphoglycerate mutase were donwregulated in both genotypes. A transketolase that 

converts the xylulose-5-P in sedoheptulose-7-P was repressed in infected Navel orange (Fig. 

3d).   
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Significant repression of aspartate biosynthesis and serine metabolism was observed in 

infected Navel orange leaves. This agrees with a previously described downregulation of serine-

type peptidases at both asymptomatic and symptomatic stages [18]. In infected Navel orange, 

seventeen proteins involved in amino acid biosynthesis were downregulated. Fewer proteins 

were downregulated in infected Volkameriana. On the other hand, some upregulated proteins 

involved in amino acid degradation were identified only in infected Navel orange. Taken 

together, these findings suggest that amino acid metabolism in Navel orange is more sensitive 

to degradation during HLB infection than in Volkameriana.  

 

 

Fig. 3| Proteins involved in primary metabolic responses to HLB. A) Sucrose and starch 

metabolism; B) Raffinose metabolism; C) TCA cycle; D) Oxidative pentose phosphate. Proteins 

that were differentially expressed between control and infected trees are indicated by colors, based 

on their pattern of expression in the two genotypes (see color key). Each colored square represents 

expression change in a protein catalyzing a step in the pathway. More than one square grouped 

together indicates different members of the same protein family found to be differentially 

regulated 
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3.4_Secondary metabolism 

A general repression of key proteins involved in biosynthesis of secondary metabolites 

was observed in both cultivars in response to CaLas infection (Additional file 4: Figure S2). 

Geranylgeranyl reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase, involved in 

the non-MVA pathway, were repressed. Other commonly HLB-downregulated proteins 

involved in the shikimate pathway included 2-dehydro-3-deoxyphosphoheptonate aldolase, 3-

dehydroquinate synthase, 3-phosphoshikimate-1-carboxylvinyltransferase and mevalonate 

diphosphate decarboxylase. Two key proteins involved in phenylpropanoids, phenylalanine 

ammonia lyase and aryl-alcohol dehydrogenase, were more abundant in both species in 

response to HLB, while cinnamyl alcohol dehydrogenase 9 was repressed. Two proteins 

involved in alkaloid biosynthesis, tropinone reductase and strictosidine synthase-like 4, were 

upregulated in infected Volkameriana.  

Findings related to Citrus activated defense responses against CaLas infection are 

shown in Fig. 4. Three proteins involved in auxin signal transduction were activated in infected 

Volkameriana: auxin resistant 1 and two aldo/keto reductases. One aldo/keto reductase was 

HLB-regulated in both genotypes. Three proteins involved in jasmonic and salicylic acid 

responses were induced in Navel orange but not in Volkameriana. Lipoxygenase 2 was 

upregulated in both genotypes. Some key proteins involved in cell wall modifications were 

commonly regulated by both genotypes: UDP-glucose-6-dehydrogenase, UXS6, UXS2, and 

RHM1. Proteolytic-related proteins were altered in both genotypes. Taken together these 

findings do not suggest any clear association between the two genotypes and proteomic changes 

in hormonal crosstalk, cell wall and proteolytic pathways. 
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Fig. 4| Biotic stress–related proteins altered in response to HLB disease in both Citrus genotypes. 

Proteins that were differentially expressed between control and infected trees are indicated by 

colors, based on their pattern of expression in the two genotypes (see color key). Each colored 

square represents expression change in a protein associated with regulatory and enzymatic 

functions 

 

Some proteins synthesizing volatiles via the phenylpropanoid and carotenoid pathways 

were affected in the present study (Fig. 5). The marked differences between the two species 

suggests that to be effective, any innovative HLB-detection system based on induced volatiles 

must be cultivar-specific.  

Plant phenols not only counteract reactive oxygen species and pathogen-secreted toxins, 

but also play roles in transport and signal transduction pathways. Polyphenol chemistry is 

critical to adapting plants to environmental stresses, including pathogens [25]. Phenylalanine 

ammonia-lyase (PAL) was downregulated by HLB infection in both species (Additional file 4: 

Fig. S2). This enzyme is a key regulatory point for the entire phenylpropanoid pathway. 

Enhancement of its transcript abundance is linked to phytopathogen attacks [26]. Another 
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important protein encoding isoflavone reductase and involved in antioxidant reactions was 

repressed in both the infected species, consistent with previous proteomic analysis [18]. In 

general, RNA-seq analysis showed that phenylpropanoid pathways were transcriptionally 

affected by HLB in both young and mature infected leaves in field grown mature trees [16]. 

These previous findings are not completely consistent with the present proteomic data. Gene 

set enrichment analysis showed a general downregulation of secondary metabolism in both 

genotypes, although some key proteins were upregulated in response to the disease. These 

contrasting findings may reflect differences in developmental and physiological stages of the 

plants analyzed in the two studies or differences in environmental and agronomic conditions. 

Although phenylpropanoids may be activated at early stages of infection, their repression when 

symptoms are severe is expected. The large number and complexity of metabolites belonging 

to phenylpropanoid pathways makes the clarification of their many roles in the host-pathogen 

battle difficult. 

 

 

Fig. 5| Global view of proteomic changes in Citrus leaves (Volkameriana and Navel orange) in 

response to CaLas infections. Proteins, pathways, and cell functions that were differentially 

expressed are indicated by colors, based on their pattern of expression in the two genotypes. Each 

colored square represents expression change in a protein associated with regulatory and 

enzymatic functions. More than one rectangle grouped together indicates different members of 

the same protein family were found to be differentially regulated 
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3.5_Hormonal crosstalk 

Plant innate responses are finely controlled by hormonal crosstalk, particularly between 

JA and SA signaling. The induction of allene oxide cyclase in infected Navel orange (Fig. 4) is 

intriguing because jasmonic acid signal transduction is a key pathway activated in response to 

necrotroph and herbivore attacks. JA-responsive proteins, gibberellin signaling (GASA1 and 

gibberellin-2-oxydase), and auxin signaling (CYP711A1 and SAUR-like proteins) were 

upregulated in mature infected leaves of Valencia orange [16]. Because CaLas is a biotroph, 

the activation of JA may be deleterious for the host as previously suggested [16]. 

Brassinosteroids affect disease resistance in plants [27] probably due to the induction of BAK1, 

which interacts with PAMP receptors such as bacterial flagellin to activate immune responses 

[28]. The ST1 gene was repressed in HLB-infected leaves [16]. However, the connections of 

brassinosteroids with the SA-ET-JA crosstalk and plant immunity remain elusive. On the other 

hand, auxin-related proteins were upregulated by HLB in both Citrus genotypes. Because of 

the antagonist role of auxins toward SA response [29], we may speculate that these effects are 

deleterious to the infected host. 

Proteomic studies have revealed post-transcriptional regulation of genes involved in key 

pathways which may be responsible for variations in phenotypic responses to HLB. The 

regulation of carbohydrate metabolism (sucrose, starch, and raffinose metabolism) is clearly 

altered at symptomatic stage at both transcript and protein levels. Differences in signaling 

mechanisms and hormone-mediated defense responses may also contribute to the range of 

tolerance to HLB within the Citrus germplasm.  The most compelling finding was that proteins 

involved in redox pathways and defense against xenobiotics (especially GSTS) were more 

abundant in Volkameriana than in Navel orange, and this may be linked with the former’s 

greater tolerance. Four GSTs were significantly upregulated in infected Volkameriana and not 

in infected Navel orange: GST18, GST19, GHST30, LN2-1. These effects on the proteome may 

explain the greater susceptibility of Navel orange compared to Volkameriana. While these 

findings regarding Citrus responses are valuable in the ongoing efforts to combat this deadly 

disease, further studies are still needed to validate these findings and deliver effective targets to 

develop new therapeutic strategies. 

 

3.6_Signaling and defense response pathways 

Some proteins encoding receptor kinases of the LRR type were HLB-regulated: one was 

upregulated in Volkameriana, one was repressed in Navel orange and two different proteins of 

LRR-VIII were upregulated (one in Volkameriana and one in Navel orange). Leucine-rich 
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repeat receptor kinases are the largest category of receptor kinases and mediate signaling of 

defense responses in plants. Other receptor kinases (VIII and DUF26) were upregulated in both 

Citrus genotypes. The proteins belonging to Domain of Unknown Function 26 were 

upregulated in response to HLB: one in Volkameriana, one in Navel orange and one commonly 

regulated. DUF26 is one of the largest classes of receptor-like kinases (RLKs). These proteins 

play important roles in regulating pathogen defense and programmed cell death [30]. Based on 

the proteomic results in this study, we speculate that diverse signaling mechanisms occur 

depending on the Citrus genotype. It is possible that variability in susceptibility of Citrus may 

result from pathogen perception due to activation of different receptors which in turn activate 

defense responses which vary in speed and intensity. Much remains to be learned regarding 

which receptor family is involved in susceptible or resistant responses to HLB. 

Several proteins involved in calcium regulation were less abundant in infected leaves of 

Navel orange: calmodulin-binding and calcium-transporting ATPase. This is consistent with 

the significant drop in calcium concentration observed in symptomatic leaves [17]. Three 14-

3-3 proteins were also HLB-downregulated in Navel orange and not in Volkameriana. These 

are a large family of proteins present in all eukaryotic organisms that aid signaling by binding 

other proteins such as kinases, phosphatases, and receptors (i.e. the P-type H+ ATPases) [31].  

Volkameriana showed significant stimulation of respiratory burst and consequent redox 

state, a prerequisite of the upregulation of pathogenesis-related proteins. Enzymes involved in 

the control of reactive oxygen species were generally enhanced in response to CaLas infection 

in both genotypes although Volkameriana showed a higher activation of glutathione-S-

transferases (GST30, GST18, GSTF9, LN2-1). The upregulation of these important 

detoxification proteins may be linked with the increased tolerance of Volkameriana in 

comparison to Navel orange. An upregulation of enzymes involved in the biosynthesis of 

peroxiredoxins, Cu/Zn superoxide dismutase and 2Fe-2S ferredoxin-like protein, occurred at 

both asymptomatic and symptomatic stages [18]. Glutathione S-transferase family proteins 

include several isozymes that help detoxify xenobiotic compounds [32]. Plant GSTs add 

glutathione to electrophilic xenobiotic molecules pushing them into the cell vacuole. Regulation 

of these proteins by environmental stress stimuli suggests a role in protection against any 

harmful event [33].  GSTs have been linked with hormone homeostasis and their high affinity 

for auxins suggests their upregulation is a general signal of responses to stress [34]. Stress-

inducible GSTs conjugate deleterious metabolites caused by oxidative damage. Inducible GSTs 

may play the important role of detoxifying exogenous molecules such as phytotoxins produced 

by pathogen attacks. Higher levels of GSTs in Volkameriana strengthens the hypothesis that 

they protect against dangerous molecules generated by CaLas attack. Indeed, differential 
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activation of GSTs may explain some of the variability of Citrus responses to HLB. Some 

peroxidases were also upregulated in both genotypes. These enzymes detoxify excess H2O2 [35] 

and they are grouped based on their subcellular localization [36]. As previously suggested [37], 

greater Citrus susceptibility to HLB may be linked to a failure to rapidly induce antioxidant 

components to alleviate the devastating effects of ROS produced by CaLas.  It has been 

suggested [38] that this category of proteins may be considered candidate markers in field-

grown for the detection of the devastating disease “Esca” in grapevine. In the same way high 

expression of GSTs are potential candidate markers for genotypes with useful tolerance to HLB. 

Further investigations will need to be conducted for a large number of genotypes.  

Pathogenesis-related (PR) proteins are plant defensive proteins against biotic attacks 

[39]. More PR-proteins were induced in Volkameriana than in Navel orange, consistent with 

the differing tolerance. Resistance (R) genes specifically activate a resistance reaction to a 

particular pathogen. NBS-LRR proteins are the most numerous R-gene class.  NBS-LRR genes 

are finely controlled by regulatory mechanisms that allow their expression only when a biotic 

attack occurs, and limiting their metabolic cost when they are not required [40]. It is possible 

that the two NBS-LRR proteins upregulated in Volkameriana may contribute to enhanced 

tolerance of HLB disease. Heat shock proteins (HSP) are molecular chaperones with important 

functions in non-covalent protein folding or unfolding, assembly, and modifications. Genes 

encoding HSP70, HSP82 and other small heat shock proteins were expressed at lower levels in 

HLB disease in both fruit and leaf tissues [16, 41]. Down-regulation of HSP70, chaperon-60kD 

and chaperonin-60alpha was also seen in infected grapefruit [17]. In the present study, HSP81, 

HSP21 and HSP23 were induced in Volkameriana while several HSP proteins were inhibited 

in Navel orange. Taken together, we conclude that the observed upregulation of some HSPs in 

Volkameriana may contribute to increased tolerance to HLB disease. 

 

3.7_Overall metabolism 

The repression of key proteins involved in photosynthetic light reactions was linked 

with the upregulation of starch-related pathways. Infected Volkameriana exhibited up-regulated 

nitrilases, oxydases, glutathione-S-transferases and other proteins involved in redox state. 

Infected Volkameriana also exhibited enhanced production of expansins and xyloglucan 

endotransglycosylases.  

Proteins commonly altered by HLB in both genotypes strengthen the data at proteomic 

level. The WD40 repeat-like protein was upregulated along with some enzymes involved in 

protein targeting, degradation, and glycosylation such as cysteine peptidase 3, proteinase A1, 
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and cysteine protease. Additional file 5: Figure S3 presents a complete list of commonly 

regulated proteins and their abundance in the four examined Citrus sample categories.  

 

 

4_CONCLUSIONS 

Forty-six of the 71 proteins were encoded by genes that were found to be 

transcriptionally regulated by HLB by previous studies in field conditions.  Any comparison 

between transcriptomic and proteomic studies should take into consideration that experiments 

were performed with different plant material grown under differing environmental, 

developmental and physiological conditions. We have applied an integrated approach using 

principal component analysis (PCA), gene set enrichment analysis and functional data mining 

to identify specific key proteomic changes in response to Huanglongbing disease in these two 

Citrus genotypes. The analysis of post-transcriptional mechanisms is an essential step to link 

molecular regulatory networks to observed phenotypic changes. Interestingly, the clearest 

differences between the two genotypes were observed for proteins involved in redox state and 

detoxification pathways such as glutathione-S-tranferases. HLB disease strongly affected genes 

and metabolites of the terpenoid, carotenoid, and jasmonic acid pathways [16, 42].  
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MicroRNAs are a class of post-transcriptional regulators of plant developmental and 

physiological processes and responses to environmental stresses. Here, we present the study 

regarding the annotation and characterization of MIR genes conducted in durum wheat. We 

characterized the miRNAome of leaf and root tissues at tillering stage under two environmental 

conditions: irrigated with 100 % (control) and 55 % of evapotranspiration (early water stress). In 

total, 90 microRNAs were identified, of which 32 classified as putative novel and species-

specific miRNAs. In addition 7 microRNA homeologous groups were identified in each of the 

two genomes of the tetraploid durum wheat. Differential expression analysis highlighted a total 

of 45 microRNAs significantly differentially regulated in the pairwise comparisons leaf versus 

root. The miRNA families, miR530, miR395, miR393, miR5168, miR396 and miR166, miR171, 

miR319, miR167 were the most expressed in leaves in comparison to roots. Putative microRNA 

targets were predicted for both five and three prime sequences derived from the stem-loop of the 

MIR gene. Gene ontology analysis showed significant over-represented gene categories in 

microRNA targets belonging to transcription factors, phenylpropanoids, oxydases and lipid 

binding-protein. This work represents one of the first genome wide characterization of MIR genes 

in durum wheat, identifying leaf and root tissue-specific microRNAs. This genomic identification 

of microRNAs together with the analysis of their expression profiles is a well-accepted starting 

point leading to a better comprehension of the role of MIR genes in the genus Triticum. 
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1_INTRODUCTION 

Durum wheat (Triticum turgidum L. ssp. durum) is a tetraploid wheat cultivated around 

the world. This cereal is characterized by a high resistance to semiarid climates and presents 

advantages compared to bread wheat under water deficit conditions. As stated by the 

International Grains Council, the global durum wheat production is around 35 million metric tons 

per year. In developing countries, durum wheat is usually cultivated in challenging environments 

especially on poor soil and semiarid conditions. In these harsh environments, production is 

usually characterized by high variability due to fluctuations in annual rainfall. Tolerance to water 

stress is a key aspect of the improvement of durum wheat for Mediterranean environments, where 

a reduced water supply greatly limits the production from a quantitative and qualitative point of 

view (Peng et al. 2011).  

Since the discovery of small RNAs, increased attention has been given to the importance 

of their function in post-transcriptional gene regulation in response to environmental stresses. 

MiRNAs are a class of small non-coding RNAs that are between 21 and 24 nucleotides (nt) long. 

Mature miRNAs are produced from longer noncoding pre-miRNAs, and they are processed by 

multiple cleavage steps, involving a complex system of different enzymes (Kurihara and 

Watanabe 2004). They are mostly involved in silencing the expression of genes through 

hybridization with their targets, with whom they share a complementary sequence (Jeong et al. 

2001). They are present in all plant genomes in large families with 1–32 loci. Interestingly, 

among members of the same family, miRNAs potentially encode identical or nearly identical 

mature sequences. Approximately 20 families are present in the plant kingdom. Among them, 

some members have been shown to be present in primitive land plants while others seem to be 

linked with more recent evolutionary events (Sunkar et al. 2008). These small RNAs have been 

associated with responses to different environmental stresses including drought (Cheah et al. 

2015; Shui et al. 2013). The identification of those involved in the regulation of key genes in 

secondary metabolism will be highly desirable (Martinelli and Tonutti, 2012). The number of 

newly discovered miRNAs is continually increasing, especially in Arabidopsis (Kozomara and 

Griffiths-Jones 2014). Although many of the new microRNAs have not been analyzed in 

response to environmental changes, the role of some has been clarified. For example, miR169 is 

one of the most conserved miRNAs and it has been associated with plant responses to abiotic 

stress (Li et al. 2008; Zhao et al. 2011). Several cereal miRNAomes have been characterized, 

although knowledge of the complex networks in which these miRNAs are involved is far from 

completely understood (Budak et al. 2015).  
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Specifically in wheat, several studies have been conducted with the aim to characterize 

the miRNAome of wheat species and identify key miRNA involved in tolerance and resistance 

to abiotic stresses (Pandey et al. 2014; Liu et al. 2015; Zhao et al. 2014; Ma et al. 2015; Akpinar 

et al. 2015; Alptekin and Budak 2016; Alptekin et al. 2016; Liu et al. 2016a). However, no studies 

have been conducted which include the annotation and chromosome mapping of tissue-specific 

miRNAs. Here we propose the first attempt to accurately annotate and map miRNA in relation 

to their expression in leaf and root tissues under two conditions: irrigated to 100% and 55% of 

evapotranspiration (early water stress). 

 

 

2_MATERIALS AND METHODS 

2.1_Plant Material and Experimental Design 

The experiment was conducted at Pietranera Farm (Sicily, Italy; 37°30′ N, 13°31′ E) using 

durum wheat (Triticum durum Desf.) plants grown outdoors in pots under the shade. In order to 

characterize the miRNAome under two conditions (i.e., irrigated and water stress), a complete 

randomized factorial design replicated six times was adopted. Each pot (diameter 150 mm, height 

130 mm) was filled with a vermiculite: soil mixture (1:1). Soil properties were as follows: 273 g 

kg-1 clay, 249 g kg-1 silt, and 488 g kg-1 sand; pH 8.0; 7.4 g kg-1 total C and 0.86 g kg-1 total N. 

All pots were weighed, fully wetted, and, after allowing them to drain freely, weighed again to 

determine the soil water content (SWC) at the retention capacity. 

Eighteen seeds of durum wheat (cv. Simeto), previously surface-sterilized with hydrogen 

peroxide at 4% for 3 minutes, were sown in each pot. Simeto, released in 1988, is the most widely 

grown variety in southern Italy; it is an early, short, high-yielding cultivar with excellent grain 

quality, and it is sensitive to drought (Bresta et al. 2011). One week after emergence, plants were 

thinned to six seedlings per pot. From emergence to tillering stage, plants were grown under well-

watered conditions. Starting from the advanced tillering stage (stages 22-24 of Zadoks scale, 

Zadoks et al. 1974), plants were subjected to four different water regimes: Contr100 which 

consisted of total replenishment of lost water daily; STR55, STR70, and STR85 which consisted 

in replenishing of 55%, 70%, and 85% of the daily evapotranspiration, respectively, as measured 

on Contr100. The pots were weighed daily and the water amounts were regulated by weight. The 

SWC during the period of application of the different water regimes was calculated for each pot 

as difference between the pot weight at retention capacity and the pot weight measured daily. All 

the experimental treatments were watered at the same time as the Contr100 treatment. 
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All pots were harvested after ten days from the start of water stress. Plant biomass was 

immediately separated into roots and shoots, and fresh weights were recorded. One pool of leaves 

and one of roots (primary and secondary), both equal to approximately one third of the respective 

total fresh weights, have been sampled, immediately frozen in liquid nitrogen (N), grinded and 

weighed out 1 g for the analysis. At the same time, a sample of fresh full expanded leaves (about 

1 g) was taken from each pot to determine the leaf relative water content (RWC). The leaves 

were weighed immediately (to determine fresh mass, FM), cut into several sections, and soon 

soaked in deionized water for 12 h, and then weighed again to determine the fully turgid mass 

(TM). Finally, the leaves were dried at 65 °C to determine the dry mass (DM). The leaf RWC 

was calculated as follows (Salisbury and Ross 1992): 

 

RWC = (FM−DM)/(TM−DM) 

 

For each pot, the remaining plant roots and shoots (both always greater than the 50% of 

the total fresh weight of each pot) were separately dried at 65 °C to determine the dry matter 

content and calculate the belowground and aboveground dry masses. 

Among the three levels of water stress, we chose the extreme water stress treatment 

(STR55) and Contr100 for the characterization of the durum wheat miRNAome. 10 days after 

that stress was applied, leaf and root tissues were harvested followed by miRNA extraction and 

sequencing. 

 

2.2._RNA extraction, library preparation and microRNA profiling  

RNA was extracted using the Spectrum Plant Total RNA kit (Sigma-Aldrich) from a total 

of 12 samples, composed by 6 leaves and 6 roots, grown in water stress and control condition 

were collected. For each sample, a pool of leaves and roots were used for the analysis and three 

biological replicates were considered for both conditions.. RNA quantity and quality was 

measured using the Nanodrop (Thermo Fisher Scientific, Massachussetts, USA) and the integrity 

was checked using electrophoresis by loading 1 µl of sample on 2 % agarose gel. RNA samples 

were processed to generate small RNA-seq libraries containing short inserts according to the 

TruSeq Small RNA Library Preparation Kit (Illumina, San Diego, CA), following 

manufacturer’s instruction.  

Once quality control was passed, Next-Generation sequencing (NGS) was performed 

using an Illumina Hiseq2500 sequencer at IGA Technology Services (Udine, Italy).  
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Raw reads were uploaded to the National Center for Biotechnology Information (NCBI) 

Sequence Read Archive (SRA) (Accession number: SUB2309521 N). 

 

2.3_Small RNA Annotation 

Raw sequencing data were of good quality (mean sequence quality score: Phred > 30) 

and no quality filters were applied. Three prime sequencing adapters were trimmed using the 

program Cutadapt (Martin 2011) version 1.8.3 with the settings: --trim-n  –a 

TGGAATTCTCGGGTGCCAAGG –m 15 –M 35; resulting in trimmed reads ranged from 15-

35 nucleotides in length. 

For each sample, trimmed reads were mapped independently against the hexaploid 

Triticum aestivum cv. Chinese Spring reference genome version IWGSC2 downloaded from 

Ensembl Genomes (ftp://ftp.ensemblgenomes.org/pub/plants/release-26). Since the official 

tetraploid wheat genome is not yet available, only chromosomes belonging to genomes A and B 

were considered as reference sequences to create a synthetic Triticum durum reference. 

Moreover, mitochondrial and plastid genome were not considered in this analysis.  

Bowtie (Langmead 2009) version 1.0.1 was used to align trimmed reads to the reference 

genome allowing 2 mismatches. The mapping results of each sample were analyzed with 

ShortStack (Axtell 2013) version v.2.0.9 with default settings, annotating a total of 66,795 

clusters corresponding to significant genomic regions harboring small RNA accumulation. This 

initial annotation was restricted to 90 high confidence miRNA loci based on the current criteria 

for the annotation of plant mircoRNA (Meyers et al. 2008). 

To identify conserved miRNA loci BLASTn (McGinnis and Madden 2004) with Evalue 

< e-10 was applied using as subject all the hairpin sequences belonging to monocotyledonous 

species present in miRBase (Kozomara and Griffiths-Jones 2014) version 21. 

Finally, homeologous miRNA loci were identified based on sequence similarity along the 

entire stem-loop sequence using the clustering program CD-HIT (Fu et al. 2012) with sequence 

identity of 0.95. 

 

2.4_miRNA target identification and annotation 

The non-redundant set of 5 and 3 prime miRNA sequences was used to predict targets in 

the full set of cDNA transcripts annotated in the Triticum aestivum cv. Chinese Spring version 

IWGSC2 downloaded from Ensembl Genomes 

(ftp://ftp.ensemblgenomes.org/pub/plants/release-26). 
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The program TargetFinder (Fahlgren et al. 2007) with default parameters was applied and 

only results with a score cutoff of 3 or less were considered as putative miRNA targets. 

The resulted list of unique T. durum miRNA targets was annotated using TRAPID (Van 

Bel et al. 2013), an online tool for functional and comparative transcriptome analysis. Similarity 

searches were conducted against the model grass species Brachypodium distachyion based on 

the data source contained in the PLAZA 2.5 database (Proost et al. 2009). 

 

2.5_Differential Expression analysis 

The detection of differentially expressed miRNAs was identified using the Bioconductor 

R package DESeq2 (Love et al. 2014) with Wald hypothesis test. For each miRNA locus the total 

number of sequencing read counts mapped unambiguously to the hairpin sequence in each 

condition was used as the input to the expression analysis. No normalization methods were 

applied to the raw data before performing the test since DESeq2 uses an internal method to 

normalize the raw data (Love et al. 2014). MicroRNAs with FDR ≤ 0.05 were considered 

differentially expressed.  

 

2.6_Statistical analysis 

Data on soil water content, plant biomass, and leaf RWC were subjected to analysis of 

variance (ANOVA) according to the experimental design. Variables corresponding to 

proportions were arcsine transformed before analysis to assure a better fit with the Gaussian law 

distribution. Normality was confirmed using a Kolmogorov-Smirnov test. Treatment means were 

compared using Fisher’s protected least significant differences test at the 5% probability level.  

 

 

3_RESULTS  

3.1_Soil water content, plant biomass, and leaf RWC 

In the Contr100 treatment, the soil water content never dropped below 23% during the 

experiment, whereas in all other treatments soil water content decreased more or less rapidly as 

a function of the level of the applied water stress (Fig. 1). At harvest, the soil water content 

ranged from 11.6% (STR55) to 23.5% (Contr100). 

Water regime significantly affected the aboveground plant biomass and the leaf RWC but 

not the belowground plant biomass (Table 1). In particular, decreases in shoot biomass were 
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observed when the intensity of water stress increased. Leaf RWC ranged from a high of 

approximately 90% for the well-watered treatment (Contr100) to a low of 82% for the most 

highly water-stressed treatment (STR55). 

 

 

Fig. 1| Changes in soil water content (±S.D.. n = 6) (%) in the days after the water stress induction. 

Contr100 = total replenishing of the amount of water lost daily from the pots; STR85. STR70. and 

STR55 = replenishing of 85%. 70%. and 55% of the daily evapotranspiration measured on 

Contr100. 

 

 

Table 1| Below- and above-ground biomass (as grams of dry matter per pot) and leaf relative water 

content (leaf RWC) under different water regimes.  

Water regime Belowground 

biomass 

Aboveground 

biomass 

Leaf 

RWC 

g DM pot-1 g DM pot-1 ― 

Contr100 2.13 5.07 a 0.92 a 

STR85 2.05 4.91 a 0.89 a 

STR70 2.09 4.51 ab 0.86 ab 

STR55 2.14 4.12 b 0.82 b 

Contr100 = total replenishing of the amount of water lost daily from the pots; STR85, STR70, and STR55 

= replenishing of 85%, 70%, and 55% of the daily evapotranspiration measured on Contr100. Within 

each column, different letters denote significant differences at 5% probability level. 
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3.2_Overview of microRNA profiling data 

In this study, Illumina sequencing platform was used to identify and characterize at 

genomic level miRNAs in durum wheat, focusing on leaf and root tissues subjected to drought 

stress. In total, twelve small RNA (sRNA) libraries were constructed using total RNAs isolated 

from four conditions (namely, leaf-control (leaf-N), root-control (root-N), leaf-drought (leaf-S), 

root-drought (root-S). sRNA sequencing yielded a total of 189,135,623 high-quality raw 

sequences with an average number of raw reads over the 3 replicates of at least 30 million (Table 

2). 

Table 2| Data set summary of miRNA sequencing data.  

 Roots Leaves 

 Control Drought Control Drought 

Total raw reads 58,677,892 50,893,655 30,665,332 48,898,744 

Uniquely mapped reads 6,789,788 4,963,645 2,404,013 3,487,512 

Multi mapped reads 20,549,748 16,102,052 21,173,031 37,276,683 

Total mapped reads 
27,339,536 

(46%) 

21065697 

(41%) 

23577044 

(76%) 

40764195 

(83%) 

The average number of reads for the three biological replicates in each condition and tissue are shown. 

 

 

After removing sequencing adapters, sRNA sequencing reads were mapped against the 

reference genome of bread wheat produced by the International Wheat Genome Sequencing 

Consortium (IWGSC) (A chromosome-based draft sequence of the hexaploid bread wheat 

(Triticum aestivum) genome) considering only chromosomes belonging to A and B genome to 

de-novo identify MIR genes in T. turgidum durum. Between 40% and 83% (Table 2) of the reads 

generated from root and leaf were mapped respectively to bread wheat genome allowed us to 

perform a miRNA identification at genome level using the pipeline ShortStack as proposed by 

Axtell (2013). This approach resulted in 66,795 small RNA clusters corresponding to significant 

genomic regions harboring small RNA sequences. Of these, 90 high confidence miRNA loci 

were retained since passed all the current criteria for the plant microRNA annotation (Table 3) 

(Meyers et al. 2008). A Plot Diagram of the differential analysis between roots and leaves was 

performed (Fig. 2). 
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Table 3| List of conserved miRNA in durum wheat tissues.  

Cluster 

name 

Known 

pre-

miRNA 

% 5P Cluster 

Sequence 

Known 

type 

3P Cluster 

Sequence 

Known 

type 

Cluster_

513 

tae-

MIR5384 

100.00 UUCGCCGGUCGC

GCGUUCCCC 

 UGAGCGCGCCGC

CGUCGAAUG 

tae-

miR5384-

3p 

Cluster_

1282 

tae-

MIR9664 

93.86 ACGGCAUAGAGG

CACUGCAAA 

 UGCAGUCCUCGA

UGUCGUAG 

tae-

miR9664-

3p 

Cluster_

6065 

ata-

MIR9863b 

95.12 UGAGAAGGUAG

AUCAUAAUAGC 

ata-

miR9863

b-3p 

UGUUAUGAUCUG

CUUCUCAUU 

ata-

miR9863b-

5p 

Cluster_

6404 

tae-

MIR9664 

98.31 ACGGCAUAGAGG

CACUGCAAA 

 UGCAGUCCUCGA

UGUCGUAG 

tae-

miR9664-
3p 

Cluster_

8073 

tae-MIR399 84.33 GGGCGCUUCUCC

CUUGGCACG 

ata-

miR399a-

5p 

UGCCAAAGGAGA

AUUGCCCUG 

ata-

miR399a-

3p 

Cluster_

10104 

tae-MIR530 98.76 CUGCAUUUGCAC

CUGCACCUA 

osa-

miR530-

5p 

GGUGCAGUGGCA

UAUGCAACU 

tae-miR530 

Cluster_

10719 

ata-

MIR156c 

99.09 UGACAGAAGAGA

GUGAGCAC 

ata-

miR156c-

5p 

GCUCACUGCUCU

AUCUGUCACC 

ata-

miR156c-

3p 

Cluster_

11634 

ata-

MIR1432 

90.65 CUCAGGAGAGAU

GACACCGAC 

ata-

miR1432-

5p 

UGGUGUCACCUC

GCCUGAACA 

ata-

miR1432-

3p 

Cluster_

11636 

ata-

MIR1432 

97.27 AUCAGGAGAGAU

GACACCGAC 

 UGGUGUCACCUC

GCCUGAACA 

ata-

miR1432-

3p 

Cluster_

12802 

bdi-

MIR827 

95.24 UUUUGCUGGUUG

UCAUCUAACC 

bdi-

miR827-

5p 

UUAGAUGACCAU

CAGCAAACA 

bdi-

miR827-3p 

Cluster_

13147 

ata-

MIR9776 

86.90 UGGACGAGGAUG

UGCAGCUGC 

ata-

miR9776-

5p 

AGCUGCACAUCC

ACUUCCAAG 

ata-

miR9776-

3p 

Cluster_

13262 

ata-

MIR395a 

95.24 AGUUCCCUUCAA

GCACUUCAGG 

ata-

miR395a-

5p 

UGAAGUGUUUGG

GGAACUCU 

ata-

miR395a-

3p 

Cluster_

14263 

ata-

MIR166c 

89.77 GGAACGUUGGCU

GGCUCGAGG 

ata-

miR166c-
5p 

UCGGACCAUGCU

UCAUUCCUC 

ata-

miR166c-
3p 

Cluster_

14872 

ata-

MIR164c 

94.78 UGGAGAAGCAGG

GCACGUGCA 

ata-

miR164c-

5p 

CACGUGUUCUUC

UCCUCCAUC 

ata-

miR164c-

3p 

Cluster_

16065 

ata-

MIR1432 

99.09 AUCAGGAGAGAU

GACACCGA 

ata-

miR1432-

5p 

GGUGUCACCUCG

CCUGAACA 

ata-

miR1432-

3p 

Cluster_

18140 

tae-MIR530 95.12 CUGCAUUUGCAC

CUGCACCUA 

 GGUGCAGUGGCA

UAUGCAACU 

tae-miR530 

Cluster_

18283 

bdi-

MIR827 

97.83 UUUUGUUGGUU

GUCAUCUAACC 

bdi-

miR827-

5p 

UUAGAUGACCAU

CAGCAAACA 

bdi-

miR827-3p 

Cluster_

18506 

ata-

MIR156c 

94.55 UGACAGAAGAGA

GUGAGCAC 

ata-

miR156c-
5p 

GCUCACUGCUCU

AUCUGUCACC 

ata-

miR156c-
3p 

Cluster_

18775 

ata-

MIR171a 

98.86 UGGUAUUGUUUC

GGCUCAUA 

ata-

miR171a-

5p 

UGAGCCGAACCA

AUAUCACU 

ata-

miR171a-

3p 

http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035797
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035797
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035797
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035775
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035775
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035775
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037237
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037237
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037237
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037236
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037236
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037236
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035775
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035775
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0035775
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037240
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037240
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037240
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037241
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037241
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037241
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0006787
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0006787
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0006787
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0036987
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037118
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037118
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037118
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037119
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037119
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037119
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037214
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037214
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037214
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0027075
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0027075
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0027075
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0020703
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0020703
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037216
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037216
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037216
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037217
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037217
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037217
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037163
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037163
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037163
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037248
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037248
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037248
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037249
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037249
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037249
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037242
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037242
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037242
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037243
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037243
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037243
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037214
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037214
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037214
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037215
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0036987
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0027075
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0027075
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0027075
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0020703
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0020703
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037118
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037118
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037118
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037119
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037119
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037119
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037190
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037190
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037190
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037191
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037191
http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MIMAT0037191


131 
 

Cluster_

20349 

ata-

MIR396d 

87.50 UCCACAGGCUUU

CUUGAACU 

ata-

miR396d-

5p 

UUCAAGAAAGCC

CAUGGAAA 

ata-

miR396d-

3p 

Cluster_

20589 

ata-MIR393 89.13 UUCCAAAGGGAU

CGCAUUGAU 

ata-

miR393-

5p 

CAGUGCAAUCCC

UCUGGAAUU 

ata-

miR393-3p 

Cluster_

20808 

hvu-

MIR159a 

94.94 GAGCUCCUAUCA

UUCCAAUGA 

hvu-

miR159a 

UUUGGAUUGAAG

GGAGCUCUG 

hvu-

miR159a 

Cluster_

25388 

bdi-

MIR156f 

93.94 UGACAGAAGAGA

GUGAGCAC 

bdi-

miR156f-

5p 

GCUCACUGCUCU

AUCUGUCAGC 

bdi-

miR156f-

3p 

Cluster_

26451 

tae-

MIR9676 

100.00 UGGAUGUCAUCG

UGGCCGUACA 

tae-

miR9676-

5p 

UACGGCCUGAUG

ACAUCCACG 

 

Cluster_

28135 

zma-

MIR319b 

87.70 AGAGCGUCCUUC

AGUCCACUC 

zma-

miR319b-

5p 

UUGGACUGAAGG

GUGCUCCCU 

zma-

miR319b-

3p 

Cluster_

33098 

ata-

MIR167d 

88.24 UGAAGCUGCCAG

CAUGAUCUGA 

ata-

miR167d-

5p 

AGGUCAUGUGGC

AGCUUCAUU 

ata-

miR167d-

3p 

Cluster_

41670 

ata-

MIR167d 

90.44 UGAAGCUGCCAG

CAUGAUCUGA 

ata-

miR167d-

5p 

AGGUCAUGUGGC

AGCUUCAUU 

ata-

miR167d-

3p 

Cluster_

41943 

ata-

MIR166e 

89.91 GGAAUGUUGUCU

GGUUGGAGA 

ata-

miR166e-
5p 

UCGGACCAGGCU

UCAUUCCCC 

ata-

miR166e-
3p 

Cluster_

42520 

tae-

MIR9674a 

93.10 AUAGCAUCAUCC

AUUCUACCA 

ata-

miR9674

a-5p 

GUAGGAUGGCUG

GUGCUAUGG 

ata-

miR9674a-

3p 

Cluster_

43339 

tae-

MIR9666b 

98.98 GCCAUCAUACGU

CCAACCGU 

tae-

miR9666

b-5p 

GGUUGGGCUGUA

UGAUGGCGA 

tae-

miR9666b-

3p 

Cluster_

43357 

tae-MIR156 99.15 UGACAGAAGAGA

GUGAGCAC 

 GCUCACCCUCUC

UCUGUCAGC 

 

Cluster_

43534 

ata-

MIR5168 

97.58 GGGUUGUUGUCU

GGUUCAAG 

ata-

miR5168-

5p 

CGGACCAGGCUU

CAAUCCCU 

ata-

miR5168-

3p 

Cluster_

44265 

ata-

MIR167a 

83.67 UGAAGCUGCCAG

CAUGAUCUA 

ata-

miR167a-
5p 

GAUCGUGCUGUG

ACAGUUUCACU 

ata-

miR167a-
3p 

Cluster_

47002 

ata-

MIR167c 

98.96 UGAAGCUGCCAG

CAUGAUCUA 

ata-

miR167c-

5p 

GAUCAUGACUGA

CAGCCUCAUU 

ata-

miR167c-

3p 

Cluster_

47003 

ata-

MIR167b 

97.94 UGAAGCUGCCAG

CAUGAUCUGA 

ata-

miR167b-

5p 

AGGUCAUGCUGG

AGUUUCAUC 

ata-

miR167b-

3p 

Cluster_

48327 

ata-

MIR5168 

96.77 GGGUUGUUGUCU

GGUUCAAG 

ata-

miR5168-

5p 

CGGACCAGGCUU

CAAUCCCU 

ata-

miR5168-

3p 

Cluster_

48425 

tae-MIR156 98.29 UGACAGAAGAGA

GUGAGCAC 

 GCUCACCCUCUC

UCUGUCAGC 

 

Cluster_

49696 

ata-
MIR166b 

99.00 GAAUGACGCCGG
GUCCGAAAG 

ata-
miR166b-

5p 

UUCGGACCAGGC
UUCAUUCCC 

ata-
miR166b-

3p 

Cluster_

52794 

tae-

MIR9670 

97.47 UUCUUCAAGUAC

UCCACUUUU 

 AGGUGGAAUACU

UGAAGAAGA 

tae-

miR9670-

3p 

Cluster_

53245 

bdi-

MIR156c 

92.70 UUGACAGAAGAG

AGUGAGCAC 

bdi-

miR156c 

GCUCACUCCUCU

UUCUGUCAGCC 

 

Cluster_

53705 

tae-MIR397 95.74 UUGAGUGCAGCG

UUGAUGAAC 

 UCACCGGCGCUG

CACACAAUG 

tae-

miR397-5p 
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Cluster_

55297 

bdi-

MIR396c 

100.00 UUCCACAGCUUU

CUUGAACUG 

bdi-

miR396c-

5p 

GUUCAAUAAAGC

UGUGGGAAG 

bdi-

miR396c-

3p 

Cluster_

55342 

ata-

MIR396c 

96.57 UUCCACAGCUUU

CUUGAACUU 

ata-

miR396c-

5p 

GGUCAAGAAAGC

UGUGGGAAG 

ata-

miR396c-

3p 

Cluster_

55558 

ata-

MIR172b 

96.33 GCAGCACCACCA

AGAUUCACA 

ata-

miR172b-

5p 

AGAAUCUUGAUG

AUGCUGCAU 

ata-

miR172b-

3p 

Cluster_

55636 

ata-

MIR396b 

83.91 UCCACAGGCUUU

CUUGAACUG 

ata-

miR396b-
5p 

GUUCAAGAAAGU

CCUUGGAAA 

ata-

miR396b-
3p 

Cluster_

57238 

bdi-

MIR156c 

94.16 UUGACAGAAGAG

AGUGAGCAC 

bdi-

miR156c 

GCUCACUCCUCU

UUCUGUCAGCC 

 

Cluster_

57508 

tae-

MIR167c 

91.10 UGAAGCUGCCAG

CAUGAUCUGC 

tae-

miR167c-

5p 

AGAUCAUGCUGC

AGCUUCAUU 

 

Cluster_

58599 

tae-

MIR9660 

100.00 UUGCGAGCAACG

GAUGAAUCAGCC 

tae-

miR9660-

5p 

CUGAUUUCUCCU

UUGCUCGAGUAG

A 

 

Cluster_

58886 

ata-

MIR396b 

86.89 UCCACAGGCUUU

CUUGAACUG 

ata-

miR396b-

5p 

GUUCAAGAAAGU

CCUUGGAAA 

ata-

miR396b-

3p 

Cluster_

59780 

ata-

MIR396e 

97.17 UUCCACAGCUUU

CUUGAACUG 

ata-

miR396e-
5p 

GUUCAAUAAAGC

UGUGGGAAA 

ata-

miR396e-
3p 

Cluster_

63022 

tae-

MIR5200 

100.00 AAGCCUUAGUGA

AUAUCUACA 

tae-

miR5200 

UAGAUACUCCCU

AAGGCUUGG 

tae-

miR5200-

3p 

Cluster_

63134 

ata-

MIR396e 

97.17 UUCCACAGCUUU

CUUGAACUG 

ata-

miR396e-

5p 

GUUCAAUAAAGC

UGUGGGAAA 

ata-

miR396e-

3p 

Cluster_

65040 

bdi-

MIR399a 

93.75 GUGCAGUUCUCC

UCUGGCAUG 

 UGCCAAAGGAGA

AUUGCCCUG 

bdi-

miR399a-

3p 

Cluster_

65295 

ata-

MIR166d 

95.45 GGAAUGUUGUCU

GGCUCGGGG 

ata-

miR166d-

5p 

UCGGACCAGGCU

UCAUUCCCC 

ata-

miR166d-

3p 

Cluster_

65537 

hvu-
MIR5048a 

82.59 UAUAUUUGCAGG
UUUUAGGUCU 

hvu-
miR5048

a 

ACCUAGACAUGC
AAGUAUAUU 

 

Cluster_

12754 

ata-

MIR171a 

100.00   UGAGCCGAACCA

AUAUCACUC 

ata-

miR171a-

3p 

Cluster_

16064 

ata-

MIR1432 

90.91 AUCAGGAGAGAU

GACACCGAC 

ata-

miR1432-

5p 

  

Cluster_

42519 

ata-

MIR9674c 

89.81 UGAAUUUGUCCA

UAGCAUCAG 

ata-

miR9674

c-5p 

  

Cluster_

59780 

ata-

MIR396e 

94.38 UUCCACAGCUUU

CUUGAACUG 

ata-

miR396e-
5p 

GUUCAAUAAAGC

UGUGGGAAA 

ata-

miR396e-
3p 

Cluster name, Known pre-miRNA, Percentage of identity with Known pre-miRNA, 5P sequence, Known 

type, 5P Cluster Sequence and 3P Cluster Sequence are indicated. 
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Fig. 2| Plot Diagram of the differential analysis between roots and leaves. In red miRNAs 

differentially expressed with padj < 0.05; triangle indicates that the microRNA has a FoldChange 

value exceeds the scale in Y. 

 

 

3.3_Identification of conserved and novel miRNAs in durum wheat 

Among the 90 high confidence miRNA loci found, 59 were found to be conserved with a 

sequence identity greater to 82% with miRNAs representing 41 families (Table 3). In particular, 

the conserved miRNAs belonged to families identified in Agilops tauschii (33 miRNAs), 

Triticum aestivum (16 miRNAs), Brachypodium distachyon (7 miRNAs), Hordeum vulgare (2 

miRNAs) and Zea mays (1 miRNAs) and in most of them the 5 and 3 prime sequences were 

found to be conserved with 100% of identity. Well-represented miRNA families were MIR156, 

MIR167 and MIR396. About one third of the total MIR loci found were classified as novel 

miRNAs since no hit against the deposited miRNAs were found (Table 4). Unlike conserved 

miRNAs, which were absent in three chromosomes, the novel miRNAs were distributed amongst 

the seven chromosomes of durum wheat. BlastN results of known miRNA was shown in S1.  
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Table 4| Complete list of miRNA identified in durum wheat. 

Cluster Name Chromosome  Coordinates (Start-End) Strand 

Cluster_513 1A 15633872-15633951 - 

Cluster_1282 1A 79918253-79918380 - 

Cluster_6065 1B 112783112-112783726 - 

Cluster_6206 1B 122612157-122612269 - 

Cluster_6404 1B 141665387-141665516 - 

Cluster_6749 1B 170059132-170059244 - 

Cluster_8073 1B 260670499-260670644 + 

Cluster_10104 2A 45376842-45377015 + 

Cluster_10719 2A 84081359-84081605 - 

Cluster_11634 2A 143411184-143411299 - 

Cluster_11636 2A 143414592-143414715 - 

Cluster_12802 2A 213324183-213324354 - 

Cluster_13143 2A 226019236-226019319 - 

Cluster_13147 2A 226139343-226139454 - 

Cluster_13262 2A 230308678-230308772 - 

Cluster_13639 2A 240081115-240081289 - 

Cluster_14263 2B 2222883-2222985 - 

Cluster_14872 2B 23833127-23833288 + 

Cluster_15646 2B 58576789-58577076 + 

Cluster_15688 2B 60519240-60519467 + 

Cluster_16065 2B 84759598-84759722 - 

Cluster_18140 2B 217777285-217777488 + 

Cluster_18283 2B 227895401-227895646 + 

Cluster_18506 2B 243201566-243201809 - 

Cluster_18775 2B 259602537-259602631 + 

Cluster_20349 2B 335036178-335036300 - 

Cluster_20589 2B 342233257-342233339 + 

Cluster_20808 3A 2080433-2080633 - 

Cluster_25388 3B 110274755-110274947 + 

Cluster_25487 3B 119184659-119184775 + 

Cluster_26451 3B 200808871-200809000 + 

Cluster_27040 3B 269731006-269731167 - 

Cluster_28135 3B 397138896-397139082 + 

Cluster_33098 4A 2957490-2957630 - 

Cluster_33442 4A 20971211-20971293 - 

Cluster_34476 4A 78276500-78276742 + 

Cluster_34518 4A 80581584-80581770 - 

Cluster_37179 4A 201734016-201734186 + 

Cluster_38047 4B 14197219-14197444 + 

Cluster_39268 4B 111421293-111421546 + 

Cluster_41670 4B 277748474-277748655 - 
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Cluster_41943 4B 289870488-289870595 + 

Cluster_42520 4B 313527214-313527308 + 

Cluster_43339 5A 59439291-59439409 + 

Cluster_43357 5A 61589422-61589539 + 

Cluster_43534 5A 73069415-73069551 - 

Cluster_43663 5A 80552389-80552564 + 

Cluster_44265 5A 109129156-109129252 + 

Cluster_44683 5A 124245876-124246107 + 

Cluster_46325 5B 53725031-53725280 + 

Cluster_47002 5B 89505892-89506004 + 

Cluster_47003 5B 89508484-89508593 + 

Cluster_47293 5B 105883615-105883794 + 

Cluster_48327 5B 163330209-163330340 + 

Cluster_48425 5B 168674312-168674427 - 

Cluster_49696 5B 217147284-217147387 + 

Cluster_50473 5B 243482443-243482634 - 

Cluster_50615 5B 248077388-248077474 + 

Cluster_52794 6A 54567623-54567714 + 

Cluster_53245 6A 87949906-87950062 + 

Cluster_53705 6A 120354259-120354366 - 

Cluster_55297 6A 198934069-198934223 + 

Cluster_55342 6A 199645078-199645263 - 

Cluster_55558 6A 203905899-203906020 + 

Cluster_55636 6A 205704194-205704363 - 

Cluster_57238 6B 96378404-96378579 + 

Cluster_57508 6B 117919946-117920091 - 

Cluster_58599 6B 190032396-190032500 - 

Cluster_58886 6B 201394961-201395149 - 

Cluster_59228 7A 5577146-5577252 + 

Cluster_59780 7A 20932743-20932904 + 

Cluster_60668 7A 67722401-67722565 + 

Cluster_62182 7A 158762241-158762338 - 

Cluster_63022 7B 3426764-3426925 + 

Cluster_63023 7B 3427326-3427561 + 

Cluster_63134 7B 8739076-8739320 - 

Cluster_64950 7B 152744447-152744540 + 

Cluster_65040 7B 162293419-162293567 - 

Cluster_65295 7B 177711980-177712189 - 

Cluster_65537 7B 193135466-193135860 - 

Cluster_66590 7B 244136062-244136291 - 

Cluster_9890 2A 30340652-30340876 - 

Cluster_11382 2A 128544212-128544409 - 

Cluster_12754 2A 210529750-210529991 - 

Cluster_16064 2B 84756262-84756383 - 
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Cluster_35124 4A 121123343-121123572 + 

Cluster_42519 4B 313526045-313526385 + 

Cluster_45124 5A 144036512-144036609 - 

Cluster_53303 6A 92088615-92088860 - 

Cluster_66669 7B 247337007-247337127 - 

Cluster name, Chromosome (Chr), Coordinates, Strand, Type and 5P and 3P sequence are indicated. 

Loci with both 5P and 3P sequences are defined MIRNA. HP are miRNA loci with no evidence of star 

sequence but have passed all the criteria for the annotation. 

 

 

3.4_Differential expression analysis 

Differential miRNA expression profiles were observed between leaf and root tissue but 

not between the condition drought versus control. This was particularly due to the high variance 

observed between the three biological replicates where biological replications of control leaf 

were found more similar to the water stressed treatment. Moreover, miRNA expression patterns 

in root samples were even more variable and this situation did not allow us to identify any 

significantly regulated miRNA in either leaf or root tissue in response to drought. Therefore, we 

focused our differential expression analysis on the comparison between the two tissues using the 

full set of six samples as biological replicates in each tissue, increasing the power of the statistical 

test. A total of 45 miRNAs were differentially expressed (DE) between root and leaf with FDR 

= 0.05 (Table 5). In particular we noticed an equal distribution of the miRNAs expression pattern 

in which 23 miRNA were induced in the root tissue whereas 22 miRNA were induced in leaf 

tissue. Interestingly, among the most DE we found the homeologous miRNAs which showed a 

conservation also in the pattern of expression. miR530, miR1432 and miR5168 were drastically 

down-regulated in root compared to miR171 and miR396 that viceversa were found up-regulated 

in root (Fig. 3). 

 

Table 5| MicroRNAs differentially expressed between roots and leaves.  

Cluster name Base Mean log2 Fold Change pvalue Annotation name 

Cluster_10104 73.842 -6.231 5.91E-40 tae-MIR530 

Cluster_11382 44.531 8.683 3.77E-14 Unknown 

Cluster_11634 89.553 -2.097 1.20E-10 ata-MIR1432 

Cluster_11636 578.675 -2.193 1.91E-08 ata-MIR1432 

Cluster_12754 41.992 2.509 1.27E-10 ata-MIR171a 

Cluster_13147 267.452 2.377 1.23E-18 ata-MIR9776 

Cluster_13262 3.337 -3.671       1.00E-03 ata-MIR395a 
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Cluster_14263 63.869 3.522 4.31E-05 ata-MIR166c 

Cluster_16064 524.537 -2.197 4.62E-08 ata-MIR1432 

Cluster_16065 594.784 -2.133 1.51E-08 ata-MIR1432 

Cluster_18140 72.432 -6.100 1.68E-39 tae-MIR530 

Cluster_18775 40.373 2.518 2.64E-10 ata-MIR171a 

Cluster_20589 279.681 -3.153 7.94E-16 ata-MIR393 

Cluster_20808 3250.971 -0.937 1.22E-03 hvu-MIR159a 

Cluster_26451 27.742 -1.812 1.00E-04 tae-MIR9676 

Cluster_28135 360.330 5.964 6.42E-62 zma-MIR319b 

Cluster_33442 56.529 1.347 2.03E-03 Unknown 

Cluster_34518 59.294 -4.930 4.99E-28 Unknown 

Cluster_35124 72.293 3.879 4.88E-14 Unknown 

Cluster_38047 11.644 1.147 1.98E-02 Unknown 

Cluster_41943 39522.440 1.196 9.35E-06 ata-MIR166e 

Cluster_42519 120.106 -1.734 2.36E-06 ata-MIR9674c 

Cluster_43534 485.938 -6.642 6.78E-80 ata-MIR5168 

Cluster_44265 25.156 2.656 6.93E-10 ata-MIR167a 

Cluster_45124 51.401 0.878 9.26E-03 Unknown 

Cluster_48327 490.112 -5.837 2.81E-56 ata-MIR5168 

Cluster_49696 39546.873 1.196 9.18E-06 ata-MIR166b 

Cluster_50615 1238.103 1.994 8.41E-07 Unknown 

Cluster_53303 4721.973 -2.719 1.71E-04 Unknown 

Cluster_55297 48.980 2.787 7.26E-12 bdi-MIR396c 

Cluster_55342 188.782 -2.487 9.44E-07 ata-MIR396c 

Cluster_57508 580.931 -1.802 5.62E-11 tae-MIR167c 

Cluster_59228 81.647 3.331 2.22E-12 Unknown 

Cluster_59780 51.272 2.830 5.45E-13 ata-MIR396e 

Cluster_59780 51.272 2.830 5.45E-13 ata-MIR396e 

Cluster_62182 25.762 -2.739 1.88E-08 Unknown 

Cluster_63022 140.125 -5.423 4.68E-33 tae-MIR5200 

Cluster_63023 127.093 -5.388 5.96E-31 Unknown 

Cluster_63134 50.893 2.820 8.48E-13 ata-MIR396e 

Cluster_65295 36643.371 1.470 8.16E-08 ata-MIR166d 

Cluster_65537 1796.238 -1.353 4.27E-08 hvu-MIR5048a 

Cluster_66590 34.121 -1.488 3.18E-04 Unknown 

Cluster_66669 38.841 5.031 1.42E-21 Unknown 

Cluster_6749 4.620 -2.687 7.24E-04 Unknown 

Cluster_9890 16.453 -1.344 3.71E-03 Unknown 

Cluster name. base means. Log fold change. P value and annotation name. A positive fold change means 

more expression in leaves/roots. 
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Fig. 3| Particular miRNA homologous genes differentially expressed between roots and leaves. (a) 

miRNA530; (b) miRNA5168; (c) miRNA1432; (d) miRNA171; (e) miRNA396. 

 

 

3.5_miRNA mapping and homeologous identification  

To better investigate the genomic organization of MIR genes in durum wheat we have 

performed a cluster analysis of the 90 hairpin miRNA structures here found, using a sequence 

identity cut-off of 95%. All the miRNAs (known and unknown) were mapped on wheat 

chromosomes (Fig. 4). This analysis allowed us to highlight for the first time 7 miRNA syntenic 

groups within homeologus chromosomes. We defined paralog homeologous miRNAs all the pre-

miRNA structures belonging to the same family which mapped on a couple of homeolog 

chromosomes (Table 6). Three MIR genes were found on chromosomes 2 (miR530, miR1432, 

miR171a), two (miR156, miR5168) on chromosome five and one (miR156c and miR396e) 

respectively on chromosome 6 and 7. Interestingly, two inversions were found on chromosomes 

two and five respectively between miR530 - miR1432 and miR156 - miR5168. To better 

investigate the chromosomal miRNA distribution and organization, we plotted miRNAs based 

on their coordinates on the bread wheat genome (Fig. 5). Interestingly, miRNAs were found 

randomly distributed along the seven chromosomes and accumulation of miRNAs appear on 

chromosomes 2, 5, 6 and 7 while some chromosomes such as 3A had very few miRNAs. 



139 
 

Table 6| List of homeologous known miRNA in durum wheat.  

Cluster name Chromosome Coordinates(Start-End) Strand miRNA type 

Cluster_59780 7A 20932743-20932904 + ata-MIR396e 

Cluster_63134 7B 8739076-8739320 - ata-MIR396e 

     

Cluster_18775 2B 259602537-259602631 + ata-MIR171a 

Cluster_12754 2A 210529750-210529991 - ata-MIR171a 

     

Cluster_10104 2A 45376842-45377015 + tae-MIR530 

Cluster_18140 2B 217777285-217777488 + tae-MIR530 

     

Cluster_53245 6A 87949906-87950062 + bdi-MIR156c 

Cluster_57238 6B 96378404-96378579 + bdi-MIR156c 

     

Cluster_43534 5A 73069415-73069551 - ata-MIR5168 

Cluster_48327 5B 163330209-163330340 + ata-MIR5168 

     

Cluster_11636 2A 143414592-143414715 - ata-MIR1432 

Cluster_16065 2B 84759598-84759722 - ata-MIR1432 

     

Cluster_43357 5A 61589422-61589539 + tae-MIR156 

Cluster_48425 5B 168674312-168674427 - tae-MIR156 

Cluster name, chromosomal location, coordinates, strand and miRNA type name are indicated. 
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Fig. 4| Chromosome mapping of all identified miRNA. 
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Fig. 5| Chromosome mapping of homeologous identified miRNA. 

 

 

3.6_Potential targets of conserved and novel miRNAs 

To understand better the biological functions of both known and novel miRNAs in durum 

wheat, putative miRNA targets were identified using the computational tool TargetFinder using 

as reference transcript database the cDNA transcripts annotated in the Triticum aestivum (version 

IWGSC2). Five and three prime sequences of both known and novel miRNAs were used as query 

sequences database to search for targets (Table S2a S2b). Secondary structures of all the MIR 
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loci identified in this work were shown in Table S3. Putative miRNA target transcripts genes 

with score cut-off not higher than 3 were identified (Supplemental S4). Their GO terms, interpro 

description and gene families were identified (Table S5-S7). Interestingly the 5 homeologous 

miRNA differentially expressed between root/leaf were found to have conserved putative targets. 

This feature together with the conservation of the miRNA expression pattern could be related to 

a mechanism associated to miRNA biology in polyploidy species. 

Moreover, the GO enrichment analysis showed a high number of target genes annotated 

as having the function of nucleoside phosphate, purine nucleotide, ion and carbohydrate binding. 

A clear enrichment of gene target ontologies was related to lignin metabolism, phenylpropanoids, 

and oxidoreductases.  

 

 

4_DISCUSSION 

Durum wheat is an important cereal widely grown in the Mediterranean basin and is an 

ancestral progenitor of bread wheat, contributing genomes A and B to the bread wheat genome. 

Its tetraploid nature offers a valid alternative to hexaploid bread wheat as a model for 

investigation of the role of miRNA in the regulation of key phenomenon in cereal physiology. 

With the purpose of clarifying the roles of miRNAs in durum wheat physiology and development, 

we present the annotation and mapping of tissue-specific miRNAs in durum wheat as well as the 

analysis of miRNA expression in leaf and root tissues. We identified 90 known and 32 novel 

miRNAs and additionally, we predicted all the potential targets for both novel and known 

miRNAs. 

Previous studies with the aim of identifying miRNAs and their target genes have already 

been conducted in different species including aestivum wheat (Xin et al. 2010; Tang et al. 2012; 

Wang et al. 2013). Several studies have been conducted to analyze tissue-specific expression of 

miRNAs in wheat (Agharbaoui et al. 2015; Liu et al. 2015; Ma et al. 2015). Previous articles 

have dealt with the identification of the cis-element RHE in the promoters of genes (Won et al. 

2009; Bruex et al. 2012). Other important leaf cis-acting regulatory elements (motifs) were found 

in the promoters of genes that were predominantly expressed in leaves (Xu et al. 2011; Zhang et 

al. 2012). An interesting work has been conducted by Lucas and Budak (2012) on Triticum 

aestivum chromosome 1AL. They demonstrated that a number of miRNA sequences were closely 

related to transposable elements and they proposed a strategy for annotation to minimize the risk 

of mis-identifying TE sequences as miRNAs. The nature of polyploidy of Triticum species 
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renders more difficult the correct discrimination of homologous copies of miRNA thorugh in 

silico methods and experimental validation. Recently two new scripts, “SUmirPredictor” and 

“SUmirLocator” have been developed to improve previous methods of miRNA prediction and 

identification, especially for species with highly repetitive genomic sequences (Alptekin et al., 

2017). These freely available tools furnish comprehensive understanding of how miRNA 

precursors are located in the genome and transcriptome and their association with transposons.  

Based on the miRBase registry (miRBase release 20), around 42 miRNA sequences have 

been identified in wheat.  

 

 

4.1_Mapping miRNA in durum wheat 

Our analysis was focused on mapping the identified tissue-specific miRNA and we 

delivered the first map of miRNA distribution in the two genomes of durum wheat. Although the 

genome sequence for Triticum turgidum ssp. durum has not yet been completed, we mapped the 

miRNA to the durum wheat chromosomes that are present in the bread wheat genome. Mapping 

the miRNAs will allow the targeting of them through genetic improvement schemes assisted by 

molecular markers.  In additions, our work can further the development of new molecular 

markers of important agronomic traits linked with key miRNA actions. For example, 13 

conserved miRNA (including miR166, miR172 and miR393) have been associated with 

genotypic diversity in relation to drought tolerance (Li et al. 2013). The mapping of these key 

miRNAs will be extremely important in the development of molecular markers useful for 

breeding purposes. We mapped miR156 in the wheat genome. Previous findings showed that 

miR156 members were modulated by drought in both wild and domesticated wheat implying that 

this miRNA family is highly conserved between cereals. The function of this miRNA is to 

modulate the expression of SQUAMOSA PROMOTER-BINDING LIKE proteins. However, clear 

differences have been observed between the patterns of expression of members of this family 

implying that they may have contributed to evolution of wheat species (Kantar et al. 2011, 2012; 

Kurtoglu et al. 2013, 2014). Previous studies have shown that the effect on drought tolerance 

might be dose-dependent and their regulation might be due to the regulation of target genes using 

post-transcriptional or translation repression mechanisms. Seven conserved miRNAs and three 

novel miRNAs were analyzed in flag leaf and developing head tissues of different durum 

genotypes (Liu et al. 2015). These authors inferred their role in water stress tolerance arising 

from the physiological modulation triggered by their target genes. These miRNAs are close 

relatives of wheat miRNAs mapped in the present work.  
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4.2_Leaves vs roots 

In the present work, we identified 58 miRNAs that were expressed in both leaves and root 

tissues and mapped to the A and B genomes. Of these, seven were homeologous gene pairs, 

present in both of the two genomes. Differential expression analysis highlighted 45 miRNAs 

significantly regulated in the leaf/root pairwise comparisons. miR530, miR395, miR393, 

miR5168, miR396 were more expressed in leaves while miR166, miR171, miR319, miR167 had 

higher expression in roots than in leaves.  

Ma et al. (2015) characterized the miRNA in two different wheat genotypes Three 

hundred and sixty seven differentially expressed miRNAs were reported and among them, there 

were members of miR156, miR166, miR167, miR168, miR444. We observed significantly 

higher expression of miR166 in roots while miR167c was more expressed in leaves. Interestingly 

miR166 and miR396 had opposite trends of expression patterns between tolerant and susceptible 

wheat genotypes. It is noteworthy that these two genes were also differentially regulated between 

leaf and root tissues. Both miRNAs were upregulated in root tissues compared to leaves implying 

that they may have a key role in root physiological processes related to water stress conditions. 

miR166h targets HD-ZIP4 while miR396 targets GRFs (Ma et al. 2015). Indeed these 

transcription factors might be involved in the modulation of genes involved in root architecture, 

development and growth in response to drought.  

Kantar et al. (2011) identified other miRNAs that were repressed in response to drought 

that showed to have a clear differential tissue-specific expression such as miR396 and miR166. 

MiR159a that targets a MYB3 transcription factor might play a role in cold-stress responses (Liu 

et al. 2013). Interestingly we showed that this miRNA was more expressed in leaves than in roots. 

MYB genes have also been shown to be involved in plant tolerance to abiotic stresses through 

their action in hormone-related signaling networks (Phillips et al. 2007).  

 

4.3_Functional analysis of miRNA targets 

A high number of targets has been shown to have nucleic acid binding activities encoding 

proteins involved in signaling and defense responses. Several auxin-specific transcription factors 

and auxin-related genes have been identified as potential targets of abiotic stress-related miRNA 

(Liu et al. 2016b; Sun et al. 2016). It has been hypothesized that a miRNA-driven modulation of 

auxin genes might affect the lateral root development due to an altered auxin:cytokinin ratio (Su 

et al. 2011). Genes encoding lipid-transfer proteins have been shown to be targeted by miRNA 

regulated under drought conditions (Liu et al. 2015). The regulation of these genes have been 



145 
 

linked with genotypic differences in maintaining osmotic pressure. Lipid transfer proteins (LTPs) 

aid to prevent or adjust stress-induced damage in membranes related to changes in lipid 

composition (Jung et al. 2003). Interestingly our data showed that a significant higher number of 

potential targets were related to lipid binding. We identified members of the miR164 family that 

target NAC transcription factors, which are known to have roles in various abiotic stress 

responses (Nakashima et al. 2012). Liu et al. (2015) found that several miRNA were drought 

responsive such as miR1136, miR1432, miR5048, miR5054, miR5071, miR5200 and miR6300. 

Most of them were successfully mapped to diverse chromosome in the genome A and B in wheat.  

 

 

5_CONCLUSIONS 

We have analyzed the miRNAome of these two tissues under two conditions: watered 

and drought to determine if some of these tissue-specific miRNA might be regulated under 

drought conditions. This work confirms the difficulties of analyzing the miRNAome under field 

conditions and suggests a need to perform studies under artificial conditions such as hydroponics. 

We have mapped and assigned key miRNAs involved in the response to each wheat chromosome.  

This will allow the targeting of them through genetic improvement schemes assisted by 

molecular markers. The specific expression of them in leaves or roots will also help to define 

their role in important plant developmental and physiological processes. The identification of 

different homeologous and the analysis of their expression trends are also essential to clarify the 

role of these miRNAs in the evolution of cereal species as well as their key agronomic aspects. 

The determination of expression patterns in different tissues is essential for the clarification of 

the role of key miRNAs in affecting the phenotype of important agronomic traits.  
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Salt stress is one of the most serious problem to the plant growth and their production because of 

the toxic effect of ions, drought stress and nutrition imbalance. It has also effect to the growth of 

arbuscular mycorrhizal fungi reducing their colonization. The goal of this work is to determine 

how some key genes of durum wheat (cv. Anco Marzio) involved in stress responses and nutrient 

transport are regulated by AMF inoculations in a high salinity environment. For this reason plants 

grown outdoors in pots under four conditions: absence and presence of salinity stress with or 

without AM fungi inoculation (No-stress +AM, No-stress -AM, Saline-stress -AM, Saline-stress 

+AM). We analyzed, through Real-Time PCR, eleven genes involved into nitrate and ammonium 

transporters (NRT1.1, NAR2.2, AMT1.1, AMT1.2) and drought stress responses (AQP1, AQP4, 

DHN15.3, PIP1, NAC8, DREB5, DREB6). The results of the present study showed an induction 

of NAC8, DREB6 and DHN15.3 wheat genes in response to salt stress condition. Our data 

confirmed agronomic benefits from AM symbiosis. Under salinity conditions, they had a 

favorable impact on N acquisition and N concentration, aboveground and root biomass, and 

membrane stability. 

 

 

 

 

 

 

 

 

 



153 
 

1_INTRODUCTION 

Soil salinity is one of the most serious environmental stresses that limit crop production; 

more than 6% of the world’s total land area is indeed affected by salinity and sodicity (Munns 

and Tester 2008). High concentrations in soil of cations such as sodium (Na+) or anions such as 

chloride (Cl–) make it difficult for plant roots to extract water (due to the reduction of soil osmotic 

potential) and nutrients, and high concentrations of salts inside the plant can have toxic effects 

(Munns and Tester 2008), with inhibition of protein synthesis, disruption of enzymes, damage of 

membrane integrity and cell organelles (Ruíz-Lozano et al. 2012). To avoid damages from 

salinity, plants have evolved several mechanisms that are implicated in ionic and water/osmotic 

homeostasis through the regulation of genes involved in the transport and compartmentation of 

nutrients (Munns 2005), the accumulation of solutes (Talaat and Shawky 2013), and the 

expression of aquaporins (Ouziad et al. 2006), the latter being a group of water-channel proteins 

that promote and regulate the passive movement of water molecules through a water potential 

gradient (Kruse et al. 2006; Heinen et al. 2009). However, although it is well established that 

aquaporins play an important role in regulating the transcellular transport of water in plant 

tissues, the comprehension of the relationship between expression of aquaporin genes and plant 

response to water deficit caused by osmotic stress still remains quite limited. Besides these 

mechanisms, plants have also evolved systems to repair the cellular damages caused by salinity. 

For instance, changes in the expression of dehydrin (DHN) genes in plants grown under water-

related stresses have been reported (Brini et al. 2007; Hanin et al. 2016). Dehydrins are 

considered as stress proteins involved in formation of plant protective reactions against 

dehydration, but their specific function has not been well understood so far (Allagulova et al. 

2003; Kumar et al. 2014). Drira et al. (2016) showed that Arabidopsis thaliana (L.) Heynh 

overexpressing wheat (Triticum aestivum L.) DHN-5 maintained higher reactive oxygen species 

(ROS)-scavenging enzymatic activity and accumulated lower levels of H2O2, thus improving 

their resistance to water-related stress. 

In addition to these intrinsic mechanisms of adaptation, plants growing under adverse 

environmental conditions, such as saline soils, can improve their performance indirectly, by 

establishing associative relationships with a number of soil microorganisms, such as bacteria 

and/or fungi. Among the latter, arbuscular-mycorrhizal (AM) fungi are able to activate symbiotic 

relationships with the majority of land plants. AM symbiosis has a positive influence on plant 

growth, which is mainly attributable to the ability of AM fungi to take up from the soil both water 

(Jayne and Quigley 2014; Saia et al. 2014a) and nutrients—especially phosphorus, P (Barea et 

al. 2008; Lambers et al. 2008), and to a lesser extent nitrogen, N (Azcón et al. 2001; Saia et al. 
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2014b) and deliver them to the roots of its host, and also to enhance the health of its host by 

protecting it from pathogens, pests, and parasitic plants (Jung et al. 2012). AM fungi occur 

naturally in saline soils and they can be present even under severe salinity (Yamato et al. 2008; 

Wilde et al. 2009). Many studies have shown that AM symbiosis can improve the tolerance of 

plants in growing under salt-stress conditions, reducing their yield losses (Cantrell and 

Linderman 2001; Feng et al. 2002; Colla et al. 2008; Hajiboland et al. 2010; Talaat and Shawky 

2011). Several mechanisms have been suggested to be involved in the increased salinity tolerance 

of mycorrhizal plants compared to non-mycorrhizal plants, including enhanced capacity in the 

uptake of both water and nutrients (mainly P, N, calcium, and potassium, K) (Mohammad et al. 

2003; Giri et al. 2007; Hajiboland et al. 2010), better maintenance of membrane integrity (which 

facilitates compartmentation of Na+ and Cl– within vacuoles and selective ion intake and 

translocation; Cramer 2004), maintenance of proper K+/Na+ ratios in plant tissues (thus helping 

to prevent the disruption of K-mediated enzymatic processes and the inhibition of protein 

synthesis; Wu et al. 2010), enhanced osmoregulation due to a higher accumulation of 

osmoprotectant solutes (such as proline and glycine betaine) and soluble sugars in plant tissues 

(Sharifi et al. 2007; Sheng et al. 2011; Talaat and Shawky 2011). However, according to Ruíz-

Lozano et al. (2012), the understanding of the deeper mechanisms that allow mycorrhizal plants 

to exhibit higher tolerance to salinity is far from being complete. In particular, the molecular 

mechanisms involved in this beneficial effect are still poorly investigated. Consequently, to 

improve the comprehension of the mechanisms implicated in salinity stress alleviation by AM 

symbiosis, it is important to study how the expression of the genes involved in the regulation of 

functions such as the uptake and transport of water and nutrients varies in mycorrhizal plants 

grown under salt-stress conditions. Hence, an experiment was conducted growing durum wheat 

(Triticum durum Desf.) plants under salt-stress conditions to evaluate the influence of AM 

symbiosis on the expression of a number of genes (nitrate and ammonium transporters and 

drought stress-related genes) most likely of relevance in plant response to salinity stress. 

Moreover, the agronomic response to salinity of durum wheat mycorrhizal plants was also 

evaluated to find relationships with the variation in gene expression. Durum wheat was chosen 

as model plant for this investigation due to its importance as crop plant in the arid and semiarid 

areas of the Mediterranean basin. 
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2_MATERIALS AND METHODS 

2.1_Plant Material and Experimental Design 

The experiment was conducted at the Department of Agricultural and Forest Sciences of 

the University of Palermo, Italy, using durum wheat (Triticum durum Desf.) plants grown 

outdoors in pots under four conditions: absence of salinity stress with or without AM fungi 

inoculation (No-stress +AM and No-stress -AM, respectively); presence of salinity stress with or 

without AM fungi inoculation (Saline-stress +AM and Saline-stress -AM, respectively). A 

complete randomized factorial design was adopted considering seven replicates. Each pot 

(diameter 150 mm, height 130 mm) was filled with 2000 g of a quartz sand:soil mixture (1:1). 

Soil properties were as follows: 267 g kg–1 clay, 247 g kg–1 silt, and 486 g kg–1 sand; pH 8.0; 6.3 

g kg–1 total C; 0.86 g kg–1 total N; 1.70 dS m–1 saturated electrical conductivity (EC) (25 °C). 

Both soil and sand were sieved through a 2 mm mesh and autoclaved at 121 °C for 20 min in 

order to completely impair soil biological (both fungal and bacterial) activity. The bacterial 

microflora was extracted by suspending 500 g soil in 1.5 l distilled water. After shaking and 

decanting, the suspension was filtered (11 μm mesh) to discard natural AM fungi. Before starting 

the experiment, each pot received 30 ml of soil suspension filtrate to reintroduce the natural 

microbial community. Inoculation with AM fungi involved the application of a commercial AM 

inoculum at a rate of 10 g per pot. The inoculum consisted of a mixture of spores of Rhizophagus 

irregularis (formerly Glomus intraradices) and Funneliformis mosseae (formerly G. mosseae), 

each of which was present at a rate of 700 spores g–1 of inoculum. Each pot received 60 mg of N 

in the form of [NH4]2SO4. 

Sixteen seeds of durum wheat (cv Anco Marzio), previously surface-sterilized with 

hydrogen peroxide at 4% for 3 minutes, were sown in each pot. Ten days after emergence, plants 

were thinned to six seedlings per pot. To avoid the negative effect of salinity on both the thin 

seedlings and the establishment of the AM symbiosis, wheat plants were grown for 15 days 

before the application of the salinity treatment. The latter was obtained by adding NaCl in 

irrigation water (0 and 10 g l–1). To prevent osmotic shock, salt was added gradually by 

distributing in total 1 l of the NaCl solution in each pot during the 7 days starting from the 

beginning of the salinity treatment. This led the EC of saturated soil extract to 1.50 and to 13.00 

dS m–1 in the non-stressed and salt-stressed treatments, respectively. From this moment, plants 

were watered with tap water (0.58 dS m–1) until harvest. Leaching was avoided by maintaining 

soil water always below field capacity. During the experiment, irrigation was done every two 

days and, for each pot, the amount of irrigation water consisted of total replenishment of water 
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lost though evapotranspiration. Evapotranspiration losses were determined considering the 

variations in pot weight measured daily. 

All pots were harvested after 45 days from sowing. On the harvest day, before biomass 

was sampled, the chlorophyll contents of leaves were determined using a hand-held chlorophyll 

meter (SPAD-502, Minolta, UK), averaging readings from ten full expanded leaves of plants 

randomly selected in each pot. After this, plant biomass was immediately separated into roots, 

stems, green leaves, and senescent and dry leaves, and fresh weights were recorded. About 1 g 

of green leaves and 1 g of roots from each pot were immediately frozen in liquid nitrogen (N), 

stored at −80 °C, and subsequently pulverized without thawing. At the same time, a sample of 

green full expanded leaves (about 400 mg) was taken from each pot to determine the membrane 

stability index (MSI). The leaf material was divided in two sets of 200 mg each. The first set was 

heated at 40 °C for 30 min in a water bath (10 cm3); then the electrical conductivity bridge (C1) 

was measured. The second set was boiled at 100 °C for 10 min (in 10 cm3 of water) before 

measuring the electrical conductivity bridge (C2). MSI was calculated according to the formula 

by Sairam et al. (1997): 

 

𝑀𝑆𝐼 =  [1 −
𝐶1

𝐶2
] × 100 

 

Moreover a representative root sample (about 1 g) was taken from each pot to determine 

the overall colonization of roots by AM fungi. To this end, root samples were cleared with 100 

g/l potassium hydroxide (KOH) and stained with 50 mg/l trypan blue following the method 

described by Phillips and Hayman (1970). Root colonization by AM fungi was then measured 

with the grid intersect method according to Giovannetti and Mosse (1980). 

For each pot, the remaining plant biomass was dried at 65 °C for 36 h (separately for each 

botanical fraction) to determine the dry matter content and calculate the belowground and 

aboveground dry masses. Moreover, plant N content was determined separately for each 

botanical fraction using the combustion method of Dumas (DuMaster D-480, Büchi 

Labortechnik AG, Switzerland). 
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2.2_RNA extraction and cDNA preparation 

RNA was extracted using the Spectrum Plant Total RNA kit (Sigma). RNA quantity was 

measured with the Nanodrop and the quality was analyzed using electrophoresis by loading 1 µl 

of sample on 2 % agarose gel. DNase treatment and cDNA synthesis were performed in a 

combined protocol following Quantitect Reverse Transcription Kit (Qiagen) instructions. 

 

2.3_Gene expression analysis 

Quantitative RT-PCR was used to analyze the expression of durum wheat genes. Three 

biological replicates were considered for each condition. Eleven genes were analyzed belonging 

to nitrate transporters and ammonium transporters (NRT1.1, NAR2.2, AMT1.1, AMT1.2) and 

drought stress responses (AQP1, AQP4, DHN15.3, PIP1, NAC8, DREB5, DREB6). For each 

target gene, PCR primers were designed basing on T. aestivum sequences deposited in NCBI 

(Table 1). Real Time PCR was performed with iTaq Universal SYBR Green Supermix (BioRad). 

Amplifications were conducted using 25 ng cDNA in a 15 µL final volume with a Biorad iQ5 

PCR system (Biorad) with standard conditions: 3 min at 95°C, 40 cycles of 15 s at 95°C, and 45 

sec at 60°C. All PCR reactions were performed in duplicates and 18S of T. aestivum was used as 

an endogenous reference. Fluorescent signals were determined during the annealing temperature 

and CT values extracted with an auto-calculated threshold followed by baseline subtraction. 

ΔΔCT was determined by subtracting the average of 18S from the average CT of the analyzed 

gene.  

 

2.4_Statistical data analysis 

Data collected on plants were subjected to analysis of variance (ANOVA) according to 

the experimental design. Variables corresponding to proportions were arcsine transformed before 

analysis to assure a better fit with the Gaussian law distribution. Treatment means were compared 

using Fisher’s protected least significant differences test at the 5% probability level. 
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Table 1| List of primers used in qRT-PCR analysis 

Gene GenBank Accession number Primer sequences 

NRT1.1 AY587265.1 F: CACAGCGAATAGGGATTGGT 

R: CGCCTAGCAGGAAGTACTGG 

NAR2.2 AY763795.1 F: CCTCTCCAAGCTTCCTGTGA 

R: CGTAGCAGAGGCTGACCTT 

AMT1.1 AY390355.1 F: CCAAGAACACCATGAACATC 

R: GGAAGAGGAAGAAGCTGTAG 

AMT1.2 AY525638.1 F: CGGCTTCGACTACAGCTTCT 

R: AGTGGGACACCACAGGGTAG 

AQP1 DQ867075.1 F: AGCGAACAAGTACTCGGAG 

R: TAGAGGAAGAGGGAGGTG 

AQP4 DQ867078.1 F: CGGATGTGGTCCTTCTAC 

R: ACGAGGACGAAGATCATG 

DHN15.3 AM180931.1 F: CGTCGACGAGTACGGTAAC 

R: CCATGCCATCATCCTCAGAC 

PIP1 AF366564.1 F: CACCTTCGGGCTGTTTTTG 

R: GTCTGGAACCCCTTGACC 

NAC8 HM027573.1 F: CGCATGGGATGATGTCAAG 

R: CATAGGGAAGTTCACCGTC 

DREB5 AY781358.1 F: GAGGAACTTGTGGAGCAGAG 

R: ATCTCCGAGGTCGCTTTTTC 

DREB6 AY781361.1 F: AAAACCAGAAGCTCCTGC 

R: TGCTCTGAGAAGTTGACAC 

18S AB778770.1 F: CAACGGATATCTCGGCTCTC 

R: TTGCGTTCAAAGACTCGATG 
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3_RESULTS  

Salinity significantly affected all the traits measured in plants (Tables 2 and 3). On 

average, compared to the control (non-stressed condition), salt stress reduced the number of 

stems per plant (–47%), the aboveground biomass (–33%), and, particularly, the root biomass (–

64%; Table 2). On the contrary, plants grown under salt stress conditions had chlorophyll meter 

readings (SPAD values) higher than non-stressed plants. Similarly, the N concentrations of both 

the root and the aboveground biomass (the latter including green leaves, senescent and dry leaves, 

and stems) were all significantly higher under salt stress compared to the control (Table 3). On 

the contrary, the total N uptake was on average markedly lower in salt stressed plants (–30%). 

Uninoculated plants showed insignificant mycorrhizal colonization levels (always <1%  

of root length colonized; Table 2). Characteristic structures of AM fungi were observed in the 

roots after inoculation, with mycorrhizal colonization levels >30% both in non-stressed and salt 

stressed conditions. On average, compared to the non-mycorrhizal treatment, AM plants showed 

higher aboveground and root biomass (+5% and +14%, respectively), whereas no effect of AM 

symbiosis was observed on the number of stems per plant and the proportion of leaves on the 

aboveground biomass. Mycorrhizal plants showed SPAD values slightly higher than 

uninoculated plants under both salt stressed and non-stressed conditions. Moreover, AM plants, 

compared to non-AM plants, had a higher total N uptake (+18% on average) and a higher N 

concentration in the total aboveground biomass (+13% on average; Table 3). This evidence was 

confirmed for all the botanical fractions except for the roots. The effects of both the treatments 

applied (‘Salinity stress’ and ‘Mycorrhizal inoculum’) on SPAD values were similar to those 

observed for total aboveground biomass N concentration. These two traits were strictly and 

positively correlated. 

Soil salinization significantly decreased MSI values compared to the non-stressed 

condition (–18% on average; Table 2). The interaction ‘Salinity stress × Mycorrhizal’ inoculum 

was significant at the 5% probability level; in fact, while under non-stressed conditions no effect 

was observed by AM symbiosis, under salinity stress the MSI values were significantly higher 

in +AM compared to –AM treatment. 
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Table 2| Number of stems per plant, aboveground and root biomass (as grams of dry matter per 

pot), proportion of green leaves, SPAD value, membrane stability index (MSI), and levels of 

mycorrhizal infection in durum wheat grown under no- and saline-stress regimes and in the 

presence or absence of arbuscular mycorrhizal symbiosis. +AM = inoculation with arbuscular 

mycorrhizal spores; –AM, suppression of arbuscular mycorrhizal symbiosis. 

Trait 

  No-stress   Saline-stress   Significance 

  +AM –AM   +AM –AM   Stress Inoc. 
Stress 

× Inoc. 

No. stems per plant n° 4.6 5.0  2.7 2.4  *** ns ns 

Aboveground biomass 

(AB) 
g per pot 2.19 2.15  1.51 1.39  *** * ns 

Root biomass g per pot 2.33 2.14  0.93 0.70  *** * ns 

Proportion of green 

leaves  
% on AB 50.1 46.2  34.3 34.1  *** ns ns 

SPAD value — 50.5 49.3  53.1 52.1  *** * ns 

MSI — 86.1 86.0  75.0 66.6  *** ns * 

Mycorrhizal infection % 36.4 0.8   31.2 0.5   * *** ns 

***, **, * denote significant differences at 0.001, 0.01, and 0.05 probability levels, respectively; ns 

indicate differences not significant 

 

 

 

Table 3| Nitrogen concentration in the aboveground (total and separately for each botanical 

fraction) and root biomasses, and total N uptake in durum wheat grown under no- and saline-stress 

regimes and in the presence or absence of arbuscular mycorrhizal symbiosis. +AM = inoculation 

with arbuscular mycorrhizal spores; –AM, suppression of arbuscular mycorrhizal symbiosis. 

Trait 

  No-stress   Saline-stress   Significance 

  +AM –AM   +AM –AM   Stress Inoc. 

Stress 

× 

Inoc. 

N concentration of:           

Total aboveground 

biomass 
g kg–1 0.309 0.265  0.365 0.331  *** *** * 

Green leaves g kg–1 0.385 0.343  0.409 0.389  *** *** * 

Senescent and dry 

leaves 
g kg–1 0.204 0.209  0.338 0.359  *** ns * 

Stems g kg–1 0.251 0.212  0.274 0.232  * *** ns 

Root biomass g kg–1 0.124 0.122  0.143 0.150  ** ns ns 

Total N uptake mg N per pot 95.1 82.6   68.5 56.3   *** *** ns 

***, **, * denote significant differences at 0.001, 0.01, and 0.05 probability levels, respectively; ns 

indicate differences not significant 
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3.1_Nitrogen transporter genes 

The expression of both ammonium transporters was not significantly regulated by both 

salinity stress and mycorrhizal inoculation. Salt stress condition induced NAR2.2 expression 

while the presence of mycorrhizae upregulated the expression of NRT1.1 (Fig. 1).  

 

 

Fig. 1| Expression of nitrogen transport-related genes (NRT1.1, NAR2.2, AMT1.1 and AMT1.2) in 

response to salt stress and mycorrhizae inoculation. Means and standard deviation were indicated. 

Different letters means significant differences among the four treatments using post-hoc test. ns = 

not significant; † = p value 0,1; ӿ = p value 0,05; ӿӿ = p value 0,01; ӿӿӿ = p value 0,001. 

 

 

3.2_Stress related genes 

Seven genes involved in abiotic stress responses (AQP1, AQP4, DREB5, DREB6, 

DHN15.3, PIP1 and NAC8) were analyzed in relation to salt stress and mycorrhizal inoculation 

(Fig. 2). An upregulation effect of mycorrhizae of NAC8 was clearly observed by stress salinity. 

This gene was also significantly induced by mycorrhizal inoculation under no stress conditions. 

Most of the genes are induced in salt stress condition. NAC8, DREB5, DHN15 were significantly 

induced by salinity and absence of mycorrhizal inoculation. Although differences were not 

significant, mycorrhizae seemed to mitigate the salt-induction of AQP1, AQP4, PIP1, DREB5, 

DHN15 (Fig. 2). 
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Fig. 2| Expression of drought stress response genes (AQP1, AQP4, DREB5, DREB6, DHN15.3, PIP1 

and NAC8) in response to salt stress and mycorrhizae inoculation. Means and standard deviation 

were indicated. Different letters means significant differences among the four treatments using 

post-hoc test. ns = not significant; † = p value 0,1; ӿ = p value 0,05; ӿӿ = p value 0,01; ӿӿӿ = p value 

0,001. 
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3.3_Principal component analysis 

Principal component analysis (PCA) was performed to determine how the four conditions 

globally affect expression of the 11 analyzed genes (Fig. 3). The PC component 1 accounted for 

43% of the total variation and separated all two salt stress condition (Saline-stress -AM and 

Saline-stress +AM) from no stress conditions (No-stress -AM and No-stress +AM). Ten of the 

eleven analyzed genes contributed to this distinctive profile although at different extent. PC 

component 2 accounted for 14% of the total variability and separated mycorrhizae-salt stress 

condition (Saline-stress +AM) from the others. NAR2.2, DREB6, DHN15.3 and NAC8 greatly 

contributed to this separation. 

 

 

Fig. 3| Principal component analysis of the four salt stress conditions of durum wheat in presence 

and absence of both salinity and mycorrhizal inoculation. Components of the eleven analyzed genes 

were also indicated. No-stress +AM and No-stress -AM means absence of salt stress with or without 

AMF inoculations, respectively; Saline-stress +AM and Saline-stress -AM  means presence of salt 

stress with or without AMF inoculations, respectively. 
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4_DISCUSSION 

Soil salinity is an environmental stress that drastically affects crop growth and 

productivity. Many studies have demonstrated that salinity can inhibits plant growth through 

several mechanisms including damage of enzymes and plasma membranes (Hasegawa et al. 

2000), reduction in plant water availability (due to the lower soil water potential; Munns and 

Tester 2008), accumulation of toxic elements (i.e., Na+ and Cl–), inhibition of chlorophyll and 

protein synthesis, reduction in nutrient uptake, transport and/or partitioning within the plant 

(Grattan and Grieve 1999). In the present study, a severe reduction in both shoot and root biomass 

was observed in plants of durum wheat when salinity stress was imposed at tillering stage. This 

reduction was associated to decreases in the stability of membranes (< MSI values in salt stressed 

plants) and the total N uptake. Many studies showed that salinity can reduces N accumulation in 

crop plants and that this decrease is generally accompanied by an increase in Cl– uptake. 

Therefore, the decrease in plant N uptake is probably to be partially related to the antagonism of 

nitrate metabolism from chloride (Abdul-Kadir and Paulsen 1982). However, in the present 

study, while the total N accumulated by plants decreased under salt stress conditions, the N 

concentrations in all plant tissues (leaves, stems, roots) increased. This result may seem 

surprising, as much research reports decreases in plant tissues N concentrations due to the 

negative effects of salt stress on plant N uptake (Talaat and Shawky 2014). Nevertheless, other 

studies have shown that the plant N concentration increases or remains unchanged when plants 

are grown under optimal N conditions (Munns and Termaat 1986; Hu and Schmidhalter 2005). 

The latter condition certainly occurred in the present research in which N was not a limiting 

factor thanks to the substrate chemical characteristics and the amount of N-fertilizer applied. 

Therefore, our findings suggest that the negative effects of salinity observed on plant growth 

cannot be attributed to difficulties in N absorption. At the same time, it is interesting to highlight 

how the effects of salt stress affected the efficiency of N transport within plant tissues. The high 

N concentration values observed in the senescent and dry leaves of plants grown under salt stress 

conditions (which were close to those of green leaves) demonstrate that salt stress prevented the 

translocation of this element from the senescent leaves to the other plant organs (differently from 

what observed in plants not subjected to salt stress). On the other hand, salinity may have a 

negative effect on membrane proteins and change their integrity (Kohler and Raschke 2000), thus 

compromising nutrient absorption and translocation to the different organs. 

Under non-stressed conditions, wheat plants inoculated with AM fungi accumulated more 

N than non-mycorrhizal plants. This result could be attributable to both the facilitation in host N 

uptake by AM fungi through the extensive extraradical hyphal network that increases the volume 
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of soil explored by mycorrhizal plants compared to non-mycorrhizal plants (Bonfante and Genre 

2010), and the enhanced effectiveness of AM plants than roots alone in competing with soil 

microorganisms for inorganic N (Hodge et al. 2000). The increased N accumulation in leaf tissues 

may be also partially due to the AMF-upregulation of nitrogen transport genes in both stressed 

and unstressed conditions such as NRT1.1. This gene leads to the import of nitrate in leaf tissues 

from the apoplast (xylem) and the induction of this gene may contribute to the increase of N 

uptake observed in leaf tissues.  

Moreover, data from the present study revealed that AM symbiosis can mitigates the 

negative effects of salt stress on plant growth. In particular, under salt stress conditions AM 

symbiosis had a favorable impact on N acquisition and N concentration, and aboveground and 

root biomass, in line with the findings of many studies (as reviewed by Porcel et al. 2012). 

Although the concentration of such osmoprotectant compounds was not measured, we detected 

a clear positive effect of AM symbiosis on the alleviation of the damaging effect of salinity on 

the stability of plasma membranes. 

 

4.1_Nutrient transporter genes 

Maathuis et al. (2003) and Wang et al. (2012b) showed how under salt stress, the 

transcripts of nutrient transporter genes were significantly changed. These observations have 

suggested that, changes in the concentration of a specific nutrient are strictly modulated to 

preserve a stable nutrient status in salt stress conditions (Maathuis et al. 2003). 

A critical role of nitrogen (N) for the growth of plants in numerous agricultural systems 

is well-known (Yang et al. 2015). NRTs (nitrate transporter genes) are implicated in NO3 − 

transport at high affinity regulating lateral root development (Remans et al. 2006). The 

expression of some key nitrogen transport genes have been already investigated in durum wheat 

roots in response to mycorrhizae inoculations. Different effects of mycorrhizae has been 

observed depending on the specific genes (Saia et al. 2015a). Although the importance of analyze 

them on root tissues is widely accepted, their analysis in leaf tissues is also very important to 

determine how N is translocated between leaf tissues and how it is assimilated in leaf cells from 

the xylem. Indeed, these genes regulated the import of nitrogen (both nitrate and ammonium) in 

leaf cells from apoplastic and vascular xylematic solutions (Hsu and Tsay 2013; Hu et al. 2014; 

Nielsen and Schjoerring 1998; Husted and Schjoerring 1995). The N transport from apoplastic 

spaces to leaf cells is essential to provide nitrogen for leaf growth, and enhance those pathways 

directly linked to photosynthetic production.  
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The nitrate transporter NRT1.1 was the first identified in Arabidopsis thaliana (Alvarez 

et al. 2012). This gene was shown to be expressed in roots and shoots. The highest expression 

was observed in the tip epidermis of the primary roots. However the gene was also expressed in 

the endodermis and mature parts of root tissues (Nazoa et al. 2003). The role of this gene is 

essential not only in root tissues but also in leaves. Considering that, only one nitrate transport 

gene was analyzed it is not possible to conclude that the higher leaf concentration of N in 

mycorrhized plants might be due mycorrhizal-driven transcriptional activation of genes encoding 

N transport. A different pattern of expression of different genes involved N transport is expected 

since these genes belong to a large family. The presence of different members in the genome is 

a typical characteristic in plants because it allows modulate the expression of the same type of 

protein in different organs and tissues depending on the needs (changes in the apoplast 

conditions: soil solution or xylem). This does not deny the existence of other AM-driven 

mechanisms that increase N uptake in leaves such as increased root architecture and growth. This 

AM-upregulation was not observed for NAR2.2 that is an interactive protein that makes 

functional the high-affinity transport system for N transport (Saia et al. 2015a). On the contrary 

NAR2.2 expression is induced by salt stress condition. This diverse regulation of different types 

of genes involved in N transport may allow the plant to distinguish the two different factors and 

finely modulate the expression of the genes basing on presence/absence of different 

environmental factors. Indeed NAR2.2 is not an N transporter but it is a functional interactive 

protein. So it is possible that mycorrhizal inoculation may regulate N transport by activating 

directly N transport genes while salinity may regulates plant responses through the induction of 

genes involved in the interaction with N transporters. This hypothesis will need to be confirmed 

with next experiments once more genes involved in N transport and uptake will be isolated in 

durum wheat. 

AMT genes were not be altered by mycorrhizal inoculations. These genes belong to a 

large family of genes that may be differentially modulated by mycorrhizae as previously found 

in roots (Saia et al. 2015b). The literature on the effect of mycorrhizae on these genes in other 

plants is scarce. In Oryza sativa, the high salinity conditions has induced a greater expression of 

OsAMT1;1 than other AMT genes. Wang et al. (2012a) have found different salt stress responses 

in OsAMT genes comparing young leaves, where OsAMT1 was more expressed, and old leaves 

in which OsAMT1;2, OsAMT2;3, OsAMT3;1 OsAMT3;3 expression level was decreased 

(Wang et al. 2012a). As stated by Goel and Singh (2015), the differential expression of these 

genes may be due to the fact that an early response to abiotic stresses can determine cell survival. 
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4.2_Stress-related genes 

Salinity stress has similar effects of a water-deficit condition (Mahajan and Tuteja 2005) 

forcing plants to increase the water acquiring (Ouziad et al. 2006).  

In the present experiment, most of the drought-regulated genes are induced in salt stress 

condition. Our results confirmed a great variety of studies conducted on varieties or cultivars of 

economically important crops that showed how salinity drastically affects expression of salt-

responsive genes. These studies showed that salt-treatment induced a higher expression of 

aquaporin genes, DREBs (dehydration responsive element binding) and NAC transcription 

factors (Zhao et al. 2012; Chen et al. 2007; Zheng et al. 2009; Hu et al. 2006). Furthermore, other 

researches provide evidence for a positive correlation between DHN gene expression and plant 

abiotic stress tolerance (Hanin et al. 2011; Pelah et al. 1997; Park et al. 2006) including durum 

wheat (T. turgidum ssp. durum) (Labhilili et al. 1995). It is generally accepted that the higher 

expression of these drought stress-responsive genes plays a critical role in improving salt stress 

tolerance in plants.  

Several studies conducted in a variety of cultivated plants show how AM symbiosis 

improves salt stress resistance in these plants (Rosendahl and Rosendahl 1991; Ruiz-Lozano and 

Azcón 1996; Al-Karaki et al. 2001; Feng et al. 2002). Although not significantly regulated, a 

trend of downregulation by mycorrhizae seems to occur in our work when high salinity is present. 

Results by Ouziad et al. (2006), Aroca et al. (2007) and Jahromi et al. (2008) suggest that 

aquaporin gene responds differently to AM colonization. This result may be depend on various 

factors such as the type of aquaporins family and their different complexity of expression 

patterns, the characteristics of plant and AM species studied, the mode, concentration and time 

of exposure of salinity stress application (Sarda et al. 1999).  

Interestingly mycorrhizae showed a positive regulation of key drought-responsive 

transcription factors in unstressed conditions such as NAC8 and DREB6. Aroca et al. (2007) 

studied four aquaporin genes from in mycorrhizal and non mycorrhizal bean plants and they 

showed that salt-stress increase the expression level of three PIP genes in both conditions but 

especially in AM plants. Data from Ouziad et al. (2006) showed that salt treatment in AM tomato 

repressed the amount of TIP and PIP1 but not PIP2 transcripts. DREBs are important 

transcription factors that control in plants the expression of many stress-responsive genes thus 

improving the abiotic stress tolerance (Lata and Prasad 2011) and their role is confirmed by 

different studies in which the expression of DREB genes were induced under diverse abiotic 

stress treatments (Zhao et al. 2012; Chen et al. 2007). NACs, one of the largest families of 

transcriptional factors, play critical roles in the regulation of plant abiotic stress–responsive genes 
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(Nuruzzaman et al. 2013) as it is shown by several studies on rice in which the expression of 

NAC045 and NAC1 genes was positively improved by diverse abiotic stresses and ABA 

treatment (Zheng et al. 2009; Hu et al. 2006). The AM-upregulation of NAC8 is interesting 

because it allows speculate that mycorrhizae may be involved in changes of plant responses to 

salt stress through an induction of key transcription factors involved in the activation of plant 

responses to abiotic stress.  

 

5_CONCLUSIONS 

Data from the present study confirmed agronomic benefits from AM symbiosis. Under 

salt stress conditions, they had a favorable impact on N acquisition and N concentration, 

aboveground and root biomass, and membrane stability. This effect may be partially linked with 

the upregulation of nitrate transporters in leaves such as NRT1.1 The induction of NAC8, 

DREB6, DHN15.3 in response to salt stress confirmed previous studies. The upregulation of 

NAC8 by mycorhizal inoculation is intriguing and needs further investigation.  
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CONCLUDING REMARKS 

 

Functional genomics is a general approach to understand how the genes of an organism 

work together by assigning new functions to unknown genes (Holtorf et al., 2002). Unlike DNA, 

which is largely independent of the environment, the "omics" technologies are extremely stress-

responsive. Through collecting the molecular information, they are able to provide a total view 

of the physiology in cell (Witzel et al., 2015).  

In this thesis, functional genomics technologies were used to better clarify plant biotic 

stress-resistance (Chapters 3-6) and to study abiotic stress responses in durum wheat (Chapter 7 

and 8). The use of integrated omic approaches to dissect gene regulatory networks involved in 

plant responses to stress has been previously shown to be useful to help diagnosis and 

management of plant diseases (Dandekar et al., 2010; Martinelli et al., 2016). Although these 

approaches are not able to substitute the detection analysis of pathogen, they may help in defing 

a general status of plant stress and improve the diagnosis of the stress at early stages, especially 

for pathogens characterized by long incubation times and unevenly distributed in the plant. The 

outcome of molecular detection of plant pathogen through qPCR or ELISA-based methods is 

often unreliable at asymptomatic and early symptomatic stage. Indeed, it is necessary to 

complement pathogen detection with molecular methods that deeply analysis host responses in 

order to identify possible genes involved in early-induced stress conditions. 

Through the comparative analysis of all the four biotic stress studies (Chapters 3-6) 

several common findings may be observed. Carbohydrate metabolism has been linked by 

Huanglongbing disease in Citrus. This pathway has been observed to be highly modulated by the 

pathogen in both leaf and fruit tissues (Martinelli et al., 2012, 2013). Interestingly several genes 

belonging to this pathway were repressed by flavescence doree such as alpha-amylase and starch 

synthase (Chapter 4). These genes were upregulated by small molecule treatments in Citrus 

(Chapter 5) and the increase of biosynthesis of the corresponding proteins was linked to increased 

Citrus resistance to Huanglongbing disease (Chapter 6). Starch and sucrose metabolism was also 

significantly regulated by red plam weevil attacks in palm (Chapter 3). Taken together all these 

findings let us to speculate that biotic stresses drastically affect carbohydrate-related pathways 

and this modulation might be considered a general indication of a plant biotic stress status.  

Phenylpropanoids were induced by both red palm weevil attacks in palm (Chapter 3) and 

stolbur disease in vitis (Chapter 4). Their involvement in both abiotic and biotic stress responses 
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is well-known. The secondary metabolites are often produced by plants attacked by pathogens 

since they directly counteract intruders through not completely clear mechanisms. 

Interestingly a DUF26 receptor, involved stress signaling, was upregulated by both RPW 

attacks in palms (Chapter 3) and Huanglongbing disease in citrus (Chapter 6). On the contrary, a 

gene encoding a leucine rich repeat III was downregulated in response to RPW attacks and 

phytoplasma infections in Vitis. These findings confirmed that plants perceive pathogen attacks 

through a different signaling mechanism.  

As expected hormonal pathways and crosstalk was severely affected in all four studies. 

Pathways enrichment analysis showed that ethylene, salicylic acid and ABA pathways were 

enhanced by RPW attacks and in stolbur disease. A gene encoding an allene oxide synthase, 

involved in jasmonic acid responses, was upregulated by these two studies.  

WRKYs are well-known transcription factors involved in the transcriptional activation of 

both abiotic and biotic stress pathways. Interestingly WRKY40, WRKY47, WRKY75 were 

significantly upregulated by both RPW attacks and stolbur disease. Although it is extremely 

difficult to find one WRKY member that may serve a highly specific disease biomarker, the 

simultaneous analysis of a subset of these genes may help the diagnosis of pathogen attacks. 

Studies in controlled conditions are ongoing to determine how the analysis of WRKYs may allow 

distinguish different stages of RPW infestations in palms (Martinelli et al., unpublished).  

The durum wheat miRNAome analyzed in Chapter 7 provides a greater global 

understanding of tissue-specific miRNAs expression in leaf and root tissues and will help to 

define their role in important plant developmental and physiological processes. Data from the 

article reported in Chapter 8 confirmed agronomic benefits deriving from AM symbiosis in plants 

under salt stress condition and showed an induction of some analyzed wheat genes in response 

to salinity. Further analyses are ongoing to determine how miRNAs are modulated by 

mycorrhizal inoculation in order to gain insight into the biological regulatory networks between 

plants-mycorrhizae interactions. The aim is to identify which miRNAs play a key role in the 

well-known agronomic improvements due to mycorrhizal symbiosis. Data analysis of RNA-seq 

studies in durum wheat are ongoing. Plants were cultivated in both drought and salinity stress 

conditions in order to match transcriptome and miRNAome data and identify agreeing findings 

that could deliver possible genes and miRNAs candidates eventually exploitable as molecular 

markers of these quantitative crop traits. 

All these scientific works contribute to better understand the complex molecular network 

that generate stress responses in plants. Future studies are however necessary to complement 

these approaches in order to develop plants with increased resistance to environmental stress 

conditions. 
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