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CHAPTER 1: General Introduction 

The anomalous increasing of surface seawater temperatures and the lowering of ocean pH are 

only two consequences of global changes that are causing deep damages worldwide (Doney 

et al. 2012, IPCC 2014). Among the other problems, the rising CO2 emissions, caused 

primarily by anthropogenic combustion of fossil fuels, cement production and land use 

changes, are being absorbed by the ocean at faster rate since the beginning of the industrial 

era. This phenomenon, known as „ocean acidification‟, is considered as one of the main threat 

for marine life (Caldeira & Wickett, 2003, Portner et al. 2014). 

Over the last years, the Intergovernmental Panel on Climate Change (IPCC) has analysed a 

sequence of economic growth scenarios for climate projections. Examples include the 

“business-as-usual emission scenario” (IS92a) that assumes rapid economic and population 

growth peaking in mid-century. This scenario suggests that atmospheric CO2 levels could 

approach 800 ppm by the end of the century. Corresponding biogeochemical models indicate 

that surface ocean water pH will drop from a pre-industrial value of about 8.2 to 7.8 within 

2100 with consequences on seawater chemistry and marine biota (Caldeira & Wickett, 2003, 

Doney et al. 2009, Feely et al. 2004, 2009, Sabine et al. 2004, Tyrrell et al. 2011). Recently, 

ongoing projections that consider also more stringent emissions scenario (RCP2.6), consistent 

with the Copenhagen Accord of keeping mean global temperature under control, suggested 

that this seawater chemistry alteration will affect a great numbers of taxa before the end of 

the century, with consequences on ecosystems services (Gattuso et al. 2015). For this reason, 

forecasting the ecological impacts of ocean acidification is of high priority for science, 

management, and policy makers (IPCC, 2014). 

Overall CO2 seems to act as a resource for primary producers, representing an additional 

energetic cost for consumers, with consequences on species interactions and, hence, will 

result hard-to-predict „winners‟ and „losers‟ (Gaylord et al. 2015). In a recent meta-analysis 

study, Kroeker et al. (2010) revealed decreasing in survival, calcification, growth, 

development and abundance in response to acidification when the broad range of marine 

organisms is gathered together. However, the magnitude of these responses varies among 

taxonomic groups, suggesting variation in sensitivity (Kroeker et al. 2013). Moreover, in 

response to environmental changes animal behavior (i.e. recruitment, predator–prey 

interactions, competition, reproduction, migration and dispersal) can be affected with 

consequences on organisms interactions and ecological processes (Nagelkerken & Munday, 
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2016), and a serious risk is forecasted also in terms of biodiversity (Cheung et al. 2009, 

Sunday et al. 2016). Indeed, the end-Permian mass extinction has been correlated to a 

massive CO2 release in the atmosphere, among other possible triggers (Knoll et al. 2007, 

Kump et al. 2009). Furthermore, all the consequences forecasted for marine ecosystems are 

particularly exacerbated in the closed seas, like the Mediterranean Sea (Fraile et al. 2016, 

Lacoue-Labarte et al. 2000, Lesjeunes et al. 2010). Finally, it is important to consider indirect 

and synergetic effects when forecasting abundance patterns from single-species laboratory 

experiments (Harvey et al. 2013). 

In this context, shallow CO2 vents (or seeps) provide potential analogues of forecasted acid 

ocean and represent a great opportunity to understand the responses of organisms exposed 

long-term to low pH conditions. Vents are naturally acidified environments that are used 

worldwide as natural laboratories to test acidification effects not only on single species, but 

also on whole communities, evaluating indirect effects on ecosystems (Fabricius et al. 2011, 

Hall-Spencer et al. 2008, Munday et al. 2014, Nagelkerken et al. 2015). However, it is 

necessary caution because of other confounding factors that can hide the effects of 

acidification on its own. Indeed, although vents release mainly carbon dioxide, they can be 

characterized by peculiar chemical and physical characteristics, like output of H2S or toxic 

trace elements (Dando et al. 1999, Tarasov et al. 2005). Additionally, these systems are 

shaped by natural variability of environmental features that may be controlled in laboratory 

experiments. For this reason, the benefits and limitations of different research approaches 

must be considered carefully and an integration of laboratory, mesocosm and in situ 

experiments is important to understand the consequences of ocean acidification (Andersson et 

al. 2015, Fabry et al. 2010). 

In the last years, a surprisingly amount of research has been focused on ocean acidification 

effects and the necessity to understand the long-term responses of communities and 

ecosystems has emerged, creating models of future projections (Riebesell & Gattuso, 2015). 

The ultimate goal of contemporary ocean acidification research is to project how marine 

ecosystems will be affected by changes in seawater carbonate chemistry in combination with 

other global and local stressors, including warming, deoxygenation, eutrophication, invasive 

species and overfishing (Riebesell & Gattuso, 2015, Russel et al. 2009). At the beginning, 

most ocean acidification studies have been conducted on calcifying organisms (mainly 

calcareous plankton, echinoderms, corals and mollusks) suggesting negative effects on 

growth, calcification rate, and survival (Anthony et al. 2008, Doney et al. 2009, Fabricius et 
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al. 2008, Kleypas et al, 2006), however also on not-calcifying ones can be altered. For 

instance, experiments on fish have revealed effects on physiology and behaviour, but many 

other aspects are still unknown (Ishimatsu et al. 2008). 

Fish have been considered able to cope with extra-cellular acidosis thanks to their acid-base 

regulation (Melzner et al. 2009). However, both direct and indirect effects have been tested 

(i.e. olfactory and auditory functions - Dixson et al. 2010, Munday et al. 2009a, Simpson et 

al. 2011; reproduction – Miller et al. 2013; calcareous structure - Bignami et al. 2013; 

behaviour and neurosensory functions - Domenici et al. 2012, Munday et al. 2014, Nilsson et 

al. 2012 - habitat alteration and interaction with other species - McCormik et al. 2013, 

Nagelkerken et al. 2015). The impacts of climate change will vary among life stages, with 

larvae and juveniles expected to be more vulnerable (Baumann et al. 2012, Ishimatsu et al. 

2004, Pankhurst & Munday, 2011). As an example, larvae exposed to acidified seawater 

(about 1000 ppm of CO2 - pH = 7.8) lost the ability to differentiate between the chemical 

cues of predatory and non-predatory species (Dixson et al. 2010). Additionally, olfaction, 

vision and auditory senses can be negatively affected by ocean acidification and overall 

behavioral abnormalities have been found in response to high CO2 levels (Munday et al. 

2014, Nagelkerken et al. 2015). Considering the importance of these functions to help larvae 

in orientation and selection of settlement habitat, to keep them at safe distance from 

predators, and to escape from a predatory attack, deep effects on population dynamics and 

fish community structure are expected (Nagelkerken & Munday, 2015). However, studies 

suggest a species-specific response, with various sensibility at different CO2 levels. For 

instance, Munday et al. (2011a) observed no effects on spiny damselfish otolith calcification 

at high CO2 levels (850 μatm), while Munday et al. (2011b) and Checkley et al. (2009) 

highlighted otolith hypercalcification in white sea bass larvae exposed to 993 and 2558 μatm. 

To date, most information available on fish response to ocean acidification have been 

obtained in closed systems, and only a few studies have been carried out in situ (Cattano et al. 

2016, Munday et al. 2014, Nagelkerken et al. 2015). 

Fish are a key biological component whose monitoring is relevant not only from the 

ecological standpoint, but also for the economic repercussions (i.e. impacts on seafood - 

Branch et al. 2013). Effects on individual performance, trophic linkages, recruitment 

dynamics, connectivity between populations and other key ecosystem processes are expected 

on fish (Munday et al. 2008, 2009b, 2010). Here, we dealt with the assessment of the effect of 

high CO2 / low pH conditions on the structural and functional organization of fish 
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assemblages in a Mediterranean shallow CO₂ vent. In Mediterranean, one of the most active 

shallow CO2 vent is located in Levante Bay of Vulcano Island (Aeolian Archipelago, Italy – 

Boatta et al. 2013). Exploiting the peculiar conditions of this area, we compared the 

responses of a fish assemblage exposed long-term to high CO2 emissions (Low pH site, pH = 

7.8), against two assemblages living at normal pH (Controls, pH = 8.2). We hypothesized that 

the organization of fish assemblages in the low pH site is altered from that found in the two 

controls, with negative repercussions on the structure and overall trophic organization. To test 

our hypothesis we used several attributes and biological markers related to species 

composition and ecological structure. 

First, by using underwater visual census techniques, we assessed the fish community 

structure in terms of species richness, number of individuals and size-class structure 

(Chapter 2). Then we carried out samplings to evaluate the fish assemblages in terms of 

trophic organization, niche and trophic levels by using stable isotopes of carbon and nitrogen 

(Chapter 3). Exploiting the geochemical composition of the vent seawater, the direct input of 

metals and the peculiar pH and Eh conditions, we evaluated the synergic effect of 

acidification and metals bio-availability by measuring mercury bioaccumulation in fish and 

biomagnification (Chapter 4). Finally, we analysed the morphological characteristics of 

otoliths (earbones made of aragonite) to assess the effect of acidification on fish calfified 

structures. Moreover, otoliths were used as natural tags to elucidate fish “habitat use” and to 

evaluate their reliance on the site interested by CO2 emissions, by measuring natural variation 

in elemental and isotopic signatures (Chapter 5). 

I would like to highlight that the four central chapters (from 2 to 5) are thought as a stand-

alone studies and for this reason some parts (i.e. the study area and the introduction to the 

main topic – „ocean acidification‟) could appear redundant. I chose this structure to give the 

possibility to read each chapter independently from the others. Finally, the results obtained 

from the single studies were summarised, with an overview and integration of the different 

objectives and the main goals achieved (Chapter 6).  
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CHAPTER 2: Community structure and species composition of a fish assemblage living in a 

naturally acidified environment 

 

Abstract: Nowadays, CO2 vents are used to test ecological hypotheses about the effects of 

ocean acidification on complex communities. Here, we dealt with the assessment of a coastal 

fish assemblage exposed to long-term high CO2 emissions / low pH conditions, in a shallow 

CO2 vent. In particular, by using non-destructive underwater visual census techniques, we 

compared the structure of a Mediterranean fish assemblage living in a Cymodocea nodosa 

meadow in a low pH site and in two controls with normal pH. Overall, a total of nineteen fish 

species belonging to six families was recorded. At all sites, necto-benthic fish, mainly 

Sparidae and Labridae dominated the fish assemblage, followed by a few species belonging 

to Serranidae, Mullidae, Pomacentridae and Mugilidae. Lower values were found in the Low 

pH site in terms of species richness (S), but not in the number of individuals (N) where the 

two controls differed each other. Moreover, single species abundance did not show a unique 

spatial trend, although different among sites, suggesting a species-specific response. Overall, 

the temporal variability hid the spatial one in the composition and abundance of the fish 

assemblage. Contrary to expectation, slight differences were found in the fish community 

structure and species composition in terms of direct effect of low pH, while more differences 

could be indirectly related to habitat modification. This study contributes to fill the 

knowledge gap on fish biodiversity in a naturally acidified environment in a moment of 

increasing interest towards the ecosystem functions in changing ocean conditions. 

 

Keywords: Mediterranean fish assemblages, species composition, CO2 vent, underwater 

visual census, ocean acidification, Cymodocea nodosa meadow. 

 

2.1 Introduction 

Ocean acidification is attracting growing interest worldwide due to the direct and indirect 

effects forecasted on marine organisms, biodiversity and ecosystem functions (Barry et al. 

2011, Hoegh-Guldberg & Bruno, 2010, Kroeker et al. 2010). The increasing anthropogenic 
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CO2 absorbed by the ocean is causing changes in the carbon chemistry balance, with 

consequences on marine life (Ishimatsu & Dissanayake, 2010, Kroeker et al. 2013). Although 

many studies have focused on the response of single species, more difficult is to forecast the 

effects of acidification on communities and ecosystems (Riebesell & Gattuso, 2015). 

Moreover, on the last decades, many studies have been focused on calcifying organisms 

(primarily calcareous plankton, molluscs and echinoderms) that are thought to be mainly 

affected by the altered pH and aragonite/calcite saturation state (Doney et al. 2009). 

Only recently, fish have been addressed in ocean acidification studies (Ishimatsu et al. 2008). 

Fish have been considered able to cope with the effect of low pH, thanks to their capacity on 

acid-base regulation, but recent studies have highlighted both direct effects (i.e. on olfactory 

and auditory functions - Dixson et al. 2010, Munday et al. 2009, Simpson et al. 2011; on 

reproduction – Miller et al. 2013; on calcareous structure - Bignami et al. 2013; on behaviour 

and neurosensory functions - Domenici et al. 2012, Munday et al. 2014, Nilsson et al. 2012) 

and indirect effects (i.e. habitat alteration and interaction with other species - McCormik et al. 

2013, Nagelkerken et al. 2015). In particular, fish seem to be most vulnerable during the early 

life stages and juveniles are expected to be negatively affected directly and indirectly by low 

pH conditions, with consequences on fish population replenishment (Ishimatsu et al. 2004, 

Munday et al. 2010, Rossi et al. 2016). It has been hypothesized that species biodiversity will 

be negative affected by ocean acidification (Baumann et al. 2011) together with other 

stressors, like global warming and invasive species (Cheung et al. 2009). As a consequence, 

impacts are expected on fisheries, and fish represent one of the most important component of 

catches worldwide (Branch et al. 2013). 

In addition, primary producers (i.e. macroalgae and seagrasses), can be altered by ocean 

acidification. Also in this case, calcifying organisms seem to be more vulnerable to low pH 

conditions (Martin & Gattuso, 2009, Porzio et al. 2011, Riebesell et al. 2010), while other 

species take advantage. For instance, seagrasses are expected to benefit from higher 

concentrations of carbon dioxide in the oceans that are predicted over the coming decades 

(Russell et al. 2013), but results appear contradictory (Apostolaki et al. 2014). Seagrasses 

exposed naturally to acidified conditions have been studied in shallow CO2 vent in 

Mediterranean (Apostolaki et al. 2014, Arnold et al. 2012, Hall-Spencer et al. 2008), and 

species-specific responses were found (i.e. changes in density, biomass, phenolic content, 

metabolism, loss of epiphytic organisms). For instance, in Vulcano Island (Aeolian 

Archipelago), the seagrass Cymodocea nodosa living near the vent area showed lower density 
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and biomass but appears overall stimulated through the intense metabolism and 

photosynthetic activity (Apostolaki et al. 2014). 

C. nodosa meadows are one of the most important habitat for many coastal fish thanks to 

their capacity to provide shelter from predators and a greater abundance of food (mainly 

small invertebrates; Guidetti & Bussotti, 2000). After Posidonia oceanica, C. nodosa have a 

crucial role in the Mediterranean Sea, for their role in primary production, biodiversity and 

food web complexity (Cancemi et al. 2002). Moreover, C. nodosa represent an important 

nursery area for many coastal fish and the presence of juveniles emphasizes the potentially 

important function of nursery exerted by such seagrass systems during the first life stages of 

several species (Guidetti & Bussotti, 2000). 

To date, most studies conducted in naturally acidified ecosystems have shown a loss of 

calcareous species and deep ecosystem shifts due to acidified conditions (Fabricius et al. 

2011, Hall-Spencer et al. 2008, Kroeker et al. 2012), but only a few studies have focused on 

fish in these environments to test the consequences of altered behaviour of juveniles on the 

structure of fish communities (Munday et al. 2014). CO2 vents are potential natural 

laboratory and represent a great opportunity to test the effect of global acidification not only 

on single species, but above all on whole community. Fish community structure is driven by 

biotic (i.e. settlement, predation, competition, spawning) and environmental factors (light and 

nutrient availability, depth, temperature, algal cover, habitat complexity) with variation at 

spatial and temporal scale (Azzurro et al. 2007, De Raedemaecker et al. 2010, Fernandez et 

al. 2005, La Mesa et al. 2011). Generally, stressful conditions alter the community structure, 

decreasing the species richness and increasing the numbers of individuals of tolerant 

organisms (Guidetti et al. 2002). 

Here, we hypothesized that the structure of a coastal fish assemblage living in a naturally 

acidified site is negatively affected in terms of fish size, species richness and numbers of 

individuals due to the direct effect of high CO2 on fish behaviour and early fish stages. To 

test our hypothesis, we compared fish assemblages exposed long-term to high CO2 emission 

(low pH site) against fish assemblages living in normal pH (control sites), and we verify 

whether there are differences in the community structure between sites at different pH across 

time, in terms of species composition and number of individuals, and whether there are 

differences of size structure, abundance and frequency of occurrence both at species and at 

fish community level. 
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2.2 Materials and methods 

2.2.1 Study area 

The shallow hydrothermal system of Vulcano Island is one of the most active sites in the 

Aeolian Archipelago (24 km off the NE coast of Sicily, Italy). Gas composition of the main 

venting area located in Levante Bay, on the eastern side of the Island, is dominated by CO2 

(97-99% vol.), which generates a pH gradient (from 5.5. to 8.1) along the north shore of the 

bay (Boatta et al. 2013, Capaccioni et al. 2011, Italiano et al. 2009). Emissions include also 

small quantities of H2S (<2.2%), which rapidly decrease with distance from the vent (Boatta 

et al. 2013). Water composition in terms of major elements (Cl, SO4, Na, K, Ca and Mg) is 

close to that of Mediterranean surface waters, while greater variability is recorded for 

dissolved Fe concentrations, which showed maximum values close to the vents (Boatta et al. 

2013). The area is characterized by acidic and reducing conditions, causing changes in major 

and trace element geochemical fluxes at the sediment-seawater interface (Vizzini et al. 2013). 

Seawater carbonate chemistry parameters in the Levante Bay range between 2.78 and 3.17 

mmol/kg for the total alkalinity and 0.02 and 3.64 for the aragonite saturation state (for 

details see Boatta et al. 2013). 

 

2.2.2 Field work 

Non-destructive underwater visual census (UVCs), the most used technique for assessment of 

coastal fish assemblages (Harmelin-Vivien et al. 1985), were carried out in six times 

(September, October and November 2014, May, June and July 2015) at the following three 

sites: the low pH site (hereafter “Low pH”, mean pH =7.80 ± 0.09) about 250 m far from the 

primary CO2 vent in Levante Bay, a control site (hereafter “Ctrl 1”, mean pH = 8.19 ± 0.03) 

500 m far from the primary vent, and another control site in Lipari Island (hereafter “Ctrl 2”, 

mean pH = 8.22 ± 0.02) about 6.5 km from the first two sites (Fig. 2.1). Controls were chosen 

to be similar in terms of orientation (South-East), depths (2-5 m) and vegetal coverage 

(Cymodocea nodosa meadow) to the Low pH site. At each sampling occasion, a total of six 

replicates were carried out between 11.00 A.M. and 3.00 P.M. 
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Fig. 2.1 - Map of the study area showing the sampling sites in Vulcano (Low pH and Ctrl 1) and 

Lipari Islands (Ctrl 2). The primary vent is indicated by the star. 

 

UVCs were carried out along 10 m long × 5 m wide strip transects (total surface area 50 m
2
), 

randomly placed in each site at a depth of 2 to 5 m within C. nodosa meadows. Cryptic fish 

(i.e. Blenniidae, Gobiidae, Scorpaenidae) were kept out from the surveys to avoid 

underestimation (Willis, 2001). Fish were identified to species level and abundance was 

estimated by using seven pre-established abundance classes (1, 2-5, 6-10, 11–30, 31–50, 51–

100, >101 number of individuals) according to Harmelin-Vivien et al. (1985). Fish density 

(ind./100 m
2
) was calculated by taking into account the mid-point of each abundance class. 

Moreover, fish were assigned to three size-classes: small (S), medium (M) and large (L), 

corresponding each to one-third of the maximum total length reported in the literature 

according to Fischer et al. (1987). 
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At each sampling occasion, seawater physicochemical variables (temperature, salinity, 

dissolved oxygen, pH and Eh) were measured through a portable multiparametric probe 

(Hanna Instrument, HI98194) and seagrass shoot density was estimated by counting shoots 

within a 20x20 cm
2
 square (three replicates per transect). 

 

2.2.3 Data analysis 

Univariate analysis of variance (one-way ANOVA) was used to test for differences in C. 

nodosa seagrass shoot density between the three sampling sites. 

As regards fish assemblages, the following two factors-experimental design was considered: 

Site (fixed with 3 levels: Low pH, Ctrl 1 and Ctrl 2) and Time (random and orthogonal to 

Site, with 6 levels: September, October and November 2014, May, June and July 2015). 

Frequency of occurrence [(number of censuses in which a species was recorded/total number 

of censuses) x 100], density (number of individuals / 100 m
2
), number of individuals (N) and 

species richness (S) were calculated. 

Fish community structure was analyzed by using both univariate and multivariate statistical 

techniques, through STATISTICA (StatSoft, 2011) and PRIMER 6 with PERMANOVA 

+add-on (Anderson et al. 2008) software packages, respectively. Statistical analysis was 

carried out only on the species whose percentage abundance was higher than 2% in at least 

one of the sampling sites, while species richness and number of individuals were calculated 

on all the species sampled (see Annex I). 

Univariate analysis of variance (factorial ANOVA) was used at species level to test 

differences in frequency of occurrence and abundance and, at assemblage level, to test 

differences in total abundances and species richness. Cochran‟s test and Shapiro-Wilk‟s test 

were used to check for homogeneity of variances and normality respectively, and where 

ANOVA assumptions were not satisfied, data were transformed using log (x+1). Where 

significant differences were present, Tukey‟s post hoc tests were used for pairwise 

comparisons. 

Fish abundance data were transformed with the log (x + 1) notation and resembled using 

Bray Curtis similarity matrices. Differences of fish assemblages between sites were tested at 

a multivariate level by using permutational multivariate analysis of variance 
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(PERMANOVA) both on total fish abundance and on that of each size class (S, M and L) to 

compare the size structure of fish community among sites. To evaluate the variation in 

density of fish assemblages at multivariate level in each site, we made a constrained 

ordination (with site as constrained factor) using a canonical analysis of principal coordinates 

(CAP; Anderson & Willis 2003). The similarity percentage (SIMPER) procedure was 

employed to identify the major fish taxa contributing to dissimilarities between sampling 

sites. 

Moreover, species were assigned to five trophic groups (small piscivores, invertivores, 

detritivores, planktivores, and herbivores) following the classification by Guidetti & Sala 

(2007) and according to FishBase database (Froese & Pauly, 2016 - Annex I). 

 

2.3 Results 

2.3.1 Environmental variables and seagrass shoot density 

Slight differences were found among the three sampling sites in terms of surface seawater 

temperature (mean of the three sites: 22.2 ± 0.4 °C), salinity (39.2 ± 0.1 psu) and dissolved 

oxygen (7.1 ± 0.2 mg l
-1

). In contrast, pH showed the expected high variability between sites 

(pH: 7.80 ± 0.09, 8.19 ± 0.03, and 8.22 ± 0.02 in Low pH, Ctrl 1 and Ctrl 2 respectively). 

Coincident with lowered pH values, redox potential ranged between 79.3 ± 5.6 mV in the 

Low pH site, 85.6 ± 8.3 mV in Ctrl 1 and 111.6 ± 13.7 mV in Ctrl 2. 

In general, C. nodosa shoot density was higher in the two Controls compared to Low pH 

(ANOVA: F 2, 321 = 7.702, p < 0.001, post hoc tests: Low pH<Ctrl 1=Ctrl 2) (Fig. 2.2). In 

more detail, higher shoot densities were recorded during spring-summer months with a peak 

in June in Ctrl 1 (1504.2 ± 329.7) than in autumn months when the minimum was registered 

in October in the Low pH site (159.3 ± 46.2 shoot/m
2
). 

http://www.fishbase.org/
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Fig. 2.2 - Cymodocea nodosa shoot density (mean ±SD) in each site (Low pH, Ctrl 1 and Ctrl 2) 

during the six sampling times (from September 2014 to July 2015). 

 

2.3.2 Fish assemblage 

Overall, nineteen fish species belonging to six different families were recorded. In general, 

fish assemblages were dominated by Labridae (10 species) and Sparidae (5 species), followed 

by a few species belonging to Pomacentridae, Mullidae, Mugilidae and Serranidae. Most 

species belonged to the trophic groups of invertivores with the exception of one herbivore 

(Salpa sarpa), one detritivore (Mugil cephalus), two planktivores (Chromis chromis and 

Oblada melanura) and one small piscivore (Serranus scriba) (for details see Annex I). 

In general, in the three sites the most frequent species belonged to Sparidae (i.e. S. salpa and 

Diplodus vulgaris), Labridae (i.e. Coris julis and Symphodus tinca) and Pomacentridae (C. 

chromis) families (Fig. 2.3a). In particular, the most frequent species in the Low pH site was 

C. julis (97.2%), followed by C. chromis (66.7%) and S. tinca (50%). Also in Ctrl 1, the most 

frequent species was C. julis (88.9%), followed by S. tinca (80.6%), C. chromis (63.9%) and 

Thalassoma pavo (55.6%), while in Ctrl 2, the most frequent species was D. vulgaris (86.1%) 

followed by T. pavo (77.8%), C. julis (75%) and S. tinca (52.8%). Spatial differences were 

found for all the species with the exception of S. salpa and Mullus surmuletus and were 

species-specific with no unique trends. Similar trend was found for C. chromis and D. 

vulgaris whose frequencies were similar in Low pH and Ctrl 1 compared to Ctrl 2 

(respectively lower in Ctrl 2 for C. chromis and the opposite for D. vulgaris). On the other 
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hand, lower frequencies were highlighted for O. melanura and T. pavo in the Low pH site 

than in both controls. Moreover, only M. surmuletus and C. julis showed significant 

differences for the factor Time, while C. chromis, Symphodus cinereus and S. ocellatus 

showed differences for the interaction „Site x Time‟, without a unique trend for temporal 

variation (Tab. 2.1). 

 

 

Fig. 2.3 - Frequency of occurrence (a) and density (b - mean ±SE) of the most abundant 

(>2%) fish species in the three sites (Low pH, Ctrl 1 and Ctrl 2). Results of the ANOVA are 

showed with a star and differences among sites (post-hoc Tukey’s test) are indicated by 

numbers above each bar, with the same number indicating no-significant differences. 
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Table 2.1 - ANOVA results testing differences in fish species frequency of occurrence for the 

factors site and time. Probability levels: n.s. = not significant; * p<0.05; ** p<0.01; *** 

p<0.001. 

Source 
 

C. chromis O. melanura 
 

S. salpa 

 
df SS MS F p SS MS F p 

 
SS MS F p 

Site 2 5.06 2.53 13.93 *** 2.67 1.33 8.89 *** 
 

1.59 0.79 2.73 n.s. 

Time 5 1.89 0.38 2.08 n.s. 1.19 0.24 1.59 n.s. 
 

2.79 0.56 1.92 n.s. 

Site*Time 10 3.72 0.37 2.05 * 2.89 0.29 1.93 n.s. 
 

2.00 0.20 0.69 n.s. 

Residual 90 16.33 0.18 
  

13.50 0.15 
   

26.21 0.29 
  

           
 

   

  
C. julis T. pavo 

 
S. cinereus 

 
df SS MS F p SS MS F p 

 
SS MS F p 

Site 2 0.91 0.45 5.33 ** 5.63 2.81 14.34 *** 
 

0.72 0.36 3.36 * 

Time 5 1.96 0.39 4.61 *** 1.41 0.28 1.43 n.s. 
 

2.00 0.40 3.72 ** 

Site*Time 10 1.65 0.16 1.93 n.s. 2.26 0.23 1.15 n.s. 
 

2.61 0.26 2.43 * 

Residual 90 7.67 0.09 
  

17.67 0.20 
   

9.67 0.11 
  

           
 

   

  
S. tinca S. ocellatus 

 
D. vulgaris 

 
df SS MS F p SS MS F p 

 
SS MS F p 

Site 2 2.06 1.03 4.62 * 1.56 0.78 4.83 * 
 

7.02 3.51 17.55 *** 

Time 5 2.11 0.42 1.90 n.s. 2.53 0.51 3.14 * 
 

0.74 0.15 0.74 n.s. 

Site*Time 10 1.50 0.15 0.68 n.s. 4.33 0.43 2.69 ** 
 

1.20 0.12 0.60 n.s. 

Residual 90 20.00 0.22 
  

14.50 0.16 
   

18.00 0.20 
  

           
 

   

  
M. surmuletus S. scriba 

 
 

   

 
df SS MS F p SS MS F p 

 
 

   
Site 2 0.46 0.23 1.29 n.s. 1.35 0.68 3.61 * 

 
 

   
Time 5 3.94 0.79 4.38 ** 1.94 0.39 2.07 n.s. 

 
 

   
Site*Time 10 3.09 0.31 1.72 n.s. 1.98 0.20 1.06 n.s. 

 
 

   
Residual 90 16.17 0.18 

  
16.83 0.19 

   
 

   
 

Fish density overall reflected the pattern of frequency of occurrence examined above (Fig. 

2.3b). Seven out of eleven fish species common to the three sites showed significant among-

site differences in the abundance, while five additional species showed differences also for 

the interaction term „Site x Time‟ (Tab. 2.2). In general, fish did not show a clear spatial 

pattern, but changes were species-specific. For instance, the herbivore S. salpa was more 

abundant in Low pH (20.7 ± 18 ind/100 m
2
) and Ctrl 2 (11.3 ± 15 ind/100 m

2
) than in Ctrl 1 

site (3.5 ± 11 ind/100 m
2
). C. chromis and C. julis were more abundant in Low pH and Ctrl 1 
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than in Ctrl 2, while T. pavo and D. vulgaris were more abundant in Ctrl 2 than in the other 

sites. Tukey‟s post hoc tests highlighted a general trend for the interaction „Site x Time‟, 

namely higher densities were found in September compared to the other sampling times for 

O. melanura in Ctrl 1 than in the other sites and for S. ocellatus in Low pH and Ctrl 1 than in 

Ctrl 2. Additionally, the density of M. surmuletus, S. salpa and S. cinereus was higher in the 

Low pH in June and September compared to the other sites and times. 

 

Table 2.2 - ANOVA results testing differences in fish species abundance for the factors site 

and time. Probability levels: n.s. = not significant; * p<0.05; ** p<0.01; *** p<0.001. 

Source 
 

C. chromis O. melanura S. salpa 

 
df SS MS F p SS MS F p SS MS F p 

Site 2 27.59 13.80 12.73 *** 9.10 4.55 8.89 *** 12.04 6.02 5.33 ** 

Time 5 6.83 1.37 1.26 n.s. 3.58 0.72 1.40 n.s. 27.48 5.50 4.87 *** 

Site*Time 10 17.03 1.70 1.57 n.s. 13.07 1.31 2.55 ** 29.79 2.98 2.64 ** 

Residual 90 97.52 1.08 
  

46.06 0.51 
  

101.57 1.13 
  

              

  
C. julis T. pavo S. cinereus 

 
df SS MS F p SS MS F p SS MS F p 

Site 2 5.32 2.66 9.93 *** 11.43 5.72 17.53 *** 0.76 0.38 3.26 * 

Time 5 13.32 2.66 9.95 *** 4.32 0.86 2.65 * 3.05 0.61 5.22 *** 

Site*Time 10 1.72 0.17 0.64 n.s. 3.46 0.35 1.06 n.s. 2.73 0.27 2.34 * 

Residual 90 24.09 0.27 
  

29.35 0.33 
  

10.51 0.12 
  

              

  
S. tinca S. ocellatus D. vulgaris 

 
df SS MS F p SS MS F p SS MS F p 

Site 2 5.01 2,51 5.78 ** 5.68 2.84 4.60 * 15.85 7.93 17.43 *** 

Time 5 7.05 1,41 3.25 * 24.48 4.90 7.93 *** 1.67 0.33 0.73 n.s. 

Site*Time 10 3.02 0,30 0.70 n.s. 32.42 3.24 5.25 *** 2.88 0.29 0.63 n.s. 

Residual 90 39.02 0,43 
  

55.58 0.62 
  

40.93 0.45 
  

              

  
M. surmuletus S. scriba 

    

 
df SS MS F p SS MS F p 

    
Site 2 0.09 0.05 0.16 n.s. 1.07 0.54 3.42 * 

    
Time 5 10.34 2.07 7.25 *** 1.55 0.31 1.98 n.s. 

    
Site*Time 10 5.78 0.58 2.03 * 1.90 0.19 1.21 n.s. 

    
Residual 90 25.67 0.29 

  
14.10 0.16 
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Percentage of abundance for the three size classes (S, M, L) showed a different trend for each 

fish species, and no general pattern was detected (Fig. 2.4). A few species showed an overall 

homogeneous size class distribution among the three sites (i.e. C. julis, T. pavo and S. tinca), 

while others had a different size structure. As an example, for S. ocellatus, D. vulgaris and M. 

surmuletus the larger class was almost absent in the Low pH site, while size distribution was 

more heterogeneous in the two controls. At multivariate level, abundance of all size classes 

was different among sites and times. In particular, the small size class showed differences 

among the three sites with higher values in the Low pH (PERMANOVA: pseudo-F 2, 60 = 

3.11, p(perm) < 0.01) and no a unique trend was found among different times. With regard to 

the medium and large classes, differences were found for the interaction „Site x Time‟ 

(pseudo-F 10, 83 = 1.67, p(perm) < 0.01) and the factor Site, respectively (pseudo-F 2, 65 = 4.18, 

p(perm) < 0.01; pair wise: Ctrl 2<Ctrl 1=Low pH). In accord to PERMANOVA results, the 

CAP ordinations showed the three sites interspersed for the small size, while showed 

superimposing between Low pH and Ctrl 1 for medium and large sizes and a separation for 

Ctrl 2 on the left side (Fig. 2.5). 

 

 

Fig. 2.4 - Percentage abundance of the three size classes (Small, Medium, Large) of each fish 

species in the three sampling sites (Low pH, Ctrl 1, and Ctrl 2). 
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Fig. 2.5 - Canonical analysis of principal coordinates (CAP) of the abundance of small, 

medium and large size classes fish in the three sampling sites (Ctrl 1, Ctrl 2 and Low pH). 

Vectors of the species contributing most to the ordination (Pearson correlation > 0.03) are 

superimposed. 

 

Likewise medium-sized class fish, PERMANOVA test on total fish abundance showed 

significant differences for the interaction between „Site x Time‟ (Tab. 3). However, no 

general trend was found among sampling times but only a partial separation between sites 

(Fig. 2.6). In particular, in September and June the three sites differed significantly each other 

with higher fish abundance in Low pH than Ctrl 1 and Ctrl 2. In October, November and July, 

Ctrl 2 differed from Low pH and Ctrl 1, while no significant differences were found among 

sites in May. 
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Table 2.3 - PERMANOVA results testing differences for the factors site and time in total fish 

abundance. Probability levels: * p<0.05; ** p<0.01. 

Source of variation df MS Pseudo-F P (perm) 

Site 2 18064 6.4378 ** 

Time 5 6398.9 4.2307 ** 

Site x Time 10 2805.9 1.8552 * 

Residual 90 1512.5 
 

 

 

 

Additionally, PERMANOVA highlighted differences in the interaction „Site x Time‟, the 

graphical ordination of the canonical analysis of principal coordinates (CAP) explained 74.1 

% of total variation and showed a certain separation among sites (Low pH on up-right side, 

Ctrl 1 down and Ctrl 2 on the left side), without a unique temporal trend (Fig. 2.6). The 

species that correlate most with the ordination were C. chromis, C. julis, D. vulgaris, O. 

melanura, S. ocellatus, S. tinca and T. pavo. Accordingly, SIMPER analysis revealed that the 

species that discriminate between Low pH site and Ctrl 1 (average dissimilarity = 62.5%) 

were C. chromis, S. ocellatus, S. salpa and S. tinca, while the highest dissimilarity was 

recorded between Low pH and Ctrl 2 (average dissimilarity = 68.8%) due to the species C. 

chromis, S. salpa, D. vulgaris and T. pavo. On the other hand, the main species that 

discriminate among the two controls were C. chromis, D. vulgaris, S. ocellatus (average 

dissimilarity = 66.7%), contributing each by more than 10% to the dissimilarity between sites 

(Tab. 2.4). 
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Fig. 2.6 - Canonical analysis of principal coordinates (CAP) of total fish abundance in each 

time in the three sampling sites (Low pH, Ctrl 1 and Ctrl 2). Vectors of the species 

contributing most to the ordination (Pearson correlation > 0.03) are superimposed. 

 

Table 2.4 - SIMPER analysis showing fish species contributing most to dissimilarity between 

sites and average abundance of each site (Low pH, Ctrl 1 and Ctrl 2). Av. Ab.: Average 

abundances; Contr.%: dissimilarity contribution. 

 

Species Contr.% 
Av. Ab. 

Low pH 

Av. Ab. 

Ctrl 1 
Contr.% 

Av. Ab. 

Low pH 

Av. Ab. 

Ctrl 2 
Contr.% 

Av. Ab. 

Ctrl 1 

Av. Ab. 

Ctrl 2 

C. chromis 17.19 1.35 1.33 15.46 1.35 0.27 15.05 1.33 0.27 

D. vulgaris 7.31 0.49 0.30 12.71 0.49 1.19 12.63 0.30 1.19 

S. ocellatus 12.42 0.47 0.92 7.72 0.47 0.40 11.59 0.92 0.40 

S. tinca 10.95 0.58 1.03 8.69 0.58 0.57 9.84 1.03 0.57 

C. julis 8.65 1.27 1.25 9.85 1.27 0.79 9.75 1.25 0.79 

O. melanura 8.10 0.02 0.71 5.81 0.02 0.50 9.72 0.71 0.50 

T. pavo 7.09 0.18 0.56 11.15 0.18 0.98 9.33 0.56 0.98 

S. salpa 12.27 1.08 0.27 14.58 1.08 0.77 9.29 0.27 0.77 

M. surmuletus 6.68 0.39 0.32 6.50 0.39 0.37 6.09 0.32 0.37 

 Average dissimilarity = 62.46 Average dissimilarity = 66.73 Average dissimilarity = 68.85 
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Differences in the structure of fish assemblages were evaluated comparing the total number 

of individuals (N) and the species richness (S). N was slightly higher in Ctrl 1 than in Low 

pH and Ctrl 2 (30.2 ± 22.9 ind/50 m
2
 in Ctrl 1; 28.0 ± 29.6 ind/50 m

2
 in Low pH and 20.4 ± 

17.0 ind/50 m
2
 in Ctrl 2), with significant differences for the interaction „Site x Time‟. In 

particular, Tukey‟s post hoc test revealed higher N in September in Ctrl 1 and Low pH site. 

In contrast, ANOVA performed on species richness S (5.00 ± 1.12 in Ctrl 1; 4.83 ± 1.40 in 

Ctrl 2 and 4.34 ± 1.64 in Low pH) showed significant differences for both factors Site and 

Time, but not for their interaction. Tukey‟s test highlighted a difference only between Low 

pH and Ctrl 1, and S values were generally higher in September than in spring-summer 

months (Tab. 2.5). 

 

Table 2.5 - ANOVA testing differences for the factors site and time in species richness (S) 

and number of individuals (N). Probability levels: n.s. = not significant; * p<0.05; ** 

p<0.01; *** p<0.001. 

Source    S N 

  df SS MS F p SS MS F p 

Site 2 29.56 14.78 4.13 * 0.53 0.27 3.11 * 

Time 5 72.33 14.47 4.05 ** 2.00 0.40 4.66 *** 

Site*Time 10 43.11 4.31 1.21 n.s. 2.14 0.21 2.49 ** 

Residual 90 321.67 3.57     7.74 0.09     

 

 

2.4 Discussion 

The decrease of ocean pH (Caldeira & Wickett, 2003, IPCC, 2014) is predicted to affect 

negatively biodiversity due to direct and indirect effects on marine biota (Cheung et al. 2009). 

While calcareous organisms are considered more susceptible, also other components, like 

fish, can be affected directly or indirectly, with consequences on their distribution and 

abundance (Perry et al. 2005). Our study dealing with the assessment of fish assemblages 

exposed to naturally high CO2 / low pH conditions revealed slight changes in the community 

structure compared to those living in two control areas. Contrarily to expectations, fish 

diversity and community structure differed little between Low pH and controls. In particular, 

although species richness showed a decrease in the acidified site compared to the closer 
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control site, similarities were found in the species-specific number of individuals between 

these two sites. Moreover, no general trend was found at fish community level, but species-

specific responses were showed by the descriptive parameters of fish community (abundance, 

frequency of occurrence). 

A reason that could explain the lack of differences is that fish can overtake the low pH 

conditions thanks to their capacity to move. This seems to be confirmed by the similarity of 

the abundance between Low pH and Ctrl 1 (closer to the impacted site than the second 

control) for three out of nine species that showed differences among sites (C. chromis, C. 

julis and D. vulgaris). Moreover, the analysis on size classes confirmed this similarity 

between the nearest sites (Low pH and Ctrl 1), compared to the further Ctrl 2, with regard to 

medium and large-sized individuals, highlighting the mobility of species censused. Finally, 

contrarily to expectations, higher abundance of small individuals was found in the Low pH 

compared to controls, indicating the tolerance of juveniles to low pH conditions. Also, the 

similarity percentage analysis highlighted the difference between Low pH and Ctrl 2 and 

showed that C. chromis, S. salpa, D. vulgaris, S. ocellatus and S. tinca contributed mainly to 

the dissimilarity between Low pH and controls. In addition, also at multivariate level fish 

assemblages showed only a partial separation among sites, and no general trend was found 

among times. 

The heterogeneous size-distribution of fish belonging to different species in the Low pH site 

and the higher abundance of small-sized individuals compared to the controls, suggests also a 

role of C. nodosa seagrass meadow in providing refuge, despite the lower density of the 

seagrass meadow in the acidified site than controls. As found in previous studies, C. nodosa 

meadows play a paramount role as nursery areas, providing food and shelter (Guidetti & 

Bussotti, 2000, 2002). Moreover, fish abundance has been shown to be related to depth and 

structural features (i.e. complexity of habitat or seagrass canopy) of the seagrass beds 

(Guidetti, 2000, Guidetti & Bussotti, 2000, Fernández et al. 2005). Here, we found a slight 

decrease in fish species richness in the Low pH site compared to Ctrl 1; this result may be 

related to the reduction of C. nodosa density, and opens interesting scenarios on the indirect 

effects of ocean acidification accordingly to a recent study gathering data from worldwide 

CO2 vents (Sunday et al. 2016). Indeed, Sunday et al. (2016) predicted the indirect effects 

driven by ocean acidification on fauna diversity through changes in habitat-forming species. 

The decline of structural complexity of biogenic habitat (i.e. coral reefs, mussel beds and 

seagrasses / macroalgal habitats) was found to negatively affect biodiversity. 
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Particularly interesting is the case of S. salpa, that is the main herbivorous fish in the 

Mediterranean Sea, and the only one that showed a higher abundance in the Low pH site. The 

greater palatability of C. nodosa exposed long-term to high CO2 emissions (Apostolaki et al. 

2014), and a minor content of phenolic substances (deterrent to herbivory - Arnold et al. 

2012) in the C. nodosa leaves, could explain the major presence of S. salpa in the seagrass 

meadow. Moreover, conspicuous groups of small-sized S. salpa were observed feeding in the 

Low pH site (personal observation). Fish could be attracted by abundant prey found in the 

Low pH site. Indead, the higher cost to balance the acid-base regulation may be compensated 

by a high prey availability (mainly Amphipoda and Polychaeta) associated to macrophytes 

was found in the low pH site of Vulcano Island (Vizzini et al. submitted). Moreover, this 

result opens another question about the role that herbivores will have in the future acidified 

ocean, because of their role of top-down control on primary producers (Poore et al. 2012). 

New insights are emerging into the role of herbivores and their compensatory effect under 

high CO2 conditions to maintain the resistance of communities to disturbance (Ghedini et al. 

2015). Compensatory dynamics are expected, indeed, to be an important stabilising 

mechanism through which communities respond to environmental change. Another 

experimental study conducted by Mertens et al. (2015) showed that the herbivore gastropod 

Turbo undulatus can take under control primary producers until a certain temperature 

throughout his grazing. Beyond this threshold, however, consumption declined whilst 

productivity increased. There is still a lack of knowledge about the consequence of the 

synergetic effect of forecasted ocean acidification and warming on the grazing of herbivores 

fish and their metabolic rate. Many studies highlighted that most species will be more 

sensitive when subjected to both acidification and warming, two of the greatest threats to 

marine biodiversity (Kroeker et al. 2013, Nagelkerken & Connell, 2015). 

In this context, attention deserves also the case of the two sympatric Labridae, the rainbow 

wrasse Coris julis and the ornate wrasse Thalassoma pavo, that are widespread in the entire 

Mediterranean Sea. Recent studies showed that the interaction of these species are potentially 

exacerbated by seawater warming and they are differently distributed related to water 

temperature and, in particular, T. pavo is considered the „warm-water‟ wrasse and C. julis the 

„cool-water‟ one (Milazzo et al. 2013, 2016). In our study the density and the frequency of 

occurrence of these two species were opposite: C. julis was found more abundant in the low 

pH site and the adjacent control site than in the further control site, while T. pavo showed an 

opposite trend. This finding let hypothesize that C. julis could be more tolerant to low pH 
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conditions compared to the sympatric species and open a new question regarding the 

synergetic effects of warming and acidification. A recent meta-analysis study on different 

taxonomic groups has suggested that biological responses are stronger (either positive or 

negative) when different stressors interact synergistically (Harvey et al. 2013). 

Another reason that could explain the lack of differences in fish community living in the low 

pH site could be the natural variability of the site also for the pH conditions. Indeed, the Low 

pH site experiences normal pH according to weather conditions. Due to the geo-

morphological setting of the Levante Bay, acidified water masses mostly run parallel to the 

northern shoreline of the bay, when predominant winds belong to north-western sectors 

(Boatta et al. 2013). However, the pH gradient created by the primary vent along the northern 

cost of the bay is deleted when wind direction is from South - East (Scirocco wind). As 

suggested by Kroeker et al. (2012), it is possible that the natural fluctuations in carbonate 

chemistry at the vents allow organisms to tolerate better or adapt, generation after generation, 

to these particular conditions. Indeed, laboratory studies have found impact on organisms 

above all when there is a sharp reduction in pH, without time of adaptation (Ishimatsu et al. 

2008). 

Evolutionary mechanisms could help organisms to adapt from one generation to another, but 

this mechanism implies genetic variation (Crozier & Hutchings, 2014). Transgenerational 

acclimation occurs when the environment experienced by parents influences the performance 

of offspring (Sunday et al. 2014). Through a field experiment in the same study area, Cattano 

et al. (2016) found that the ocellated wrasse Symphodus ocellatus offspring brooded in 

different CO2 conditions had similar responses, but after transplanting portions of nests to the 

high CO2 site, embryos from parents that spawned in ambient conditions had higher 

metabolic rates. Thus, adaptive mechanisms can have a crucial role for fish, improving their 

resilience to environmental conditions. However, another possibility is that replenishment of 

fish becomes from outside the vent area and hence from “non-acidified populations”, as 

suggested by other authors (Kroeker et al. 2012, Munday et al. 2014). In this case, plastic 

responses in physiology, morphology, or behaviour could help maintaining fitness in a new 

“stressful” environment and take less time (days to months, or within a life stage). Moreover, 

a meta-analysis on the effects of ocean acidification on different taxonomic groups 

highlighted that highly mobile organisms (i.e. fish or crustaceans) with developed 

intracellular ⁄ extracellular pH regulatory mechanisms may be more resilient to ocean 

acidification (Kroeker et al. 2010). 
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Our study confirms previous results from another CO2 vent in Papua New Guinea (Munday et 

al. 2014). Also in that study, although juvenile reef fishes at CO2 seeps exhibit behavioral 

abnormalities similar to those seen in laboratory experiments, fish diversity and community 

structure differed little between impacted and control areas. As suggested by Munday et al. 

(2014), the little differences in fish community structure could be driven by the differences in 

habitat composition (different corals community) and not by the direct effects of high CO2. 

Moreover, temporal variability can hide spatial one in the abundance of the fish assemblages. 

Overall, our findings suggest that the predictions for the acidification of the near-future ocean 

(pH = 7.8 in the year 2100) will not affect directly fish species composition and community 

structure but it is more probable that indirect effects will cause greater changes in this 

component (i.e. habitat changes, prey availability or interaction with non-native species - 

Molnar et al. 2008). In general, fish are able to cope with ocean acidification and the majority 

of laboratory and mesocosm experiments, that have found negative effects, used pCO2 levels 

much higher than the levels forecasted for the end of the century and CO2 exposure periods 

were less than 4 days in 79% (Ishimatsu & Dissiniake, 2010). For this reason we think that in 

situ experiments and the use of naturally acidified environments are useful to evaluate the 

species distribution and the structure of populations exposed long-term to low pH conditions 

and the responses both at species-specific level and at community one.  
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Annex I - List of fish species censused in the three sampling sites (Low pH, Ctrl 1 and Ctrl 

2), trophic group and abundance (%) of each species. 

Family Species Trophic group Low pH Ctrl 1 Ctrl 2 

Labridae Coris julis Invertivore 11.1 11.4 8.1 

 
Thalassoma pavo Invertivore <2 3.9 12.4 

 
Symphodus cinereus Invertivore 2.1 <2 <2 

 
Symphodus tinca Invertivore 4.9 8.8 5.8 

 
Symphodus ocellatus Invertivore 8.6 18.0 8.8 

 
Symphodus roissali Invertivore <2 <2 <2 

 
Symphodus rostratus Invertivore - <2 <2 

 
Symphodus mediterraneus Invertivore <2 <2 <2 

 
Symphodus doderleini Invertivore <2 <2 <2 

 
Labrus viridis Invertivore <2 <2 - 

Sparidae Oblada melanura Planktivore <2 11.5 7.1 

 
Diplodus vulgaris Invertivore 3.9 2.3 16.1 

 
Diplodus annularis Invertivore <2 <2 <2 

 
Diplodus sargus Invertivore <2 <2 <2 

 
Sarpa salpa Herbivore 37.6 5.8 28.0 

Serranidae Serranus scriba Small piscivore <2 2.3 <2 

Mullidae Mullus surmuletus Invertivore 5.4 2.6 3.2 

Pomacentridae Chromis chromis Planktivore 21.6 24.2 4.8 

Mugilidae Mugil cephalus Detritivore - <2 - 
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CHAPTER 3: Trophic structure and isotopic niche of a coastal fish assemblage living in a 

naturally acidified environment 

 

Abstract: Fifteen coastal fish species were analysed together with sediment, zooplankton, 

macroalgae and seagrass. The trophic structure and the isotopic niche of a fish assemblage 

was investigated, by using carbon and nitrogen stable isotopes analysis. In particular, we 

compared the isotopic signature of fish sampled in high CO2 / low pH conditions (Low pH 

site) against fish assemblages living in two normal pH sites (Controls). An overall 
13

C and 

15
N-depletion was detected in the Low pH site compared to the two controls. On the other 

hand, only a few species showed among sites differences for δ¹
5
N and trophic level. Also the 

analysis of fish trophic groups showed a similar trend for nitrogen among sites (with the 

exception of invertivores), and a different signal for carbon towards the higher trophic levels. 

Moreover, at fish community level, a clear separation were found in carbon isotopic signature 

and not for nitrogen. Trophic niche and isotopic diversity indices highlighted a clear shift in 

the isotopic niche towards lower δ
13

C in the Low pH. Overall, although fish community were 

found isotopically altered, no functional and structural changes were present both in terms of 

trophic diversity and trophic levels. Thanks to this study, we first gave a representation of the 

isotopic niche of a fish community exposed long-term to a naturally acidified environment, 

providing valuable insights into the predicted effects of ocean acidification on food web 

dynamics. 

 

Keywords: ocean acidification, trophic structure, fish assemblage, stable isotopes, shallow 

CO2 vent. 

 

3.1 Introduction 

Ocean acidification is nowadays considered one of the greater threats for marine life due to 

the forecasted consequences on ecosystems functioning (Nagelkerken & Connell, 2015, 

Kroeker et al. 2010, 2013). In this context, primary producers seem to take advantage from 

this seawater chemical alteration, and evidences from laboratory, mesocosm and in situ 
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experiments suggest that CO2 can act as a resource for some of them by increasing carbon 

fixation rates in photosynthetic organisms (Connell et al. 2013, Russell et al. 2013). On the 

other hand, some organisms are considered as good acid-base regulators (i.e. fish), but a 

series of direct and indirect effects have been found on physiological and behavioral 

responses (Checkley et al. 2009, Ferrari et al. 2011, Nilsson et al. 2012, Simpson et al. 2011, 

among the others). However, most studies have been conducted in closed systems and only a 

few of them (Cattano et al. 2015, Milazzo et al. 2016, Munday et al. 2014, Nagelkerken et al. 

2015) have exploited naturally acidified ecosystems (i.e. CO2 vent). 

CO2 vents offer the opportunity to test acidification effects not only at species level, but also 

on whole community, due to long-term exposure of organisms to high CO2 / low pH 

conditions (Fabricius et al. 2011, Hall-Spencer et al. 2008, Kroeker et al. 2011, Vizzini et al. 

2013). In this context, scant information is available about ocean acidification consequences 

on food web interactions, although the primary importance of this issue is recognized 

(Rossoll et al. 2012). The shift in terms of quality, abundance and composition of the 

underlying basal resources in food web (i.e. plankton, macroalgae and seagrasses) will affect 

the direct and indirect consumers, with consequences on the structure of the whole food web 

(Connell & Russell, 2010, Connell et al., 2013). This, in turn, may affect the trophic 

organization of fish communities through changes at lower trophic levels (Beaugrand et al. 

2003a, 2003b). Food web organization is the balance of top-down and bottom-up effects 

(Pinnager et al. 2000, Power, 1992, Smith et al. 2010) and fish are an important component in 

this context as they are higher in trophic levels and for their role in top-down control on food 

web dynamics (i.e. direct control on grazers and indirect control on fleshy macroalgae – 

Bonaviri et al. 2009, Galasso et al. 2015, Guidetti & Sala, 2007). Additionally, fish represent 

a critical natural resource for worldwide catches (FAO 2010). 

Stable isotopic analysis (SIA) has become a common tool in food web ecology to study 

aspects of trophic structure, since its earliest application (De Niro & Epstein, 1981, Peterson 

& Fry, 1987). SIA is widely used also to evaluate the consequences of a stressor on the 

isotopic niche (i.e. invasive species - Alomar et al. 2016, Jackson et al. 2012; ecosystem 

fragmentation - Layman et al. 2007a; impact of anthropogenically derived organic matter - 

Vizzini & Mazzola, 2004, 2006). SIA have been used in vent areas to test the effects of 

acidification on organisms exposed long-term to high CO2 emissions, to study changes in the 

food web and in the trophic organization of macroinvertebrates (Ricevuto et al. 2015, Vizzini 

et al. submitted). For instance, a study conducted in the vent located in Ischia Island by using 
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SIA, showed that high pCO2 / low pH conditions can have a direct effect on the isotopic 

signatures of organic matter sources with no dramatic consequences on three herbivorous 

Polychaeta species, which showed trophic plasticity and did not modify their food habits 

(Ricevuto et al. 2015). Moreover, Vizzini et al. (submitted) observed that the effect of CO2 

enrichment combines with the resource-effect to drive lower diversity of motile invertebrates 

with dominance of tolerant species (non-carnivorous consumers) and simplified the food web 

structure with lower trophic diversity and length. 

Here, we tested the hypothesis that, as a consequence of stressful environmental conditions 

created by the vent, fish assemblage will be negative affected in terms of trophic diversity, 

with a decrease in the trophic levels and an overall simplification of the isotopic niche. To 

assess this hypothesis, we compared the trophic organization and the isotopic niche of a fish 

assemblage living in a low pH site (pH = 7.8) with two assemblages living in control areas 

(pH = 8.2). In particular, we analyzed and compared among sampling sites: 

1. the isotopic signature (δ¹³C and δ¹
5
N) and the nutritional quality (C:N ratio) of basal 

food sources (sediment, zooplankton, macroalgae and seagrasses); 

2. the isotopic signature (δ¹³C and δ¹
5
N) and the trophic level of 15 fish species, both at 

species and trophic group levels; 

3. the response of fish community in terms of trophic niche features. 

 

3.2 Materials and Methods 

3.2.1 Study area 

The shallow hydrothermal system of Vulcano Island is one of the most active sites in the 

Aeolian Archipelago (24 km off the NE coast of Sicily, Italy). Gas composition of the main 

venting area located in Levante Bay, on the eastern side of the Island, is dominated by CO2 

(97-99% vol.), which generates a pH gradient (from 5.5. to 8.1) along the north shore of the 

bay (Boatta et al. 2013, Capaccioni et al. 2011, Italiano et al. 2009). Emissions include also 

small quantities of H2S (<2.2%), which rapidly decrease with distance from the vent (Boatta 

et al. 2013). Water composition in terms of major elements (Cl, SO4, Na, K, Ca and Mg) is 

close to that of Mediterranean surface waters, while greater variability is recorded for 

dissolved Fe concentrations, which showed maximum values close to the vents (Boatta et al. 
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2013). The area is characterized by acidic and reducing conditions, causing changes in major 

and trace element geochemical fluxes at the sediment-seawater interface (Vizzini et al. 2013). 

Seawater carbonate chemistry parameters in the Levante Bay range between 2.78 and 3.17 

mmol/kg for the total alkalinity and 0.02 and 3.64 for the aragonite saturation state (for 

details see Boatta et al. 2013). 

The following three sites were chosen: the low pH site (hereafter “Low pH”, mean pH = 7.80 

±0.09) about 250 m far from the primary CO2 vent in Levante Bay, a control site (hereafter 

“Ctrl 1”, mean pH = 8.19 ±0.03) 500 m far from the primary vent, and another control site in 

Lipari Island (hereafter “Ctrl 2”, mean pH = 8.22 ±0.02) about 6.5 km from the first two sites 

(Fig. 3.1). Controls were chosen to be similar in terms of orientation (South-East), depths (2-

5 m) and vegetal coverage (Cymodocea nodosa meadow) to the Low pH site. 

 

Fig. 3.1 - Map of the study area showing the sampling sites in Vulcano (Low pH and Ctrl 1) 

and Lipari Islands (Ctrl 2). The primary vent is indicated by the star. 
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3.2.2 Sample collection and laboratory analysis 

Sampling was carried out from September to November 2014. Fish were collected by using 

small trammel nets, fish traps, hook and line. Surface sediment was also collected using a 

PVC hand-corer (Ø 4 cm, 0-1 cm, five replicates per site); zooplankton was sampled by 

towing a net (mesh size: 200 μm) for approximately 30 min (three replicates for Lipari and 

three replicates for Vulcano Island); macroalgae and seagrasses (three replicates per site for 

each species) were collected by hand from scuba divers. All the samples were stored at -20 

°C and transferred to the laboratory until chemical analyses were performed. 

In the laboratory, macroalgae [Cystoseira spp., Halopteris scoparia, and Dictyota dichotoma] 

and the seagrass C. nodosa were rinsed with distilled water and epiphytes were removed by 

surface scraping. Fish were identified at species level and classified into trophic groups 

following the classification by Guidetti & Sala (2007) and FishBase database (Froese & 

Pauly, 2016). The trophic groups considered were: planktivores, herbivores, invertivores and 

small piscivores. Total length was measured to the nearest 0.1 mm and then dorsal muscle 

was processed for analysis (Tab. 3.1). 

All samples (both abiotic and biotic) were freeze-dried (ALPHA 1-4 LDplus, Martin-Christ) 

and ground to a fine powder using a ball mill (MM 200 Retsch). Stable nitrogen and carbon 

isotopes was analysed in all samples through an Isotope Ratio Mass Spectrometer (Thermo 

Scientific Delta Plus XP) connected to an Elemental Analyser (Thermo Scientific Flash EA 

1112). Carbon and nitrogen isotopic ratios were expressed in conventional δ unit notation as 

parts per mil deviations from the international standards, Vienna Pee Dee Belemnite and 

atmospheric nitrogen (N2), following the formula: 

δX = [(Rsample/Rstandard) − 1] × 10
3
 

where X is 
13

C
 
or 

15
N and R is the relative 

13
C/

12
C or 

15
N/

14
N ratio. Analytical precision based 

on the standard deviation of replicates of internal standards was 0.2‰. 

 

3.2.3 Data analysis 

Univariate analysis (one-way ANOVA) was carried out to evaluate differences among 

sampling sites in terms of δ
15

N, δ
13

C and C:N ratio (used as index of nutritional quality for 
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basal resources) of sediment, macroalgae, seagrasses and fish (at species level and trophic 

groups). Cochran‟s test and Shapiro-Wilk‟s test were used to check for homogeneity of 

variances and normality, respectively. Where significant differences were present, Tukey‟s 

post hoc test was used. Macroalgae data were analysed without species distinction, due to the 

low number of species in common in the three sites. For the zooplankton the t-test analysis 

was used to test the differences between Lipari and Vulcano area. Univariate analysis was 

carried out by using STATISTICA software package (StatSoft, 2011). 

To estimate the trophic level of fish (hereafter “TL”), the following equation was used: 

TLf =  [(δ¹⁵Nf –  δ¹⁵Nref) / f]  +  TLref 

where δ
15

Nf, δ
15

Nref and TLref are the stable nitrogen isotope signature of the fish, the stable 

nitrogen isotope signature species and the trophic level of the baseline, respectively; while f 

is the expected δ
15

N isotopic fractionation per TL (3.4 according to Post, 2002). In this case, 

zooplankton was used as baseline, and we used the mean of the two areas of Lipari and 

Vulcano due the lack of difference in terms of nitrogen isotopic values of zooplankton among 

the two areas. 

To test differences in isotopic signature at fish community level, multivariate analyses were 

performed considering the fish species common in the three sampling sites (Chromis 

chromis, Coris julis, Diplodus vulgaris, Gobius bucchichi, Oblada melanura, Sarpa salpa, 

Serranus scriba, Symphodus roissali, Symphodus tinca, Scorpaena porcus and Thalassoma 

pavo). Moreover, Diplodus annularis was taken out from the analysis due to the low number 

of replicates. Fish species sampled only in two out of the three sites (Labrus viridis, 

Symphodus ocellatus and Symphodus mediterraneus) were took out from the multivariate 

analysis. 

δ
13

C and δ
15

N data were normalized and resembled using Euclidean distance similarity 

matrices. Differences between sites were tested at a multivariate level by using the 

permutational multivariate analysis of variance (PERMANOVA). Differences in the trophic 

structure of fish assemblages were graphically represented in a two-dimensional ordination 

plot by non-metric multidimensional scaling (n-MDS). Analyses were carried out by using 

PRIMER 6 with PERMANOVA +add-on software package (Anderson et al. 2008). 

Moreover, in order to characterize the isotopic niche at each sampling site, stable isotope 

signatures were used to estimate the community-wide metrics (Layman et al. 2007b), by 
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using the SIBER package (Stable Isotope Bayesian Ellipses; Jackson et al. 2011) through the 

statistical R Programming Environment (v.3.3.1; R Studio Team, 2015). The following 

metrics were used to describe the trophic structure in terms of trophic diversity and 

redudancy: a) δ
15

N Range (NR) is the difference between the most enriched and most 

depleted δ
15

N values and provides information on the trophic length; b) δ
13

C Range (CR) is 

the difference between the most enriched and the most depleted δ
13

C values and estimates the 

diversity of basal resources exploited; c) Total Area (TA) is the convex hull that encompasses 

the data points in the isotopic bi-plot space and indicates the width of the trophic niche; d) 

mean Distance to Centroid (CD) is the average Euclidean distance of each species to the 

centroid δ
13

C-δ
15

N and represents the trophic diversity and species spacing within the 

isotopic space; e) mean Nearest Neighbour Distance (NND) is expressed as the Euclidean 

distance of each species to the nearest neighbour and measures species density and packing 

within the community, given by the proximity of each species to another within the same 

isotopic space (trophic redundancy); and f) Standard Deviation of the Nearest Neighbour 

Distance (SDNND) provides information on the evenness of species packing. In addition, 

according to Jackson et al. (2011), corrected standard ellipse area (SEAc) was estimated by 

Bayesian inference, to gain a more accurate measure of the isotopic niche and avoid any bias 

induced by sampling size. 

 

3.3 Results 

Overall, sediment, primary producers (macroalgae, seagrasses) and fish presented 
13

C- and 

15
N-depleted signatures in the Low pH site compared to the two controls (Fig. 3.2). Ranges of 

δ
13

C were between -22.9 ‰ and -13.5 ‰ (mean ± SD: -18.8 ± 2.1 ‰) in the Low pH site, -

21.2 ‰ and -8.8 ‰ (-16.9 ± 2.9 ‰) in the Ctrl 1, and -21.7 ‰ and -9.0 ‰ (-16.5 ± 2.8 ‰) in 

the Ctrl 2, while those of δ
15

N were between -0.9 ‰ and 8.1 ‰ (5.4 ± 2.9 ‰) in the Low pH 

site, 1.3 ‰ and 9.1 ‰ (6.1 ± 2.5 ‰) in the Ctrl 1, 2.0 ‰ and 7.9 ‰ (6.1 ± 2.1 ‰) in the Ctrl 

2. 

In particular, the most depleted isotopic values were recorded for sediment in every site, with 

among-sites significant differences only for δ
15

N (ANOVA: F 2, 12 = 35.177, p < 0.001; Low 

pH<Ctrl 1=Ctrl 2) and C:N ratio (F 2, 12 = 13.151, p < 0.001; Low pH<Ctrl 1=Ctrl 2; mean ± 

SD: 5.8 ± 1.1 Low pH, 10.2 ± 2.3 Ctrl 1, 10.6 ± 1.3 Ctrl 2). Macroalgae showed the same 
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trend, with lower values of δ
15

N (F 2, 24 = 5.96, p < 0.01) and lower C:N ratio (F 2, 24 = 10.73, 

p < 0.01) in the Low pH compared to the controls, while no differences were found for δ
13

C 

values (F 2, 24 = 2.70, p > 0.05). On the other hand, the seagrass C. nodosa showed lower 

values for δ
13

C in the Low pH than in the two controls (F 2, 6 = 52.24, p < 0.001), while δ
15

N 

was higher in Ctrl 2 than in the other sites (F 2, 6 = 14.29, p < 0.01) and no differences were 

found in C:N ratio. The only exception was presented by the zooplankton, that did not show 

differences in δ
15

N values and C:N ratio, while more depleted values of δ
13

C were found in 

Lipari compared to the Vulcano area (df = 4, t-value = -2.82, p < 0.05). 

A total of 15 fish species belonging to six families (Gobiidae, Labridae, Pomacentridae, 

Scorpaenidae, Serranidae, Sparidae) was sampled and analysed to describe the food web 

structure and the trophic organization of the fish community in each site (for details see Tab. 

3.1). Three out of fifteen species were sampled only in two sites (L. viridis and S. 

mediterraneus in the Low pH site and Ctrl 2; S. ocellatus in the Low pH site and Ctrl 1), 

while Diplodus annularis was taken out from the analysis due to the low number of 

specimens sampled. 
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Fig. 3.2 - Bi-plot of δ
13

C (‰) vs δ
15

N (‰) of sediment, zooplankton, macroalgae, seagrasses 

and fish common in the three sampling sites (Low pH, Ctrl 1 and Ctrl 2). Fish are grouped 

into trophic groups: herbivores (S. salpa), planktivores (C. chromis and O. melanura), 

invertivores (C. julis, D. vulgaris, G. bucchichi, S. roissali, S. tinca and T. pavo), and small 

piscivores (S. scriba and S. porcus). Each point represents the mean of single species and the 

relative standard deviation is reported. 
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Table 3.1 – Family, trophic groups, total length - TL in cm: mean (SD) - and number of 

individuals (N) for fish species analysed in each sampling site (Low pH, Ctrl 1 and Ctrl 2). 

   Low pH Ctrl 1 Ctrl 2 

Family Species Trophic group TL N TL N TL N 

Pomacentridae Chromis chromis Planktivore 10.2 (0.5) 5 9.1 (0.8) 5 8.5 (0.8) 5 

Gobiidae Gobius bucchichi Invertivore 7.8 (0.3) 5 8.5 (1.6) 5 7.9 (1.3) 4 

Sparidae Diplodus annularis Invertivore 13.6 (1.5) 4 18.0 (-) 1 13.1 (-) 1 

 

Diplodus vulgaris Invertivore 8.6 (2.4) 4 9.0 (1.0) 5 8.9 (0.1) 5 

 

Oblada melanura Planktivore 10.6 (0.7) 3 10.0 (2.8) 3 8.1 (1.7) 4 

 

Sarpa salpa Herbivore 18.5 (1.4) 5 22.8 (1.0) 5 25.1 (2.2) 4 

Labridae Coris julis Invertivore 12.3 (1.8) 5 13.1 (2.1) 5 11.7 (2.2) 5 

 

Thalassoma pavo Invertivore 11.3 (0.1) 2 10.7 (1.4) 5 11.6 (0.9) 5 

 

Labrus viridis Invertivore 11.6 (1.0) 3 - 0 10.5 (1.2) 3 

 

Symphodus ocellatus Invertivore 6.4 (0.1) 5 5.9 (0.36) 5 - 0 

 

Symphodus mediterraneus Invertivore 6.0 (1.4) 4 - 0 9.4 (0.07) 3 

 

Symphodus roissali Invertivore 8.9 (1.0) 5 8.5 (1.2) 4 8.8 (0.7) 5 

 

Symphodus tinca Invertivore 14.4 (1.3) 5 11.4 (1.2) 4 13.7 (3.1) 5 

Scorpaenidae Scorpaena porcus Small piscivore 11.0 (2.1) 3 13.7 (1.8) 3 13.0 (2.8) 5 

Serranidae Serranus scriba Small piscivore 14.2 (1.6) 5 9.8 (3.7) 5 13.7 (2.5) 5 

 

Univariate PERMANOVA revealed, overall, a general trend for fish δ
13

C with more depleted 

values in the Low pH site than controls. Eleven out of fourteen species showed among-sites 

differences for δ
13

C, with the exception of O. melanura, L. viridis and S. mediterraneus. 

Overall, these species showed isotopic carbon values lower at the Low pH site than at least in 

one of the two controls. The only exception was C. chromis that showed a carbon isotopic 

signature lower in Ctrl 2 and no differences between Low pH and Ctrl 1 (Tab. 3.2). 
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Table 3.2 - PERMANOVA results testing for differences in fish species carbon isotopic 

signature among sites. Probability levels: n.s. = not significant; * p<0.05; ** p<0.01. 

δ
13

C   S. salpa  C. chromis  O. melanura 

  df MS Pseudo - F p df MS Pseudo - F p df MS Pseudo - F p 

Site 2 11.74 6.52 * 2 1.85 21.3 ** 2 0.68 2.97 n.s. 

Residual 11 0.06     12 0.09     5 0.23     

post hoc    Low pH = Ctrl 1 < Ctrl 2   Ctrl 2 < Low pH = Ctrl 1    

           

    D. vulgaris    G. bucchichi  C. julis 

  df MS Pseudo - F p df MS Pseudo - F p df MS Pseudo - F p 

Site 2 14.94 23.13 ** 2 15.11 32.05 ** 2 4.45 12.76 ** 

Residual 12  0.63     11 0.47     12 0.35     

post hoc   Low pH < Ctrl 1 = Ctrl 2   Low pH < Ctrl 1 = Ctrl 2  Low pH = Ctrl 2< Ctrl 1 

       

    L. viridis  S. mediterraneus  S. ocellatus 

  df MS Pseudo - F p df MS Pseudo - F p df MS Pseudo - F p 

Site 1 2.41 21.42 n.s. 1 12.77 71.62 n.s. 1 16.32 61.31 * 

Residual 3 0.11     4 0.18     8 0.27     

post hoc    no differences   no differences  Low pH < Ctrl 1  

             

    S. roissali  S. tinca  T. pavo 

  df MS Pseudo - F p df MS Pseudo - F p df MS Pseudo - F p 

Site 2 22.73 31.35 ** 2 14.08 32.73 ** 2 7.52 100.03 ** 

Residual 12  0.72     12 0.43     9 0.07     

post hoc   Low pH < Ctrl 1 < Ctrl 2 
 Low pH < Ctrl 1 < Ctrl 2  Low pH = Ctrl 1< Ctrl 2 

   
      

    S. porcus  S. scriba        

  df MS Pseudo - F p df MS Pseudo - F p       

Site 2 5.51 136.87 ** 2 1.14 4.91 *       

Residual  7 0.04     12 0.29             

post hoc  Low pH < Ctrl 1 < Ctrl 2  Low pH = Ctrl 1 < Ctrl 2     

 

Moreover, a few species showed differences in terms of δ
15

N and no general trend was found 

among sites. For instance, L. viridis (pseudo-F 1, 3 = 11.62, p(MC) < 0.05) and C. julis 

(pseudo-F 2, 12 = 28.04, p(MC) < 0.01) showed higher δ
15

N values in Ctrl 2, while T. pavo 

(pseudo-F 2, 9 = 8.63, p(MC) < 0.05) exhibited higher values in Ctrl 1. On the other hand, C. 
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chromis showed higher δ
15

N in the Low pH than in controls (pseudo-F 2, 12 = 4.07, p(MC) < 

0.05). 

Based on the method adopted for the TL calculation, a few differences were found among 

sites as well as for δ
15

N. C. julis and L. viridis showed lower TL values in Low pH than 

controls, while T. pavo showed higher TL in Ctrl 1 and C. chromis in Low pH site (Fig. 3.3). 

Overall, no general trend was found among the sites, and although afferent to different 

trophic groups, almost all the species analysed showed a similar trophic level ranging 

between 3.1 and 3.8 in Low pH, 3.1 and 4.0 in Ctrl 1 and 3.0 and 3.8 in Ctrl 2. As an 

example, the only herbivorous fish analysed (S. salpa) showed similar values as invertivores 

in every site, while small piscivores (S. scriba and S. porcus) showed similar trophic levels as 

those invertivores. 

 

 

Fig. 3.3 - Mean trophic level of fish sampled in the three sites (Low pH, Ctrl 1 and Ctrl 2). 

Fish are classified in trophic groups. Fish label: SS, Sarpa salpa; CC, Chromis chromis; 

OM, Oblada melanura; DA, Diplodus annularis; DV, Diplodus vulgaris; GB, Gobius 

bucchichi; CJ, Coris julis; LV, Labrus viridis; SM, S. mediterraneus; SO, Symphodus 

ocellatus; SR, S. roissali; ST, S. tinca; TP, Thalassoma pavo; SCO, Scorpaena porcus; SCR, 

Serranus scriba. Numbers indicate significant differences amnong sites. 
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Also, a clear 
13

C- depletion was found for each trophic group with the exception of 

planktivores, that showed similar mean values in Low pH site and Ctrl 1. With regard to 

δ
15

N, instead, the Low pH site did not show differences for each trophic groups among the 

three sites with the exception of invertivores that were more depleted in the Low pH than in 

both controls (Fig. 3.4 and Tab. 3.3). 

 

Fig. 3.4 - Mean of δ
15

N and δ
13

C (‰) in fish trophic groups of the three sampling sites (Low 

pH, Ctrl 1 and Ctrl 2). Letters indicate significant differences among sampling sites. 

 

Table 3.3 - PERMANOVA results testing for differences in fish trophic groups for carbon and 

nitrogen isotopic signature among sites. Probability levels: n.s. = not significant; * p<0.05; 

** p<0.01; *** p<0.001. 

δ
13

C Herbivores Planktivores 

 
df MS Pseudo - F p df MS Pseudo - F p 

Site 2 11.74 6.52 * 2 11.74 10.26 ** 

Residual 11 1.8 
  

20 1.8 
  

     
 

   
δ

15
N 

  
 

 

 
df MS Pseudo - F p df MS Pseudo - F p 

Site 2 0.14 0.44 n.s. 2 0.14 0.57 n.s. 

Residual 11 0.33 
  

20 0.67 
  

δ
13

C Invertivores Small piscivores 

 
df MS Pseudo - F p df MS Pseudo - F p 

Site 2 11.74 116.93 ** 2 11.74 22.11 ** 

Residual 111 1.8   22 1.8   

  
       

δ
15

N 
 

   

 
df MS Pseudo - F p df MS Pseudo - F p 

Site 2 0.14 5.68 ** 2 0.14 0.26 n.s. 

Residual 111 0.66   22 0.71   

 



53 

 

In addition, at fish community level multivariate analysis showed differences among all the 

sites for δ
13

C (PERMANOVA: pseudo-F 2, 12 = 20.29, p(MC) = 0.001), while the Low pH site 

was different from both controls for δ
15

N (pseudo-F 2, 12 = 3.53, p(MC) = 0.001). 

Accordingly, n-MDS ordination showed a clear separation between sites for δ
13

C (Fig. 3.5a), 

that was less evident for δ
15

N (Fig. 3.5b). 

 

 

Fig. 3.5 - Non-metric multidimensional scaling (n-MDS) for differences in fish δ
13

C (‰ - a) 

and δ
15

N (‰ - b) values between sampling sites. 

 

A general look at the species distribution of the fish community within the isotopic space 

revealed a clear shift in the isotopic niche towards lower δ
13

C in the Low pH site compared to 

controls, while lower differences were found in δ
15

N (Fig. 3.6). Additionally, niche width 

was larger in Ctrl 1 than in Low pH and Ctrl 2, as reflected by NR and CR metrics. Also TA 

and SEAc changed in width, position and shape, showing a separation between sites and 

above all among the Low pH and Ctrl 2 in terms of position, while similar metrics were 

found between these two sites. Community CD, NND and SDNND, providing measure of 

trophic diversity and species packing, did not show noticeable variations among sampling 

sites, with the exception of SDNND that was lower in the Low pH. 
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Fig. 3.6 - Fish distribution in the isotopic space at Low pH (green), Ctrl 1 (black) and Ctrl 2 

(red) sites. Solid lines enclose the standard ellipse area (SEA), dotted lines encompass 

convex hull areas (corresponding to Layman’s Total Area - TA) of fish communities. In the 

table, results of Layman’s metrics: nitrogen range (NR), carbon range (CR), mean distance 

to centroid (CD), mean nearest neighbour distance (NND), and standard deviation of the 

nearest neighbour distance (SDNND). The range of trophic level (TL) are reported. 

 

3.4. Discussion 

We tested the hypothesis that high CO2 / low pH conditions affect negatively the trophic 

structure of a fish assemblage living in a naturally acidified environment. Overall, we found a 

greater difference in carbon than nitrogen isotopic signature of fish among sites (both at 

species, trophic group and community level), but this isotopic alteration was not reflected in 

an alteration of fish assemblage trophic structure. Additionally, although a few exceptions, 

slight differences were found in the trophic levels. The total extent of trophic niche, described 

estimating the total area occupied by species in the isotope space and measuring their overall 

density, did not show dramatic changes among sites. 

This shift in carbon isotopic signature of fish community is related to the use of 
13

C-depleted 

basal food sources. Indeed, macroalgae and seagrasses exploit volcanic isotopic depleted 
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nutrients and increase photosynthetic enzyme discrimination against the heavy carbon isotope 

as reported in previous studies under high CO2 conditions (Apostolaky et al. 2014, Vizzini et 

al. 2010). Moreover, our findings highlight a change in the basal resources and confirm the 

enhanced nutritional quality (in terms of C:N ratio) in the Low pH site compared to the 

controls, as found by Vizzini et al. (submitted). Probably S. salpa is attracted by the more 

palatability of macrophytes (Apostolaky et al. 2014, Arnold et al. 2012), explaining the 

higher abundance and frequency of occurrence found in the Low pH (see Chapter 2), that is 

the main herbivorous fish in the Mediterranean Sea. Noticeable is the trophic level measured 

for this species in the three sampling sites, that is comparable to that found in higher trophic 

level consumers (invertivorous and small piscivorous fish), suggesting an omnivorous diet 

instead of a strictly herbivorous one (Whitehead et al. 1986). On the other hand, species like 

S. roissali and S. porcus showed the same trophic level among sites. The comparable TL 

found among different trophic groups may be explained considering that specimes analysed 

had small and similar sizes (with the exception of S. salpa) and a quite homogeneous diet 

based on small benthic invertebrates (Labropoulou et al. 1997, Stergiou & Fourtouni, 1991). 

This may have resulted in similar positions within the trophic jerarchy, while a higher trophic 

dissimilarity cannot be ruled out in advanced life stages due to ontogenetic diet variation. 

Overall, almost all the fish analyzed belonged to a trophic level ranging between 3.0 and 4.0 

in the three sites, with a mean trophic level that fell into the range of omnivorous with a 

preference of animal material (TL range: 2.9 – 3.7 as defined by Stergiou & Karpouzi, 2002) 

and TL was slightly lower in the Low pH site for a few species (C. julis, T. pavo and L. 

viridis), with the only exception of C. chromis (higher in Low pH than in Ctrl 1 and Ctrl 2. 

As showed by Vizzini et al. (submitted), most invertebrates associated to seagrasses in the 

low pH area are herbivores and detritivores, with a predominance of Amphipoda and 

Polychaeta. It is feasible that the high abundance of these groups have caused a trophic shift 

in fish and a decreasing in TL (i.e. the invertivores like C. julis, T. pavo and L. viridis), due to 

their plasticity in feeding habits strategy to respond to site-specific changes in food 

availability (plasticity was found also by Ricevuto et al. 2015 for Polychaeta spp. in Ischia 

vent area). 

Although the slight difference in the fish trophic level has been found for a few species, 

overall fish community at the Low pH site showed a packing of species as showed by NR and 

SDNND values of Layman‟s metrics, while controls appear more extended. Slitghly lower 

trophic levels, the narrower nitrogen range, higher species packing might change food web 
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features possibly caused by a massive consumption by invertivorous fish of hervivorous / 

detritivorous invertebrates, dominating in the Low pH area. Moreover, Layman‟s metrics 

were overall lower in the Low pH and Ctrl 2, while Ctrl 1 showed higher values suggesting a 

greater degree of trophic diversity. Fish exploit the vent area for feeding, but their mobility 

allows them to „escape‟ to close sites when conditions are more stressful. In this context, Ctrl 

1 (the nearest control) could represent a “buffer zone”, were a few meter away there is a 

recovery of normal environmental conditions. Although at community level species richness 

was lower in the Low pH than controls (Chapter 2), some species show a greater tolerance to 

these conditions than other species. As an example, G. bucchichi is a highly sedentary species 

that showed a 3-fold higher abundance in low pH than control sites (Nagelkerken et al. 2015). 

The effect of high CO2 / low pH conditions did not cause dramatic alteration on fish trophic 

organization, but rather some variations were found at species level. This study confirms the 

importance to use natural acidified environments to test hypothesis about ocean acidification 

on food webs and trophic structure of whole communities, challenging in laboratory 

experiments. However, ocean acidification is unlikely to act alone, but in concert with other 

stressors (i.e. nutrient pollution, warming, invasive species, over-fishing). Differences in the 

basal resources of food web, together with local threats, indeed, could alter the native trophic 

structure with consequences on ecosystem function and stability (Alomar et al. 2016, Jackson 

et al. 2012). Moreover, ocean acidification can cause a deterioration of the nutritional quality 

of basal sources with consequences on the food chain relationships (i.e. diatom-copepod – 

Rossoll et al. 2012), and reducing synthesis of omega-3 polyunsaturated fatty acids in 

phytoplankton, which are essential nutrients for normal human growth and development and 

have many beneficial effects on human health (Kang et al. 2011).  
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CHAPTER 4: Mercury accumulation in fish exposed long-term to high CO2 emissions in a 

naturally acidified environment 

 

Abstract: The problem known as ocean acidification is not an isolated threat for marine 

organisms, as it often acts in synergism with other problems (i.e. heavy metals pollution). 

Here, exploiting the leakage of trace elements from the shallow CO2 vent of Vulcano Island 

(Aeolian Archipelago, Italy), we evaluated the bioaccumulation of total mercury (THg) in 14 

coastal fish species typical of a Mediterranean rocky reef assemblage, dwelling in a 

Cymodocea nodosa meadow. In particular, we compared fish sampled in a high CO2 / low pH 

site (pH = 7.8), against fish living in two control areas (pH = 8.2). Moreover, levels of THg 

were measured in sediment, macroalgae and seagrass in the same sampling sites. In general, 

we found higher mercury concentrations in the low pH site in all the matrices (abiotic and 

biotic) analysed, and significant differences were highlighted among sites both at the fish 

species level and at the community one. Moreover, biomagnification power and trophic 

magnification factor (TFM) were calculated for each site through the relationships between 

log[Hg] and δ
15

N (used as a proxy of trophic level). Although trophic transfer values were 

found positive in each sites, no differences in the biomagnification rates were found among 

sites. This study highlights the importance to evaluate synergetic effect of ocean acidification 

with other stressors and the need to take care in the choice of sites to test ecological 

hypothesis in field experiments. 

 

Keywords: Mediterranean fish assemblage, shallow CO2 vent, trophic transfer, mercury 

bioaccumulation. 

 

4.1 Introduction 

Among climate changes, ocean acidification is one of the major threat forecasted for marine 

biota and ecosystem functioning (Gaylord et al. 2015, IPCC, 2014, Kroeker et al. 2013). 

However, acidification is not an isolated threat as it acts in synergism with other stressors (i.e. 

warming, invasive species, heavy metals pollution, etc.). For instance, the decreasing of 
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ocean pH, the rising of anthropogenic pollutants (i.e. heavy metals) and the consequent 

interaction with marine organisms has been studied in a number of recent works (Basallote et 

al. 2014, Lacoue-Labarthe et al. 2009, 2011, Roberts et al. 2013, Zeng et al. 2015 for a 

review). Heavy metals, such as mercury and lead, are the most common types of coastal 

contaminants detected in relatively high concentrations in waters and sediments of many 

coastal and estuarine systems (Doney et al. 2009). Trace elements have seawater speciation 

schemes that are strongly influenced by pH (Byrne et al. 2002), and as pH decrease, elements 

solubility increase (i.e. a decrease of pH from 8.1 to 7.4 increases the solubility of iron of 

40% - Millero et al. 2009). The form or speciation of a metal in natural waters can change its 

properties, such as the solubility and the strength to form complex with inorganic and organic 

ligands. As a consequence, elements become differently bioavailable for organisms. For 

instance, copper in the ionic form is toxic to phytoplankton while it is not dangerous 

complexed to organic ligands (Millero & Pierrot, 2002). 

Among trace elements, mercury is one of the most harmful and toxic at low concentration, 

and it has both anthropogenic and natural sources (Valavanidis & Vlachogianni, 2010). It can 

accumulate in the inorganic form in the sediments, where is subject to biological methylation 

(Ullrich et al. 2001). Methylmercury, the most toxic form of Hg, is available for organisms 

and is highly subject to biomagnification along food web (Campbell et al. 2005, Nfon et al. 

2009, Power et al. 2002). Indeed, diet is the main way to accumulate Hg and it is well known 

that fish food seems to constitute the main route of heavy metals uptake for humans, 

producing a wide range of health risks (Brambilla et al. 2013, Castro-González & Méndez-

Armenta, 2008). For this reason, numerous recent studies have been conducted in 

anthropogenic polluted areas to evaluate the risk for humans consumption (Bonsignore et al. 

2013, Sprovieri et al. 2011). In addition, several studies have shown that the use of δ
15

N can 

be useful to trace bio-contaminant transfer in food webs (Cabana & Rasmussen, 1994, Nfon 

et al. 2009, Power et al. 2002, Vizzini et al. 2013b). 

Volcanic vents (both deep and shallow) are characterized by the leakage of major and trace 

elements together with gases (i.e. CO2, H2S, H2, CH4). Moreover, the waters surrounding the 

vent area are acidic and reducing (Dando et al. 1999, Tarasov et al. 2005), and these 

particular conditions change the solubility, the speciation and the bioavailability of trace 

elements in sediments close to the vent (Kadar et al. 2007, Roberts et al. 2013). Previous 

studies on organisms exposed to high CO2 emissions in deep vents showed that these 

environments can constitute a main route for intake of trace metals for a range of organisms, 
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from krill to fish species (Kadar et al. 2005a, 2005b, 2007, Martins et al. 2006, Price & 

Pichler, 2005, Ruelas-Inzunza et al. 2003, Tovar-Sanchez et al. 2009). A recent study in the 

shallow CO2 vent located in Levante Bay (Vulcano Island, Aeolian Archipelago), conducted 

on sediments and seagrass trace metals levels, concluded that the bay is affected by a low 

contamination of trace elements in the sediments with potential adverse biological impacts 

(Vizzini et al. 2013a). Potentially harmful trace elements in sediments, that are more soluble 

and labile in the low pH area, are sequestered mainly by primary producers with controversial 

effects. For example, phytoplankton can be negatively affected by the higher solubility of 

free ionic copper and positively influenced by the higher availability of iron (Millero et al. 

2009). 

CO2 vents represent the opportunity to study, in a natural laboratory, the synergetic effect 

between ocean acidification and toxic elements, and to investigate the possible consequences 

on whole communities. In this context, we hypothesized that the fish community exposed 

long-term to volcanic emissions that generate particular conditions in terms of pH, altered 

potential redox and emissions of trace elements, is negatively affected by mercury 

accumulation, with consequences on biomagnification rate along the higher trophic levels. In 

particular, to test our hypothesis, we measured and compared in an area interested by 

volcanic emissions (low pH site) against two controls: 

 the levels of THg in sediment and primary producers (macroalgae and seagrass); 

 the levels of THg in fish both at species and at community level; 

 the mercury biomagnification along the fish trophic levels by using the trophic 

magnification factor (TMF). 

 

4.2 Materials and Methods 

4.2.1 Study area and experimental design 

The Aeolian Archipelago (Southern Tyrrhenian Sea, North-Eastern Sicily) is one of the most 

active volcanic area in the Mediterranean Sea, characterized by several submarine seeps that 

have been extensively studied (Boatta et al. 2013, Capaccioni et al. 2011, Italiano et al. 

2009). In the last years, a growing interest is born towards the CO2 vent of Vulcano Island 

(located in Levante Bay), used as a natural laboratory to test the effects of ocean acidification 
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on marine biota (Apostolaki et al. 2014, Arnold et al. 2012, Calosi et al. 2013, among others). 

The area is characterized by acidic and reducing conditions, causing changes in major and 

trace element geochemical fluxes at the sediment-seawater interface (Vizzini et al. 2013a). 

Water composition in terms of the major elements (Na, K, Ca and Mg) is close to that of 

Mediterranean surface waters, while greater variability is recorded for dissolved Fe 

concentrations and other trace elements, which showed maximum values close to the vents 

(Boatta et al. 2013, Horwitz et al. 2014, Kadar et al. 2012). 

Three sampling sites were selected to be similar in terms of orientation (South-East), depths 

(2-5 m) and habitat (Cymodocea nodosa meadow). In particular, we chose a low pH site in 

Vulcano Island, close the primary CO2 vent in the Levante Bay, about 250 meters far away 

from the vent (hereafter “Low pH”, mean pH = 7.80 ±0.09); a control site is located in the 

same Bay in Vulcano Island (about 500 meters far away from the Low pH site, hereafter 

“Ctrl 1”, mean pH = 8.19 ±0.03) and a second control site in Lipari Island (hereafter “Ctrl 2”, 

mean pH = 8.22 ±0.02) (Fig. 4.1). 

 

Fig. 4.1 - Map of the study area showing the sampling sites in Vulcano (Low pH and Ctrl 1) 

and Lipari Islands (Ctrl 2). The primary vent is indicated by the star. 
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4.2.2 Samples collection and laboratory analysis 

Sampling was carried out from September to November 2014. Fish were collected by using 

small trammel nets, fish traps, hook and line (for details see Tab. 4.1). Surface sediment was 

also collected using a PVC hand-corer (Ø 4 cm, 0-1 cm, six replicates per site); macroalgae 

and seagrasses (three replicates per site for each species) were collected by hand from scuba 

divers. All the samples were stored at -20 °C and transferred to the laboratory until chemical 

analyses were performed. 

In the laboratory, macroalgae [Cystoseira spp., Caulerpa prolifera, Halopteris scoparia and 

Flabellia petiolata] and the seagrass Cymodocea nodosa were rinsed with distilled water and 

epiphytes were removed by surface scraping. Fish were identified at species level and 

classified into trophic groups following the classification by Guidetti & Sala (2007) and using 

the available information about diet in the FishBase database (Froese & Pauly, 2016). The 

trophic groups considered were: planktivores, herbivores, invertivores and small piscivores 

(Tab. 4.1). Total length was measured to the nearest 0.1 mm and then dorsal muscle was 

processed for analysis. 

All samples (abiotic and biotic) were frozen at -80°C, then freeze-dried (ALPHA 1-4 LDplus, 

Martin-Christ) and ground to a fine powder using a ball mill (MM 200 Retsch). An 

Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES, Optima 8000, 

PerkinElmer) with an hydride-generation system (linked to ICP-OES) was used to analyse 

THg in samples digested in a microwave system (MARS CEM). Dried samples were 

mineralized in Teflon digestion vessels. Sediments were mineralised with 9 ml HNO3 67–

70%,0.5 ml H2O2 30%, 3 ml HF 30% and 2.5 ml Milli-Q deionized water (Method 3052, 

United States Environmental Protection Agency 1996), while biological tissues by using 5 ml 

HNO3 67–70%, 1 ml H2O2 30% and 4 ml Milli-Q deionized water (following the method 

used by Vizzini et al. 2010). For each cycle of mineralization one analytical blank was 

prepared. The analytical procedure was checked using a standard reference material (recovery 

comprised between 87 and 98%), provided by the National Research Council of Canada: 

dogfish muscle DORM-4 (National Research Council of Canada) for fish, Lagarosiphon 

major BCR-060 (Institute for Reference Materials and Measurements) for primary producers 

and marine sediment NIST 2702 (National Institute of Standards and Technology) for 
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sediments. THg concentration was expressed as mg/kg of dry weight (dw). To compare Hg 

values found in other studies and with European Union Maximum Residue Limits, we 

converted dry weight into wet weight according to Magalhães et al. (2007). 

Stable nitrogen isotope ratio was analysed in all samples through an Isotope Ratio Mass 

Spectrometer (Thermo Scientific Delta Plus XP) connected to an Elemental Analyser 

(Thermo Scientific Flash EA 1112). Isotopic values were expressed in conventional δ unit 

notation as parts per mil deviations from the international standards, atmospheric nitrogen 

(N2), following the formula δX = [(Rsample/Rstandard) − 1] × 10
3
, where X is 

15
N and R is the 

corresponding 
15

N/
14

N ratio of sample and standard. Analytical precision based on the 

standard deviation of replicates of internal standards was 0.2‰. 

 

4.2.3 Data analysis 

To test the difference among sampling sites in the levels of total mercury in sediment and 

primary producers (macroalgae and seagrasses), the bioaccumulation in the fish species and 

the transfer along trophic levels of the fish community, we considered a one-factor 

experimental design (factor „Site‟, fixed at three levels: Low pH, Ctrl 1 and Ctrl 2). 

Univariate and multivariate statistical tests were performed by using STATISTICA v.10 

(StatSoft) and PRIMER v.6.0 + PERMANOVA (Anderson et al. 2008) software packages, 

respectively. 

Analysis of variance (one-way ANOVA) was carried out to evaluate differences among 

sampling sites in mercury concentrations of sediment, macroalgae, seagrass and fish (both at 

species and trophic group levels). Cochran‟s and Shapiro-Wilk‟s tests were used prior to 

analyses to verify the homogeneity of variances and the normality, respectively. Where 

significant differences were present, Tukey‟s post hoc test was used. Macroalgae data were 

transformed using log (x + 1) to meet the assumptions for the use of parametric test and 

analysed without species distinction, due to the low number of species common in the three 

sites. 

Moreover, to test the differences in mercury at fish community level, a multivariate analysis 

was performed only on species in common in the three sites (analysis was performed on a 

subsampling of three replicates for each species per site). Euclidean distances resemblance 
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matrix was calculated on normalized data of mercury levels and then permutational analysis 

of variance (PERMANOVA) and multivariate principal coordinates analysis (PCO) were 

carried out. The projection bi-plots of the variables that best correlated to the PCO axes were 

superimposed to visualize the variables most responsible for the patterns of multivariate 

dispersion. The similarity percentage (SIMPER) procedure was employed to identify the 

major fish taxa contributing to dissimilarities between sampling sites. 

To evaluate mercury transfer along the trophic levels, simple linear regressions were 

performed for each site using δ
15

N as independent variable and log-transformed THg 

concentration as dependent variable, using only the common species in the three sites. The 

slope (b) of the regression log[Hg] = a + b (δ
15

N) is the biomagnification power of the trace 

element and represents the change in concentration per unit change in δ
15

N over the food 

chain. A positive slope indicates biomagnification, whereas a negative slope indicates trophic 

dilution. Trophic magnification factors (TMFs) values were calculated from the slope 

according to the formula: TMF = 10
b 

(Nfon et al. 2009). TMF > 1 indicates accumulation of 

the trace element in the food chain, whereas a value < 1 suggests its dilution. 

 

4.3 Results 

Mercury concentration in sediments and primary producers showed a similar trend among 

sites, with higher levels of THg in Low pH compared to controls. In particular, sediments 

showed mean values of 0.03 ±0.01 mg/kg in Ctrl 1, 0.04 ±0.02 mg/Kg in Ctrl 2 and 0.08 

±0.01 mg/Kg in the Low pH, with differences between Low pH and the two controls 

(ANOVA: F 2, 15 = 22.69, p < 0.001). Seagrasses showed similar Hg levels in the two control 

sites (0.04 ±0.008 mg/Kg, 0.01 ±0.001 mg/Kg in Ctrl 1 and Ctrl 2, respectively), while higher 

values were found in the Low pH (0.12 ±0.02 mg/Kg - F 2, 6 = 81.31, p < 0.001). Additionally, 

macroalgae showed THg values higher in the Low pH (0.08 ±0.04 mg/Kg), than in both 

controls (0.03 ±0.01 mg/kg and 0.02 ±0.01 mg/kg in Ctrl 1 and Ctrl 2 respectively - F 2, 24 = 

16.61, p < 0.001) (Fig. 4.2). 
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Fig. 4.2 - Mean concentration (+SD) of total mercury (mg/Kg) in sediment, primary 

producers (macroalgae and seagrass), and fish (grouped in trophic groups) in the three 

sampling site (Low pH, Ctrl 1 and Ctrl 2). Asterisks indicate significant differences among 

sampling sites and numbers indicate results from post hoc tests (significance level: α = 0.05). 

 

Fish trophic groups reflect the same trend found in sediments and basal sources (higher in 

Low pH than controls). Overall, considering all the matrices analysed, the two controls 

ranged between 0.02 and 0.03 mg/Kg of THg in Ctrl 1, 0.02 and 0.04 mg/Kg in Ctrl 2 and 

0.04 and 0.08 mg/Kg in Low pH. Generally herbivores (Sarpa salpa and Parablennius 

sanguinolentus - F 2, 9 = 7.04, p < 0.05) showed lower levels than all the other groups, while 

the highest value was found in the small piscivores (Serranus scriba and Scorpaena porcus - 

F 2, 15 = 7.13, p < 0.01). The most conspicuous group was represented by invertivores and 

showed a gradient between Low pH and Ctrl 2 (F 2, 81 = 3.87, p < 0.05). Tukey‟s post hoc tests 

showed greater differences between Low pH and the second control, and only small piscivore 

group sampled in the impact site were higher than the two controls (Fig. 4.2). 

At fish species level, although species-specific responses were found, a general trend showed 

higher THg level in the impact site than controls. Fish analysed belonged to six families 

(Labridae, Sparidae, Gobiidae, Blenniidae, Scorpenidae, Serranidae - for details see Tab. 4.1) 

and almost all were in common among the three samplings sites, with the exception of 

Labrus viridis, P. sanguinolentus, Symphodus ocellatus and Symphodus mediterraneus, 

collected only in Low pH and one control. Overall, the species analysed showed greater THg 

levels in the Low pH compared to the controls with significant among-site differences in 7 

out of 14 species. In particular, S. scriba showed the highest value among the species 
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analyzed and Tukey‟s post hoc test highlighted higher mercury concentration in the Low pH 

than the two controls. On the other hand, S. mediterraneus, Symphodus roissali and S. salpa 

showed higher THg values in the Low pH than Ctrl 2 and intermediate values in Ctrl 1, while 

Coris julis showed lower THg value in Ctrl 2 compared to the other sites (Fig. 4.3). 

 

 

Fig. 4.3 - Mean concentration (+SD) of total mercury (mg/Kg) in muscle of fish analyzed in 

each sampling site (Low pH, Ctrl 1 and Ctrl 2). Species are grouped in trophic groups. Fish 

label: PS, Parablennius sanguinolentus; SS, Sarpa salpa; OM, Oblada melanura; DV, 

Diplodus vulgaris; GB, Gobius bucchichi; CJ, Coris julis; TP, Thalassoma pavo; LV, Labrus 

viridis; SO, Symphodus ocellatus; SM, S. mediterraneus; SR, S. roissali; ST, S. tinca SCR, 

Serranus scriba; SCO, Scorpaena porcus. Asterisks indicate significant differences among 

sites and numbers indicate results post hoc tests. 
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Table 4.1 - Summary of fish species, family, trophic group, number of individuals (N), and 

range of total length (cm – TL) analyzed per species in each sampling sites (Low pH, Ctrl 1 

and Ctrl 2). 

 Low pH Ctrl 1 Ctrl 2 

Family Species 
Trophic 

group 
N TL N TL N TL 

Labridae Coris julis Invertivore 4 10.2 – 18.1 4 11 – 15.8 4 10.2 – 16.6 

 Thalassoma pavo Invertivore 5 10 – 11.4 5 10.5 - 14.6 5 11.5 – 14.5 

 Labrus viridis Invertivore 3 10.3 – 12.2 0 / 3 9.7 – 11.4 

 
Symphodus 

ocellatus 
Invertivore 6 6.2 – 7.5 6 5.3 – 7.5 0 / 

 
Symphodus 

mediterraneus 
Invertivore 4 8.2 – 10.3 0 / 4 9.4 - 11 

 Symphodus roissali Invertivore 3 8.3 – 10.5 3 6.8 – 8.7 3 8 – 9.7 

 Symphodus tinca Invertivore 4 9.7 - 16 4 8.1 – 13.5 4 9.8 – 18.7 

Sparidae Diplodus vulgaris Invertivore 4 8.8 – 14.8 4 7.4 - 13 4 8.7 - 9 

 Oblada melanura Invertivore 3 10 – 11.1 3 8 - 12 3 7.3 – 10.7 

 Sarpa salpa Herbivore 4 16.7 - 18 4 21.5 – 24.5 4 15.8 – 27.5 

Gobiidae Gobius bucchichi Invertivore 5 7.3 – 8.1 5 7.1 – 11.3 5 6.8 – 9.7 

Blenniidae 
Parablennius 

sanguinolentus 
Herbivore 3 8.5 – 12.9 3 7.9 – 8.9 0 / 

Scorpenidae Scorpaena porcus 
Small 

piscivore 
3 9.2 - 14 3 12.4 - 15 3 10.2 – 16.2 

Serranidae Serranus scriba 
Small 

piscivore 
3 14.2 – 16.2 3 10.3 – 11.9 3 11.4 – 17.1 

 

At multivariate level, PERMANOVA showed differences in THg levels of fish assemblages 

among the three sites (Pseudo – F 2, 6 = 2.66, p(MC) < 0.05), with higher values in Low pH 

compared to Ctrl 1 and no differences with Ctrl 2 (pair wise post hoc test: Low pH > Ctrl 2 = 

Ctrl 1). The graphical ordination of principal coordinate analysis showed a separation among 

Low pH (in the right side) and the two controls (in the left side), and the first two axis (PCO1 

and PCO2) explained 67.6% of total variation (Fig. 4.4). SIMPER analysis showed that the 

species that mainly contributed to discriminate among sites and that accumulated greater THg 

were S. scriba, D. vulgaris and S. roissali among Low pH and Ctrl 1, C. julis, S. roissali and 
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S porcus among Low pH and Ctrl 2, and C. julis, O. melanura and S. tinca among the 

controls. 

 

 

Fig. 4.4 - Principal coordinates analysis (PCO) ordination based on normalized Euclidean 

distance of mercury concentrations of fish common in the three sampling site (Low pH, Ctrl 1 

and Ctrl 2). Fish species vectors are superimposed. The direction of vectors indicates the 

correlation and the length is proportional to the correlation value. 

 

Linear regression analysis revealed significant correlations between δ
15

N and the log-

transformed Hg concentrations of fish (Fig. 4.5). Although the correlation coefficients were 

low, slopes of the regressions were positive and significant for the three sites: Low pH (p = 

0.0054, b = 0.1865, r
2
 = 0.20), Ctrl 1 (p = 0.0077, b = 0.1561, r

2
 = 0.18), and Ctrl 2 (p = 

0.0015, b = 0.2303, r
2
 = 0.25). Trophic magnification factor (TMF) was calculated for each 

site and showed values greater than 1 (TMF = 1.54, 1.43 and 1.70 for Low pH, Ctrl 1, and 

Ctrl 2 site, respectively). 
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Fig. 4.5 - Relation between trophic level, determined by δ
15

N, and logarithm of mercury (log 

[Hg]) concentration in fish species in each sampling site. 
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4.4 Discussion 

The forecasted decrease of ocean pH in the next centuries together with the introduction of 

trace metals in the ocean (both of natural and anthropogenic origin) will affect their 

availability and accumulation in the marine biota, with consequences on ecosystem functions 

(Zeng et al. 2015). To date CO2 vents are exploited to test the effect of acidification on 

organisms exposed long-term to low pH conditions. Moreover, these sites can offer the 

possibility to test the synergistic effect of acidification with other stressors (Kadar et al. 

2005a, 2005b, 2007, Martins et al. 2006). Here, we focused the attention on total mercury 

levels of fourteen coastal fish species from a Mediterranean CO2 vent and we found that 

although fish reflected the higher mercury concentrations found in sediments and basal 

resources, a weak biomagnification characterized sites with different pH conditions. 

Our findings showed a general increase in mercury bioaccumulation in the Low pH site than 

the two controls, confirming our hypothesis. Almost all the species investigated showed 

higher THg levels in the Low pH site, but a few fish showed similarities with Ctrl 1. 

Moreover, fish showed an increase in THg along the trophic levels (from herbivores to 

invertivores, followed by small piscivores), but this trend did not translate in higher 

biomagnification rates in Low pH site than in controls. Biomagnification was highlighted 

through the linear regression determined by δ
15

N and log [Hg] in the three sampling sites, and 

the trophic magnification factor (TFM) showed similar values in the three sites. The slopes of 

the regression of log[HgT] against δ
15

N were 0.20, 0.18 and 0.25 (for Low pH, Ctrl 1, and 

Ctrl 2, respectively), showing values within the range observed for Hg biomagnification in 

food webs from different geographic locations (range: 0.16 - 0.29; Nfon et al. 2009). Finally, 

at fish community level, the principal component analysis (PCO) highlighted a separation 

between the Low pH and the two controls, but PERMANOVA analysis showed a difference 

only between Low pH and Ctrl 1. 

In the same area of Vulcano, previous studies focused on other compartments and organisms, 

and found higher levels of metals close to the vent, confirming the impact of the volcanic 

emissions. For instance, Vizzini et al. (2013a) determined the levels of trace elements in 

sediments, in the leaves of Cymodocea nodosa seagrass and its epiphytes across a spatial pH 

gradient in the vicinity of the primary vent. These results indicated that concentrations of 

some elements (As, Ba, Hg, Mo, Ni, Pb, and Zn) were generally greatest in the locations 

close to the primary CO2 vent, and their concentration reached lower values at about 350 m 
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away from the primary vent, thus our Ctrl 1 (located in Levante Bay) should not be impacted 

by the vent. However, the similarity for a few species between the Low pH and the nearest 

control could be explained by the greater mobility of some species and the confirm that fish 

use this area to feed (Chapter 2). Moreover, McClintock et al. (2014) reported similar results 

on the accumulation of trace elements (As, Cd, Co, Cr, Hg, Mo, Ni, Pb and V) in shells of 

four different species of gastropods, which were collected from three sites in Levante Bay 

with different pH values. On the other hand, Horwitz et al. (2014) found changes in trace 

elements accumulation in the sea anemone Anemonia viridis between impacted and control 

sites, although no apparent signs of stress were detected (Suggett et al. 2012). 

Particularly interesting is the case of Gobius bucchichi - Steindachner 1870, a small site-

attached fish, that lives together with A. viridis and is abundant in the acidified area of 

Vulcano Island (Nagelkerken et al. 2015). We found high levels of THg, similar to those of 

fish belonging to higher trophic levels such as the small piscivore Scorpaena porcus. The 

Bucchich's goby is a highly sedentary species that seems to be the most contaminated by 

mercury due to its direct intake from the sediment. Indeed, fish can accumulate metals not 

only through ingestion, but also through skin and gills, and this is probably correlated above 

all with the habitat use of the species (Desta et al. 2008). However, the high density of this 

species let hypothesize that it developed efficient mechanisms of excretion / detoxification, as 

a consequence of the longtime exposition to these particular conditions (Kádár et al. 2005a). 

Moreover, fish species of ecological or economic importance such as D. vulgaris and S. 

salpa, showed significantly higher Hg levels in the low pH site, although they were overall 

low (maximum 0.05 ppm dw) compared to other polluted sites (i.e. Bonsignore et al. 2013, 

Copat et al. 2012). 

Another study conducted in Panarea Island (close to Vulcano Island), measured the levels of 

harmful elements following an episode of volcanic activity and showed how fast can be the 

recovery of different compartments (biotic and abiotic) after an intense perturbation 

(Andoloro et al. 2012). Each species, however, can have a different response because 

bioaccumulation of metals in fish depends mainly on diet, but also on age or length of fish 

(Zhang & Wong, 2007). Moreover, fish absorb heavy metals from the surrounding 

environment depending on a variety of biotic factors (such as the characteristics of the 

species under consideration, the exposure period, the concentration of the element) and 

abiotic factors (such as temperature, salinity, pH and seasonal changes – Copat et al. 2012). 

Comparison with values found in deep vent in the Mid-Atlantic Ridge hydrothermal vent 
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fields (Martins et al 2006) showed Hg values lower in our study, but confirm the role exerted 

by the vent systems in keep available heavy metals toxic like mercury. 

In addition, comparisons with European Union Maximum Residue Limits after wet-weight 

conversion of Hg concentration (Magalhaes et al. 2007). For Hg, the maximum content 

allowed is 0.5 mg/Kg wet weight of in the edible part of fish for humans. Mean Hg values 

found in Levante Bay in the 14 species analyzed did not exceed the limit set by the European 

regulation. Although mercury levels in fish, primary producers and sediments from the low 

pH site were always higher than controls, the weak biomagnification rate along the fish 

trophic levels indicates no particular problems for human consumption. 

This study confirms a general decrease of contamination at a few hundreds of meters from 

the primary vent (Ctrl 1 is only at 500 m from the primary vent), as found by Vizzini et al. 

(2013a). As a consequence, particular attention deserves the choice of sampling sites when 

we test the effect of acidification in field experiments near CO2 vent, due to the possible 

confounding effect coming from other stressors, above all for species with limited 

movements. 
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CHAPTER 5: The influence of high CO2 / low pH conditions on otolith shape and 

composition of six coastal fish species at a Mediterranean CO2 vent 

 

Abstract: Naturally acidified environments, such as CO2 vents, are important sites to 

evaluate the potential effects and impacts of increased ocean acidification on marine 

ecosystems and biota. Here we assessed the effect of high CO2 / low pH on otoliths of six 

coastal fish species (Chromis chromis, Coris julis, Diplodus vulgaris, Gobius bucchichi, 

Sarpa salpa, Symphodus ocellatus) in a Mediterranean shallow CO2 vent. Taking into 

consideration the major and trace elements that are found near the vent and the gradient of 

dissolved inorganic carbon, we compared the otolith chemical signatures of fish exposed 

long-term to elevated CO2 emissions and reduced pH (pH=7.8) against fish living in two 

control sites (pH=8.2). A number of element:Ca ratios (Li:Ca, B:Ca, Na:Ca, Mg:Ca, Mn:Ca, 

Cu:Ca, Zn:Ca, Sr:Ca, Ba:Ca and Pb:Ca), along with δ
13

C and δ
18

O isotopic values, were 

measured in otoliths and water samples. Additionally, we combined chemical signatures with 

otolith shape analysis (morphometric and outline shape) to evaluate the effect of high 

CO2/low pH on this structure. We observed species-specific responses with regards to shape 

and chemical analysis. Significant differences between sites were found in otolith shape 

(elliptical Fourier descriptors) of G. bucchichi and D. vulgaris. Comparison of elemental and 

isotopic signatures indicated that there were significant differences for D. vulgaris, but 

differences were not found for the other species. Ultimately, besides improving our 

knowledge of the effects of high CO2 / low pH conditions on otoliths, the present results 

contribute to our understanding on the use of otoliths as natural tags. 

 

Keywords: otolith chemistry, isotopic composition, shape analysis, ocean acidification, 

Mediterranean fish, CO2 vent. 

 

5.1 Introduction 

Ocean acidification is one of the most prominent challenges that scientists and policy makers 

are currently facing, together with other consequences related to climate change (IPCC, 
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2014). Increased atmospheric CO2 has resulted in an increase in pCO2, and a reduction in pH 

and carbonate saturation indices in ocean waters (Doney et al. 2009), with implications on 

biota and the entire marine ecosystem (Kroker et al. 2012). Worldwide, multiple studies have 

focused on calcifying species with major effects forecasted for calcareous phytoplankton, 

corals and echinoderms (Orr et al. 2005). In contrast, effects of ocean acidification on non-

calcifying species, like fish, are still less well known (Ishimatsu et al. 2008), despite the 

increase in studies in recent years (i.e. Checkley et al. 2009, Munday et al. 2014, Nilsson et 

al. 2012). 

Ocean acidification may impact fish populations both directly through physiological and 

behavioral consequences (Nagelkerken & Munday, 2016, Nilsson et al. 2012) and indirectly, 

through habitat modification (Nagelkerken et al. 2015). In particular, larval and juveniles 

stages are particularly vulnerable to ocean acidification with consequences for population 

recruitment and connectivity (Rossi et al. 2016). Experiments on larval fish raised under pH 

levels projected for the end of the century have produced species-specific results (Munday et 

al. 2011a), however, negative effects on fish are generally observed and it has been 

hypothesized that there will likely be consequences to fish abundances under future acidified 

oceans (Baumann et al. 2011). Moreover, the central role of fish to worldwide seafood 

catches makes it necessary to understand the potential effects of ocean acidification on 

fisheries (Branch et al. 2013). 

Otoliths are calcified structures of fish which can be used to estimate age and growth 

(Campana & Neilson, 1985). They are sensory organs involved in balance, orientation, sound 

detection, and therefore are extremely important for fish survival. Otoliths are metabolically 

inert, grow continuously and incorporate micro and trace elements from the environment into 

the aragonite protein layers (Campana, 1999, Doubleday et al. 2014). These characteristics 

have enabled otoliths to be used as natural tags to unravel fish movement, habitat use and 

reconstruct environmental life-histories (Di Franco et al. 2012, Elsdon et al. 2008, Izzo et al. 

2015, Reis-Santos et al. 2013a, Rooker et al. 2016, Sturrock et al. 2012). In particular, 

otoliths, along with other calcified structures such as shells or fish skeletons, precipitate in 

equilibrium with seawater, reflecting seawater chemistry and other environmental conditions 

(i.e. salinity or temperature – Barnes & Gillanders, 2013; Miller, 2011, Reis-Santos et al. 

2013b, Tanner et al. 2013). Therefore, the chemical composition of otoliths is linked to 

ambient seawater conditions during precipitation and is a promising tool in the context of 

climate change studies (Fraile et al. 2016). 
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Several studies have investigated otolith formation under acidified conditions (i.e. Bignami et 

al. 2013, Munday et al. 2011b, Réveillac et al. 2015). Checkley et al. (2009) first 

demonstrated that otoliths in eggs and larvae reared in seawater with elevated CO2 were 

larger than those of fish reared in seawater with normal CO2. Both area and otolith mass were 

greater for fish under future projections of atmospheric CO2 (993 and 2558 µatm; Caldeira & 

Wickett, 2003). Nonetheless, most studies to date have been conducted in laboratory 

conditions, and it is not known whether similar patterns are seen for field studies in naturally 

acidified environments. 

Shallow CO2 vents provide a great opportunity to test the effect of long-term ocean 

acidification on marine biota and ecosystems (Fabricius et al. 2011, Hall-Spencer et al. 2008). 

For instance, Nagelkerken et al. (2015) demonstrated that escape speed and behavioral 

responses of fish exposed to long-term high CO2 levels were reduced compared to natural 

conditions. Another experiment, conducted at natural CO2 vents has also found that juvenile 

reef fish at seeps exhibited behavioral abnormalities similar to those seen in laboratory 

experiments (Munday et al. 2014). Moreover, CO2 vents are characterized by the emission of 

major and minor elements (Dando et al. 1999, Sedwick & Stüben, 1996), that may 

accumulate in sediments and biota (Vizzini et al. 2013) and therefore could also be 

incorporated in the otolith matrix, providing unique information to characterize movements 

and site fidelity of fish in naturally acidified environments. Ultimately, natural CO2 vents can 

be important sites to evaluate how ocean acidification may simultaneously affect otolith 

shape and chemistry, as well as the potential of otoliths as natural tags in changing ocean 

conditions. 

Here, we studied in situ the effects of ocean acidification on morphological and chemical 

features of otoliths of six coastal Mediterranean fish species (Chromis chromis, Coris julis, 

Diplodus vulgaris, Gobius bucchichi, Sarpa salpa, Symphodus ocellatus) in a shallow CO2 

vent off Vulcano Island (Aeolian Archipelago, Italy). In particular, the aims of the present 

study were to test if: 1) otolith shape in fish exposed to high CO2 levels is morphologically 

altered compared to fish living at normal pH sites; 2) otolith elemental signatures (major and 

trace elements, carbon and oxygen stable isotopes) provide information on the fidelity of fish 

to low pH sites by distinguishing individuals of a natural acidified environment from control 

sites. 
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5.2 Materials and methods 

5.2.1 Study area and sample collection 

The shallow hydrothermal system of Vulcano Island is one of the most active sites in the 

Aeolian Archipelago (24 km off the NE coast of Sicily, Italy). The main CO2 vent is in 

Levante Bay, on the eastern side of the island where volcanic emissions have been 

extensively investigated (Boatta et al. 2013, Capaccioni et al. 2011, Italiano et al. 2009). Gas 

composition is dominated by CO2 (97-99% vol.), which generates a pH gradient (from 5.5. to 

8.1) along the northern shore of the bay. Emissions also include small quantities of H2S 

(<2.2%), which rapidly decrease with distance from the vent (Boatta et al. 2013). Water 

composition in terms of the major elements (Cl, SO4, Na, K, Ca and Mg) is close to that of 

Mediterranean surface waters, while greater variability is recorded for dissolved Fe 

concentrations, with maximum values recorded close to the vent (Boatta et al. 2013). Many 

elements also leak from the vent, adding dissolved Si, K, Li, Rb, Mg, Ca to surrounding 

seawater (Sedwick & Stüben, 1996). The area is characterized by acidic and reducing 

conditions, causing changes in major and trace element geochemical fluxes at the sediment-

seawater interface (Vizzini et al. 2013). Seawater carbonate chemistry in the Levante Bay 

area ranged between 2.78 and 3.17 mmol/kg for total alkalinity and 0.02 and 3.64 for 

aragonite saturation state (for details see Boatta et al. 2013). 

Fish samples were collected between September and December 2014 at three sites: a low pH 

site in Vulcano Island (hereafter “Low pH”, mean pH = 7.80 ±0.09 SE) about 250 m from the 

primary vent, a control site in Vulcano Island (hereafter “Ctrl 1”, mean pH = 8.19 ±0.03) 500 

m from the primary vent, and another control site in neighboring Lipari Island (hereafter 

“Ctrl 2”, mean pH = 8.22 ±0.02) about 6.5 km from the first two sites (Fig. 5.1). Control sites 

were chosen to be similar in terms of orientation (South-East), depths (2-5 m) and habitat 

(Cymodocea nodosa meadow) to the Low pH site. Fish were collected by nets, fish traps, 

hook and line and stored at -20 °C prior to being transferred to the laboratory. 
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Fig. 5.1 - Map showing the location of sampling sites in Vulcano (Low pH and Ctrl 1) and 

Lipari Islands (Ctrl 2). The Open sea site is indicated in the channel between the two Islands 

and the primary vent is indicated by the star. Italy and Aeolian Archipelago are showed in 

the insert. 

 

Seawater samples for chemical analysis were collected on four dates (December 2014 and 

April, June and October 2015) to evaluate temporal variability at the three fish sampling sites, 

as well as at the primary vent (hereafter “Vent”) to characterize the volcanic emissions and at 

an offshore site (hereafter “Open Sea”) as a marine control. We collected three replicates for 

dissolved inorganic carbon stable isotope analysis (δ
13

C DIC) and three replicates for major 

(Ba, Ca, Mg, Mn, Sr) and trace element (Li and Zn) analysis. Upon collection, shallow water 

samples were filtered using 0.45-mm filters, acidified with 2% HNO3 and stored in glass 

sample jars. All samples were stored refrigerated at 4 °C until analysis. All glass and plastic 

materials used in this study were previously acid washed in a 10% nitric acid bath. All 

reagents were Suprapur grade. 
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5.2.2 Seawater analysis 

Dissolved Ba, Ca, Mg, Mn, Sr, Li and Zn were measured with an Inductively Coupled 

Plasma-Optical Emission Spectrometer (ICP-OES, Optima 8000, PerkinElmer). The 

analytical procedure was checked using a standard reference material (Nearshore seawater 

CASS-5, National Research Council of Canada). The recovery ranged from 79% to 94%. The 

detection limit was estimated as <1 µg l
-1

. 

Values of dissolved inorganic carbon (δ
13

C DIC) were quantified following methods outlined 

by Capasso et al. (2005). Water samples were stored in glass bottles (50 cc) and quickly 

sealed using an aluminium crimp cap and gas-tight rubber/Teflon plugs, taking care that no 

air bubbles were present. In the laboratory, two syringes were used per water sample. The 

first syringe was filled with ultra-pure He gas and the second one was kept empty and used to 

withdraw the aqueous phase from the storage tube - „water sampling‟ syringe. By inserting 

the two syringe needles through the septum of the storage bottles, an aliquot of water (0.2 ml) 

was withdrawn with the „water sampling‟ syringe while ultrapure He gas was injected. The 

aliquot of water was then injected through the rubber septum of a screw-capped glass vial. In 

order to reduce any air contamination, the vials were previously flushed with ultrapure He 

using an automated Carbonate Preparation Device (Thermo Scientific GasBench II). This 

device consists of an auto sampler tray kept in a thermostatic rack. A fixed amount (150-200 

µl) of 100% H3PO4 was automatically dispensed into the vials by means of a valve less 

pump. The reaction took place at 70°C. After 18 h, temperature of the thermostatic rack was 

lowered to 25°C and CO2 produced by acidification was analysed in terms of carbon isotope 

composition by a Thermo Scientific Delta V Advantage continuous flow isotope ratio mass 

spectrometer. All δ
13

C DIC values were reported relative to Vienna Pee Dee Belemnite 

(VPDB) and the analytical precision was ±0.1‰. 

 

5.2.3 Fish analysis 

In the laboratory, fish were identified to species level and six of them, representative of a 

typical coastal Mediterranean fish assemblage and widespread in the entire basin were 

selected for otolith analysis. The damselfish Chromis chromis (Linnaeus, 1758) is a 

gregarious planktivorous species found in the column water and relatively site-attached. The 

labrids Mediterranean rainbow wrasse Coris julis (Linnaeus, 1758) and ocellated wrasse 

https://en.wikipedia.org/wiki/Belemnite
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Symphodus ocellatus (Linnaeus, 1758) are commonly found in seagrass beds and are 

classified as necto-benthic and sedentary fish. The sparids common two-banded seabream 

Diplodus vulgaris (Geoffroy Saint-Hilaire, 1817) and Salema Sarpa salpa (Linnaeus, 1758) 

are species of economic value and are classified as necto-benthic. The Bucchich's goby 

Gobius bucchichi Steindachner, 1870 is a small cryptic benthic and highly sedentary species. 

Fish standard length was measured to the nearest 0.1 mm (see Tab. 5.1), and sagittal otoliths 

were removed using forceps, cleaned in Milli-Q water, and stored dry individually in labelled 

plastic Eppendorf tubes. 

 

Table 5.1 - Number of individuals analysed for each species per sampling site (Low pH, Ctrl 

1 and Ctrl 2), range of fish standard length (SL, cm) and otolith weight (OW, mg). 

 Low pH Ctrl 1 Ctrl 2 

 N SL OW N SL OW N SL OW 

C. chromis 12 6.9 - 8.7 7.9 - 17.2 11 5.1 - 8.0 3.4 - 16.3 12 5.8 - 8.3 6.2 - 16.1 

C. julis 12 7.0 - 13.2 0.9 - 2.5 11 7.8 - 13.4 0.9 - 2.9 14 7.8 - 12.7 0.9 - 2.6 

D. vulgaris 11 3.9 - 12.0 1.9 - 22.1 6 5.5 - 10.6 4.9 - 13.7 10 6.3 - 7.1 5.5 - 7.3 

G. bucchichi 7 3.0 - 6.7 0.8 - 4.0 10 5.0 - 9.4 2.2 - 11.4 4 5.7 - 8.0 2.7 - 9.8 

S. ocellatus 13 5.3 - 8.2 0.5 - 1.4 11 5.4 - 7.1 0.5 - 1.1 0 
No 

samples 

No 

samples 

S. salpa 10 13.5 - 16.5 10.7 - 14.6 11 14 - 20 9.3 - 18.9 4 15.0 - 23.0 13.1 - 26.2 

 

 

5.2.3.1 Otolith shape and morphometric analysis 

Whole otoliths were digitized using Leica software QWIN W3 and a Leica DFC295 camera 

mounted to a Leica MZ16 stereo microscope at 1.25× magnification. Images were taken 

using reflected light and a black background to ensure a clear outline of the otolith. Otoliths 

were oriented so that the sulcus was face down (distal orientation) and the rostrum 

horizontally aligned. Each otolith was described using (i) elliptical Fourier descriptors 

(EFDs), and (ii) morphometric measurements (Fergusson et al. 2008). The coefficients of 

EFDs for each otolith were estimated using the program Shape v. 1.3 (Iwata & Ukai, 2002), 

which describes the outline of the otolith using harmonics. The Fourier power (FP) spectrum 

was used to determine the number of Fourier descriptors required to adequately describe the 
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otolith outline (Crampton, 1995). Twenty elliptical Fourier harmonics were calculated for 

each sample. 

Otolith length, defined as the maximum length parallel to the sulcus, was measured using the 

software ImageJ (Rasband, 1997) and an electronic balance was used to weigh the otoliths 

with an accuracy of 0.01 mg (Tab. 5.1). All measurements were undertaken on the right 

otolith. Otolith relative length (ORL) was computed as the otolith length (OL) as a percent of 

fish standard length (SL), using the formula: 

𝑂𝑅𝐿 = 100 ∗ (𝑂𝐿/𝑆𝐿) 

 

5.2.3.2 Otolith preparation and chemical analysis 

After image acquisition and measurements, otoliths were prepared for elemental and isotopic 

analyses. The right otolith of each individual was embedded in epoxy resin (Epofix, Struers) 

spiked with 30 ppm of indium (
115

In) and cut transversely through the nucleus (200−300 μm 

thick) using a low speed diamond saw (Isomet, Buehler). Indium was used so that the epoxy 

resin could be distinguished from the otolith material during analysis. Sections were polished 

using several grades of lapping film before being fixed onto a glass microscope slide using 

indium-spiked thermo-plastic glue (CrystalBond™509). Slides were then cleaned, sonicated 

and analysed on a New Wave 213 nm UV high performance (Nd:YAG) laser microprobe 

coupled to an Agilent 7500cs inductively coupled plasma mass spectrometer (LA ICP-MS). 

Otoliths were analysed in random order and elemental data collected from the same region 

for each otolith at both core (representing the larval/juvenile stage of life) and edge positions 

(representing recently occupied habitat) using a 30 µm spot. Each run generally consisted of 

90 s acquisition: 30 s blank, to correct for background counts which were subtracted from 

each sample, 30 s ablation (laser fluency 5 J/cm
2
) and 30 s for washout. The following 

elements were analysed: 
7
Li, 

11
B, 

23
Na, 

24
Mg, 

43
Ca, 

55
Mn, 

63
Cu, 

66
Zn, 

88
Sr, 

138
Ba and 

208
Pb. 

The values of Li and B were consistently below the detection limits and therefore excluded. 

To measure instrument drift and precision a reference glass standard, NIST612, was analysed 

approximately every 10 samples, and a carbonate standard, MACS-3 (United States 

Geological Survey), was analysed at the beginning and end of each session. The mean CVs of 

repeated measures of the standards for all elements ranged between 3.0% (Mg) and 7.3% 

(Zn) for NIST612, and 7.1% (Cu) and 12.9% (Ba) for MACS-3. Data reduction, including 

background corrections, and mass count data conversion to concentrations (ppm) were 
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performed using Glitter (GEMOC, Macquarie University, Sydney, Australia). All otolith 

elemental concentration data were then converted to molar concentrations and standardized to 

calcium (element:Ca). 

Otoliths of C. julis, D. vulgaris, G. bucchichi and S. salpa were analyzed for δ
13

C and δ
18

O 

using isotope ratio mass spectrometry (IRMS). Two regions (core and edge) were analysed in 

each otolith similar to that of elemental analysis. Material was milled from otoliths using a 

New Wave Micromill; this material was subsequently crushed and the resulting powder 

transferred to acid washed vials and flushed with ultrapure He, in order to reduce any air 

contamination. A fixed amount (150-200 µl) of 100% H3PO4 was automatically dispensed by 

an automated Carbonate Preparation Device (Thermo Scientific GasBench II) kept at 50°C. 

The carbonate isotopic composition of the CO2 produced was measured by Thermo Scientific 

Delta V Advantage continuous flow isotope ratio mass spectrometer. Results were expressed 

in delta (δ) notation. The value relative to VPDB was calculated from triplicate analyses of an 

internal calibrated standard measured within the same batch. Precision of the carbon and 

oxygen isotope ratios was better than 0.1 and 0.2‰, respectively. 

 

5.2.4 Data analyses 

Univariate and multivariate statistical techniques were used to test the potential difference 

among sampling sites in terms of individual elements and multi-element composition for both 

seawater and otoliths. 

Analysis of seawater data were done using univariate PERMANOVA for single elements and 

δ
13

CDIC, and multi-elemental analysis, with the factors Site („Si‟, fixed with five levels: Low 

pH, Ctrl 1, Ctrl 2, Vent, Open sea) and Date („Da‟, random with four levels: winter, spring, 

summer, fall). Permanova+B20 package (Plymouth Marine Laboratory) was used to perform 

all the statistical analyses (Anderson et al. 2008). 

Elemental otolith composition of each fish species was analysed separately using both a one-

way analysis of variance (ANOVA) and a one-way permutational analysis of variance 

(PERMANOVA). Site („Si‟) was treated as a fixed factor with three levels (Low pH, Ctrl 1 

and Ctrl 2). Data were ln (x+1) transformed prior to analyses and a Euclidean distance 

dissimilarity matrix was used. If significant differences occurred, pair-wise post hoc tests 

were used to assess which sites differed. Non-metric multidimensional scaling (MDS) and 

canonical analysis of principal coordinates (CAP) were used to compare otolith elemental 
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signatures between acidified and control sites. In particular, MDS was used to identify sites 

of fish origin (core region analysis) and CAP analysis was used to distinguish among 

sampling sites (edge region chemical composition). For all CAP and PERMANOVA tests, 

we used 999 unrestricted random permutations of the raw data. A cross-validation (or leave-

one-out) procedure was used to assess how accurately samples were assigned to sites in the 

canonical space (Anderson and Willis, 2003). In addition, PERMANOVA was used to test 

statistical differences in stable isotope composition of otoliths of each species between 

sampling sites. 

Furthermore, differences in otolith shape (using elliptical Fourier descriptors) of each species 

among sites were also tested using PERMANOVA and CAP analysis, using the same 

experimental design as that used for the elemental otolith composition. Otolith relative length 

(otolith/fish size ratio) was analysed using ANOVA to test differences in terms of 

morphometric variables. 

 

5.3 Results 

5.3.1 Water chemical analysis 

Chemical seawater composition showed a greater temporal variability than spatial one. 

Univariate PERMANOVA showed significant differences for all the elements analyzed for 

the interaction „Site x Date‟, and only Li showed significant differences for the factor Date. 

Pair wise post hoc tests did not show a general trend for the elements analyzed (Tab. 5.2). In 

addition, analysis on dissolved inorganic carbon (δ
13

C DIC), showed significant differences 

between dates, with pair wise tests showing the main difference between winter and all other 

dates (see Tab. 5.2 and Fig. 5.2). 
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Table 5.2 - ANOVA results for water elemental composition and δ
13

CDIC comparing among 

sampling sites and dates. Probability levels: n.s. = not significant; * = p < 0.05; ** = p < 

0.01. 

Source 
 

Ca Mg Sr Li 

 df MS 
Pseudo-

F 
p MS 

Pseudo-

F 
p MS 

Pseudo-

F 
p MS 

Pseudo-

F 
p 

Site 4 3.24e-2 0.91 n.s. 3.13e-4 0.30 n.s. 1.20e-3 0.37 n.s. 2.66e-3 2.02 n.s. 

Date 3 1.14 730.55 ** 0.11 358.3 ** 0.16 153.46 ** 0.11 68.58 ** 

Site x 

Date 
12 0.44 23.35 ** 1.07e-3 3.34 ** 3.31e-3 3.17 ** 1.31e-3 0.79 n.s. 

Residual 35 1.56e-3   3.20e-4   1.04e-3   1.65e-3   

  Ba Mn Zn δ13CDIC 

 df MS 
Pseudo-

F 
p MS 

Pseudo-

F 
p MS 

Pseudo-

F 
p MS 

Pseudo-

F 
p 

Site 4 0.26 1.34 n.s. 13.08 9.16 ** 9.45e-2 0.21 n.s. 16.05 43.78 n.s. 

Date 3 4.90 420.9 ** 0.16 4.15 ** 7.21 97.49 ** 3.50 9.55 ** 

Site x 

Date 
12 0.20 17.28 ** 1.46 37.59 ** 0.45 6.09 ** 1.58 4.30 n.s. 

Residual 35 1.16e-2   3.88e-2   7.40e-2   0.37   

 

 

Fig. 5.2 - Seawater dissolved inorganic carbon (δ
13

CDIC, mean ±SD) in the Vent, Low pH, 

Ctrl 1, Ctrl 2 and Open Sea sites. 

 

Also multi-elemental analysis showed significant differences for the interaction „Site x Date‟ 

(Tab. 5.3). Generally, pair-wise post hoc tests showed that Vent and Low pH differed from 

the other sites in winter and fall, while this trend was not true in summer and spring when all 
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the sites showed differences. Consistent with PERMANOVA, CAP analysis showed a similar 

pattern for the Vent and the Low pH sites, compared to Ctrl 1, Ctrl 2 and Open Sea (Fig. 5.3). 

 

Table 5.3 - PERMANOVA results for the multi-elemental water composition comparing 

among sampling sites and dates. 

Source df MS Pseudo -F P (MC) 

Site 4 14.81 121.17 0.001 

Date 3 16.73 136.90 0.001 

Site x Date 12 2.34 19.16 0.001 

Residual 40 0.12   

 

 

Fig. 5.3 - CAP on multi-elemental seawater analysis for the four dates (winter, spring, 

summer and fall) at the Vent, Low pH, Ctrl 1, Ctrl 2 and Open sea sites. 

 

5.3.2 Otolith shape and morphometric analysis 

Otolith shape (EFDs) differed significantly between sites for G. bucchichi (PERMANOVA: 

Pseudo-F 2, 21= 3.25, p(MC) < 0.01) and D. vulgaris (Pseudo-F 2, 23 = 1.95, p(MC) < 0.05). 
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Pair-wise post hoc tests confirmed significant differences between Low pH and the two 

controls for G. bucchichi, and a significant difference between Low pH and Ctrl 2 for D. 

vulgaris. These results were supported by the CAP analysis and cross validated results of 

67% and 65% for G. bucchichi and D. vulgaris, respectively (Fig. 5.4). For the other species, 

no significant differences were found between sites (C. chromis: Pseudo-F 2, 33 = 1.17, p > 

0.05; C. julis: Pseudo-F 2, 32 = 1.52, p > 0.05; S. salpa: Pseudo-F 2, 18 = 1.34, p > 0.05; S. 

ocellatus: Pseudo-F 1, 20 = 0.34, p > 0.05). However, C. julis and S. salpa in the CAP analysis 

showed a similar pattern for the two controls compared to the Low pH, with a cross-

validation result of 63% and 62%, respectively, whereas C. chromis and S. ocellatus showed 

lower levels of correct classification (44% and 59%, respectively). 

Otolith relative length (ORL) showed significant differences for D. vulgaris between sites 

(ANOVA: F 2,23 = 16.20, p < 0.001) and Tukey‟s post-hoc test confirmed that the Low pH 

site differed from the two controls. No significant differences in ORL were found for the 

other species between sites (p > 0.05). 

 

Fig. 5.4 - CAP analysis of otolith shape (elliptical Fourier descriptors) for Chromis chromis, 

Coris julis, Diplodus vulgaris, Gobius bucchichi, and Sarpa salpa from Low pH (■), Ctrl 

1(▲) and Ctrl 2 (▼). S. ocellatus not shown, as species was only present in two sampling 

sites. 
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5.3.3 Otolith chemical analysis 

The concentration of single elements varied significantly for some species, but no common 

patterns in the element:Ca ratios could be observed either among species or sites, both in the 

edge and core regions (Fig. 5.5 and Fig. 5.6, respectively). In particular, analyses of variance 

revealed significant differences in the concentration of Sr in otolith edge of C. julis 

(ANOVA: F 2, 22 = 5.88; p < 0.01), of Ba in D. vulgaris (F 2, 22 = 7.76; p < 0.01), of Cu in S. 

ocellatus (F 1, 22 = 6.49; p < 0.05) and Pb in S. salpa (F 2, 22 = 4.02; p < 0.05). Tukey‟s post 

hoc tests revealed that the Low pH was different compared to Ctrl 2 for C. julis and S. salpa; 

and low pH site was different compared to the two control sites for D. vulgaris. Analysis of 

variance on the concentration of single elements (Na, Mg, Ca, Mn, Cu, Zn, Sr, Ba and Pb) in 

the core region did not show any significant differences for C. julis, D. vulgaris, G. bucchichi 

and S. salpa. For C. chromis, significant differences in Sr were found (ANOVA: F 2, 27 = 

4.51; p < 0.05), and Tukey‟s post hoc tests revealed that Ctrl 1 was significantly different to 

Low pH and Ctrl 2. Significant differences between Low pH and Ctrl 1 were also found for 

Na in S. ocellatus (F 2, 18 = 4.51; p < 0.05), Cu (F 2, 18 = 4.51; p < 0.05) and Pb (F 2, 18 = 4.51; p 

< 0.05). 

 

 



94 

 

 

Fig. 5.5 - Otolith edge concentrations (mean + SE) of Na, Sr, Mg, Mn, Zn, Ba, Cu, and Pb 

for Chromis chromis (CC), Coris julis (CJ), Diplodus vulgaris (DV), Gobius bucchichi (GB), 

Symphodus ocellatus (SO), Sarpa salpa (SS) in the three sampling sites (Low pH, Ctrl 1 and 

Ctrl 2). Significant differences among sites (p < 0.05) per species are showed by asterisks. 



95 

 

 

Fig. 5.6 - Otolith core concentrations (mean + SE) of Na, Sr, Mg, Mn, Zn, Ba, Cu, and Pb for 

Chromis chromis (CC), Coris julis (CJ), Diplodus vulgaris (DV), Gobius bucchichi (GB), 

Symphodus ocellatus (SO), Sarpa salpa (SS) in the three sampling sites (Low pH, Ctrl 1 and 

Ctrl 2). Significant differences among sites (p < 0.05) per species are showed by asterisks. 

 

The multi-element compositions differed between the two otolith regions (core and edge). No 

significant differences between sites were found for the core region for all the species 

analyzed (PERMANOVA, p > 0.05) and also ordination via MDS did not show patterns 

among sites. In contrast, edge elemental analysis showed differences between sites for D. 

vulgaris (PERMANOVA: Pseudo-F 2, 22 = 4.0123; p < 0.01). Pair wise post hoc tests revealed 

that the low pH site was significantly different compared to Ctrl 1 and 2. No significant 
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differences were found in multi-elemental concentration for C. chromis, C. julis, G. bucchichi 

and S. salpa. For these species, although PERMANOVA on edge was not significant, CAP 

analysis generally successfully classified fish sampled in the Low pH site and the two control 

sites, namely S. ocellatus (83 %) and C. chromis (76 %) (Tab. 5.4). 

 

Table 5.4 - Cross-validation  results from CAP analysis on otolith edge multi-elemental 

analysis. Results are given as percentage of the total fish classified for each site. 

 C. julis C. chromis D. vulgaris G. bucchichi S. salpa 

Low pH 75 77.8 81.8 28.6 60 

Ctrl 1 66.7 70 33.3 70 63.6 

Ctrl 2 63.6 81.8 62.5 75 25 

 

Analysis of otolith isotopic composition (δ
13

C and δ
18

O) did not show significant differences 

among sampling sites for C. julis, G. bucchichi and S. salpa, with the exception of D. 

vulgaris (PERMANOVA core: Pseudo-F 2, 16 = 10.70; p < 0.01; edge: Pseudo-F 2, 22 = 7.94; p 

< 0.01). Pair-wise post hoc tests confirmed significant differences between low pH and the 

two control sites for the core region, while for the edge low pH and control 1 showed 

significant differences with regards to control 2. In general, isotopic results were similar 

between sites, with most otoliths from controls with more depleted values than the Low pH 

site, above all for the edge region (with the exception of S. salpa). Overall, isotopic values 

were more depleted in the core region than in otolith edges for all species (Fig. 5.7). 
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Fig. 5.7 - δ
13

C and δ
18

O (mean + SD) in otolith edge and core of Coris julis, Diplodus 

vulgaris, Gobius bucchichi, and Sarpa salpa in the three sampling sites (Ctrl 1, Ctrl 2 and 

Low pH). 

 

5.4. Discussion 

Ocean acidification is known to morphologically alter carbonate structures of most marine 

invertebrates (like foraminifera, coccolithophorids, echinoderms and molluscs - Doney et al. 

2009). However, much less information is available on structural changes that may occur in 

fish calcified structures, such as otoliths, and it is based exclusively on laboratory 

experiments (Bignami et al. 2013, Checkley et al. 2009, Maneja et al. 2013, Munday et al. 

2011a, 2011b, Réveillac et al. 2015). In this study, we investigated the effects of ocean 

acidification on otolith morphology and chemistry in fish exposed long-term to high CO2 / 

low pH conditions, in a naturally acidified ecosystem. We found an effect of acidification on 

otolith shape on two out of six species analysed, as found in previous studies, while no clear 

consistent effects were observed in chemical and isotopic signatures. 

Here, otolith shape responded significantly to acidification in G. bucchichi and D. vulgaris, 

with other two species revealing moderate effects (C. julis and S. salpa). These species are 
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benthic or nekton-benthic, and in particular, G. bucchichi is a highly site-attached species, 

showing a territorial behaviour. and the juveniles specimens of D. vulgaris are highly 

territorial (elevated site fidelity for Diplodus spp. as shown by Di Lorenzo et al. 2014). In 

contrast, C. chromis, the only species without clear otolith shape variations between acidified 

and control sites is a pelagic and mobile species in comparison to the others investigated in 

this study. Results follow previous laboratory studies (i.e. Bignami et al. 2013, Checkley et 

al. 2009, Maneja et al. 2013, Réveillac et al. 2015) showing that otolith morphology can be 

affected by different CO2 levels, with observed differences in shape likely determined by the 

duration of exposure to the elevated CO2 conditions, with more mobile species (i.e. C. 

chromis) showing less structural differences as they experience elevated CO2 for shorter time 

periods. Comparisons of otolith relative length highlighted a difference between sites only for 

D. vulgaris. However, other laboratory studies have not find differences in otolith shape of 

species reared in low pH conditions (i.e. Atlantic cod Gadus morhua and the clownfish 

Amphiprion percula; Maneja et al. 2013 and Munday et al. 2011b, respectively), suggesting 

species-specific responses, probably depending on time of exposure, levels of pCO2 or 

species sensibility (Munday et al. 2011b). 

Otolith size and relative densities change the ability of fish to detect sounds (Bignami et al. 

2013), and otolith asymmetry can have deleterious effects on fish survival (Gagliano et al. 

2008), with possible consequences on fish population recruitment (Munday et al. 2010). 

Although adults can survive at high CO2 levels, acidification can affect their sensory systems, 

with consequences on olfactory (Dixson et al. 2010) and auditory (Simpson et al. 2011) 

processes. This sensory alteration can have important implications on fish behaviour 

(Munday et al. 2014). Nowadays, there is a need to integrate laboratory, mesocosm and field 

experiments to improve our understanding of the effects of ocean acidification (Riebesell & 

Gattuso, 2015). CO2 vents are naturally acidified environments that provide a great 

opportunity to investigate organisms normally exposed long-term to future ocean conditions. 

Although we found differences between the vent and the low pH compared to the other sites 

in water chemistry, mostly in winter and fall, and there was a clear influence of proximity to 

the primary vent in terms of water characteristics, our analysis revealed that otolith elemental 

composition was not sufficiently different to successfully differentiate fish captured in sites 

with different pH conditions. This is in accordance with a previous laboratory experiment 

where no significant differences were found in otolith chemistry (Li, Mg, Mn, Sr and Ba) of 

fish reared at different pH levels (pH = 8.15, 7.7 and 7.6 - Munday at al. 2011). Overall, the 
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small spatial scale of the study, together with variations in water chemistry over time, may 

have contributed to the homogenizing of otolith elemental fingerprints (i.e. Hamer et al. 2003, 

Reis-Santos et al. 2012, Swearer et al. 2003). In addition, seawater chemistry is relatively 

constant compared to estuarine environments, and at short distances variations among sites 

can be difficult to detect, as found in previous studies in marine environments (Gillanders et 

al. 2001). 

Significant differences between sites were confirmed by edge otolith chemistry only for 

juvenile D. vulgaris, while for other species (C. chromis, C. julis and S. salpa) multivariate 

ordination plots suggested a separation between low pH and control sites, although 

significant differences were not found. Surprisingly, the most sedentary species studied (G. 

bucchichi) showed significant differences in shape analysis, but not in elemental signature. In 

contrast, core elemental compositions did not reveal spatial differences. This lack of 

difference is probably indicative of fish having a common natal origin (i.e. same spawning 

area) or chemical variations not being sufficient to distinguish between natal origin sites 

(Papetti et al. 2013). All the species investigated in this study have a pelagic larval stage that 

ranges between 10 and 30 days (Raventos & Macpherson, 2001), which could mean that the 

natal origin is common coastal spawning areas away from Aeolian Archipelago. 

Contrary to our expectation, otolith isotopic signatures (δ
13

C and δ
18

O) did not show a clear 

pattern among sites with different pH. Although dissolved inorganic carbon changes along 

the Levante Bay, with a clear gradient from the primary vent towards the control area, 

otoliths did not record this information, probably due to the high variability of these natural 

sites in terms of both pH and DIC. Fish analysed in this study seem to exploit the low pH site 

(confirmed both by underwater visual census and stable isotope analysis on muscle tissue 

carried out in the same study area for the same fish - see Chapters 2 and 3), however otolith 

isotopic composition seems to have a limited ability to characterize collection areas or 

movements in this volcanic area. This result is in contrast with a previous study conducted by 

Fraile et al. (2016) where a depletion in δ
13

C found in otoliths was correlated to higher CO2 

anthropogenic emissions. 

As found in previous studies, otolith elemental composition can vary among species, 

depending on physiological mechanisms (Chang & Geffen, 2013, Reis Rantos et al. 2008, 

Sturrock et al. 2015). Here, the six fish species showed a different response to the low pH 

environment, which may be related to species-specific capacity for pH regulation. The natural 
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variability in exposure to CO2 in the vent area, together with the different response of each 

species to similar conditions, habitat range or use patterns could explain the diversity of our 

results. Some species, like the most site-attached G. bucchichi, showed significant differences 

in otolith shape between sites, but did not seem affected by high CO2 / low pH conditions. 

Indeed, Nagelkerken et al. (2015) found that, although the escape speed is lower compared to 

control sites, the density of this species is higher at the vent site. In addition, juveniles of D. 

vulgaris, another abundant species at the Vulcano low pH site (Chapter 2), does not seem 

disturbed by low pH. This was the only species that differed both in terms of otolith 

composition (elements and isotopes) and shape, and is also renowned for its site fidelity as 

juveniles (Di Lorenzo et al. 2014). On the other hand, the herbivore S. salpa and other more 

mobile species (C. chromis and S. ocellatus) did not show differences in terms of shape or 

otolith signature. These species likely do not use this particular site permanently but may 

roam there for foraging as suggested by the stable carbon and nitrogen isotope analysis on 

muscle (Chapter 3). 

Otolith chemistry does not seem a good proxy to follow a pH / DIC gradient in this naturally 

acidified area, but the different shape in otoliths indicates that these could be valid natural 

tags to identify habitat use and discriminate among populations. Other species, likely less 

tolerant, do not permanently occupy the acidified environment, but likely use it to their 

benefit (i.e. foraging, protection) and take advantage from their mobility to escape long-term 

exposure to high CO2 / low pH conditions. The lack of difference in chemistry has important 

implications on the applicability of using otoliths as natural tags for connectivity assessments, 

habitat use and reconstruction of fish environmental life histories, in a context of global 

change. It is also important to understand what are the consequences of differences in otolith 

shape and morphology on fish physiology and behavior, or indirect consequences on species 

interactions and fish survival. Moreover, there is a need to understand the implications these 

differences could have on fishery resources and socioeconomic issues in future acidified 

oceans.  
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CHAPTER 6: General Conclusion 

We used a naturally acidified environment to study the structural and functional organization 

of fish assemblages exposed to different pH levels, comparing a low pH site and two 

controls. Overall our findings suggest that the fish community seems able to withstand the 

projected increase in seawater CO2 and the concomitant lowering of pH. Fish community 

showed a slight decrease in species richness in the Low pH site compared to controls, and 

single species abundance and frequency did not show a unique spatial trend, although 

different among sites, suggesting a species-specific responses (Chapter 2). Moreover, fish 

exploit the vent area for feeding, as confirmed by the carbon and nitrogen isotopic depletion 

found in almost all the species. However, marked structural changes did not occur although a 

slight lower trophic level and higher species packing as highlighted by the isotopic niche 

analysis was found in the Low pH (Chapter 3). Accordingly to trophic organization analysis, 

the greater accumulation of mercury in fish exposed to acidified conditions corroborates the 

result that fish exploit the vent area. Although we found an increasing in Hg accumulation 

along the food chain, levels were always below the European Union Maximum Residue 

Limits and trophic magnification factor was comparable among sites (Chapter 4). Also 

otolith analysis revealed a species-specific response, morphologic alterations was recorded 

only in two out of six species analysed, showing that sensitivity to high CO2 emissions / low 

pH conditions can vary among species (Chapter 5). Moreover, elemental chemical signature 

of the otoliths exposed to different pH levels was similar, suggesting important implications 

towards the applicability of using otoliths as natural tags for connectivity assessments, habitat 

use and reconstruction of fish environmental life histories, in a context of global change. 

Results on otoliths of some fish species analysed in this study suggest that each species can 

tolerate in a different way particular conditions of high CO2 levels (Chapter 5). For instance, 

the small-sized specimens D. vulgaris showed differences in the otolith shape, suggesting that 

this species is more tolerant than others and spend more time in the low pH conditions, 

registering the otolith morphological alteration. As found by Nagelkerken et al. (2015) in the 

same vent of Vulcano Island, the density of Gobius bucchichi (a small-sized, cryptic and 

highly territorial species not censused in this study) is higher in the Low pH site than in 

controls. Hence, each species can be more or less tolerant and use this area in a different way 

for different time. On the other hand, large-sized species (i.e. S. salpa) with a wider home 

range, did not show alteration in otolith shape and could exploit this area for feeding. Another 
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possible explanation, indeed, is that fish are attracted by abundant prey found in the Low pH 

site (Vizzini et al. submitted), exploiting the site for feeding as confirmed by stable isotopes 

(Chapter 3). In this way, the higher cost to balance the acid-base regulation may be 

compensated by a high prey availability. Indeed, a higher abundance of invertebrates (mainly 

Amphipoda and Polychaeta) associated to macrophytes was found in the low pH site of 

Vulcano Island, due to a combined effect of high CO2, which on one hand drives bottom-up 

forces boosting primary producers (i.e. resource-effect), and on the other hand hinders top-

down controls through loss of carnivorous species (i.e. stressor-effect), generally less tolerant 

to ocean acidification. 

Contrary to expectation, slight differences were found in the structure and species 

composition at community level, but more remarkable differences were found at species 

level. Moreover, although expected negative impacts on larvae and juveniles (Baumann et al. 

2012, Ishimatsu et al. 2004, Pankhurst & Munday, 2011), the abundance of small-sized 

individuals in the Low pH site was comparable to that of the two controls. In addition, the 

behavioural differences found both in situ experiments and in field observations (Munday et 

al. 2014, Nilsson et al. 2012), did not alter directly the fish community structure. Although 

species richness was slightly lower, similarity of Low pH and Ctrl 1 sites may be due to 

mobility of large-sized individuals. This may be one of the possible explanations for the lack 

of differences at community level. Highly mobile organisms such as fish, cephalopods and 

some crustaceans that are capable of controlling extracellular pH through active ion transport 

are predicted to be less sensitive to ocean acidification (Melzner et al. 2009, Portner, 2008). 

On the other hand, population replenishment may occur from outside the vent area, from „not 

acidified populations‟ as suggested by Kroeker et al. (2012) and Munday et al. (2014) in 

other vents worldwide. Indeed, most fish species analyzed have a long pelagic larval stage 

ranging between 10 and 30 days (Raventos & Macpherson, 2001). 

Another possible explanation for the lack of difference could be related to plastic or adaptive 

responses after long-term exposure to high CO2 environmental conditions. Indeed, contrary to 

laboratory experiments that investigate effects of short-time exposure to low pH and sharp 

lowering of pH (Ishimatsu et al. 2004), fish may take advantage from the natural fluctuations 

in carbonate chemistry at the vents to tolerate better or adapt, generation after generation, to 

these particular conditions (Calosi et al. 2016, Kroeker et al. 2012). Field observations permit 

to evaluate the rate of „evolutionary adaptation‟ (Crozier & Hutchings, 2014, Sunday et al. 

2014). As an example, the ocellated wrasse S. ocellatus offspring brooded in different CO2 
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conditions had similar responses, but after transplanting portions of nests to the high-CO2 

site, embryos from parents that spawned in ambient conditions had higher metabolic rates 

(Cattano et al. 2016). Moreover, Allan et al. (2016) suggested transgenerational acclimation 

for some behavioural traits in juveniles reef fish exposed long-term to high CO2 levels. Thus, 

adaptive mechanisms can have a crucial role for fish, improving their resilience to 

environmental conditions. Emblematic is the case of G. bucchichi, which is a highly 

sedentary fish: it does not seem negatively affected by high CO2 / low pH conditions in terms 

of population width, although some altered behavioural aspects were found in field 

experiments (Nagelkerken et al. 2016). On the other hand, some species, likely less tolerant, 

can exploit their higher mobility to „escape‟ adverse conditions (i.e. S. salpa or C. chromis). 

As a consequence, of species tolerance, indirect effects on species interactions are difficult to 

forecast. 

Moreover, species can be indirectly affected by other factors, such as food availability and 

quality. For instance, copepods, which are basal sources in marine ecosystems and a major 

food source for fish, appear resilient to ocean acidification, but can be indirectly impacted by 

the lowered quality of microalgae, which they feed on (Rossoll et al. 2012). In addition, 

ocean acidification is expected to act synergistically with other stressors such as warming and 

pollution, and the combined effects of multiple pressures may pose a crucial issue to seafood 

security and quality with economic repercussions (Branch et al. 2013, Zeng et al. 2015). As 

an example, Kang (2011) correlated the main consequences of climate change (increase in 

atmospheric carbon dioxide, UV irradiation, and ocean temperatures) with a decrease in 

omega-3 fatty acid contents in phytoplankton (basal source in food web), and consequently in 

higher trophic levels including species consumed by humans. Therefore, a decrease in these 

essential molecules for optimal human growth and development may have detrimental effects 

on health, increasing risk for various diseases. 

Here we dealt with the effect of a single stressor (acidification) and we found minor changes 

in terms of direct effects of lowered pH on fish community and trophic structure. Some 

differences were found at the species level and may be indirectly related to ocean 

acidification (i.e. through habitat modification - Munday et al. 2014, Nagelkerken et al. 2015, 

Sunday et al. 2016). Many studies highlight that most species will be more sensitive when 

subjected to multiple stressors (i.e. acidification and warming, considered as two of the 

greatest threats to marine biodiversity - Harvey et al. 2013, Kroeker et al. 2013, Nagelkerken 

& Connell, 2015). Accordingly, it is important to consider that acidification is not expected to 
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act alone, but in a synergetic way with other global and local stressors (i.e. warming, invasive 

species, eutrophication and pollution - Kroeker et al. 2013, Nagelkerken et al. 2015, Russell 

et al. 2009). 

This study provided a complete and exhaustive frame of fish assemblages structure and 

trophic organization at different pH levels. As scant data are available in the literature on this 

topic, the results of this research provide information about the ecological effects of long-

term exposure to high CO2 levels on fish, a key biological component whose monitoring is 

relevant not only from the ecological side, but also for the economic one and for the 

implications on human health. Moreover, this study confirms the importance to use the 

naturally acidified environments to test ecological hypotheses on the effects of ocean 

acidification on communities and ecosystems. However much caution must be used to 

discuss the results as they can be bias by confounding variables characterizing the vent area 

(such as trace elements). Finally, we recommend an integration of experiments from different 

research approaches to better understand and forecast the effects of ocean acidification on 

marine life. At the same time, we need to reverse the trajectory of global CO2 emissions, 

starting to maintain under control our own carbon footprint and to follow green choices 

towards a more sustainable way of life.  
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