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Abstract Prolonged human life duration is consequently associated with a higher incidence of chronic 

diseases. Aging is a very complex process in which genetic, environmental and cellular pathways are 

involved. Along with aging, longevity has been linked with Sirtuins. Sirtuin enzymes are a family of 

highly conserved protein deacetylases that have been linked with calorie restriction and aging by 

modulating energy metabolism, genomic stability and stress resistance. Aim of this brief review is to 

describe Sirtuins’ influence on the conditions that worsen the physiological aging. We will also report 

the beneficial effects of the polyphenol resveratrol on these molecules and the possible therapeutical 

perspectives. 
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1. Introduction 

 

The growing interest of scientists and researchers about aging may be also explained if we consider 

that the prolonged human life duration is consequently associated with increasing costs of public 

health due to the higher incidence of chronic diseases like diabetes, kidney failure, hypertension, 

neurodegenerative diseases, osteoporosis and cancer. From this point of view the future health 

challenge is to provide people with a better aging without excessive health costs. 

 

At the date, if you type on PubMed screen the query “aging”, more than 330000 results will be shown. 

Modern societies, expecially the western ones, are aging due to the prolonged life span, the reduced 

birth rates and the technological and scientific advances. 

 

Different hypotheses have been postulated to explain aging and its underlying mechanisms. We 

actually know that it is a very complex process in which genetic, environmental and cellular pathways 

are involved. Among these, oxidative stress was widely investigated for its tight implications in 

vascular aging that plays a key role in this process. In fact, cardiovascular and cerebrovascular events 

are significantly more frequent in aging adults [1]. 
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Along with aging, longevity was largely focused. Caloric restriction (CR) is a nutritional technique used 

in different models as a healthy method to prolong lifespan [2] through a reduction of calorie intake by 

30-40% but avoiding malnutrition. This method’s effects could be mediated by Sirtuins. 

 

2. Sirtuins 

 

Sirtuin enzymes are a family of highly conserved protein deacetylases that depend on nicotinamide 

adenine dinucleotide (NAD+) for their activity. Sirtuins catalyze the removal of acetyl groups from 

lysine residues. They may promote different post translational modifications in a wide range of 

proteins so they are actually defined as deacylases [3].  

 

Seven Sirtuins have been actually identified in mammals, listed from 1 to 7. Each of them exhibits a 

catalytic domain present in all Sirtuins whilst different N- and C- ends give to these proteins their 

characteristical biological properties.  

 

They have distinct subcellular localizations: SIRT1, 6 and 7 are nuclear; SIRT2 is cytosolic whilst 

SIRT3, 4 and 5 are primarily located in mitochondria [4]. Among these proteins, only SIRT4 has no a 

known deacetylation substrate [5]. 

 

Sirtuins were originally investigated in yeast and they have been linked with calorie restriction and 

aging by modulating energy metabolism, genomic stability and stress resistance [6]. SIRT4 and 

SIRT6 also exhibit ADP-ribosyl-transferase activity [7]. 

 

For each of the formerly mentioned chronic diseases, a direct or indirect role of one or more Sirtuins 

has been demonstrated.  

 

Aim of this brief review is to describe Sirtuins’ influence on the conditions that worsen the 

physiological aging. We will also report the beneficial effects of the polyphenol resveratrol on these 

molecules and the possible therapeutical perspectives. 

 

3. Sirtuins, Glucose Metabolism and Kidney Disease 

 

In animal models, SIRT1 influences glucose-dependent insulin production in pancreatic beta-cells [8, 

9] whose proliferation is negatively regulated by the same Sirtuin. Mitochondrial SIRT4 inhibits insulin 

secretion in response to aminoacids. In insulinoma cells an overexpression of SIRT4 has been 

demonstrated, thus leading to a decreased insulin synthesis as a reaction to blood glucose 

concentration [3]. 

 

In the liver SIRT1 promotes gluconeogenesis and blunts glycolysis via deacetylation of PGC-1 

(PPAR- coactivator-1) [10]. 

 

The same deacetylase enhances insulin sensitivity by modulating insulin signalling [11], inhibits fat 

storage and stimulates fatty acids release in white adipose tissue [12]. 

 

Transgenic overexpression of SIRT1 not only prevents diabetes in animal models, but also dulls 

diabetes that occurs during normal aging [13, 14]. Similarly, chemical activation of SIRT1 has 

antidiabetic and other beneficial effects. SRT1720 is one of potential SIRT1 activators being 

examined in clinical trials. 

 

Recently also SIRT6 has been proved to be involved in metabolic control: in fact, its absence is likely 

related to an enhancement of insulin signalling with consequent hypoglycemia [15]. With its histone 
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deacetylase activity, Sirt6 regulates the glucose levels through the blockade of different glycolytic 

genes [16]. 

 

This is more interesting if we consider the high incidence of diabetes and its complications among 

which diabetic nephropathy plays a leading role as a major determinant of morbidity and mortality 

[17]. A protective effect of Sirtuins in kidney is widely demonstrated by different mechanisms: they 

blunt hypoxia, reduce fibrosis, inhibit apoptosis and inflammation, reduce autophagy and modulate 

blood pressure [18]. For what concerns the last item, SIRT1 acts through the regulation of vascular 

tone and the handling of renal sodium in the collecting duct [19, 20].  

 

Moreover, SIRT3 attenuates lipotoxicity and ROS-related inflammation in proximal tubular cells, thus 

underlining the protective role of these molecules against oxidative stress in its multiple tissue 

expression [21]. SIRT3 is also able to regulate fatty acids metabolism and promotes lipid catabolism 

by deacetylating various mitochondrial proteins [22]. 

 

4. Sirtuins, DNA Stability, Oxidative Stress and Cancer 

 

Aging is accelerated by DNA damage. Sirtuins rescue this damage. SIRT1, one of the most 

investigated in this field, can deacetylate several factors involved in DNA reparation and genomic 

stability [23]. 

 

Also SIRT6 plays a role in genome stabilization, gene expression and DNA repair. Its deacetylation 

activity reduces chromosomal instability which is a fundamental feature of human cancer cells [24]. 

On the other hand, SIRT6 allows repair factors to reach chromatin thus minimizing DNA damage [25]. 

SIRT6 chromosomal locus is frequently broken in human acute myeloid leukemia [26]. In addition, the 

same deacetylase influences transcriptional activity through the inhibition of NF-B target genes, 

especially those associated with aging [27]. It is known that NF-B is a central factor for aging, 

inflammation, immunity and cell proliferation; for many authors this is the link between all these 

conditions and aging. 

 

Oxidative stress, along with other factors, is involved in chronic obstructive pulmonary disease 

(COPD) which is associated, on its turn, with the premature lung senescence. SIRT6 is significantly 

decreased in lung of patients with severe COPD [28]. In this clinical condition, NF-B regulates the 

expression of genes for proinflammatory molecules [29]. 

 

We know that ROS may damage nucleic acids, thus eliciting the onset of cancer (whose incidence 

grows in elder). In animal models the lack of SIRT3 is associated with greater genomic instability and 

increased sensitivity to oncogenic transformation if compared with controls [30]. 

 

The protective role of SIRT3 is also suggested by the observation that several human neoplastic 

tissues exhibit reduced SIRT3 levels when compared with healthy tissues [30]. Overexpression of the 

same Sirtuin suppresses cancer proliferation by inhibiting the activity of Hypoxia Inducible Factor-1- 

(HIF-1-) [31, 32]. It is interesting to underline that this factor is activated and stabilized by ROS thus 

strengthening the role of oxidative stress. 

 

From the study of different human tumours, SIRT3 emerges as a powerful, cell-specific and very 

complex tumor suppressor [33]. 

 

As a further demonstration of its antioxidant activity, in mice SIRT3 delayed the age-related hearing 

loss by enhancing mitochondrial antioxidant defenses [34]. 
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As mentioned above, SIRT1 is the most investigated about its possible relationship with cancer, but 

only SIRT7 has been seriously linked with different cancer types. In fact, it has been found to be 

overexpressed in tumours originating from thyroid, breast, bladder, liver and colon, thus leading to the 

working hypothesis that it could be a potential oncogene [35]. 

 

5. Sirtuins and Neurodegenerative Diseases 

 

In light of the former considerations, it’s easy to understand that Sirtuin enzymes are potential 

therapeutic targets in several human diseases including cancer, diabetes, inflammatory disorders and 

neurodegenerative diseases.  

 

In fact it is reasonable to hypothesize that a selective modulation of a single Sirtuin could beneficially 

affect different clinical conditions. For example, SIRT6 is an attractive target for the prevention and 

treatment of inflammatory, cardiovascular and pulmonary diseases [5]. 

 

Modulation of Sirtuin activity has been shown to impact the course of several aggregate-forming 

neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's 

disease, amyotrophic lateral sclerosis and spinal and bulbar muscular atrophy.  

 

Lewy bodies are frequently found in many of these disorders and consist of protein inclusions whose 

major constituent is α-Synuclein (α-Syn), a presynaptic neuronal protein that besides the brain is 

widely expressed in other tissues. This protein has been pointed out to be a target of cellular protein 

quality control whose activity is impaired by aging thus causing neurodegeneration. On the other 

hand, the same protein could influence the protein quality control system. Sirtuins can influence the 

progression of neurodegenerative disorders by modulating transcription factor activity and directly 

deacetylating proteotoxic species, expecially the ones involved in autophagy degradation pathway 

[36]. 

 

6. Sirtuins and Resveratrol 

 

Further research is needed but on our opinion Sirtuins could become an interesting and powerful 

target to treat many human diseases. 

 

At this regard we would like to underline the potential role of resveratrol, a natural Phytoalexin 

compound, which was extensively studied for its antioxidant and radicals’ scavenging properties. 

More recently, this polyphenol has been shown to interact also with Sirtuins and from these complex 

(direct and indirect) interactions a putative therapeutical role for many of the above mentioned 

diseases could arise.  

 

It is a common observation that a healthy diets associated with a delayed onset of stroke and 

neurological diseases. Regular consumption of fruit, vegetables and fish reduces the risk of cognitive 

decline in the elderly population. Old people who regularly drink red wine exhibit a reduced (up to 

50%) risk of developing dementia [37]. These neuroprotective effects of resveratrol could be partially 

mediated by SIRT1 activation and scavenging activity. Moreover Resveratrol could influence amyloid 

generation and clearance [38]. However, Resveratrol’s poor absorption and availability (less than 1%) 

in human it is well known, besides its fast metabolism [39]. Biotechnology is actually working to 

develop different formulations (e.g. nanocapsules) that could provide a higher dose of resveratrol 

without eliciting its side effects (frequently nausea and diarrhea) [40]; daily doses less than 1g are 

generally considered safe. Resveratrol is able in lowering blood glucose levels via an increase in 

GLP-1 production in mice. More recently, in type 2 diabetic subjects supplemented with a daily 

resveratrol dose at 10 mg, Brasnyo and coworkers [41] observed an improvement of insulin 

sensitivity, a reduction in oxidative stress and in postprandial glucose spike. In subjects with metabolic 
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syndrome treated with resveratrol for six months improved flow-mediated dilation was observed and 

this beneficial effect disappeared when resveratrol treatment was stopped [42]. In diabetics 

resveratrol supplement for three months was associated with a better fasting blood glucose, blood 

pressure, triglycerides and LDL cholesterol levels if compared with subjects with a standard 

antidiabetic treatment [43]. 

 

For a better understanding of resveratrol effects in humans, we have to say that trials are not really 

comparable for sample size, aims, methods and resveratrol dose but we can say that resveratrol is a 

powerful SIRT1 activator, may be directly. This activation, on its turn, induces deacetylation and 

suppresses the activity of the Foxo1 transcription factor which is involved in insulin signaling due to its 

inhibitory role in glucose uptake and utilization in skeletal muscle [44]. This is interesting if we 

consider that aging and diabetic subjects usually exhibit a significant reduction in skeletal muscle 

mass and strength thus worsening the sedentary way of life that is typically observed in these people 

and that contributes to make these subjects more prone to obesity and its complications. 

 

The same SIRT1/Foxo1 axis has been recently postulated to be involved in cardiac aging. In fact 

heart performance decreases with age and Foxo1-related apoptotic signalling increases. A long term 

treatment with resveratrol improves cardiac function in senescent mice also by reducing age-induced 

deposition of collagen fibers [45]. 

 

Besides the well-known antioxidant effects, resveratrol could be a promising natural approach to 

many of the age-related disorders.  

 

In our previous papers we suggested that a moderate and regular wine consumption, in the wide 

frame of Mediterranean diet, could be useful to prevent and treat cardiovascular, metabolic and renal 

disorders [46-49]. 

 

Recently, Russo and coworkers [51] proposed Sirtuins-resveratrol axis as a model to deeply 

investigate the beneficial effects of the Mediterranean diet: in fact this food regimen positively 

influences microbioma composition and stem cell function by means of the activity of many useful 

components, resveratrol included. 

 

Many efforts are needed to better understand these molecular mechanisms but it is reasonable to 

hypothesize that a similar advice could be suggested to delay the onset of aging and its 

complications. 

 

7. Conclusion 

 

Many efforts are needed to better understand these molecular mechanisms but it is reasonable to 

hypothesize that a similar advice could be suggested to delay the onset of aging and its 

complications. From this point of view, dietary and lifestyle interventions could be useful instead of 

drugs thus significantly saving public resources.   
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