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The Silicon Photomultiplier (SiPM) is a solid state photodetector based on an array of single 

photon avalanche diodes (SPAD) connected in series with an individual quenching resistor. It is 

biased above the breakdown voltage (BV), that is, each pixel is operated in Geiger mode. SiPMs 

are an emerging technology, with promising applications in the field of sensors for their unique 

properties: high quantum efficiency, low operating voltage, high speed, high gain, insensitivity to 

magnetic fields and single photon sensitivity. Due to its high sensitivity and speed, such device 

may be used in low level light detection, e.g. in biochemical and biotechnological analysis where 

the goal is to minimize the analyte concentration. 

The importance of biosensors is currently growing exponentially and is driving the scientific 

community to generate versatile platforms, which can be used for a variety of applications and 

which can be mass-produced at low cost. Silicon-based devices, compatible with CMOS 

(Complementary Metal Oxide Semiconductor) technology, are still among the best candidates to 

fulfil all requirements for large market opportunities. The possibility of fabricating sensors 

directly in Si facilitates miniaturisation and low cost (for large volumes), thanks to the well-

established semiconductor industry. This enables the fabrication of lightweight devices which are 

both small and can operate with very low volumes of sample (DNA, proteins, etc.). Moreover, 

interfacing the sensor to complex circuits is simplified due to the common base materials used. 

All these characteristics make Si-based biosensors the best candidate for consumer technology. 

The design of a sensor includes two fundamental elements: the transductor and the sensitive 

element, and both depend on the type of measurement to be made. The sensing molecules 

(biological) must be immobilised in the sensing system, without altering their biochemical 

properties and without damaging the inorganic board or electronic component. Among the 

different fields of biosensor applications, the biomedical sector attracts a special attention due to 

the countless needs to measure disease-related parameters, especially in aggressive diseases and 

to monitor the parameters associated with the maintenance of health.  
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The reasons that drive the research to develop embedded and portable systems for biomedical 

applications are manifold. Firstly, the strong requirement of medical tools able to monitor vital signs 

or diagnostic markers in portable Point-of-Care (PoC) format have encouraged to develop solution for 

miniaturized systems at low cost, easy to use in order to allow patient self-monitoring. Among the 

diagnostic tools, if genetic analyses are required, DNA microarray and the Real Time- Polymerase 

Chain Reaction (PCR) are suggested, but they can be performed only by highly specialized 

laboratories. The first technique is a biological method to measure the expression level of a large 

number of genes simultaneously. The second is used in molecular biology to amplify and 

simultaneously detect or quantify a targeted DNA sequence. These analyses require large equipment 

and laborious protocols. The presence on the market of low cost and easy to use systems would enable 

genetic screening on the entire population.  

Optical transduction is certainly the most used detection method in biomedical field and, usually, it is 

used to detect the fluorescence emitted by specific fluorescent molecules, called markers, used to label 

fragments of DNA in DNA microarray and Real Time PCR applications. However, this method allows 

detecting the bioluminescence emitted by living organisms. Bioluminescence is the result of chemical 

processes, where the energy produced is released as visible light. Common applications of 

bioluminescence detection include in vivo studies of infection (with bioluminescent pathogens), 

cancer progression (using a bioluminescent cancer cell line), and reconstitution kinetics (using 

bioluminescent stem cells). This technology allows to the researchers to improve cancer investigation 

in several systems such as blood, brain, breast, fibrosarcoma, melanoma, pancreatic, prostate, 

colorectal. 

The main purpose of this thesis is to develop compact systems for DNA analysis (DNA microarray 

and Real Time PCR) and to measure the bioluminescence emitted by adenosine triphosphate (ATP, 

the key element for intracellular energy transfer) and genetic reporter (e.g. luciferase bioluminescent) 

for studying gene expression and cellular events, coupled to gene expression.  

In this Thesis, I performed an electrical and optical analysis of a novel class of SiPMs in the CW 

regime.  

Chapter 1 describes the operating principle of SiPM and its most important characteristics. 

Moreover, a brief comparison between traditional photomultipliers and SiPM is reported. 

In Chapter 2 more details about the SiPM used in this work and its electric-optical characterization 

are reported. Moreover, two different experimental setup for Lifetime and Photon counting 

measurements are described. 

After the brief introduction about SiPM history, some biosensor applications studied in this thesis are 

discussed. In particular, in Chapter 3, SiPM application to DNA microarray technology is described. I 

present results of DNA fragments characterization and discuss the great potentialities of a DNA 

microarray system based on SiPM technology. 

Chapter 4 introduces the SiPM application to Real Time PCR technology. I present the results 

obtained by using two different fluorophores, fully characterized and I show the ability of SiPM to
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detect very weak signals carried out by the excitation of small concentration of analyte in the sample. 

In Chapter 5, a brief introduction of bioluminescence is presented. This approach is widely used for 

several biosensing applications, where ATP and luciferase bioluminescence are measured. I present 

the results obtained and discuss the potentialities of a system based on SiPM technology as a 

miniaturized, cost-effective approach for detecting bioluminescence to study gene expression of 

cancer cells.  

The results of this work show a new approach to investigate the SiPM capabilities, the CW regime, 

demonstrating its outstanding performances and showing its use in innovative biosensing applications. 

This work was carried out in collaboration with the researchers of the "Sensor Lab” of CNR IMM 

Headquarters and has been partially funded by the National Project MIUR-PON “Hyppocrates– 

Sviluppo di Micro e Nano-Tecnologie e Sistemi Avanzati per la Salute dell’uomo” (PON02 00355).  

Part of the experiments were performed within the Biosensors and Bioelectronics laboratory of the 

Linköping Univestity in Sweden, under the supervision of Professors M.W.C. Mak and A.P.F. Turner. 
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Chapter 1  

The Silicon Photomultiplier: principles 

and features 

1.1 The origins 

The photoelectric effect was discovered in 1887 by Hertz [1] by exposing a negative electrode to 

ultraviolet radiation. In the next year, 1888, the photoelectric effect was conclusively confirmed by 

Hallwachs [2]. In 1889, Elster and Geitel [3] reported the photoelectric effect, which was induced by 

visible light striking an alkali metal (sodium-potassium). Since then, many scientists have made a 

variety of experiments and discussions on photoemission. As a result, the concept proposed by 

Einstein (in the quantum theory in 1905) [4], "On a Heuristic Viewpoint Concerning the production 

and Transformation of Light", has been proven and accepted. 

During this historic period of achievement, Elster and Geitel produced a photoelectric tube in 1913. 

Photomultiplier tubes had a rapid progress since the development of photocathodes. More than 20 

years passed until the first photomultiplier tube (PMT) was invented and became a commercial 

product in 1936 [5]. Single photons were detectable since then.  

Light detection technology is a powerful tool that provides a deeper understanding of a variety of 

phenomena. Measurements using light offer unique advantages: non-destructive analysis of a 

substance, high-speed and extremely high detectability. Advanced fields such as scientific 

measurement, medical diagnosis and treatment, high-energy physics, spectroscopy and biotechnology 

require the development of photodetectors that exhibit the ultimate limit in various performance 

parameters. In many of these applications, the PMT has become the detector of choice. However, 

PMTs have different strong handicaps: they are very sensitive to magnetic fields, their bias voltages 

are high (hundreds of Volts), their price is high because of the complex mechanical structure inside the 

vacuum container is mostly handmade [6]. This forced research toward the finding of an alternative to 

PMT [7].
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A promising candidate for low light detection was PIN photodiode, formed by three following regions: 

p-doped, intrinsic and n- doped silicon. However, the device has no internal gain; the noise is at the 

level of several hundred electrons and, consequently, the smallest detectable light flash needs to 

consist of even more photons [8]. 

Many of discussed problems are overcame by Avalanche Photodiodes (APDs). They show an internal 

gain which improves the signal-to-noise ratio with respect to PIN, but still around 20 photons are 

needed for a detectable light pulse. The excess noise factor, being connected to the fluctuation of the 

avalanche multiplication, limits the useful range of the gain [9]. 

The APD can also be biased at a voltage larger than the breakdown voltage resulting in an infinity gain 

operation. An external load of high value limits the maximum current to a safe mode. This working 

regime is named Geiger Mode and the devices operating in it are Single-Photon Avalanche Diodes 

(SPADs). This paved the way to the realization of the Silicon PhotoMultiplier (SiPM): a structure 

based on a planar pixel array of SPADs able to detect single photons like a PMT [9]. 

1.2 The SPAD 

A SPAD is a solid-state photodetector in which a photo-generated carrier can trigger an avalanche current 

due to the impact ionization mechanism. This device is able to detect low intensity signals (down to the 

single photon) and to discern the arrival times of the photons with a jitter of a few tens of picoseconds. 

SPADs, like APDs, exploit the photon-triggered avalanche current of a reverse biased p-n junction to 

detect an incident radiation. The fundamental difference between SPADs and APDs is that SPADs are 

specifically designed to operate with a reverse-bias voltage well above the breakdown (BV, VB). This kind 

of operation is also called Geiger mode in literature, in analogy with the Geiger counter [10]. SPADs 

are semiconductor devices based on a p-n junction reverse-biased at a voltage VA that exceeds 

breakdown voltage, VB, of the junction (Figure 1.1). 

 
Figure 1.1: Planar n+-p junction operating in Geiger mode developed at the Shockley laboratory, by Haitz [9]. 

At this bias, the electric field is so high that a single charge carrier injected into the depletion layer can 

trigger a self-sustaining avalanche. Furthermore, this ensures that the internal gain of the device is high 
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(approximately 10
6
). Consequently, the current rises swiftly (sub-nanosecond rise-time) to a 

macroscopic steady level in the milliampere range. These features make the SPAD preferable to APD 

in linear region. 

In reverse biased photodiodes, the electric field increases with the applied voltage, causing the increase 

of both the drift velocity and the kinetic energy of charge carriers injected in the depletion region. An 

electron (or hole) with enough kinetic energy can break a bond when collides with lattice atoms thus 

creating an electron-hole pair. However, the carrier loses part of its energy in this process of impact 

ionization.  

Both the original carrier and the secondary electron and hole will be accelerated by the electric field 

and possibly contribute to the generation of more electron-hole pairs, resulting in a positive feedback 

loop (avalanche) which gradually increases the overall number of carriers. 

The magnitude of the avalanche phenomenon depends on two concurrent factors: the carrier ionization 

rates and the rate at which electrons and holes leave the high-field region and are collected at the 

device electrodes. Ionization rates strongly increase with the electric field [11]. 

Although silicon electrons have a higher ionization rate than holes, an electric field value of about  

3 × 10
5
 V /cm is required, on average, to create one electron-hole pair per 1 µm travelled. 

For bias voltages beyond the breakdown voltage, ionization rates are very high and the carrier 

concentration and output current increase to very high values. This is the case of SPADs, whose gain 

reaches values above 10
6 

[12; 13]. When a SPAD is biased beyond the breakdown voltage, the lower 

electric field is not able any more to accelerate the carriers to impact-ionize with lattice atoms. 

Therefore, the current ceases and the device will stay in an OFF state for a short time, until a carrier 

(electron or hole) will trigger an avalanche event bringing the device into its ON state.  

In order to be able to detect another photon, the bias voltage must be raised again above breakdown. 

These operations require a suitable circuit, which has to: 

 sense the leading edge of the avalanche current;  

 generate a standard output pulse synchronous with the avalanche build-up;  

 quench the avalanche by lowering the bias down to the breakdown voltage;  

 restore the photodiode to the operative level.  

This circuit is usually referred to as a quenching circuit. 

In other words, the device operates in a binary mode and the need for quenching/recharging introduces 

a dead time between two consecutive events. The simplest way to quench the avalanche is by means of 

a high ohmic resistor in series with the SPAD, so that the voltage drop, caused by the avalanche 

current, lowers the SPAD bias down to the breakdown point. 

 

 

 



Chapter 1. The Silicon Photomultiplier: principles and features     4  

 

1.3 The Silicon Photomultiplier 

The Silicon Photomultiplier or SiPM was born from a patent of Z. Sadygov in 1996 [14] and it is 

currently under study and development to a growing demand for nuclear medicine, especially for 

positron emission tomography (PET) and diagnostic techniques used for the detection of tumours. 

SiPM is a semiconductor photodetector operating in limited Geiger mode. Its structure is based on a 

pixel array of SPAD, which individually act as photon counters. A photon counting diode cannot 

distinguish between multiple photons incident on the detector at the same time [15]. The SiPM 

overcomes this limitation since each SPAD is connected to the power supply through an integrated 

large series-quenching resistor RL. Being the outputs of the pixels connected together, the total device 

behaves like a proportional device for photon fluxes (analog behaviour), while each pixel, thanks to 

the individual integrated quenching resistors, works as an independent photon counter, i.e. as a binary  

device (digital behaviour) [16]. The analog behaviour and the electronic schematic of SiPM are 

reported in Figure 1.2. 

 

Figure 1.2: Operating principle (a) and equivalent electronic schematic (b) of SiPM. 

The single pair generation, hence single photon detection, gives rise to an avalanche (high currents 

flowing in through the device) with an amplification factor around 10
6
. The voltage drops across the 

resistor, leading the voltage across the junction of the device below the breakdown threshold. The 

current flowing in the photodiode at shutdown (latching current) is provided by a number of carriers so 

low that it is statistically unlike that they could trigger a new event of avalanche. The voltage across 

the junction returns to the overvoltage value imposed by external biasing circuit with a time constant 

of 50 ns (depending from the sensing resistor employed). The presence of a quenching resistor for 

each individual pixel of the array ensures a decoupling of the operation of each photodiode from all 

other devices of the matrix. In fact, each resistor switches off only the event of avalanche in the 

photodiode connected to it, while all other pixels continue to be biased to the overvoltage value 

imposed by the external bias circuit, as long as a couple of carriers photo generated or thermally 

generated will trigger an avalanche. The device output current is read on a resistor (Rs) common to all 

the pixels, whose value is between a few dozen and a few hundred of ohms, (see Figure 1.2). The 

voltage drop at this resistor terminal is proportional to the product between the number of pixels turned 

on and the current produced by each avalanche event (analog operation). 
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1.4 Main properties of SiPM 

1.4.1 Photon Detection Efficiency(PDE) 

The Photon Detection Efficiency (PDE) of a SiPM is the statistical probability that a photon impinging 

on the sensor surface is detected. It is a function of the wavelength and of the bias voltage and it is 

defined as the product of three components: 

𝑃𝐷𝐸 (𝜆, 𝑉 )  =  𝑄𝐸 (𝜆)  ⋅  𝑃𝑡  (𝑉 )  ⋅  𝜀𝐺𝐸𝑂    (1.1) 

where QE is the quantum efficiency of the photosensitive area; Pt is the triggering probability i.e. the 

probability that a photo-generated carrier has to trigger an avalanche breakdown; εGEO is the geometric 

fill factor of the device, i.e. the ratio of the photo-sensitive area to the total area of the sensor. 

The quantum efficiency of the photosensitive area represents the probability for a photon, impinging 

on the active surface of the detector, to generate an electron-hole pair in the active thickness of the 

device that could trigger an avalanche breakdown. Some of the incident photons are not absorbed 

because of the probabilistic nature of the absorption process or because reflected at the surface of the 

detector. Furthermore, some electron-hole pairs produced near to the surface of the detector could 

quickly recombine due to the abundance of recombination centres close by and are, therefore, unable 

to trigger a breakdown. The quantum efficiency, can be expressed as: 

𝑄𝐸 =  (1 −  𝑅)e−𝛼𝑤  (1 − e−𝛼𝑊  )    (1.2) 

where R is the optical power reflectance at the surface, α is the silicon absorption coefficient (cm
-1

), w 

is the depth from the Si/SiO2 interface of the depleted region (cm) and W is the width of the depleted 

region (cm). The first term of Equation 1.2, (1-R), represents the effect of the reflection at the device 

surface; the second term, instead, e
-αw

(1-e
-αW

), represents the fraction of photon absorbed in the 

depleted region of the device.  

The triggering probability is the probability that an electron-hole pair in the depletion region triggers a 

self-sustaining avalanche. It depends on the position where the primary electron-hole pair is generated 

and on the overvoltage. In a high-field region, the two carriers, an electron and a hole, travel in the 

opposite directions and contribute together to the overall triggering probability that can be calculated 

from the following relation [17]: 

𝑃𝑡 = 𝑃𝑒 + 𝑃ℎ − 𝑃𝑒 ∙ 𝑃ℎ      (1.3) 

where Pe and Ph are the electron and hole initiation probability, respectively. 

Finally, the geometrical fill factor is the ratio of the active to the total area of the device. Since the 

silicon photomultiplier is a pixelated sensor, some space between the cells is required for the 

separation, for the individual quenching resistor, for metallization (it connects all the pixels to the 

same electrode) and to fabricate the optical trenches that provide the optical isolation between the 
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cells. The geometrical fill factor, εGEO, of a silicon photomultiplier is defined as the ratio of the photo-

sensitive area (AS) to the total area (ATOT) of the device: 

𝜀𝐺𝐸𝑂 =
𝐴𝑆

𝐴𝑇𝑂𝑇
      (1.4) 

However, SiPM with smaller pixel area has a smaller fill factor; therefore, the best filling (and 

obviously the best PDE) can be obtained with a small number of large cells. Unfortunately, a SiPM 

with few large cells has a reduced linear dynamic compared to a SiPM with the same total area but 

with a larger number of small cells. Moreover, a big cell has a greater dark noise than a smaller one, 

since the dark noise is proportional to the depleted volume of the cell. 

The optimization of the fill factor, εGEO, of a SiPM is a compromise between the maximization of the 

PDE and the other performances required for the specific application. 

1.4.2 Gain 

The Gain of a SiPM is defined as the number of electron-hole pairs generated in the depletion layer of 

the device during an avalanche event. It is a function of the overvoltage (OV) applied to the device and 

of the temperature. The gain of the SiPM is defined as the ratio of the output charge QTOT produced by 

nph detected photons to the charge of an electron q: 

𝐺 =
𝑄𝑇𝑂𝑇

𝑛𝑝ℎ ∙𝑞
      (1.5) 

Considering the equivalent circuit of a single pixel reported in Figure 1.3 and assuming that one 

photon produces the avalanche of one pixel, the gain is (9): 

𝐺 =
𝑄𝑝𝑖𝑥

𝑞
=  

𝐼𝐿

𝑞
𝑑𝑡 ≈ 𝐶𝐷 ∙

(𝑉𝐵𝐼𝐴𝑆 −𝑉𝐵𝐷 )

𝑞
    (1.6) 

where CD is the diode capacitance and VBIAS-VBD is the applied overvoltage. Since CD is typically in the 

range of 10÷100 fF and VBIAS-VBD is in the range of a few volts, a high gain, typically in the range of 

10
5 
÷ 10

7
, is obtained. 

 
Figure 1.3: (a) Schematic representation of the SiPM single pixel. (b) Equivalent circuit of the SiPM single pixel. 
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1.4.3 Dark Count 

One of the main factors limiting the performances and sizes of the silicon photomultiplier is the dark 

count (DC) of the signals with amplitude equivalent of single photon signal, initiated by the thermal 

electron-hole pair created in the device sensitive area. The thermally generated carriers in the depleted 

area could also initiate an avalanche breakdown and result in a current pulse that is indistinguishable 

from the one produced by the detection of a single photon. 

Therefore, when a free carrier generated inside, or near, the depleted region, even in dark condition, 

triggers an avalanche breakdown in a SiPM, it produces a pulse that represents the intrinsic noise of 

the silicon photomultiplier. The frequency of such noise can be determined by counting the pulses 

occurring per second when the SiPM is in dark condition, and it is named Dark Counts (DC) of the 

SiPM. Dark count is mainly due to e-h pairs generated thermally and through generation–

recombination (G–R) centres that are local levels at about mid-gap. 

1.4.4 Afterpulsing 

When the avalanche event takes place, a high quantity of charge crosses the region of space charge; 

energy traps can capture some carriers and release them after a certain time interval. If the electric 

field in the depletion region is high enough to trigger the avalanche, the released carrier can produce a 

delayed avalanche in the same pixel where breakdown occurred. This phenomenon is called 

afterpulsing and the probability of its occurrence depends on both the voltage and the temperature. 

Afterpulses can strongly enhance the total dark count rate of a SiPM. A simple strategy to reduce their 

contribution is to increase the recovery time of the pixels with a larger quenching resistance, in order 

to have enough time to depopulate the filled traps. 

1.4.5 Cross-talk 

The cross-talk is a noise common to all pixelated devices. The cross-talk noise has two different 

physical origins: optical and electrical. The optical one is due to the photons generation by radiative 

emission from the hot carriers produced during an avalanche discharge. In an avalanche breakdown 

there are in average 3 photons emitted per 10
5
 carriers with a photon energy higher than 1.14 eV, the 

band gap of silicon [18]. When these photons travel to a neighbouring cell, they can trigger a 

breakdown there (Figure 1.6).  
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Figure 1.4: Schematic representation of the optical crosstalk between neighbouring pixels. 

The corresponding output pulse current of the SiPM has, then, an amplitude peak proportional to the 

number of involved pixels in the single photo-detection and in the correlated cross-talk phenomena. 

The electrical cross-talk can occur when carriers, generated during the avalanche breakdown in a cell, 

can cross the junction reaching a close pixel. 

Travelling along the epitaxial layer, common to all pixels, these carriers can reach the neighbouring 

pixels and triggering there a new avalanche breakdown [19; 20]. There are two methods to reduce the 

optical and electrical cross-talk. The first is to increase the pitch, but it would decrease the fill factor; 

the second, is an excavation between a pixel and the neighbouring, called trenches, filled with oxide 

and / or metal so as to realize an optical-electrical isolation between the pixels. 

1.4.6 Dynamic range 

The dynamic range in a SiPM is defined as the maximum number of photons that can be detected 

simultaneously by the device. This characteristic is strongly limited by the finite number of pixels in a 

SiPM. In fact, as anticipated above, a pixel emits the same amount of charge even if it absorbs more 

than a photon at the same time. Furthermore, it should be observed that, during recharging (time 

during which, the voltage on the pixel gradually increases from the breakdown value to that of 

polarization), reveals photons with low efficiency, resulting in a lower charging signal compared to the 

standard. This worsens the resolution of the charge spectra. For these reasons, the SiPM works very 

well only when the number of incoming photons per pixel is unitary. If, however, this number is very 

high, the output signal from the device (i.e. the number of pixels turned on Nfired-pixel) saturates the 

pixel count of SiPM. The number of pixels simultaneously fired by the incoming photons depends on 

the total number of pixels of the detector according to the following expression [21]: 

𝑁𝑓𝑖𝑟𝑒𝑑 −𝑝𝑖𝑥𝑒𝑙 = 𝑛𝑝𝑖𝑥  1 − 𝑒
−

𝑛𝑝ℎ ∙𝑃𝐷𝐸

𝑛𝑝𝑖𝑥      (1.7) 

where Nfired-pixel is the number of pixels that experience an avalanche breakdown, npix is the total 

number of pixels of the SiPM, PDE is the photon detection efficiency and nph is the number of 
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incoming photons. The SiPM response to a photons flux is linear for nph ⋅PDE/ npix << 1, i.e. if the 

average number of photon per one pixel is small enough.  

1.4.7 Recovery time 

The time of performance in silicon photomultipliers is defined by two parameters: the rising time of 

the avalanche breakdown signal and the recovery time, The last is defined by the time needed to the 

pn-junction to return to the initial state after the avalanche breakdown quenching and junction 

recharging through the quenching resistor processes. The recovery time is defined mainly by recharge 

process and could be estimated from values of RC, combination of the quenching resistor, diode 

capacitance and external circuit. Afterpulses can prolong the recovery time because the recharging 

starts anew. SiPMs need from one hundred of nanoseconds to hundreds of microseconds after a 

breakdown to achieve a second signal amplitude similar to the one of the first. Mostly the resistors 

used as quenching resistors are polysilicon made. They change their value with temperature; therefore, 

there is a strong dependence of the recovery time on the temperature [9]. 

1.5 SiPM, PiN, APD and PMT: a comparison 

Low-light photon detectors constitute the enabling technology for a various and rapidly growing range 

of applications: nuclear medical imaging, radiation detection, fluorescence analysis, spectroscopy, 

quality control or meteorology. All these require detectors that serve to quantify and/or time stamp 

light signals with anywhere from one to ~1000 photons per event. The ideal detector provides a 

response proportional to the incident photon flux and incorporates an internal gain mechanism, 

yielding signals of sufficient magnitude to be easily processed. It should also offer sub nanosecond 

response times and broad spectral sensitivity, be robust, easy to operate and only generate manageable 

amounts of noise or dark count rates.  

To date, the Photomultiplier tube (PMT) has been the detector of choice for such applications. A gain 

of 10
6
 is achieved at the cost of a high bias voltage of 1-2kV, which requires the use of costly high-

voltage power supplies and a bulky cooling system. PMTs are generally stable and low noise but are 

bulky and delicate due to their vacuum tube structure. They can also be adversely affected by magnetic 

fields which will limit their suitability for some applications.  

Solid-state devices have many practical advantages over the PMT. As an example, the PIN diode is 

used in applications where PMTs were too bulky or delicate, or where high voltages were not possible. 

However, PIN diodes are severely limited by their complete lack of internal gain. The Avalanche 

Photodiode (APD) is a more recent technology, an extension of the simple PIN diode. The reverse bias 

is raised to a point where impact ionization allows for some internal multiplication, but is below the 
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breakdown bias where the Geiger mode would take over (see before). In this way, a gain of around a 

100 is achieved for a bias of 100-200V.  

Whilst the gain may be lower than that of a PMT, APDs have the advantage of a PDE, which can be > 

65% and also a compact size, ruggedness and insensitivity to magnetic fields. Their main drawback is 

their excess noise (associated with the stochastic APD multiplication process).  

The SiPM has high gain, very similar to the PMT, but has the physical benefits of compactness, 

ruggedness and magnetic insensitivity in common with the PIN and APD. In addition, the SiPM 

achieves its high gain (10
6
) with very low bias voltages (~30V for SiPM produced by R&D of 

STMicroelectronics' Catania site) and the noise is almost entirely at the single photon level. The ability 

to measure a well resolved photoelectron spectrum is a feature which is generally not possible with 

PMTs due to the variability in the gain, or excess noise. Furthermore, solid-state technology owns the 

typical advantages of the planar integration process: SiPMs are manufactured at lower costs and with 

higher reproducibility with respect to PMTs [22]. In TABLE 1.1 the most relevant characteristics of 

the vacuum and semiconductor photodetectors already described are compared. 

 PiN APD SiPM PMT 

 

PDE 

Blue 60% 50% 30% 20% 

Green/yellow 80-90% 60-70% 50% 40% 

Red 90-100% 80% 40% < 6% 

Gain 1 100 10
6
 10

6
 

Op. Bias Low High Low High 

Temp. Sensitivity Low High Low Low 

Shape characteristics Robust, compact, mechanically rugged Sensible, bulky 

Readout / Electronics Complex Complex Simple Simple 

Photon sensitivity ~100 ph.e ~10 ph.e ~1 ph.e ~1 ph.e 

Sensitive to magnetic 

fields? 

Yes Yes No Yes 

Noise Low Medium High Low 

Rise Time Medium Slow Fast Fast  

TABLE 1.1:Vacuum and semiconductor photodetector characteristics [23; 24].
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Chapter 2  

Experimental 

2.1 Device structure 

The SiPM under study in this work was developed by the R&D Sensor Team STMicroelectronics in 

Catania [16; 25]. The schematic cross-section of a SiPM is reported in Figure 2.1, where it is possible 

to identify the anode contacts (Anode metal back contact) and a cathode (Cathode pad) common to all 

the pixels of the device, which are placed, respectively, on the back and on the surface of the wafer. 

Each single pixel, formed by its p-n junction and its quenching resistor, is enclosed within a layer of 

epitaxial p
-
, previously grown on a p

+
 type substrate and having a crystallographic orientation <100>. 

The single pixel has a square shape with a 40×40 μm
2
 active area. 

 
Figure 2.1: Schematic cross-section of the SiPM developed by ST Microelectronics. 

Each cell is separated from the nearest by optical trenches and p
+
 isolation diffusions (Iso p

+
). The first 

of the wafer processing steps is the creation of p
+
 isolation regions through implants with high boron 

dose, in order to reduce the contact resistance of the anode and to provide, therefore, a low resistance 

path to the avalanche current. The fabrication proceeds with the realization of the active area. 

Subsequently, the enriched region p and n
-
 rings are made. An n

+
 polysilicon layer doped in-situ, 

provides the diode cathode. A second deposition of doped polysilicon, or equivalent material,  

provides the quenching resistor with the desired resistivity. The trenches around each single cell 

(Optical Trenches) have a width of about 1 µm and a depth of about 8 ÷ 10 µm. The sidewalls of the 

trenches are covered with a thin layer of thermal oxide and a layer of Tetra Ethyl Ortho Silicate 
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(TEOS), having thickness in the range from 50 to 100 nm. The trenches fabrications is completed with 

the metal filling followed by a deposition of a thick layer of TEOS and one of spin-on glass (SOG) on 

the wafer, in order to electrically isolate them from the metal strips. The SOG material, often called 

organic silicate, is spin applied as a liquid across the underlying TEOS. After SOG deposition, the film 

is heated to convert the liquid based material to a silica film. 

The active area of the device is covered by an anti-reflection coating, for example by using silicon 

nitride on oxide. It minimizes the surface optical reflection at a fixed wavelength. Finally, the anode 

and cathode terminals are fabricated through the oxide etching at the surface followed by the 

deposition of metal by sputtering. Figure 2.2 shows a detailed schematic cross-section of a single pixel 

developed by ST Microelectronics. 

 
Figure 2.2: Schematic cross-section of the SiPM single pixel developed by ST Microelectronics. 

2.2 Sensor details 

The wafer has two main features: six stripes (in light gray in Figure 2.3) and 31 square regions (dark 

gray in Figure 2.3). 

 

Figure 2.3: Picture of a wafer. The SiPMs are indicated with progressive numbers to facilitate the analysis. 
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The stripes contain all the test devices, where the single pixels and the small area SiPMs sit, while the 

square regions are the 64×64 pixels SiPMs. 

The test pattern is formed by the single pixels (Figure 2.4 g), and a full set of small area SiPMs. In 

Figure 2.4 an enlarged picture of the test pattern, designed by STMicroelectronics, is shown. In 

particular, it is possible to identify the 5×5 pixels SiPM with (a) and without (d) optical trenches; 

10×10 pixels SiPM with (b) and without (e) optical trenches; 20×20 pixels SiPM with (c) and without 

(f) optical trenches. 

 
Figure 2.4: Layout of the test pattern produced by ST Microelectronics composed by: 5×5 pixels SiPM with (a) and without 

(d) optical trenches; 10×10 pixels SiPM with (b) and without (e) optical trenches; 20×20 pixels SiPM with (c) and without (f) 

optical trenches. 

The sensor used in this work is formed by 25 pixels, insulated by optical trench (a), and each one has a 

square shape with a 40×40 μm
2
 active area. Therefore, resulting physical size of the sensor is ~ 0.3×0.3 

mm. 

2.3 Electro-optical characterization 

In order to identify the best sensor to be implemented in the experimental setup developed for the 

biosensing applications and described in the following sections, it was needed to characterize a set of 

sensors with different sizes (in terms of pixels number). Useful information on the device operation 

can be obtained from the reverse current voltage and DC characteristics in dark condition. All devices 

integrated in the test pattern are mounted in a 32 pin open package, through which it is possible to bias 

them and collect the output signals. The package, inserted in an appropriate socket welded on a board, 

is placed within a metallic box (miniDom) that allows their electrical and optical insulation [26]. The 

miniDom, equipped with a BNC input (to bias the device) and a BNC output (to collect the output 

signal), has a hole, with an area of ~ 3cm
2
, which allows the sensor to be hit by the sample emitted 

fluorescence (Figure 2.5). Measurements of SiPM reverse current; breakdown voltage; and leakage 
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current were performed using a source/meter (Keithley 236) at room temperature and in dark 

conditions. To measure the DC, the SiPM input was connected to a Keithley 236 and its output to a 

digital oscilloscope (Tektronix DPO7104 with Bandwidth - 1GHz). Both instruments are connected to 

a PC trough GPIB. The measurement system is automated by a software opportunely developed in 

Labview®, that controls the bias voltage; the measurement conditions; and records the output signal 

automatically. The signal acquired is elaborated offline by a routine developed in Matlab®.   

 

Figure 2.5: MiniDom. 

To characterize electro-optically the devices, their current-voltage (I-V) characteristics and DC were 

measured. Figure 2.6 shows typical I-V characteristics in reverse voltage acquired at room temperature 

for arrays of 5×5 (green line), 10×10 (blue line), 20×20 (red line) pixels with trenches and 5×5 (cyan 

line) pixels without trenches.  

 

Figure 2.6: Reverse I-V characteristic of 25 (green line), 100 (blue line), 400 (red line) pixels SiPM with trenches and 25 

(cyan line) pixels SiPM without trenches. 
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A great improvement in the device performances is observed when trenches are included in the device 

layout. The region between BV (occurring at 27.3 V) and -36 V is the range of interest for the Geiger 

mode operation (Over Voltage, OV, up to 8V). The direct comparison of the different arrays clearly 

shows two main features: BV is the same in all cases; increasing the number of pixels, the device noise 

(dark current and DC) increases linearly with the number of pixels as clearly observed in Figure 2.7 

[27]. In fact, the device current for a bias voltage of -30 V is 39 nA in the 25 pixels SiPM, 281 nA and 

1.56 μA in the 100 and 400 pixels devices measured, respectively (Figure 2.7). 

 

Figure 2.7: Current behaviour depending SiPM number of pixel for a bias voltage of -30V. 

Once compared the different device dimensions, the importance to use an array with trenches is clear 

by the comparison of the performances of SiPM 5×5 pixels with and without trenches. The direct 

comparison clearly shows that the dark current of the device without trenches, in the operation region, 

is higher than the dark current of the device with trenches. The noise levels of the four devices can be 

easily evaluated from the inspection of Figure 2.8, reporting the DC rate in Hertz (average DC rate per 

pixel) as a function of the threshold, expressed in photon equivalent (p.e.) for the same devices. The 

three devices with trenches exhibit a very similar DC per pixel at 0.5 p.e. indicating the good quality 

and reproducibility of the technological processes (since all the pixels have similar characteristics). 

The small differences in the numbers arise from the cross-talk contribution to the single pixel DC. It 

becomes evident observing the devices response for two pixels breaking at the same time, the region 

around 1.5 p.e. The data provides the cross-talk probability (measured as the ratio of DC at 1.5 p.e. 

over the DC at 0.5 p.e.) and the direct comparison of the three devices, clearly shows that the 25 pixels 

SiPM is the device with the lowest cross-talk probability (0.03), hence, having the best signal to noise 

ratio (SNR). On the other hand, the DC for the device without trenches is about a factor of 3 higher 

than the DC of the corresponding device with trenches.  
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Figure 2.8: Dark Count of 25 (green line), 100 (blue line), 400 (red line) pixels SiPM with trenches and 25 (cyan line) pixels 

SiPM without trenches. 

The difference is even more evident for the DC at 1.5, i.e. when two pixels are in avalanche at the 

same time, being <1 and ~ 344 for the device with and without trenches, respectively. It is the best 

way to define the cross-talk probability. The data indicate a cross-talk probability of ~ 3.4 for the 

device without tranches. 

These results underline the trenches importance even in small devices: they allow the reduction of the 

interference between close pixels as well as the final measured DC. Moreover, the results allowed us 

to define the 25 pixels SiPM with trenches as the best device for our purposes, since it ensures the best 

signal to noise ratio, also considering that the signals to be detected are very weak, and exhibits the 

smallest size (0.3×0.3 mm) which is a great advantage for system integration.  

The sensor figures of merit is shown in TABLE 2.1 [28]. 

Gain Dark Count (Hz) Sensitivity  

(nA) 
Speed 

(ps) 

1.5∙10
6 7.9∙10

4 76 ± 2 ~150 

TABLE 2.1: Figure of merit of the 25 pixels SiPM with trenches. 

The choice of the sensor bias voltage is very important since increasing the bias voltage both the 

sensor gain and its noise increase. In order to measure low fluorescence levels, a trade-off between 

gain and noise must be found [29]. For this reason we characterized electro-optically the sensor, 

measuring its current versus bias voltage (reverse I-V characteristic), as reported in Figure 2.9. 
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Figure 2.9: Reverse current collected from a sample with CY5 (red line) and a sample without CY5 (dark condition, blue 

line) using a 25 pixels SiPM. 

The sensor reverse current during fluorophore emission (IA, red line) and when no fluorophore is on 

the sample (dark condition, IB, blue line) were measured. The bias voltage of -30V was chosen since it 

ensures the best signal-to-noise ratio. Once fixed the bias voltage at -30V (green vertical line), we 

measured the net fluorescent current value as: 

∆𝐼 = 𝐼𝐴 − 𝐼𝐵     2.1 

The current value reported in all the following figures (ΔI) is the net current measured as the difference 

between the current due to the fluorophore and the reference (laser radiation diffused by the surface) 

using a device bias voltage of -30V . 

2.4 Lifetime measurements 

The fluorescence lifetime (FLT) has been widely used for the characterization of fluorescence species 

and in biophysical studies of proteins, e.g. to define the distances between particular amino-acid 

residues by Förster Resonance Energy-Transfer (FRET). FLT is a parameter that is mostly unaffected 

by inner filter effects, static quenching and variations in the fluorophore concentration. For this reason, 

FLT is one of the most robust fluorescence parameters. Therefore, it is advantageous in clinical and 

high throughput screening (HTS) applications, where it is necessary to discriminate against the high 

background fluorescence in biological samples. The ability to discriminate between two fluorophores 

with similar spectra but different lifetimes is another way to increase the number of parameters to 

measure. 

There are two complementary techniques of lifetime measurement: the time domain and the frequency 

domain. In the time domain, a short pulse of light excites the sample, and the subsequent fluorescence 
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emission is recorded as a function of time [30]. This usually occurs in the nanosecond timescale. In the 

frequency domain, the sample is excited by a modulated source of light. The fluorescence emitted by 

the sample has a similar waveform, but is modulated and phase-shifted from the excitation curve. Both 

modulation (M) and phase-shift (φ) are determined by the lifetime of the sample emission; lifetime is 

calculated from the observed modulation and phase-shift. Both of these domains yield equivalent data 

and take advantage of the fluorescence decay law, which is based on first-order kinetics. The decay 

law postulates that if a population of molecules is instantaneously excited when photons are absorbed, 

then the excited population (and hence the fluorescence intensity as a function of time, I(t)) gradually 

decays to the ground state. Decay kinetics are described by 

𝐼 𝑡 = 𝐼0 ∙ 𝑒−
𝑡

𝜏                                                                 2.2 

where I0 is the intensity at time t = 0, t is the time after the absorption, and τ is the lifetime, that is, 

when the fraction of the population of molecules in the excited state (and the fluorescence intensity) 

has decreased by a factor of 1/e, or ~37%. This fluorescence decay law implies that all excited 

molecules exist in a homogenous environment, as it is true for many single-exponential fluorescence 

lifetime standards in solution [31; 32]. Apart from such standards, however, single-exponential decays 

are usually a real-life exception, since most populations of excited molecules do not exist in 

homogeneous environments, and are influenced by various factors, including the presence of 

quenchers, energy-transfer processes among members of the population, and different rates of 

molecular rotation. Hence, in most instances, multi-exponential or non-exponential forms of the 

decay-law equation apply. 

In this work, the time domain approach was used; the sample is illuminated with a short pulse of light 

and the intensity of the emission versus time is recorded. If the decay is a single exponential and the 

lifetime is long compared to the exciting light, then the lifetime can be determined directly from the 

slope of the curve. If the lifetime and the excitation pulse width are comparable, some type of 

deconvolution method must be used to extract the lifetime. 

Two different fluorophores, with more different behaviour, were characterized: CY5 and Ru(bpy)3
2+

. 

The first is widely used in DNA labelling and recognition; the second is a promising candidate to be 

used for the same purposes. Therefore, two different experimental setups were implemented. 

2.4.1 CY5 characterization 

Cyanines have been used for many years as dyes, for example in photographic emulsions. Cyanine 

dyes began to be used widely as labels for nucleic acids in the early 1990s, when CY3, CY5 and CY7 

were made commercially available as succinimidyl esters (by Molecular Probes, Inc., now part of Life 

Technologies). These CY dyes were different from previous cyanine dyes in that they contain 

sulfonate groups, which makes the CY dyes soluble in water (and reduce fluorescence-quenching due 
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to dye–dye interactions). Since their introduction, CY dyes have found widespread use in DNA and 

RNA labelling. In this work, CY5 was characterized. It exhibits absorption and emission peaks at 650 

nm and 670 nm, respectively (Figure 2.10).  

 

Figure 2.10: Absorption (blue lines) and emission (red lines) spectra of CY5 [33]. 

In order to characterize CY5 behaviour and the biosensor performances, many sets of measurements 

were performed: emission in various solutions; for variable dye concentration; excitation laser power 

(Figure 2.11) (34).  

 

Figure 2.11: CY5 Fluorescence behaviour as a function of optical laser power at CY5 concentration of: 5% (blue lines), 10% 

(red lines), 20% (green lines), 30% (brown lines), 40% (cyan lines), 50% (orange lines). 

Some interesting results emerged from these analyses: the increase in CY5 concentration causes an 

increase in the fluorescence signal measured up to a concentration of 30%, where a maximum in the 

emitted signal is measured. For concentrations above 30%, self-absorption phenomena become evident 

[34] and a reduction in the fluorescence signal is measured. This phenomenon is likely to occur due to 
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the small stokes’ shift between the CY5 absorption and emission peaks, ∼20 nm. The photon emitted 

by one deposited layer (at 670 nm) is absorbed to excite a CY5 molecule in the layers above or below 

with an efficiency of 70% with respect to the maximum absorption peak [35]. It should be noted that 

the laser photons (at 633 nm) excite the fluorophore molecules with a lower efficiency (∼60%). As a 

result, only the photons emitted by the upper layer are detected. Moreover, the emitted fluorescence 

increases linearly with the optical laser power and the saturation value is not reached even at the 

highest fluorescence signal provided. 

After identifying the optimal operating conditions (in terms of analyte concentrations and excitation 

power), lifetime was measured using the experimental setup whose schematic is shown in Figure 2.12. 

 

Figure 2.12: Schematic of the experimental setup used for lifetime measurements. 

CY5 samples were excited by the light emitted by a laser diode (Coherent laser Cube operating at 660 

nm) and controlled by PC. The samples were mounted on a xyz stage to allow their movement thereby 

intercepting the laser beam within the small spot to be measured. The miniDom, containing the sensor, 

was placed on a goniometer to allow the operator to monitor the emitted fluorescence as a function of 

the detection angle. Between the miniDom’s hole and the sensor is interposed a bandpass filter, 

centred at 670nm (FWHM 10±2nm). The filter allows suppressing the laser radiation reflected by the 

sample surface, thus reducing the background noise. 

CY5 lifetime was measured using pulsed laser waveforms (period 10ms and length 3 ns), obtained 

driving the laser diode through a pulse generator Agilent 81110A. The laser hit normally the sample, 

placed on the same optical axis and its fluorescence was detected by a SiPM lying in the same plane, at 

60° with respect to the laser optical axis. The chosen angle ensured the lowest optical noise (laser light 

reflected by the slide) detected. The signal was recorded by an oscilloscope (Tektronix DP07104) and 

then, through a Labview® software developed for this purpose, was acquired by PC and post 

elaborated with Matlab®. 
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Figure 2.13 reports the operating principle on which are based lifetime measurements performed in 

this work. The laser pulse and SiPM response are shown in red and in blue respectively. The output 

signal is triggered on the falling edge of laser pulse and the delay between this last and SiPM signal is 

measured (Δt). However, a distribution of measured delays is performed and it represents the lifetime 

trend of the analysed fluorophore. Through the mathematical fit of the distribution, the fluorophore 

lifetime value is calculated.  

 

Figure 2.13: Operating principle of lifetime measurement. 

The lifetime of CY5 sample at 30% diluted in H20 milliQ and spotted on a coverslip was measured and 

reported in Figure 2.14. 

 

Figure 2.14: Data acquired (red dots); mathematical fit (blue lines) of lifetime measurement. 

Figure 2.14 shows as a very fast lifetime was measured with the experimental setup based on SiPM 

technology. In this case, the measured CY5 lifetime was ~ 1.7 ns. However, this is a very critical 

analysis because the time value measured are very close to the system physical limits, mainly given by 
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the laser. With the available equipment, described above, it is not possible to measure very short 

lifetime values. Therefore, it was needed to identify a fluorophore with a lifetime slower then CY5, 

thus allowing the use of a simpler system of management and control of the signals, for a possible 

system integration. A suitable fluorophore that exhibits optimal characteristics with respect to the 

measurement system, in term of emission spectrum and lifetime value, is tris(2,2′-

bipyridyl)ruthenium(II), Ru(bpy)3
2+

. Its properties and characterization are described in the following 

section.  

2.4.2 Ru(bpy)3
2+

 characterization 

The tris(2,2′-bipyridyl)ruthenium(II), Ru(bpy)3
2+

, is an octahedral metal transition complex composed 

by the transition metal ruthenium bounded to three heteroaromatic bypiridine units. Its optical 

properties would allow overpassing some issues, related to the use of CY5, and already highlighted. 

The fluorophore has two absorption peaks at 290 nm and 450 nm, ligand-centre (LC) and metal–ligand 

(MLCT) electronic transitions respectively, and a quantum yield of 0.042 ± 0.002 (compared to 0.2 of 

CY5) (Figure 2.15 a). The absorption peaks are far away from the emission peak at 630 nm [36; 37], 

100 nm to the closest, thus avoiding the fluorescence self-absorption (Figure 2.15 b). Moreover, 

Ru(bpy)3
2+ 

fluorescence exhibits a very long lifetime (τ ~ 350 ns) [38], allowing one the use of pulsed 

LED for excitation.  

 

Figure 2.15: (a) Absorption spectra of suspended (blue solid line) and dried (red dashed line) form of Ru(bpy)3
2+. The ligand-

centre (LC) and metal–ligand (MLCT) electronic transitions are highlighted with vertical dashed lines; (b) Ru(bpy)3
2+ 

emission spectra dissolved in water (black line) or deposited on: silicon (green dot-dashed line), glass (red dashed line), 

aluminum (blue dotted line) [39]. 

The data obtained from the dissolved form (blue line) perfectly reproduce literature results [36; 37]. 

The fluorophore exhibits two characteristic absorption peaks at 290 nm and 450 nm (highlighted in 

figure with dashed vertical lines). Samples dried over glass slides showed a red shift of about 20 nm, 

with electronic transition peaks at 310 nm and 470 nm, as shown in Figure 2.15(a) (red line). The 

absorption “red shift” is probably due either to the intensification of inter-molecular interactions or to 
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a slight distortion of the intramolecular bonds. Data, reported in Figure 2.15(a), clearly show a 

difference in the ratio between LC and MLCT transitions. The MLCT–LC ratio goes from ∼0.2 of the 

dissolved form to more than 0.8 of the dried form, suggesting a strong increase of the absorption 

efficiency, more than a factor four, of the MLCT electronic transitions with respect to the LC ones 

[39]. The emission spectrum of the 0.7 mg/ml sample in cuvette is shown in Figure 2.15(b) (black 

line). The curve, in according to literature emission spectra, exhibits a peak at about 630 nm [36]. 

Some differences in the case of the fluorophore dried form appear. The emission spectra are, for such 

form, quite different from literature data [37]. The curve morphology changed and a new and dominant 

peak around 590 nm appeared (red line in Figure 2.15(b)). In order to exclude any contribution given 

by the solid surface used for deposition, Ru(bpy)3
2+

 was spotted on different surfaces. An insulator 

(glass), a semiconductor (Si, to be sure that the surface was Si, a sample dip in HF was performed just 

before fluorophore deposition), and a metal (Al) were used as deposition surfaces. The goal was to 

determine if the surface electronic properties could modify the fluorophore emission properties. All 

samples were diluted in Milli-Q water before being spotted on the different surfaces. The emission 

data are also shown in Figure 2.15(b) (red, green and blue line, respectively): they exhibit the same 

morphological alteration of the curve (the new dominant peak at 590 nm) already observed for the 

dried sample on glass slide, only the relative height are different, but no conclusion can be drawn from 

the PL intensity at room temperature. The data clearly show that the surface role is not the dominant 

effect ruling the Ru(bpy)3
2+

 emission properties, at the deposition conditions used.  

The last optical characterization was the Ru(bpy)3
2+ 

lifetime measurement using the experimental setup 

reported in Figure 2.16.  

 
Figure 2.16: Schematic of experimental setup for lifetime measurements using a PMT as photodetector. 
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The light emitted by a laser diode (Coherent laser Cube operating at 405 nm) and controlled by PC, 

excited Ru(bpy)3
2+

 samples. The laser light, pulsed by the Agilent 81110A pulse generator (period 

10ms and length 100 ns), hits a mirror and reaches the sample. The sample was mounted on a xyz 

stage to allow its movements thereby intercepting the laser beam within the small spot to be measured. 

The fluorescence emitted was collected by two lenses and focused on the input slit of a 

monochromator (Digikrom DK480) and detected by a Photomultiplier Tube (PMT, Hamamatzu R943-

02) placed on the monochromator’s output slit. The monochromator is set to let only the light at 630 

nm to pass (wavelength of Ru(bpy)3
2+ 

emission peak). The signal detected by the PMT was recorded 

by an oscilloscope (Tektronix DP07104), triggered on the pulse generator signal, and then, through a 

Labview® software developed for this purpose, was acquired by PC and off-line elaborated with 

Matlab®. 

An example of Ru(bpy)3
2+ 

lifetime measurements performed in this work is reported in Figure 2.17. 

The laser pulse and PMT response are shown in red and in blue, respectively. The output signal is 

triggered on the falling edge of laser pulse and is averaged over 10000 sampling before being 

acquired. 

 

Figure 2.17: Example of lifetime measurement using PMT as photodetector. 

As already observed for the emission, also the lifetime value changed depending on the fluorophore 

physical state (suspended or dried), as shown in Figure 2.18. The experimental data were fitted to 

obtain the lifetime (τ) values, using a multi-exponential as indicated by the following equation: 

𝐹 𝑡 =  𝐴𝑖 ∙ 𝑒
−

𝑡

𝜏𝑖𝑛
𝑖=1       2.3 

where A is the intensity at time t = 0, t is the time after the absorption, and τ is the lifetime. The 

lifetime measured in solution (0.7 mg/ml of fluorophore in MilliQ water) was 358 ± 0.9 ns (see Figure 

2.18 black line and TABLE 2.2), the same value reported in literature [40], within the experimental 

errors.  
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For Ru(bpy)3
2+

 dried samples, the lifetime was given by two components. These data confirmed that 

the fluorophore inter and/or intra molecular interactions modified the fluorescent properties. In fact, 

we observed a second emission peak with a shorter lifetime. The lifetime was measured for all the 

surfaces used to deposit the fluorophore: glass, Si and Al. The data, shown in Figure 2.18, are also 

summarized in TABLE 2.2. The three lifetime values are reported in the table to allow an easier 

comparison. In fact, all the samples exhibit the τ2 component, typical of the suspended form. A strong 

difference is observed in Ru(bpy)3
2+ 

deposited on the three different surfaces with respect to the 

suspended form. In fact, dried Ru(bpy)3
2+ 

samples exhibit a shorter lifetime component.  

 

 

 

 

 

 

 

TABLE 2.2: Ru(bpy)3
2+ lifetime values measured using the experimental setup reported in Figure 2.16. 

 
Figure 2.18: Lifetime of suspended (black line) and Ru(bpy)3

2+ dried form spotted on Silicon (green lines), glass (blue lines) 

and aluminum (red lines) surface. 

In particular, the lifetime of Ru(bpy)3
2+ 

deposited on glass is a bit faster than other samples. It is 

probably due to the insulating nature of the surface that interferes less with the homo-lumo transitions. 

In all measurements, the lifetime is always over 100 ns, a promising feature for easy, compact and 

portable applications. 

Sample τ1 

[ns] 

τ2 

[ns] 

Ru(bpy)3
2+ 

dissolved - 358 ± 0.9 

Ru(bpy)3
2+ 

dried on glass 118 ± 1 358 

Ru(bpy)3
2+ 

dried on silicon 130 ± 3 372±49 

Ru(bpy)3
2+ 

dried on aluminum 130 ± 3 370±3 
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2.5 Photon counting measurements 

The SiPM can be used in many applications where extremely weak light signals, at the level of few 

photons (photon counting regime), must be detected. It provides all the performances needed in photon 

counting, such as high gain at low bias voltage, high photon detection efficiency, good time resolution, 

high count rate, and large spectral response. SiPMs performances in photon counting regime have been 

deeply investigated in literature, using picosecond pulsed lasers. They can be used in positron emission 

tomography [7], magnetic resonance imaging, nuclear physics instrumentation [7], high energy 

physics [41], time-resolved fluorescence spectroscopy [42; 43].  

In biomedical instruments, fluorescence detection can be accomplished with simple photodiodes, 

photomultiplier tubes (PMT’s), Charged Couple Devices (CCD’s) and, now, photon counting devices. 

New technologies based on Single Molecule Detection use confocal microscope and photon counting 

technology to excite and detect single photons fluorescing from single molecules. Thanks to the small 

sample sizes, speed of counting and sensitivity of the overall system, this technology allows for 

collecting multiple parameters such as: fluorescence intensity, molecule diffusion times, fluorescence 

lifetime and fluorescence polarization information [44].  

In this work, an experimental setup for photon counting measurements was developed and it is 

reported in Figure 2.12. 

SiPM, in photon counting operation mode, was used to measure the number of photon emitted by a 

sample of CY5 at 30% diluted in H20 milliQ and spotted on a coverslip. This measure was performed 

in two steps: SiPM was biased to -30V to analyze a reference sample (sample without CY5 deposited 

on top) and the CY5 sample, and the signal collected through the oscilloscope operating in continuous 

mode. In the first case, the collected signal on the oscilloscope was due to SiPM intrinsic noise and to 

the residual noise due to the laser radiation reflected by the coverslip. Then, we placed the CY5 

deposited sample on the same optical axis of the laser and, on the oscilloscope screen; it was possible 

to see signals at different amplitudes due to up five fired pixels, on average, by photons. The 

elaboration of the acquired data is shown in Figure 2.19. In particular, the blue solid line indicates the 

emitted photons distribution, while the red line indicates the noise acquired from the reference sample.  
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Figure 2.19: Photon counting distribution of CY5 fluorescence (blue lines) and noise (red lines) from reference sample. 

The peaks separation in the photoelectron spectrum measured was about 2.34·10
-13 

C corresponding to 

a gain value of 1.5·10
6
, assuming nph=1 and VBD = -28V (Eq. 1.6). However, increasing the SiPM bias 

voltage an increase of both the gain and the measured noise is recorded, hence, a compromise that will 

ensure a good signal to noise ratio must be found [45; 46]. Since the CY5 absorption and emission 

peaks are very close (650 nm and 670 nm, respectively), the integrated detection set-up would be very 

difficult to implement. In addition, its short lifetime (1÷3ns) would force to design and fabricate a 

complex control and management circuitry. 

2.6 Conclusion 

The SiPM produced by the R&D of STMicroelectronics in Catania was used to detect low 

fluorescence signals, allowing the design and fabrication of easy-to-use optical system for biomedical 

applications. 

Multichip characterization allowed defining the 5x5 pixels with trenches SiPM as the most suitable for 

biosensing applications, since it had the lowest DC and cross-talk probability. Pulsed measurements 

showed as SiPM can be used as photon counter also for biosensing applications. 

Two different experimental setups for lifetime measurements (fast and slow fluorophores) have been 

developed. 

Photochemical properties of CY5 and Ru(bpy)3
2+

, for optical sensing application, have been studied. 

The analysis showed that this last molecule is a viable alternative to the conventional fluorophore CY5 

for target gene labelling in optical DNA-chip application. In fact, Ru(bpy)3
2+ 

reduces the risk of 

fluorescence self-absorption, thanks to the large distance between the absorption/emission peaks, and 

allows using a simple electronics for the fluorescence analysis, thanks to the long lifetime.  
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The measurements showed a cooperative effect of the molecules by increasing their density after 

drying of sample. This caused the red shift of the absorption peaks at 310 nm and 470 nm and the 

appearance of a dominant emission peak at 590 nm in dried samples. These samples exhibit an 

additional faster component in the lifetime of ~100ns, in addition to the 350 ns lifetime value of 

dissolved samples. 

The properties of SiPM and Ru(bpy)3
2+

 would allow miniaturization of the measurement systems, 

opening up the possibility of lab-on-chip fabrication using the optical transduction (''traditional'') for 

detection. 

 



 

29 

Chapter 3  

DNA microarray 

3.1 Introduction 

Lots of DNA microarrays and DNA chip devices have been developed and are commercialized. These 

devices allow DNA and/or RNA hybridization analysis of large numbers of samples simultaneously to 

be carried out in microminiaturized highly parallel formats. DNA microarray applications are usually 

used for gene expression analysis or screening samples for single nucleotide polymorphisms (SNPs) 

[47]. In addition to molecular biological analyses and genomic research applications, microarray 

systems are also being used for pharmacogenomics research, infectious and genetic disease, cancer 

diagnostics, forensic and genetic identification purposes [48]. Microarray technology continues to 

improve in sensitivity and selectivity and is becoming a more economical research tool. The use of 

DNA microarrays already had revolutionized genetic analysis and many important diagnostic areas.  

They are generally fabricated on glass, silicon, or plastic substrates. The microarrays may contain from 

a hundred to many thousands of test sites that can range in size from 10 to 500 microns. DNA probes 

are selectively spotted or addressed to individual test sites by several techniques. Probes can include 

synthetic oligonucleotides or larger DNA/RNA fragments. The DNA probes are attached either 

covalently or physically to a support material. Depending on the array format, probes can be the target 

DNA or RNA sequences to which other “reporter probes” would subsequently be hybridized. The 

fabrication of microarrays involves the immobilization or in situ synthesis of DNA probes onto the 

specific test sites of the solid support material. High-density DNA arrays are fabricated using physical 

delivery techniques (e.g., inkjet or microjet deposition technology) that allow the dispensing and 

spotting of nano/picoliter volumes onto the specific test site locations on the microarray. In some 

cases, the probes or oligonucleotides on the microarrays are synthesized in situ using a 

photolithographic process. Microarray devices with a low density of test sites have been developed, 

and provide direct electronic detection of the hybridization reactions. Active electronic microarray 

devices with electronic addressing or spotting of probes as well as rapid high-performance 

hybridization analysis are now also available for research and diagnostic applications [49]. The 
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successful implementation of microarray technologies has required the development of many methods 

and techniques to fabricate the microarrays and spot the probes, to carry out and detect the 

hybridization reactions, and informatics to analyse the data. DNA hybridization analysis on 

microarrays usually involves detecting the signal generated by the binding of a reporter probe 

(fluorescent, chemiluminescent, colorimetric, and radioactive, etc.) to the target DNA sequence. The 

microarray is scanned or imaged to obtain the complete hybridization pattern. Fluorescence 

scanning/imaging or mass spectroscopy are two of the most common methods used to read the 

microarrays. For high-density type microarrays, a variety of bioinformatics tools has been used to 

reduce the complex data into useful information. The automation of DNA microarray systems greatly 

facilitates their use and ease of operation and helps to eliminate many of the human errors that would 

be involved in manually carrying out the multiplex hybridization analyses. The development of 

microarray technology, as well as all other innovations in the biosensor field, is the result of the 

integration of many different disciplines such as molecular biology, genetics, advanced 

microfabrication and micromachining technologies, nucleic acid chemistry, surface chemistry, 

analytical chemistry, software, and robotics and automation. In fact, microarray technology represents 

a truly successful synergy of these many different scientific and engineering fields. 

In the following sections an experimental setup, based on SiPM technology, for DNA microarray 

analysis is described. It exhibits higher sensitivity than traditional commercial systems and also 

provides a quantitative output signal. For these reasons, SiPM is a promising candidate to replace 

traditional optical scanner used, until now, for this kind of analysis. Moreover, a composite of recent 

general reviews and comments on microarray technologies and their applications (in research and 

diagnostics) are discussed. 

3.2 DNA microarray Technology 

In the past several years, many different microarray technologies, devices, and instrument systems are 

commercially available to fabricate DNA microarrays. They are used for gene expression, genotyping, 

and other applications [50]. Many microarray spotting technologies and techniques now exist. Two of 

the most important spotting techniques used are the pin-based fluid transfer systems [51-53] and the 

piezo-based inkjet dispenser systems [54-56]. Other methods to fabricate DNA arrays include the use 

of photolithography for the in situ synthesis of high-density DNA microarrays, developed by 

Affymetrix, as well as the electronic-based addressing of microarrays developed by Nanogen.  
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3.2.1 Affymetrix Technology 

High-density DNA arrays fabricated by Affymetrix provide a massively parallel approach to DNA 

hybridization analysis that is having a significant impact on genomic research and diagnostics. In the 

early 1990s, Steve Fodor and colleagues at Affymetrix began to develop photolithographic techniques 

to carry out the parallel synthesis of large numbers of oligonucleotides on solid surfaces [57; 58]. This 

light-directed synthesis has enabled the large-scale manufacture of arrays containing hundreds of 

thousands of oligonucleotide probe sequences on glass slides, or “chips”, less than 2 cm
2
 in size [59]. 

This method is used now by Affymetrix to produce the high-density GeneChip® probe arrays, used for 

the detection and analysis of point mutations and SNPs and for gene expression studies (Figure 3.1). 

 

Figure 3.1: Operating principle of Affymetrix Microarrays. 

The Affymetrix in situ process combines DNA synthesis chemistry with photolithographic techniques. 

In this process, 5'-terminal protecting groups are removed selectively from growing oligonucleotide 

chains in predefined regions of a glass substrate by controlled exposure of light through 

photolithographic masks. The glass substrate, or chip, is covalently modified with a silane reagent to 

provide hydroxyalkyl groups, which are needed for the initial synthesis sites. Then, these sites are 

extended with linker groups protected with special photolabile protecting groups. When specific 

regions of the surface are exposed to light (through masks), the groups are selectively removed, 

allowing the sites to now be coupled with the next appropriate nucleoside phosphoramidite monomer. 

The monomers, which are also protected at their 5' position with a photolabile group, are coupled to 

the substrate using standard phosphoramidite DNA synthesis protocols [48]. 

Many of the semi-automated manufacturing techniques and lithography tools used in the GeneChip® 

array production process were adapted from the microelectronics industry. The Affymetrix method for 

highly parallel synthesis of oligonucleotide (probe) sequences provides an excellent process to 
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fabricate high-density microarrays. With this process, a complete set, or subset, of all probe sequences 

of length n requires 4n synthesis steps. Currently, arrays made using photolithographic synthesis have 

individual probe features 24×24 microns on a 1.6-cm
2
 size chip. The technology will ultimately allow 

arrays to be fabricated with densities >10
6
 sequences/cm

2
, which corresponds to a feature size of less 

than 10
2
 microns. Typical arrays comprise customized sets of probes that may range from 14 to 25 

bases in length [48].  

3.2.2 Nanogen Technology 

Microelectronic chip/array devices developed by Nanogen combine many aspects of technology from 

the microelectronics industry to improve uniquely molecular biology techniques such as DNA 

hybridization. Microelectronic arrays provide high-performance hybridization that overcomes many of 

the problems of passive array hybridization techniques. These active microelectronic arrays have the 

ability to produce reconfigurable electric fields (more specifically electrophoretic fields) on the 

microarray surface that allow rapid and controlled transport of charged DNA/RNA molecules to any 

test site [49; 60; 61]. Nanogen, Inc. has developed an electronic microarray based technology 

(NanoChip® Electronic Microarray) for manipulation, concentration and hybridization of 

biomolecules on the chip array (Figure 3.2) [62]. Nanochip® microarray technology uses electronic 

addressing of charged biomolecules on the electrode array to separate and concentrate analyte targets. 

Negatively charged DNA targets and molecular probes (Figure 3.2 top) are moved to a particular site 

by energizing the electrodes at a reverse potential (Figure 3.2 bottom). Targeted molecules concentrate 

at the array site where they can be bound chemically or hybridized to a DNA probe. Fluorescent signal 

is obtained from the reporter probes hybridized to the target DNA and signal proportional to the 

concentration of analyte DNA is measured. This approach extends the power of microarrays using 

electronics by connecting each test site on the NanoChip® array to an electrode. 

 

Figure 3.2: Operating principle of Nanochip® microarray technology. 



Chapter 3. DNA microa rray         33  

 

 

Most biological molecules have a natural positive or negative charge. When biological molecules are 

exposed to an electric field (Figure 3.2), those with a positive charge move to electrodes with a 

negative potential, and molecules with a negative charge move to electrodes with a positive potential. 

Current and voltages are applied to the test sites via individual electrode activation to facilitate the 

rapid and controlled transport of charged molecules to any test sites. Additional advantages of 

electrically facilitated transport include: (i) the ability to produce reconfigurable electric fields on the 

microarray surface. It allows the rapid and controlled transport of charged molecules to any test sites 

[48; 63-65]. ii) The ability to carry out site selective DNA or oligonucleotide addressing and 

hybridization [66]. (iii) The ability to significantly increase DNA hybridization rate by concentration 

of target at the test sites; (iv) The ability to use electronic stringency to improve hybridization 

specificity. In Figure 3.3 Nanogen's system is reported. 

 

Figure 3.3: Photograph of the Nanochip® cartridge containing the electronic microarray (left), and Nanogen’s Workstation 

which allows fully automated processing of 4 cartridges simultaneously in the loader and fluorescent detection in the reader 

(right) [62]. 

NanoChip® Cartridge is composed by 100-site array, assembled into a complete cartridge (Figure 3.3 

on the left) by ultrasonically welding two molded polymethyl methacrylate (PMMA) cartridge bodies 

that contain fluidic channels and inlet and outlet ports. The cartridge eliminates sample evaporation, 

prevents sample contamination and provides a fluidic interface to the Workstation. The NanoChip® 

electronic microarrays are operated through a fully integrated and automated workstation (Figure 3.3 

on the right). The system consists of three major subsystems: (1) the loader for loading patient samples 

on one to four cartridges, (2) the reader, a highly sensitive, laser-based fluorescence scanner for 

detection of assay results and (3) computer hardware and software, which automates import, analysis 

and export of sample information making data analysis simple.  

3.2.3 STMicroelectronics Technology 

A novel biochip platform for rapid analysis/identification of nucleic acids, including DNA and 

microRNAs, with very high specificity was developed by STMicroelectronics [67-69]. Their In-Check 

platform is based on a miniaturized silicon Lab-on-Chip (LoC) that integrates a PCR reactor - formed 
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by buried microchannels 1µl in volume – together with a customable microarray. Temperature Control 

System (TCS) and Optical Reader (OR), driven by a bioinformatic system, complete the platform 

(Figure 3.4). These features allow achieving both DNA amplification and DNA detection in an 

integrated cost effective and convenient format silicon chip. 

 
Figure 3.4: In-Check™ lab-on-chip Platform developed by STMicroelectronics [70]. 

Two silicon microreactors fluidically connected to a microarray chamber compose the LoC. Each 

silicon microreactor (maximum volume of 12 µl) contains resistors and sensors at different positions to 

activate and control the thermal process. Such reactors are connected fluidically to a microarray area 

of 3.5×9 mm where, after PCR, DNA hybridization takes place. The microarray chamber contains a 

microarray of 126 spots consisting of 25 bp oligo-probes, spotted onto the surface through a piezo-

array system. In order to guarantee the microreactor sealing during the sample preparation, PCR 

amplification and hybridization reactions, Polydimethylsiloxane (PDMS) clamps were designed. The 

clamps are made of a mixture of PDMS silicone and a curing agent [68].  

LoC was chemically treated to make a biocompatible the surface for the PCR amplification and the 

DNA microarray hybridization. After silicon standard cleaning, the surface is first modified using 3-

glycidoxypropriltrimethoxysilane (GOPS) to obtain an epoxy derivative coating suitable for the 

microarray fabrication. Next, a 5' amino-modified oligo solution in phosphate buffer is printed on LoC 

hybridization area through the piezo microarray system. An anchoring process performed in a climatic 

chamber at 30 °C with 30% relative humidity guarantees the covalent bonding of the amino-modified-

oligo to the epoxy surface. A coating with protein is performed to guarantee the biocompatibility with 

both the silicon microreactor and the hybridization area [68].  

The chip contains integrated sensors and heaters and it is thermally driven by an external Temperature 

Control System (TCS). It is an electronic device to perform the enzymatic thermal cycling and 

hybridization reactions and allows very accurate and fast thermal managing of the chip. A 

microcontroller that reads the embedded temperature sensors drives the system and triggers embedded 
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heaters. A cooling rate of about 10 °C/s is achieved with a ventilator fan. The temperature cycle is 

controlled with high accuracy (±0.1 °C). Fast heat ramping (40 °C/s) improves the PCR performances 

and reduces the amplification time [68].  

The DNA detection in the microarray is based on fluorescent labels and it is performed by means of 

ST’s Optical Reader (OR). It is an optical device to acquire images of LoC. The camera offers up to 

1392×1040 pixels and operates in 8-bits mode. It has two programmable outputs that are used for 

turning on an excitation system based on two identical illuminators placed symmetrically to the sides 

of the camera and tilted at 45°. Each illuminator is composed by a 5 mm white LED, a red LED, two 

aspherical lenses and an excitation filter for Cy5. A dedicated software drives the optical reader. A 

multi-shot acquisition procedure allows increasing the dynamic linear range and the camera blooming 

effect [68]. 

With its compact bench-top “footprint” requiring only a single technician to operate, the biochip 

system promises to transform and expand routine clinical diagnostic testing and screening for genetic 

diseases, cancers, drug toxicology and heart disease, as well as employment in the emerging 

companion diagnostics market.  

3.3 Novel promising technology based on SiPM  

Nowadays, commercial available system for DNA microarray analysis are very expensive benchtop 

system, which means that measurements "in vivo" and "in situ" are very difficult. Moreover, they 

provide an image as a result, which means that an image off-line analysis is needed to obtain a 

quantitative output signal.  

The challenge of reducing the system physical size, the cost of analysis and increasing the low 

detection limit of analyte concentration led us to implement a new platform for DNA microarray 

analysis, based on SiPM technology. This platform, as described in the following sections, implements 

a very low cost and small sensor, which means: miniaturisable system; opportunity of doing 

measurements "in vivo" and "in situ"; cheap DNA analysis. Moreover, the system based on SiPM 

provides as output a quantitative signal, which simplifies the analysis of the results. 

3.3.1 Experimental setup 

In this section an optical system, based on SiPM technology, able to detect the fluorescence emitted by 

ss-DNA amino-terminated labelled with CY5, immobilized on Al-TEOS surfaces using GOPS 

protocol is described [28; 29]. Aim of this work is to demonstrate that SiPMs are able to detected low-

levels of fluorescence signals emitted by CY5 and that they are a promising substitute for traditional 

optical scanners. The schematic of the experimental setup developed for DNA microarray application 

is reported in Figure 3.5. 
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Figure 3.5: Schematic of experimental setup, based on SiPM Technology, for DNA microarray application. 

The optical system implemented for DNA microarray is based on a fiber-coupled laser that hits at 60° 

with respect to the normal axis to the sample. CY5 is the marker to detect DNA hybridization and a 

HeNe laser at 633 nm was used to excite it. The sample was mounted on a xyz stage to allow its 

movement thereby intercepting the laser beam within the small spot to be measured. The miniDom, 

containing the sensor, is placed on a goniometer to allow the operator to monitor the emitted 

fluorescence as a function of the detection angle. Between the miniDom’s hole and the sensor is 

interposed a bandpass filter, centred at 670 nm (FWHM for both 10 ± 2 nm). The filter allows 

suppressing the laser radiation reflected by the sample surface, thus reducing the background noise. 

The sensor is biased through a 236 Keithley Source Meter, that measures also the sensor output signal. 

The measurement system is based on a software opportunely developed in Labview®, that allows to 

control the bias voltage, the measurement conditions (angle of analysis and other key parameters), and 

to acquire the output signal automatically. The signal acquired is elaborated offline by a routine 

developed in Matlab®.  

3.3.2 Experimental results and data analysis 

To evaluate the optical sensor performances in DNA microarray applications, the fluorescence signal 

emitted by 25 bp oligonucleotides CY5 labelled was analysed. 

30.7 nmol of GAPDHCy5 (/5Cy5/TGCCAACGTGTCAGTGGTGGACCTG/3AmMO/) lyophilized 

powder (from MWG Biotech) in 300 μl of water (DNase–RNase–Protease free) were suspended; then, 

sample were centrifuged at 5500 rpm for 30 minutes, after agitation in vortex, obtaining a 100 μM 

solution. A Sodium Phosphate Dibasic buffer (150 mM at pH 9.2) was used to dilute solution from 

100 μM to 1 μM; 0.5 μM; 0.1 μM; 0.01 μM; and 0.001 μM, for optical measurements. After dilution, 

samples were dropped on 865 nm thickness aluminium-TEOS slides, following a specific layout (5 × 
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10 array) reported in Figure 3.6; ten drops of 0.1 μl for each concentration were spotted, in order to 

study SiPM sensitivity, stability and reproducibility of the measurement. Samples dried at room 

temperature for 10 minutes. 

 
Figure 3.6: Schematic of spotting layout. 

In order to define the SiPM experimental detection limit, the fluorescence emitted in different 

operating conditions in terms of analyte concentration and angle of analysis were measured (Figure 

3.7). In particular, five different concentrations of ss-DNA labelled with CY5 were analysed: 1 μM 

(black dashed line), 0.5 μM (red dashed line), 0.1 μM (blue dashed line), 0.01 μM (green dashed line), 

0.001 μM (orange dashed line).  

 

 
Figure 3.7: (top) Fluorescence behaviour of the ss-DNA labeled with CY5 as a function of the angle of analysis at a 

concentration of: 1µM (black dashed line), 0.5 µM (red dashed line), 0.1 µM (blue dashed line), 0.01 µM (green dashed line), 

and 0.001 µM (orange dashed line); (bottom) acquired image acquired by STMicroelectronics' OR. 
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Four angles of analysis were chosen to study the fluorescence behaviour: 35°, 40°, 45° and 50° with 

respect to the normal axis to the sample. Figure 3.7 shows that as the sample concentration increases, 

the emitted fluorescence increases as well. The current signal value at each concentration is roughly 

constant in the measurement angular range chosen, confirming the isotropic emission of fluorescence 

[34; 45; 46]. In existing measurement systems, an image is acquired and elaborated offline, after 

acquisition, to obtain a quantitative signal (Figure 3.7). The system based on SiPM technology, 

instead, provides directly a quantitative signal as output, in real time. This simplifies the software of 

analysis used to elaborate the data acquired. The system is easy to use, automated and more sensitive 

than commercial systems. In fact, it allows to measure also the small signal difference between two 

concentration values very close, that are indistinguishable with a commercial optical reader (section 

3.2.3) (i.e. 1 µM and 0.1 µM). To define the measurement stability and the reproducibility, a 5 × 10 

matrix, with drops of 0.1 μl for each concentration, was tested. The average value and the 

corresponding error for each concentration, for a fixed angle of analysis (40° with respect to the 

normal axis to the sample), are reported in Figure 3.8 and in TABLE 3.1.  

 
Figure 3.8: Fluorescence behavior of the ss-DNA labeled with CY5 varying the analyte concentration in the sample with the 

sensor placed at 40° with respect to the normal axis to the sample. The dashed line is the linear fit. 
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TABLE 3.1: Average values and corresponding errors for ss-DNA CY5 labeled. 

Figure 3.8 shows that the fluorescence current measured increases proportionally to the analyte 

concentration in the sample and the signal is linear in the range 1 nM–1 μM. 

The data clearly show that the errors decrease with decreasing the analyte concentration in the sample. 

As mentioned before, it is because by reducing the fluorophore concentration the interaction between 

molecules reduces. At high dye concentrations, the interaction probability increases, hence a higher 

variability in the final fluorescence signal is measured. The measurement variability, due to 

cooperation phenomena, is not a dominant factor at low concentration. The measurements shown 

directly provide quantitative signal unlike traditional commercial systems [67; 68; 71].  

Other interesting results are obtained by comparing the results of Figure 3.8 and 3.9 where the same 

samples have been measured with SiPM and a commercial reader, respectively. The data in Figure 3.9 

were elaborated using two different image software: open-source software J-image [72] and the H-Mat 

software developed by STMicroelectronics [67]. 

 

Figure 3.9: Fluorescence of CY5 spotted samples on Al/TEOS slides, as a function of the dye concentration, as acquired by 

using a commercial optical reader. 

Concentrations 

(µM) 

Average values (A) Standard 

deviations 

Errors % 

1 6.38∙10
-8

 1.44∙10
8

 22.588 

0.5 3.76∙10
-8

 1.02∙10
8 27.000 

0.1 1.09∙10
-8

 3.54∙10
9

 32.511 

0.01 5.93∙10
-9 

8.76∙10
10

 14.768
 

0.001 5.37∙10
-9

 9.51∙10
10

 17.695 
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For high analyte concentrations (1 μM), the SiPM does not saturate; it is able to measure the small 

signal differences between the two highest concentrations, indistinguishable with a commercial optical 

reader. For low analyte concentrations (1 nM) the high SiPM sensitivity allowed to detect very low 

emitted fluorescence signals, not visible with a commercial reader. In fact, the enlargement of the two 

first points in Figure 3.9 clearly show that the signal is not detectable (the horizontal dashed line is the 

zero).  

3.4 Conclusion 

In this chapter the ability of SiPM, developed by R&D Sensor Team STMicroelectronics in Catania, to 

replace traditional detection system for DNA microarray applications was demonstrated.  

Some interesting results were carried out from this work. First, the system based on SiPM technology 

provides a quantitative output signal. This feature simplifies considerably the output signal analysis 

with respect to traditional systems. In fact, optical readers, provide an image as output so an offline 

analysis allows the understanding of the results. 

Moreover, from the analysis performed on five different concentrations of DNA labelled with CY5, 

GAPDHCy5, emerged that as the sample concentration increases, the emitted fluorescence increases 

as well. The current signal value at each concentration is roughly constant in the measurement angular 

range chosen, confirming the isotropic emission of fluorescence and the signal linearity in the range 1 

nM–1 μM.   

The direct comparison between traditional optical reader and SiPM showed that, thanks to its high 

sensitivity, SiPM is able to measure also the small signal difference between two concentration values 

very close, that are indistinguishable with a commercial optical reader. Finally, the high SiPM 

sensitivity allows to detect very low emitted fluorescence signals (1 nM), not visible with commercial 

reader. 

Definitely, the system based on SiPM technology is easy to use, automated and more sensitive than 

commercial systems. These results open the possibility to fabricate and commercialize SiPM based 

detection systems for DNA hybridization. 

 



 

41 

Chapter 4  

Real Time PCR 

4.1 Introduction 

The polymerase chain reaction (PCR) is one of the most powerful technologies in molecular biology. 

The PCR has been invented in 1983 by Kary Mullis (Nobel Prise in 1993) [73]. Three years after its 

invention, there was an incredible expansion of its use thanks to the commercialization of the Taq 

polymerase, a polymerase able to resist at high temperatures. In 1992, the technique was improved by 

the use of Ethidium Bromide (EtBr), which emits fluorescence when it binds to duplex DNA [74]. The 

kinetics of fluorescence accumulation during thermocycling was directly related to the starting number 

of DNA copies. This was the starting point of quantitative PCR (qPCR). Today, 33 years after Mullis’s 

discovery, both PCR and qPCR are widely used technologies. The principle, and aim, of the PCR 

technology is to increase specifically a target from an undetectable amount of starting material. In end-

point PCR, at the end of the amplification, the product can be run on a gel for detection of this specific 

product. In Real-Time PCR, this step is avoided, since the DNA amplification and the immediate 

detection of the products occur in the same tube. Thus, it reduces the significant contamination risk 

caused by opening tubes for post-PCR manipulation. Moreover, less time than gel-based analysis is 

needed and it provides quantitative result [75].  

PCR amplifies DNA exponentially, doubling the number of target molecules with each amplification 

cycle. When it was developed, scientists reasoned that the number of cycles and the amount of PCR 

end-product could be used to calculate the initial quantity of DNA copies by comparison with a known 

standard. In order to obtain a robust quantification, the technique of real time quantitative PCR was 

developed and end-point PCR is used mostly to amplify specific DNA for sequencing, cloning, and 

use in other molecular biology techniques. In real time PCR, the amount of DNA is measured at the 

end of each cycle via fluorescent dyes that emit increasing fluorescent signal proportional to the 

number of PCR product molecules (amplicons) generated. Data are collected in the exponential phase 

of the reaction and provide quantitative information on the starting quantity of the amplification target. 

Fluorescent reporters used in real time PCR include double-stranded DNA (ds-DNA)-binding dyes, or 
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dye molecules attached to PCR primers or probes that hybridize with PCR product during 

amplification. An instrument that is able to realize thermal cycling and a scan measures the 

fluorescence over the course of the reaction. By plotting fluorescence versus the cycle number, the real 

time PCR instrument provides an amplification plot that represents the accumulation of product over 

the duration of the entire PCR reaction [76]. The advantages of real-time PCR include: 

 ability to monitor the progress of the PCR reaction as it occurs in real time; 

 ability to precisely measure the amount of amplicon at each cycle, which allows highly 

accurate quantification of the amount of starting material in samples; 

 an increased dynamic range of detection; 

 amplification and detection occur in a single tube, eliminating post-PCR manipulations. 

Over the past several years, real time PCR has become the leading tool for the detection and 

quantification of DNA or RNA. Using sequence-specific primers, the number of copies of a particular 

DNA or RNA sequence can be determined. By measuring the amount of amplified product at each 

stage during the PCR cycle, quantification is possible. If a particular sequence (DNA or RNA) is 

abundant in the sample, amplification is observed in earlier cycles; if the sequence is low, 

amplification is observed in later cycles. Quantification of amplified product is obtained using 

fluorescent probes or fluorescent DNA-binding dyes and real time PCR instruments that measure 

fluorescence while performing the thermal cycling needed for the PCR reaction. The method relies on 

a DNA-based probe with a fluorescent reporter at one end and a quencher of fluorescence at the 

opposite end of the probe. The probe arranges in a circle. The close proximity of the reporter to the 

quencher inhibits the fluorescence. The probe breakdown operated by the 5' to 3' exonuclease activity 

of the Taq polymerase [77] breaks the reporter-quencher proximity, thus, allowing unquenched 

emission of fluorescence, which is detected after light excitation. An increase in the product targeted 

by the reporter probe at each PCR cycle, therefore, causes a proportional increase in fluorescence.  

Three major steps make up each cycle in a real time PCR reaction. 

1. Denaturation: High temperature incubation is used to “melt” double-stranded DNA into single 

strands and loosen secondary structure in single-stranded DNA. The highest temperature that the 

DNA polymerase can withstand is typically used (usually 95°C). 

2. Annealing: During annealing, complementary sequences have an opportunity to hybridize, so an 

appropriate temperature is used that is based on the calculated melting temperature (Tm) of the 

primers (5°C below the Tm of the primer). 

3. Extension: At 70-72°C, the activity of the DNA polymerase is optimal, and primer extension 

occurs at rates of up to 100 bases per second. When an amplicon in real time PCR is small, this step 

is often combined with an annealing step at 60°C. 

Reactions generally run for 40 cycles. 

PCR can be divided into four major phases (Figure 4.1): the linear ground phase, early exponential 

phase, log-linear (also known as exponential) phase, and plateau phase [78].  
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Figure 4.1: Phases of the PCR amplification curve. 

During the linear ground phase (usually the first 10-15 cycles), PCR is just beginning, and 

fluorescence emission at each cycle has not yet risen above background. Baseline fluorescence is 

calculated at this time. At the beginning of exponential phase, the amount of fluorescence has reached 

a threshold where it is significantly higher (usually 10 times the standard deviation of the baseline) 

than background levels. The cycle at which this occurs is known as CT in ABI Prism® literature 

(Applied Biosystems, Foster City, CA, USA) or crossing point (CP) in LightCycler® literature (Roche 

Applied Science, Indianapolis, IN, USA) [77; 79]. This value is representative of the starting copy 

number in the original template and is used to calculate experimental results [77]. During the log-

linear phase, PCR gets its optimal amplification period with the PCR product doubling after every 

cycle in ideal reaction conditions. Finally, the plateau stage is reached when reaction components 

become limited and the fluorescence intensity is no longer useful for data calculation [80]. Reactions 

generally run for 40 cycles because many DNA copies are needed to be detected by traditional 

optical detection systems. The implementation of a optical sensor more sensitive than traditional 

detectors could reduce the CT value, and translate on the left the output curve, reducing the time 

of analysis, since less cycles of reactions are needed. 

4.2 Real Time PCR Technology 

4.2.1 Bio-rad Technology 

The Real time PCR detection systems developed by Bio-rad consist of:  

 Reaction module - samples are heated and cooled to precise temperatures to obtain nucleotide 

denaturation, annealing, and then polymerase-mediated extension for each round of DNA 

amplification; 
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 Optical detection system - in the presence of a fluorescent reporter, such as a DNA-binding dye or 

labelled probe, measurement of the fluorescence intensity of each PCR reaction allows the 

determination of the target of interest presence within an experimental sample; 

 Instrument software - real time PCR detection systems are typically controlled by a computer 

running specialized software that initiates and monitor runs and then facilitate the interpretation of 

the results. 

The reaction module is based on a Peltier cell. Most thermal cyclers in use employ this approach. It 

uses a solid-state active heat pump that transfers heat from one side to the other versus a temperature 

gradient with the consumption of electrical energy. One very useful feature of Peltier blocks is that a 

thermal gradient (Figure 4.2) can be established, allowing optimization of an assay annealing step in a 

single run [81]. This type of instrument uses a chamber in which tubes are suspended and air at a 

defined temperature is circulated for specified periods as required for PCR. 

 

Figure 4.2: Reaction module of Real Time PCR Platform developed by Bio-rad [81]. 

Reaction blocks come in multiple formats with the most common being a 96 wells block (Figure 4.3) 

with reaction volumes ranging from 1 μl to 125 μl. Blocks with more than 384 wells typically use 

microfluidics with volumes from the pico to the nanoliter range. 

 

Figure 4.3: Reaction block of RT PCR Platform [81]. 

To measure the amount of fluorescence in real time PCR reactions there is a wide variety of optical 

systems using a combination of light sources, filters, and detectors. In figure 4.4 are reported three 

different optical systems used in three RT-PCR platforms developed by Bio-rad (CFX96, 

MiniOpticon™, iQ™5). 
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Figure 4.4: RT PCR detection system optics of CFX96(top left), MiniOpticon™(top right) and iQ™5(bottom) [81]. 

In CFX96 Six filtered LEDs and six filtered photodiodes are used for excitation and detection. Light is 

filtered in a narrow bandwidth, ensuring that only data from the desired fluorophores are collected. In 

this case, a movable device detects the light emitted by excited fluorophores. 

In MiniOpticon™ forty-eight LEDs fire in rapid succession, illuminating a single sample at a time, 

while a Fresnel lens focuses each beam directly down into the centre of the corresponding well, 

minimizing light loss. Emitted fluorescence is split into two beams that pass through separate filters to 

two sensitive photodiodes. In this case, a stationary device detects the light emitted from excited 

fluorophores. 

In iQ™5 all 96 wells are excited by a combination of narrow bandpass filters and a tungsten-halogen 

lamp. Filtered light from the lamp is reflected off mirrors, passes through a condensing lens, and is 

focused into the centre of each well. Fluorescent light emitted from the wells reflects off the main fold 

mirror, passes through an emission filter, and is detected by a 12-bit charge-coupled device (CCD). 

There are several types of detectors used in real time PCR instruments. 

 Photodiode (CFX96 and MiniOpticon™) has a wide spectral range, is rugged, with low failure 

rates, and can be quite compact in size. 

 CCD (iQ™5) converts the light that it captures into digital data. The quality of the image captured 

is determined by the resolution (measured in megapixels). CCDs capture an image of the reaction 

plate, whose content is interpreted offline by a software. 
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4.2.2 STMicroelectronics Technology 

The miniaturization of a real time PCR amplification system is one of the most important features 

needed for genetic point-of-care (PoC) diagnostics to offer sample-in answer-out analysis. 

Miniaturization typically allows shorter analysis times, reduces reagent consumption, the risk of 

sample contamination, and often enhances assay performances. This section describes the genetic real 

time PCR PoC system based on a silicon microchip able to address the quantitative and qualitative 

identification of multiple analytes of specific nucleic acids (DNA, RNA) sequences developed by 

STMicroeletronics [82]. This platform exhibits an improvement of sensitivity with respect to other 

commercial tools thanks to the combination of integrated silicon temperature sensors and heaters, 

specific chip design architecture and smart detection software. Figure 4.5 shows the miniaturized 

Bio2Bit Q3 Real time PCR platform able to perform quantitative and qualitative identification of 

multiple analytes of specific nucleic acids (DNA, RNA) sequences in a PoC format. The platform is 

based on a silicon microchip, which integrates in the same device both real time PCR micro reactors 

(6-15 μl in volume), silicon temperature sensors and integrated heaters. Thanks to the integrated 

sensors and heaters, the chip allows a temperature control accuracy of ±0.2°C, heating rate of 15°C/s 

and cooling rate of 8°C/s. Moreover, the specific chip design architecture [83] enhances the optical 

fluorescent signal and, in combination with a smart detection software, provides an improvement of 

sensitivity with respect to the commercial tools. A miniaturized instrument, specifically developed, 

drives the chip thermally and optically. 

 

Figure 4.5: qRT PCR platform developed by STMicroelectronics [82]. 

The real time PCR System is composed by the following components: (a) disposable chip equipped by 

reaction chambers for the real time PCR process; (b) portable and customized thermocycler instrument 

(Q3 reader) which thermally and optically drives the chip during the real time PCR process; (c) 

software package, which manages the PCR, process and carries out the data analysis. Figure 4.6  

reportes the Q3 instrument reader developed by STMicroelectronics.  
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Figure 4.6: Q3 reader of Real Time PCR Platform [84]. 

The Q3 thermally and optically drives the chip during the real time PCR process. It has a size of 14 L 

× 7.1 W × 8.7 H (cm) (weight: 322 g). Up to two independent optical channels equip the optical 

module, for multiple fluorescent reporters (FAM, VIC®). The LED light sources are centered at 470 

and 530 nm. A CMOS camera that contains a high-pass filter at 520 nm and a 20 nm wide band-pass 

filter centered at 556 detects the emission. Finally, the thermal Module drives the temperature sensor 

and heater of the chip to reach the pre-set temperatures. The smart-software developed for the image 

analysis is based on three main core modules. A fully automatic image quantification, a set of 

algorithms for the digital image analysis process, a numerical computation module containing a set of 

algorithms for the numerical analysis of raw data coming from real time PCR. A graphical user 

interface to show the fluorescence curves for the PCR. The core of the platform is a silicon-plastic 

hybrid microchip (Figure 4.7) composed by:  

a. A bottom part made in silicon by VLSI (Very-large-scale integration) technology on a six-inch 

silicon wafer. It contains the temperature sensors and heaters integrated. (Figure 4.7a). They consist 

in AlCu metal strips (size 4.0 ± 0.1, spaced 5.0 ± 0.1 μm for the temperature sensor, size 115.0 ± 

0.1 μm spaced 30.0 ± 0.1 μm for the heater). The device perform thermal cycling in combination 

with the driving instrument (Q3-reader below described) with the following performances: 

temperature sensor maximum power consumption 55 mW, heater maximum power consumption 10 

mW, temperature control accuracy of ± 0.2°C, heating rate of 15°C/s, cooling of rate: 8°C/s and 

temperature resolution: 0.1°C (82).  

b. A top part (ring) made in polycarbonate. The ring was manufactured by molding technology and 

combines an architecture containing six reaction chambers with cylindrical shape featured by a 

volume of 25 μl (Figure 4.7b). A silicone glue glues the ring onto the silicon part. 

c. A plastic holder to facilitate the chip handling (Figure 4.7c). 
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Figure 4.7: qRT PCR platform developed by STMicroelectronics: a) silicon part; b) polycarbonate ring and c) disposable 

microchip. 

4.3 Novel promising technology based on SiPM 

The challenge of reducing the system physical size and increasing the low detection limit of analyte 

concentration in the sample led us to implement a new platform, based on SiPM technology, for Real 

Time PCR [28]. 

4.3.1 Experimental setup 

The platform implemented for the measurements suitable in real time PCR applications, is similar to 

the setup previously described for DNA microarray application (section 3.3). The main difference lies 

in the sample positioning, since the measurement is performed on liquid. The dies used are hybrid 

polycarbonate-silicon chips equipped with six or 12 wells (volume of each well 20 μl) developed by 

STMicroelectronics similar to those already developed for the Q3 platform (see previous section). 

They are inserted in an “x, y mount” parallel to the optical table. The sensor, placed on an “articulating 

base” that provides free spherical motion over a complete hemisphere, is blocked at 45° with respect to 

the normal axis to the optical table; laser hits normally to the sample (see Figure 4.8). A “fibre optic 

cannula” is used since a small and compact optical probe is needed (insert of Figure 4.8). This 

improvement allows exciting the single well and collecting the fluorescence signal it emits. This work 

reports only measurements performed at room temperature. Measurements by performing the thermal 

short cycle involve a Peltier cell (programmed by PC) placed under the “x, y mount”, very close to the 

sample. Setup arrangement and measurements are still in progress. 

In this optical systems, the sensor is biased through a 236 Keithley Source Meter, that measures also 

the sensor output signal. The measurement system is automated by a software opportunely developed 

in Labview®, that controls the bias voltage, the measurement conditions (angle of analysis and other 

key parameters), and records the output signal automatically. The signal acquired is elaborated offline 
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by a routine developed in Matlab®. Depending on the analyzed fluorophore, both the band-pass filter 

and the excitation source were changed. HeNe laser at 633 nm or Ar laser, at 488 nm, and bandpass 

filters either centred at 670 nm or at 520 nm (FWHM for both 10 ± 2 nm) were used to excite CY5 and 

FAM (see after) and collect their emitted signals, respectively. The measurement system is very 

versatile and lends itself to many applications that can space from biomedical, to environmental fields 

[71; 85]. 

 

Figure 4.8: Experimental setup for liquid samples characterization. 

4.4 Experimental results and data analysis 

The optical sensor performance evaluation for real time PCR applications was carried out measuring 

the fluorescence signal emitted by two different fluorophores commonly used in PCR, CY5 and 

Fluorescein amidite (FAM), and by changing their concentration in the sample. The reference, needed 

to subtract the background noise to the fluorophores measurements, was prepared by filling a well with 

10 μl of milliQ water and 2 μl of oil. The current detected when the laser light was scattered and/or 

diffused by the reference well was the reference current. The fluorescent signals from the remaining 

wells were calculated subtracting this reference. The characterization performed for both fluorophores 

is described in the following sections. 

4.4.1 FAM characterization 

FAM powders (from Sigma-Aldrich) was suspended in water, to obtain a 1 μM solution and diluted to 

a concentration of: 5 nM, 500 pM, 50 pM, 5 pM, 500 fM. 10 μl of solution and 2 μl of a mineral oil, 
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used to prevent liquid samples evaporation, were dropped in three identical chips equipped by six 

wells following the spotting layout reported in Figure 4.9. The wells are 3 mm in diameter and 2 mm 

in heights. All the water used was DNase-RNase-Protease free water (from Sigma Aldrich). In each 

chip, a reference well filled by water and oil is present. The laser light diffused by this well provides 

the reference and is subtracted to the signal collected by the other wells in order to obtain the real 

value of fluorescence emitted by samples.  

 

Figure 4.9: Schematic of FAM spotting layout. 

FAM characterization consisted in the measurement of the five different concentrations above 

indicated. The average values and the corresponding errors for each concentration were calculated and 

are reported in Figure 4.10.  

 

Figure 4.10: Fluorescence of the FAM solutions varying the concentrations of fluorophore in the sample with the sensor 

placed at 45° with respect to the normal axis to the sample. 

The measured fluorescence current increases proportionally to the analyte concentration in the sample 

in the range 500 fM–5 nM, over four orders of magnitudes. 
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4.4.2 CY5 characterization 

CY5 powders (from Lumiprobe) was suspended in water, in order to obtain a 1 μM solution and 

diluted to a concentration of: 100 nM, 10 nM, 1 nM, 100 pM, 10 pM, 1 pM, 100 fM. 10 μl of solution 

and 2 μl of a mineral oil, used to prevent liquid samples evaporation, were dropped in two identical 

chips equipped by 12 wells, following the spotting layout reported in Figure 4.11. Also in this case, the 

wells are 3 mm in diameter and 2 mm in heights. Each chip is equipped by a reference well filled by 

water and oil. The laser light diffused by this well provides the reference signal and is subtracted to 

signal collected by the other wells in order to obtain the real value of fluorescence emitted by samples. 

 

Figure 4.11: Schematic of CY5 spotting layout. 

CY5 characterization consisted in the measurement of the seven different concentrations just 

mentioned. The average values and the corresponding errors for each concentration were calculated 

and are reported in Figure 4.12.  

 

Figure 4.12: Fluorescence of the solutions of CY5 varying the concentrations of fluorophore in the sample with the sensor 

placed at 45° with respect to the normal axis to the sample. 
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The measured fluorescence current increases proportionally to the analyte concentration in the sample 

in the range 100 fM–100 nM, over six orders of magnitudes. The fluorescence current as a function of 

time for the lowest concentration of CY5 measured, is also shown as insert in Figure 4.12, with the 

noise current plotted for comparison. The data show a signal well above the noise. Moreover, the 

current is roughly constant over time. It should be mentioned that the laser light was shining the entire 

well and only one. 

4.5 Conclusion 

In this chapter, the potentialities of SiPM, developed by R&D Sensor Team STMicroelectronics in 

Catania, to replace traditional detection system for Real Time PCR applications were demonstrated.  

Some interesting results were carried out from this work. The system based on SiPM technology 

provides a quantitative output signal. This result simplifies considerably the output signal analysis with 

respect to traditional systems. In fact, traditional systems, provide as output an image and an offline 

analysis is needed to quantify the results. 

The analysis performed on FAM and CY5, indicate that the system, based on SiPM technology, is able 

to detect very low fluorophore concentrations (500 fM for FAM and 100 fM for CY5). Moreover, 

when the sample concentration increases, the emitted fluorescence increases as well. In particular, both 

fluorophores exhibit a nonlinear increase of the luminescence signal with dye concentration. It is 

because when the dye concentration in the sample increases, the probability of interaction between 

molecules increases accordingly. It is known that CY5 aggregation causes a decrease of the emitted 

fluorescence for a fixed concentration, since, probably, non-radiative de-excitation paths form [86; 

87]. Therefore, an increase of the concentration will produce an increase in the luminescence signal 

only as long as no interaction occur. The aggregates do not emit any fluorescence; hence, the 

florescence characteristics in terms of lifetime and emission spectrum does not change. In our samples, 

the aggregate presence can be inferred by the non-linearity of the signal as a function of the 

concentration. The results reported underline the SiPM extreme sensitivity and open up new 

possibilities to all those applications in which very small amounts of analyte must be detected. 
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Chapter 5  

ATP bioluminescence sensor 

5.1 Introduction 

Optical transduction is certainly the most used detection method in biomedical field and, usually, it is 

employed in detecting the fluorescence emitted by markers used to label DNA fragments in DNA 

microarray and Real Time PCR applications. However, this method is used also to detect the 

bioluminescence emitted by living organisms. Bioluminescence is a process in which living organisms 

convert biochemical response into light. Such light is generated as a by-product of the excitation and 

subsequent de-excitation of electrons after a biochemical reaction. The main advantage with respect to 

fluorescence is that it does not require external sources of light excitation. An example is the 

adenosine tri-phosphate (ATP), the biological energy source, which reacts with luciferin with the aid 

of the enzyme luciferase to yield an intermediate complex. This complex combines with oxygen to 

produce a highly chemiluminescent compound. Luciferase systems are widely used in biomedical 

research, to label cells to make them visible under the microscope. Common applications of 

bioluminescence detection include in vivo studies of infection (with bioluminescent pathogens) [88], 

cancer progression (using a bioluminescent cancer cell line), and reconstitution kinetics (using 

bioluminescent stem cells) [89]. The luciferin - luciferase bioluminescence assay has successfully 

evidenced the effects of antibiotics on bacterial populations [90] and allowed scientists to distinguish 

cytostatic versus cytocidal potential of anticancer drugs on malignant cell growth [91]. 

This methodology allows the researchers to improve cancer investigation in several systems such as 

blood, brain, breast, fibrosarcoma, melanoma, pancreatic, prostate, and colorectal cancers.  

For example, the monitoring of bioluminescence emitted by cancer cells could enable physicians in the 

evaluation of the individual response to cancer surgery and to the following treatments. Nowadays, the 

treatments used may include some combination of surgery, radiation therapy, chemotherapy and 

targeted therapy. Sometimes, cancers that are confined and may be curable with surgery while cancers 

that spread widely are usually not curable, with the treatments focusing on improving quality of life 

and reduce symptoms.  
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In cancer cells, the use of living cells as sensing systems is proved as valuable for prediction of the 

physiological response to radiotherapy and chemotherapy. Using bioluminescent assays, the toxic 

effects and specific biological activities of both radiotherapy and chemotherapy can be evaluated in an 

easy and straightforward manner. This methodology gives the researchers unparalleled sensitivity, 

wide dynamic range, versatility, no endogenous interferes from host cells and ease of use. For 

example, several studies present biomarkers in colorectal cancer that can predict a subpopulation of 

patients who are likely to respond to a given therapy [92-94]. The technology development on 

bioluminescent assays will provide a rapid and convenient mean for achieving better control over the 

biological significance of reporter data about these biomarkers by differentiating genetic responses of 

interest from irrelevant influences in cancer research. The technology may even be an application for 

identifying the biomarkers, which could be used for determining the therapy response of cancer 

patients in the future. Current technology for detecting bioluminescence, such as ATP assays or 

luciferase assays for studying promoter activity and signal transduction, is based mainly on performing 

tube-based reaction followed by detection of bioluminescent signal. This approach needs expensive 

laboratory equipment such as bioluminescent readers and bioluminescent imaging systems. These 

techniques do not allow kinetic measurements. Information on kinetics is obtained by sampling at 

discrete time points, which requires intensive and time consuming procedures. In addition, the 

detection is based on far-field optics, which limits the technology sensitivity.  

This section describes the use of SiPM to detect luciferase bioluminescence. In particular, a SiPM-

based detection system was design and applied to a real case, the ATP detection by using luciferase. 

The system proof of concept was performed using standard ATP bioluminescence assays. 

5.2 ATP bioluminescence reaction 

In order to fully understand the biological system that was chosen as testing case the Adenosine 

Triphosphate (ATP) structure and functionalities must be briefly addressed. ATP consists of 

adenosine, composed by an adenine ring and a ribose sugar, and three phosphate groups (Figure 5.1).  

 
Figure 5.1: Adenosine Triphosphate (ATP) chemical structure [95]. 

ATP transports chemical energy within cells for metabolism and is involved by enzymes and structural 

proteins in many cellular processes, including biosynthetic reactions, motility, and cell division [96]. 



Chapter 5. ATP Bio luminescence  sensor        55  

 

 

Since ATP is present in all living cells and decreases once the cells die, its presence is used also as an 

indication of the cell’s viability and of the presence of cellular injuries. Besides of human health 

monitoring, ATP allows determining microbial activity in soil materials, freshness of fish, and is used 

as quality control of the functionality of blood prior to transfusion. Recent works indicate that ATP 

plays a key role in signal transduction [97-99] and in one type of neurotransmitters that is related to the 

sense of taste [100; 101]. 

ATP bioluminescence assays used in this work are obtained from Molecular Probesʼ ATP 

Determination Kit (A22066), which offers a convenient bioluminescence assay for quantitative 

determination of ATP with recombinant firefly luciferase and its substrate D-luciferin [102]. The assay 

is based on luciferaseʼs requirement for ATP in producing light (emission maximum ~560 nm at pH 

7.8) from the reaction: 

𝑙𝑢𝑐𝑖𝑓𝑒𝑟𝑖𝑛 + 𝐴𝑇𝑃 + 𝑂2 
𝑙𝑢𝑐𝑖𝑓𝑒𝑟𝑎𝑠𝑒
         𝑜𝑥𝑦𝑙𝑢𝑐𝑖𝑓𝑒𝑟𝑖𝑛 + 𝐴𝑀𝑃 +  𝐶𝑂2  +  𝑝𝑦𝑟𝑜𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 +  ℎ𝜈 (5.1) 

The assay typically involves the light-emitting pigment luciferin and the enzyme luciferase to catalyze 

the luciferin oxidation. This type of luciferin requires cofactors such as magnesium ions (Mg
2+

) and 

the energy-carrying molecule adenosine triphosphate (ATP). Moreover, the amount of light emitted by 

luciferase is directly associated with the amount of ATP. Carbon dioxide (CO2), adenosine 

monophosphate (AMP) and pyrophosphate (PP) are released as waste products. 

5.3 Experimental 

Nowadays, biomedical platforms to perform biological testing such as gene expression analysis, DNA 

sequencing, DNA amplification and quantification are expensive, bulky, characterized by large power 

consumption and require large amounts of reagents. Therefore, the growing need of point-of-care 

systems to perform biological analysis is driving the scientific community to develop miniaturized and 

low cost platforms, which allow cheap and in situ measurements. The challenge of reducing the 

system physical size, cost, power consumption and increasing the low detection limit of analyte 

concentration in the sample led us to implement a new platform, based on SiPM technology, for ATP 

bioluminescence detection.  

Three different arrangements of the optical system were developed, in which three different sample 

holders are involved, respectively: glass tubes, PDMS chambers, and fluidic chip fabricated by a 3D 

printer. To test the systems designed and fabricated for this purpose, ATP solutions were prepared. 

The stock ATP solution was provided by Molecular Probes’ ATP Determination Kit, with a 

concentration of 5 mM. We prepared seven different concentrations through successive dilutions: 1 

µM; 500 nM; 250 nM; 125 nM; 62.5 nM; 31.25 nM; 15.625 nM. Moreover, the “Standard Reaction 

Solution (SRS)” was prepared. It is composed by: dH2O (deionized water), 20X Reaction Buffer, 

dithiothreitol (DTT) with a concentration of 0.1 M, D-luciferin with a concentration of 10 mM and 

Mg2+ 
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firefly luciferase 5 mg/ml. Mixing between the SRS and ATP produces the biolominescence at 560 

nm. Several concentration of ATP, ranging from 15.625 nM to 1 µM, were tested in this work and 

different arrangements of the experimental setup, optical systems, were developed, as described in the 

following sections. 

5.3.1 Optical system using glass tubes 

The optical sensor performances evaluation for ATP bioluminescence detection was carried out 

measuring different concentrations of ATP ranging from 15.625 nM to 1 µM (see before).  

To demonstrate the power of the system based on SiPM technology, same samples were analyzed 

using both systems: a traditional commercial bioluminescence reader (PerkinElmer Victor 2030 with a 

detection limit able to measure a total flux from sample of 10
5
 photons/s [103]) and the innovative 

system based on SiPM whose schematic is reported in Figure 5.2 (right).  

 

Figure 5.2: PerkinElmer Victor 2030 bioluminescent reader (left); Schematic of experimental setup for glass tube support 

based on SiPM technology (right). 

The sensor, placed inside the MiniDom [26], was biased through a 4200 Keithley Source Meter, that 

measured and acquired the sensor output signal. The MiniDom was equipped by a glass tube 

(d=~5mm) containing the sample to be analyzed inserted in an opportunely fabricated hole (d=~6mm) 

in the MiniDom upper shield. The bottom surface of the glass tube was very close to the active area of 

the sensor (approximately 2 mm). All the described parts were placed inside a dark box to reduce the 

background noise. The measurement system is based on a specific setting of Keithley 4200, which 

allows to control the bias voltage (fixed at -30V), the measurement conditions (time of measurement), 

and to acquire the output signal automatically. The signal acquired was elaborated offline by a routine 

developed in Matlab®. For both measurements (using the commercial or the innovative optical 

system), a set of 24 samples having a volume of 100 µl (10 µl of ATP and 90 µl of SRS) were 

analyzed (three for each concentration and three of water, used as a reference). It should be pointed out 

that two different supports were used in the commercial reader and in the innovative system: Vision 

Plate™ 96 Well [104] and small glass tube with a 5 mm of diameter, respectively. 
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5.3.2 Optical system using PDMS chambers 

The growing need to design miniaturized systems for biological analysis led us to fabricate several 

types of transparent PDMS chambers, with a thickness of 6 mm and different diameters: 2, 3, 4, and 6 

mm (Figure 5.3). To fabricate flexible PDMS layers on Polyethylene Terephthalate (PET) films were 

involved two agents: the "Silicone Elastomer Base" and the "Silicone Elastomer Curing". The 

materials were mixed for few minutes and then deposited on a PET film having an aluminum foil as a 

flexible and low cost holder. The mixture of curing agent and PDMS base were prepared by a weight 

ratio of 1:10. To achieve a thickness of 6 mm different layers of PDMS are needed. In particular, each 

day a new layer of PDMS (with a ratio 4:40 between curing agent and PDMS base) was deposited, for 

a total time of 5 days. Then, using biopsy punches with different diameters, we realized holes inside 

the PDMS structure. After washing with water and ethanol, coverslips and PDMS wells underwent a 

plasma etching step and, then, wells were fixed on coverslips and put in the oven (at ~80°C) for few 

minutes. 

 

Figure 5.3: PDMS chambers of 6 mm thickness and having different diameters: (from left to right) 2, 3, 4, and 6 mm. 

The experimental optical system used to measure the bioluminescence signal emitted by PDMS 

chambers filled by ATP solutions is very similar to the one reported in Figure 5.2. The main difference 

lies in the sample positioning, since PDMS chambers are placed on the top of sensor package, very 

close to the sensor active area (less than 2mm, Figure 5.4).   

 

Figure 5.4: Experimental setup used to test ATP presence using PDMS chambers. 
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In this case the MiniDom was completely closed to reduce the optical background noise. In order to 

define the best PDMS chamber size and sample volume, different set of measurements were carried 

out following the scheme reported in TABLE 5.1. Several parameters are involved in these 

measurements: ATP concentration, solution volume, chamber diameter.  

ATP initial 

Concentration 

Chamber 

diameter 

[mm]
 

ATP 

volume 

[µl] 

SRS 

volume 

[µl] 

Total 

volume 

[µl] 

ATP final 

concentration 

 

 

 

 

 

 

2µM, 250nM, 

31.25nM 

 

2 

2.5 2.5 5  

 

 

 

 

1µM, 125nM, 

15.625nM 

5 5 10 

7.5 7.5 15 

 

3 

7.5 7.5 15 

15 15 30 

20 20 40 

 

4 

 

 

7.5 7.5 15 

15 15 30 

20 20 40 

30 30 60 

 

 

6 

7.5 7.5 15 

15 15 30 

20 20 40 

30 30 60 

50 50 100 

TABLE 5.1: Scheme of measurement set. 

Several volumes of three different concentrations (1µM, 125nM, 15.625nM) spotted in PDMS 

chambers with 2, 3, 4, and 6 mm of diameter were analyzed. As an example, Figure 5.5 reports the 

bioluminescent behaviours of four different volumes, in a chamber having a diameter of 4 mm, for 

three ATP concentrations. 
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Figure 5.5: Bioluminescence signal acquired by SiPM for water (black lines), 15µl (red lines), 30µl (blue lines), 40µl (green 

lines), 60µl (orange lines) of three ATP concentrations: (a) 15.625nM; (b) 125nM; (c) 1uM, in a chamber having a diameter 

of 4 mm. 

Figure 5.5 shows three different regimes: 

 At low ATP concentrations, ~ 15 nM, the emitted bioluminescence signal is the same regardless 

of the solution volumes analysed. In fact, in this regime, by increasing the solution volume also 

the number of molecules increases but the reaction probability remains the same. 

 Increasing the ATP concentration and the solution volume, 125 nM, the bioluminescence signal 

increases, but only up to a maximum volume value (40 µl). Further increasing the solution 

volume, the signal remains almost constant.  

 At high ATP concentration, 1 µM, by increasing the solution volume both the number of 

molecules and the bioluminescence signal increase up to a limit, reached when the number of 

molecules is so high that the saturation level is approached (40 µl). 

Figure 5.6 reports the comparison of the water (reference sample, black lines) signal and the 

bioluminescence signals emitted by 15µl of solution at 1µM (a), 125nM (b) and 15.625nM (c) of ATP 

inserted in PDMS chambers with four different diameters: 6mm (red lines), 4mm (blue lines), 3mm 

(green lines), and 2mm (dark green lines). Due to the small solution volume and different size of the 

PDMS chambers’ diameter, the distribution of the solution is different for each structure. In fact, for 

chambers with 2 or 3 mm of diameter, the solution covers totally the surface and reaches different 

heights (thicknesses). In structures having 4 or 6 mm of diameter, the solution covers only partially the 

surface forming a drop. Hence, for medium and low levels of ATP concentrations (125nM and 

15.625nM), the best diameter size is 6 mm because in this structure the solution is very close to the 

active area of the sensor and the bioluminescence produced is fully detected. On the other hand, for 

chambers having 2 or 3 mm of diameter, the bioluminescence produced is partially adsorbed by the 

solution along the path (thickness). At high ATP concentration (1μM), in chambers having 4 and 6 

mm of diameter, either intermolecular effects prevail over adsorption phenomena or the other reagents 

are not in a suitable quantity to allow all the ATP to react. Hence, at high ATP concentration, 
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chambers with 2 or 3 mm of diameter ensure a detected bioluminescence signal higher than for 

chambers having larger diameters. 

 

 

 

Figure 5.6: Bioluminescence signal of water (black lines) and 15µl of solution poured in PDMS chambers having a diameter 

of 6 mm (red lines), 4 mm (blue lines), 3 mm (green lines), 2 mm (dark green lines) at three ATP concentrations: (a) 1uM; (b) 

125nM; (c) 15.625nM. 

The reported experiments allowed defining the best operating conditions: 100μl of sample solution and 

6 mm of chamber diameter size. These data were very useful for the design of the 3D printed 

microfluidic chips. 
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5.3.3 Optical system using 3D printed microfluidic chips 

Fluidic chips commonly used for biological assays in most laboratories are fabricated using traditional 

methods suited for fast prototyping. Nowadays, efforts have been made for quick and easy fabrication 

of fluidically sealed devices with the development of three-dimensional (3D) printers. 3D printers 

build a chip layer by layer based on 3D computer software, such as Computer Aided Design (CAD). 

The fluidic chip developed and discussed in the following sections was designed using a CAD 

software (Autodesk® Inventor® Fusion 360, Autodesk Inc.), with a reaction chamber and open 

channels, providing easy access for functionalization, and the sub-micro-metric surface finishing 

enable to seal it with regular adhesive tape [105; 106]. Form 1+ 3D printer [107], reported in Figure 

5.7, was used to fabricate the microfluidic chip, and a proprietary resin [105], with different 

proportions of modified acrylate and acrylate oligomer, epoxy monomer, acrylate monomer, photo 

initiator and additives as principal components was used.  

 
Figure 5.7: 3D printer FormLabs (Form1+). 

Less than 30 minutes are needed to print the chip and the prototype cost is less than 1 US$. The 

advantage is clear if one compares the fabrication time with the 5 days needed to fabricate the PDMS 

chambers. The microfluidic chip is composed by two different inlet ports with a diameter of 500 µm, 

through which ATP and standard reaction solution are separately injected; a mixing area formed by a 

single channel with a diameter of 500 µm in which the two different reagents react, thanks to the 

gravity; a reaction chamber, very close to the active area of the optical sensor, with a diameter of 6 mm 

and a volume of 100 µl; an outlet channel with a diameter of 1mm and an outlet port 500 µm large 

(Figure 5.8).  

 

Figure 5.8: 3D printed microfluidic chip designed for a SiPM detection system. 



Chapter 5. ATP Bio luminescence  sensor        62  

 

 

The otpical setup used to measure the bioluminescence signal emitted in the reaction chamber filled by 

ATP solutions is very similar to the one reported in Figure 5.2. The main difference lies in the sample 

positioning, since the reaction chamber is inserted in the miniDom hole and it is very close to the 

sensor active area.  

5.4 Results 

The optical sensor performance evaluation for bioluminescence detection was performed measuring 

different ATP concentrations ranging from 15.625 nM to 1 µM and comparing two different optical 

systems setup. They are those having the glass tube and 3D printed microfluidic chip as sample 

holders. To demonstrate the sensitivity and the improved performances of the system based on SiPM 

technology, the same samples were analyzed also by using a commercial bioluminescence reader 

(PerkinElmer Victor 2030). The experimental data provided by the commercial reader were elaborated 

and the average values and the corresponding errors for each concentration calculated and reported in 

Figure 5.9 as luminescence counts in linear scale, and in Figure 5.10 after reference subtraction and in 

logarithmic scale. 
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Figure 5.9: ATP bioluminescence signal at four time points (0, 5, 10, 15 minutes) for water (black lines) and seven ATP 

concentrations: 1uM (orange lines); 500nM (cyan lines); 250nM (brown lines); 125nM (magenta lines); 62.5nM (green 

lines); 31.25nM (blue lines); 15.6125nM (red lines). 

Figure 5.9 shows the behaviour of seven ATP concentrations: 1uM (orange lines); 500nM (cyan lines); 

250nM (brown lines); 125nM (magenta lines); 62.5nM (green lines); 31.25nM (blue lines); 15.625nM 

(red lines). The water signal (black lines) is also reported as reference. Data were acquired at four 

different time points: as inserted in the reader (indicated as zero), after 5 min, 10 min, and 15 min. 

Data show clearly that after 5 minutes the bioluminescence emitted is reduced by almost 60% of the 

maximum value. To remove the background signal, the water signal was subtracted to each signal, and 

the net bioluminescence value is reported in Figure 5.10.  
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Figure 5.10: ATP bioluminescence signal as a function of the ATP concentration at four time points: 0 (black lines), 5 (red 

lines), 10 (blue lines), 15 (green lines) minutes. 

Figure 5.10 shows as the signal reduction after the first five minutes mainly involves high 

concentrations. In fact, at low concentrations, the bioluminescence reduction is less pronounced. 

Moreover, the signals are not linear with ATP concentrations. Using the PerkinElmer Victor 2030 

bioluminescent reader it was not possible to acquire the signal as a function of time from the reaction 

start, hence only four time points were selected. This limit was overcome by the innovative system 

based on SiPM technology we developed, which allows monitoring the bioluminescence signal as a 

function of the time from the reaction start instant. Three replicas for water and for each ATP 

concentration were analysed, for both systems. The average values for each concentration were 

calculated and are reported in Figure 5.11. 

 

Figure 5.11: ATP bioluminescence signal versus time for seven different ATP concentrations: 1uM (blue lines); 500nM 

(green lines); 250nM (magenta lines); 125nM (cyan lines); 62.5nM (brown lines); 31.25nM (orange lines); 15.625nM (dark 

green lines); water (red lines) and dark (black lines) signals are also reported for comparison. 
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Figure 5.11 shows the good performances of SiPM in real time monitoring of the ATP 

bioluminescence. Moreover, it is able to detect the weak signals emitted by very low ATP 

concentration (15.625 nM). The possibility to make real time monitoring allows studying the 

bioluminescence reaction kinetics. Some interesting information can be carried out from the inspection 

of Figure 5.11: increasing the ATP concentration, the bioluminescence signal increases and, at high 

ATP concentration (1µM), a different behaviour with respect to the other concentrations can be 

observed. In fact, after 30 s a fast quenching occurs (please note the horizontal scale is logarithmic). It 

is probably due to the reaction components: when the ATP concentration is high, a lot of product 

forms in short times, hence the other reaction components (included in the SRS) are quickly consumed 

and the reaction tends to stop. It is confirmed by the fact that reducing the ATP concentration, the 

quenching occurs after longer reaction times. As an example, for ATP concentration of 500nM the 

quenching occurs after more than 100 s.   

Analysing the reaction kinetics in Figure 5.11 it is possible to distinguish three different phases:  

 a stabilization phase due to the technical time needed to the instrument for the auto setting 

(about 2s);  

 an intermediate phase in which the signals are roughly constant;  

 a final phase in which the signals slowly decrease due to the SRS consumption.  

The bioluminescence signals recorded at 1µM, 125nM and 15.625nM of ATP concentration and 

reported in Figure 5.11 confirm the results already observed in Figure 5.5. The main difference 

between the two set of results is the signal intensity. In fact, at the same ATP concentration and 

solution volume the signal measured by using the glass tubes is higher than the signal measured by 

using the PDMS chambers.  

The direct comparison between traditional and innovative systems showed that, thanks to its high 

sensitivity, SiPM is able to detect very low emitted bioluminescence signals (15.625 nM), as well as 

very expensive instrument commonly used, and it also allows monitoring the reaction kinetics in real 

time. Moreover, a disposable 3D printed microfluidic chip for continuous flow monitoring of ATP 

bioluminescence was developed during this Ph.D. experience and has been here described. 

In order to demonstrate the power of the 3D microfluidic chips, three different ATP concentrations and 

the SRS are separately and manually injected, through two different inlet ports, using two syringes. 

Figure 5.12 reports the ATP bioluminescence signal as a function of time for three concentrations of 

ATP: 1uM (red lines); 125nM (blue lines); 15.625nM (green lines) and water (black lines). 
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Figure 5.12: ATP bioluminescence signal versus time for three different concentrations of ATP: 1uM (red lines); 125nM 

(blue lines); 15.625nM (green lines) and water (black lines). 

The signals at 1µM (in red), 125nM (blue) and 15.625nM (green) of ATP reported in Figure 5.12 

confirm the results already discussed in Figure 5.5 and Figure 5.11. The direct comparison between the 

net bioluminescence signals acquired with all the instruments discussed (commercial reader, SiPM 

with glass tube and SiPM with a 3D chip) is reported in Figure 5.13. 

 

Figure 5.13: Comparison between data acquired by commercial reader (red lines), system for glass tube (black lines) and 

system based on 3D chip (blue lines).  

Figure 5.13 shows as all the system compared exhibit the same sensitivity within the experimental 

errors in the analysed range of ATP concentrations.  

By taking advantage from the SiPM high sensitivity and low noise, low levels of ATP concentrations 

were measured, showing good stability and reproducibility. 



Chapter 5. ATP Bio luminescence  sensor        66  

 

 

Finally, two NE-1010 Higher Pressure Programmable Single Syringe Pumps [108] were used to inject 

automatically the ATP solutions and SRS in the disposable 3D printed microfluidic chip in order to 

perform the continuous flow monitoring of the ATP bioluminescence signal. The same ATP 

concentrations already tested were analysed in continuous flow mode, using the same flow rate for 

both ATP and standard reaction solution (1 ml/min). In this case, the SRS was used also as buffer 

solution to clean the channels between two following repetitions. Figure 5.14 shows as the signal for 

low, medium and high ATP concentrations (15.625nM, 125nM, and 500nM, respectively) is stable and 

reproducible over time. Signals reported in Figure 5.14 were mathematically filtered through adjacent- 

averaging method, using 15 points for window, in order to eliminate the mechanical noise introduced 

by automatic pumps.  

 
Figure 5.14: Bioluminescence signal acquired during a continuous flow monitoring for two different ATP concentrations: 

15.625nM (red line); 125nM (blue line). 

Several ATP concentrations were tested in continuous flow mode by simply changing the flow rate 

ratio of ATP and SRS as reported in TABLE 5.2. The flow rate of SRS was fixed at 19.2 ml/h, while 

the flow rate of ATP solution with a concentration of 1μM ranged from 0.6 to 19.2 ml/h, in order to 

obtain a final ATP concentration in the range 15.625 – 500nM (Figure 5.15). 

SRS 
Flow rate (ml/h)  

ATP  

Flow rate (ml/h) 
Final ATP 

concentration (nM)  

19.2 

0.6 15.625 

1.2 31.25   

2.4  62.5   

4.8  125  

9.6  250  

19.2  500  

TABLE 5.2: Flow rates of ATP and SRS used for the continuous flow monitoring of bioluminescence signal. 
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Figure 5.15: Continuous flow monitoring of ATP bioluminescence. 

Figure 5.15 shows as the SiPM and 3D printed microfluidic chip coupled system is very sensitive to 

flow rate changes and, consequently, ATP concentration changes. 

Analysing the graph it is possible to observe as increasing the ATP concentration also the 

bioluminescence current detected increases.  

These results open the possibility to fabricate and commercialize SiPM based detection systems for 

bioluminescence detection. The combination of SiPM with 3D printed microfluidic chips provides a 

means of creating compact, sensitive and potentially low-cost bioluminescence devices detection with 

wide-ranging applications in chemical and biological analysis and clinical diagnostics. 

5.5 Conclusion 

In this chapter, the potentialities of SiPM, developed by R&D Sensor Team STMicroelectronics in 

Catania, to replace traditional detection system for bioluminescence measurements were demonstrated.  

It was shown that the optical system based on SiPM technology provides a quantitative output signal. 

This result simplifies considerably the signal analysis with respect to traditional systems, which 

provide as output an image and an offline analysis is needed to quantify the results. 

The analysis performed on ATP solutions indicate that increasing the ATP concentration, the 

bioluminescence signal increases and, at high ATP concentration levels (1µM), a different behaviour 

during measured time can be observed. A fast partial quenching is present in the first phase, but then 

the signal decreases exponentially. In fact, due to the reaction nature, when the ATP concentration is 

high, a lot of product is available and it is released immediately in the form of light. Moreover, due to 
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the large amount of ATP with respect to the other reagent molecules (SRS), the other reagents 

consumes before all the ATP is reacted, hence a quenching is observed. It is more evident as the 

concentration increases. 

The direct comparison between traditional and innovative systems using glass tubes showed that, 

thanks to its high sensitivity, SiPM is able to detect very low emitted bioluminescence signals (15.625 

nM), as well as the very expensive instrument commonly used. In addition, SiPM based systems allow 

monitoring the reaction kinetics in real time. In fact, with the PerkinElmer Victor 2030 bioluminescent 

reader it was not possible to acquire in continuous mode the signal during time, hence only four time 

points were chosen. This limit was overcome by the innovative system based on SiPM technology we 

developed, which allows monitoring the bioluminescence current in a continuous mode. 

In order to design the best structure for the 3D printed microfluidic chip, that will allow a continuous 

flow monitoring of bioluminescence signals, PDMS chambers having different sizes, hence containing 

different volume of solution, were tested. The analysis performed showed that the best operating 

conditions are: 100μl of sample solution and 6 mm of chamber diameter size.  

However, to demonstrate the potentialities of the 3D microfluidic chips the ATP bioluminescence as a 

function of the reaction time for three different concentrations of ATP: 1uM, 125nM and 15.625nM 

was recorded in real time. 

The direct comparison between the systems proposed and the commercial reader shows all of them 

exhibit almost the same sensitivity in the analysed range of ATP concentrations. It should be reminded 

that the proposed system is much cheaper and more compact with respect to the commercial one and 

allows real time measurements versus time.  

Finally, the ability of the system based on 3D printed microfluidic chip to perform continuous flow 

monitoring of bioluminescence reaction was demonstrated, opening the possibility to fabricate and 

commercialize SiPM based detection systems for bioluminescence detection. The combination of 

SiPM with 3D printed microfluidic chips provides a means of creating compact, sensitive and 

potentially low-cost bioluminescence detection systems with wide-ranging applications in chemical 

and biological analysis and clinical diagnostics. 
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Conclusion 

The SiPM produced by the R&D of STMicroelectronics in Catania was used to detect low 

fluorescence and bioluminescence signals, allowing the design and fabrication of easy-to-use optical 

system for biomedical applications. 

Multichip characterization allowed defining the 5x5 pixels with trenches SiPM as the most suitable 

device for the biosensing applications discussed in this thesis, since it had the lowest DC and cross-

talk probability. Pulsed measurements showed as SiPM can be used as photon counter also for 

biosensing applications. 

Two different experimental setups for lifetime measurements, suitable for fast and slow fluorophores, 

were developed. They were used to study the photochemical properties of CY5 and Ru(bpy)3
2+

, for 

optical sensing applications. The analysis showed that this last molecule is a viable alternative to the 

conventional fluorophore CY5 for target gene labelling in optical DNA-chip application. In fact, 

Ru(bpy)3
2+ 

reduces the risk of fluorescence self-absorption, thanks to the large distance between the 

absorption/emission peaks, and allows using a simple electronics for the fluorescence analysis, thanks 

to the long lifetime.  

The measurements showed a cooperative effect of the molecules by increasing their density after 

drying of sample. This caused the red shift of the absorption peaks at 310 nm and 470 nm and the 

appearance of a dominant emission peak at 590 nm in dried samples. These samples exhibit an 

additional faster component in the lifetime of ~100ns, in addition to the 350 ns lifetime value measured 

in dissolved samples. 

Moreover, the ability of SiPM, to replace traditional detection system for DNA microarray 

applications was demonstrated and some interesting results were carried out. First, the system based on 

SiPM technology provides a quantitative output signal. This feature simplifies considerably the output 

signal analysis with respect to traditional systems. In fact, optical readers provide an image as output 

and an offline analysis is required to quantify the results. 

From the analysis performed on five different concentrations of DNA labelled with CY5, 

GAPDHCy5, emerged that as the sample concentration increases, the emitted fluorescence increases 

as well. The current signal value at each concentration is roughly constant in the measurement angular 

range chosen, confirming the isotropic emission of fluorescence and the signal linearity in the range 1 

nM - 1 μM.  

The direct comparison between traditional optical reader and SiPM showed that, thanks to its high 

sensitivity, SiPM is able to measure also the small signal difference between two concentration values 
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very close, that are indistinguishable with a commercial optical reader. Finally, the high SiPM 

sensitivity allows detecting very low fluorescence signals (1 nM), not visible with the commercial 

reader used for comparison. 

In this work, the potentialities of SiPM to replace traditional detection system for Real Time PCR 

applications were demonstrated as well. The analysis performed on FAM and CY5, indicate that the 

system, based on SiPM technology, is able to detect very low fluorophore concentrations (500 fM for 

FAM and 100 fM for CY5). Moreover, when the sample concentration increases, the emitted 

fluorescence increases as well. In particular, both fluorophores exhibit a nonlinear increase of the 

luminescence signal with dye concentration. It occurs because when the dye concentration in the 

sample increases, the probability of interaction between molecules increases accordingly. It is known 

that CY5 aggregation causes a decrease of the emitted fluorescence for a fixed concentration, since, 

probably, non-radiative de-excitation paths form [86; 87]. Therefore, an increase of the concentration 

will produce an increase in the luminescence signal only as long as no interaction occur. The 

aggregates do not emit any fluorescence; hence, the florescence characteristics in terms of lifetime and 

emission spectrum does not change. In our samples, the aggregate presence can be inferred by the non-

linearity of the signal as a function of the concentration.  

Finally, the potentialities of SiPM to replace traditional detection systems for bioluminescence 

measurements were demonstrated. The analysis performed on ATP dissolved samples indicate that 

increasing the ATP concentration, the bioluminescence signal increases and, at high ATP 

concentration (1µM), a different behaviour during the measuring time is observed. A fast partial 

quenching is detected in the first seconds, then, the signal decreases exponentially down to a steady 

state emission. In fact, due to the reaction nature, when the ATP concentration is high, a lot of product 

is available and it is released immediately in the form of light. Moreover, due to the large amount of 

ATP with respect to the other reagents, a quenching due to the other reagents consumption occurs. It is 

more evident as the ATP concentration is increased. 

The direct comparison between a PerkinElmer Victor 2030 bioluminescent reader, a traditional 

system, and the innovative system using glass tubes showed that, thanks to its high sensitivity, SiPM is 

able to detect very low emitted bioluminescence signals (15.625 nM), as well as very expensive 

instrument commonly used. Furthermore, it allows monitoring the reaction kinetics in real time and in 

a continuous mode. In fact, with the PerkinElmer Victor 2030 bioluminescent reader it was not 

possible to acquire in continuous mode the signal during the reaction time, hence only four time points 

were selected. This limit was overcome by the innovative system based on SiPM technology, which 

allows monitoring the bioluminescence current in real time and in a continuous mode. 

In order to design the best structure for the 3D printed microfluidic chip, that will allow a continuous 

flow monitoring of the bioluminescence signals, PDMS chambers having sizes, hence different 

volume of solution, were tested. The analysis performed showed that the best operating conditions are: 

100μl of sample solution and 6 mm of chamber diameter size.  
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However, to demonstrate the potentialities of the 3D microfluidic chip the ATP bioluminescence as a 

function of the reaction time for three different concentrations of ATP, 1uM, 125nM and 15.625nM, 

was recorded in real time. 

The direct comparison between three different systems shows as the commercial reader and the optical 

system with glass tube exhibit almost the same sensitivity in the analysed range of ATP 

concentrations. It should be reminded that the proposed system is much cheaper and more compact 

with respect to the commercial one and allows real time measurements versus time.  

The evolution of the glass tube system is the system based on 3D printed microfluidic chip. It exhibits 

almost the same sensitivity of its predecessor when detecting medium and high ATP concentrations, 

but, at low ATP concentrations, it is more sensitive than the previous one. 

Finally, the ability of the system based on 3D printed microfluidic chip to perform continuous flow 

monitoring of bioluminescent signal was demonstrated, opening the possibility to fabricate and 

commercialize SiPM based detection systems for bioluminescence detection. The combination of 

SiPM with 3D printed microfluidic chips provides a means of creating compact, sensitive and 

potentially low-cost bioluminescence detection systems with wide-ranging applications in chemical 

and biological analysis and clinical diagnostics. 
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