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Introduction

Technological developments in data acquisition and recording from a variety of disciplines has

spawn large accessible databases. How to access, process and analize such a huge amount of

information, generally referred to as Big Data, is a task in constant development and the subject

of several branches of modern research. Among big datasets, networks are of particular scientific

interest because of their intrinsic role in modern society. Nowadays, the computing resources allow

to investigate networks containing billions of nodes and trillions of links. The structure of such

networks, in turn, allows researchers to empirically study the properties of complex systems, from

financial markets to living organisms, from the World Wide Web to power grids, from earthquakes

to criminality, and many others.

Such a huge bounty of data has had the beneficial side effect of blurring boundaries between

several disciplines, allowing the unearthing of general properties of complex systems. In order to

understand the properties of complex systems as a whole, eventually starting from their network

representation and the rules of interaction between its parts, the study and modeling of networks

is a stepping stone.

In this framework, characterizing the internal structure of a network in communities is of crucial

importance. Indeed, the first and foremost question one can ask when looking at a network is:

when can we say that two nodes are “similar”? And then more related questions arise: how to

quantify the similarity between a given pair of nodes? how to group together nodes accordingly?

what does the community structure tell us about the system as a whole?

These kind of network questions arise in different areas such as, for instance, criminal profiling,

where the heterogeneity of both criminals and crimes makes it a hard task to categorize both in

terms of similar profiles and one of a kind crimes. Another example is how to profile users, which

is becoming fundamental for online retailers like ebay or Amazon, because the types of items with

a similar purpose on sale is growing so fast that it makes it harder and harder to predict which

products would be better suited to specific customer’s tastes.

For this reason, automatized recommender systems able to suggest a group of possibly interesting

items to a customer on the basis of his previous purchases are in much demand. A key step to

accomplish that objective is the introduction of a suitable measure of similarity between customers

and between items. There are different ways to quantify similarity between two customers, for
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Introduction

instance, customer similarity might be assessed by looking at the number of items two people

purchased, or one could look at object similarity by counting customers who selected a given pair

of objects. Customer profiling is quite important for mobile phone companies as well, who are

interested in knowing which services to offer their customers and how to exploit the advantages of

ad hoc selective advertising catering to specific profiles.

Within this framework, a variety of metrics have been introduced and tested, and they allowed

some general properties of complex networks to be discovered over the last 15 years. Among these

the following five concepts have consistently played a major role in Network Theory.

Heterogeneity: in a network, the number of links a node forms is called node degree, and

it usually varies from node to node across a wide range, often encompassing several orders of

magnitude. How node degrees are distributed in a real network is often compared to their expected

distribution in an equivalent random network. If P (K) is the probability that a node in the network

has K links, then a model proposed by Erdös and Renyi in [1] for a random network is that P (K)

is a Poisson distribution. In this case, within the random model, the nodes are expected to have,

on average, the same degree.

In striking contrast, quite a number of empirical networks display a significantly different node

degree distribution, which can turn out to be, for example, a stretched exponential, a log-normal

or a power law, the biggest deviation from the Poisson behaviour usually appearing in the tails

of the distributions. Among these alternative distributions, we talk about heterogeneity when the

distribution is, at least for what concerns the tails, a power law. Power law distributions describe

many systems of scientific interest and have strong consequences in our knowledge and predictive

ability of real-world phenomena, both natural and man related. An ongoing research topic is how

to detect power laws [2], which is complicated by the large fluctuations in the tail of the distribution

(rare observations) and by the difficulty of correctly setting the threshold above which power law

behavior sets in. The importance of understanding and characterizing power law distributed events

lies in the fact that the tail of this distribution represents “extreme” events of usually devastating

consequences, that, nonetheless, have a non negligible probability to occur. Such unlikely events of

fearsome impact are gathering more and more attention from policy makers who attempt to devise

adequate safety measures. One example is the Deepwater Horizon oil spill, the largest accidental

marine oil spill in the history of petroleum industry [3], then there is the Northeast blackout, a

widespread power failure over the Northeastern and Midwestern US [4], the Fukushima Daiichi

nuclear disaster [5], the international market crisis following Lehman brothers bankruptcy [6], the

flash crash in 2010 [7] which was due to a simple human mistake. Even natural phenomena may

follow a power law distribution, a prominent example is represented by earthquakes, which makes

off-scale, catastrophic earthquakes more likely than one would expect under a Poisson distribution

[8]. Learning how to predict and safeguard against such large-impact and in the end not so unlikely
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events is nowadays becoming of crucial importance.

Scale free networks: networks whose node distribution is a power law are generally called

scale free. Scale free networks exhibit several intersting properties. One of the most apparent

characteristics is the high fraction of nodes with huge degree, several times higher than the average

network degree. The highest degree nodes are commonly referred to as hubs, and are especially

effective at some tasks, as for example at quickly transmitting information in an efficient way. A

method to generate a scale free network is through a mechanism called preferential attachment,

which generates a hub structure in a very natural way. Developed by Barabási and Albert in 1999

[9], the model progressively builds the network by creating links to existing nodes with a probability

which is not uniform, as it was in the Erdös-Renyi model, but it is proportional to each node’s

degree, in a sort of “rich people gets ever richer” model. One of the remarkable properties of scale

free networks is their robustness to failure, which makes them well suited for developing safety

measures in instances where the network structure can be designed a priori, making them more

impervious to random external attacks, as for example when designing an intranet secure from

hackers. Indeed, this hierarchy of highly connected hubs, followed by smaller hubs, down to weakly

connected and then almost isolated nodes makes the system more resilient to randomly generated

failures and/or attacks, due to the fact that, if not all nodes are equally important and the majority

of them have a small degree, a hub being randomly targeted is a marginally likely event. Even

if a few hubs were to randomly fail, the surviving ones are usually enough to keep the network

connected. In contrast, an intelligent way to quickly dispose of such a network, would be to know

and target the main hubs (targeted attacks). Another peculiar characteristic regards the average

distance between any two nodes in the network, which is a lot smaller than it would be expected

in both a random network and in a highly ordered one, such as a lattice. This is a feature common

to most disordered networks, and gives rise to the so-called small world phenomenon [10].

Small world networks: the small world experiment [11] was thought and carried out by

Milgram in the attempt of quantifying the average path length separating nodes in social networks

of people within the US. Milgram’s main groundbreaking find was that human society is a small

world network in the sense that most people were found to be separated by very short path lengths,

from which Watts’ book “six degrees” title originated [12]. Generally speaking, despite being very

large in size, the average smallest number of links connecting a pair of nodes, in some networks, is

incredibly short. This small world phenomenon characterizes many complex systems, as for example

actors costarring in the same movies and chemicals in a cell, which are on average separated by a

bare 3 links.

Emergence: emergence is the process in which mesoscopic structures and/or self-organized be-

haviors arise within a system, through the interaction of its elements. As a result, the whole system

exhibits properties which its elements did not, and the organized behavior is impossible to be traced
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back to an interaction between its elements. For example, the process of life as studied in biology

can be seen as an emergent property of the interaction between an organism’s cells. Economist Jef-

frey Goldstein defined emergence in [13] as “the arising of novel and coherent structures, patterns

and properties during the process of self-organization in complex systems” and later extended his

own definition to include characteristics of emergence: “The common characteristics are: radical

novelty (features not previously observed in systems); coherence or correlation (meaning integrated

wholes that maintain themselves over some period of time); A global or macro level (i.e. there

is some property of wholeness); it is the product of a dynamical process (it evolves); and it is

ostensive (it can be perceived)”. A very interesting point in the previous statement is the presence

of structure, in the form of correlation, quite often in fact emergent properties are observed as the

arising of structured behaviors from a chaotic assembly. Scientist Peter Corning further points out

that living beings cannot be understood as a simple expression of their underlying physics [14]:

“rules, or laws, have no causal efficacy; they do not in fact generate anything. They serve merely to

describe regularities and consistent relationships in nature. These patterns may be very illuminat-

ing and important, but the underlying causal agencies must be separately specified (though often

they are not). But that aside, the game of chess illustrates why any laws or rules of emergence and

evolution are insufficient. Even in a chess game, you cannot use the rules to predict history - i.e.,

the course of any given game. Indeed, you cannot even reliably predict the next move in a chess

game. Why? Because the system involves more than the rules of the game. It also includes the

players and their unfolding, moment-by-moment decisions among a very large number of available

options at each choice point. Moreover, and this is a key point, the game of chess is also shaped

by teleonomic, cybernetic, feedback-driven influences. It is not simply a self-ordered process; it

involves an organized, purposeful activity”. The latter affirmation better captures a fundamental

issue: how to distinguish a simple, in the sense of random, self-ordering of a system’s components

from an organized behavior, that is, one that involves purpose or intent on the agents behalf.

Community structure: the most simple concept of a community in a network is a closed

subgroup of nodes all linked together, but such that there are no other nodes in the network linked

to them all. The former is actually the definition of a clique: a maximal complete subgraph of

three or more nodes. Another definition relies on the frequency of links within as compared to

those without, so that a community is a subset of nodes among which links are significantly more

numerous than those to nodes belonging to other parts of the network. Perhaps one of the most

successful ways to define a subgroup within a network is to quantify exactly how many links within

a given partition are enough to call it a community. The idea at the basis of the concept of

modularity, which is one of the most widespread measures used to define a community, is to answer

the question of how many links fall within a given partition of the network as compared to the

expected fraction of links that would fall within it if the network were fully random.
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In truth, there exist many a definition of community, around which a variety of algorithms

have been developed in order to retrieve the partitions that best represent the network’s internal

organization. Whichever way one chooses to define and then find communities within a given

network, another problem altogether is to then understand what these communities represent, or,

more aptly, what sort of information they convey. Often, though, these two concepts are closely

linked: the topology of the network and the way we define and find communities within it is

inexorably connected to the kind of information we’re looking for and therefore retrieve from the

network’s structure. Thus, one needs to pay attention to what kind of network he’s analyzing and

which community detection algorithm is better suited to find local information on its substructures.

Heterogeneity and community structure constitute the foundation on which the present thesis

hinges. We shall discuss the effects of dealing with heterogeneity on both sides of a bipartite

complex system and further address the problem of defining an unbiased measure of node similarity

in such systems. In a sense though, the bias we uncover when measuring node similarity with

previously known measures could also be interpreted as an emergent property of a random bipartite

network with a double heterogeneity. We also prove that such a bias, under certain conditions,

is present independently of the scale of the system. Indeed, the former five concepts are strongly

interconnected and, in a sense, can be seen as the defining properties of the very nature of a complex

system.

This thesis work is based on the following papers:

E. Puccio, A. Pajala, J. Piilo, and M. Tumminello, Structure and evolution of a European Par-

liament via a network and correlation analysis, Phys. A 462, 167185 (2016).

DOI: http://dx.doi.org/10.1016/j.physa.2016.06.062

A. Pajala, E. Puccio, J. Piilo, and M. Tumminello, Party Comrades and Constituency Buddies:

Determinants of Private Initiative Cosponsor Networks in a Parliamentary Multiparty System.

Under review, the preprint is available at http://arxiv.org/abs/1612.06648

E. Puccio, J. Piilo, and M. Tumminello, Covariance and correlation estimators in bipartite com-

plex systems with a double heterogeneity.

Under review, the preprint is available at http://arxiv.org/abs/1612.07109
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1. Networks and Similarity Measures

1.1. Networks in Physics

Since the seminal papers by Watts and Strogatz [15], Barabási and Albert [9], and Newman, Watts

and Strogatz [16], the use of networks to describe the structure and evolution of complex systems

has become a standard approach in the scientific literature. For example, in biology one can

describe a cell as a network of chemical substances linked by chemical reactions [17], [18], [19] or

the brain as a neural network made of neurons which can be activated or not [20], [21], the Internet

is a physical network made of interconnnected hardware such as computers with routers [22], [23],

while the World Wide Web is a virtual network made of pages bridged by hyperlinks [24], [25].

The above mentioned examples are but a few of the wide variety of systems which can and

have been studied as complex networks, that is, networks whose structure is irregular, complex

and dynamically evolving in time, driving scientists from different areas to investigate the way a

network’s topology forms and is characterized. Indeed, it has been shown that a network’s topology

has important consequences on its response and robustness to external perturbations, as random

failures, or targeted attacks.

Physicists are mainly concerned with understanding and making predictions on the behavior of a

complex system as a result of the interaction between many of the system’s parts and their proper-

ties. Examples of this perspective are the understanding of magnetic properties of a paramagnetic

or ferromagnetic material as the organized interaction of its atoms, or phenomena such as Bose

condensates, superfluids or superconductors which arise from the concerted interaction of quantum

particles with specific properties.

The advantage offered by such physical systems lies in the simple way in which we describe the

interaction of its parts, indeed the rules themselves of the interaction are simply stated in terms

of strength, distance and length, leaving no room for ambiguity. How then does one describe a

complex system where distance, strength and length of the interaction between its parts are not

enough to describe the collective properties that arise in the whole? When it is not even clear what

interacts with what or if an interaction actually occurred at all?

Statistical mechanics offers a set of tools for studying systems where an inherently complex

network topology appears, such as in condensed-matter physics, ranging from percolation in a lattice
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1. Networks and Similarity Measures

on random graphs [26], to finding the critical temperature of the nearest-neighbor ferromagnetic

Ising model on a random graph with an arbitrary degree distribution of connections [27] and to

Bose-Einstein condensation in complex networks [28].

A crucial role is played by network topology in the emergence of collective behavior, such as syn-

chronization, or in governing fundamental properties of macro-processes that take place in complex

networks, such as the spreading of epidemics, information or cascading effects. Emergent struc-

tures have been studied in social networks [29] as well as their evolution [30], [31]. A hierarchical

ordering can be inferred from network data [32] and the presence of a hierarchy has been shown to

be enough to explain and reproduce some of the observed topological properties of networks [33].

Topological properties are of fundamental importance in Susceptible Infected Removed epidemi-

ological models (SIR) and their variations (SIS, SIRS, etc.), which apply, for example, to epidemic

spreads in populations as well as in computer networks. In [34] the authors study immunization

strategies for complex networks with scale free degree distributions, the most efficient strategy

found, requiring the immunization of random nodes, implies no previous knowledge of node de-

grees as opposed to targeted immunization strategies. In [35] and [36] the effects of topology in

complex networks on the dynamics of an infection are analized and the major find is that epidemics

spread very quickly in networks with scale free degree distributions, due to the hierarchical order-

ing, indeed it’s enough for the infection to propagate to some of the highly connected hubs in order

to set off an irreversible cascade event toward the less connected components.

The study of complex networks finds its roots in graph theory, dating back to the study of random

graphs in Erdös-Rényi model [1]. Thence, interest in complex systems has sistematically grown,

giving rise to the question of whether real networks representing empirical complex systems are

comparable to random ones and to what extent. In truth, complex systems display several layers

of organization, which is partly reflected in their topology. Thus, in order to understand such

organization principles, it is of the utmost importance to quantitatively measure such structures

and distinguish them from random noise.

The development of data acquisition methods and subsequent creation of huge databases, which

have become known as Big Data, gives rise to the methodological paradigm of having so much infor-

mation that the problem becomes filtering out information from data in a reliable way. Part of the

filtering methods focus on the search for structure within the network, in the form of communities.

Finding communities is a necessary step toward understanding the organization of complex sys-

tems and how they work. For example, tightly connected groups of nodes in a social network may

indicate individuals who belong to a specific social community, while highly connected components

of the World Wide Web usually correspond to pages discussing the same topics, and communities

in organisms and genetic networks are often related to how they function.

For this reason, finding the communities within a network is a necessary step in understanding

2



1.2. Bipartite Systems

the workings of the network and may further shed light on the hierarchy of connections within a

complex structure. Many methods to identify communities have been developed, using tools and

techniques from disciplines such as physics, biology, applied mathematics, and computer science.

Among complex systems which can be represented and studied as networks, social systems are

becoming increasingly popular [37]. A social network, basically, is made of people (the nodes) and

interactions or relationships between them (links), which can be of very different nature. Indeed,

one of the intrinsic complexities in social networks, which sets them apart, for example, from

biological, physical and technological ones, is the very definition, or better, representation of a

social interaction. As a matter of fact, the way such a network is represented may vary in answer

to the scientific question one is trying to address. Indeed, the same network could represent,

for example, sexual interactions [38], friendships [39], professional connections [40], information

transfer [41] and so on, the difference being only in the way we interpret and place links between

people.

An ulterior layer of complexity is given by the fact that the tools themselves used to analize such

networks depend on the different kinds of social interactions involved. There is a vast literature,

both from social sciences and from network science, which illustrates and proposes a variety of

methodologies to analize social systems with different characteristics.

Finally, the time variable itself can prove of dramatic importance: are we looking at a static

network, a picture of some people and their interactions either at a specific time or over a fixed

time window, during which the system is considered more or less stable? Or are we looking at

the dynamics of a network, since we are more interested in its evolution and what it tells us on

the nature of the interactions involved, as for example in communication networks such as mobile

phones or texts? Clearly, the methods developed and employed to study static and dynamic social

networks are quite different, and also their structural properties (motifs and other substructures)

may differ.

Although methods and techniques to deal with social networks have been applied to a variety of

social interactions, with their own features, issues and problems, such as friendships, school rela-

tionships, professional interactions, sexual contact networks, criminal networks, online communities

and many others, there are strangely few applications to political networks, and especially so in the

European context. This work has spawned from data on a European parliament, where the social

interaction of interest is the collaboration network between Members of the Parliament (MPs).

1.2. Bipartite Systems

Bipartite systems typically consist of two disjoint, independent sets of elements in which elements

of one set directly relate to elements of the other set only, as shown in Fig. 1.1. Often these
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1. Networks and Similarity Measures

Figure 1.1.: Schematic representation of a bipartite network with two different sets of nodes, A
(black) and B (blue). Links are only possible between the two sets and are shown in
red.

systems are described as networks. Complete information about bipartite systems can usually be

incorporated in bipartite networks, however, many studies use the bipartite structure of the system

only to set relationships between the elements of just one of the two sets.

There are two different types of nodes in a bipartite network, for example users and objects they

purchased, where a link between nodes belonging to each of the two sets signifies whether a given

user in the first set bought a specific object of the second set. Thus, in order to end up with a

network made of only one kind of nodes, or projected network, we need to define a link between

nodes of the same type. This is done, in a sort of roundabout way, by establishing a link between

two nodes of the same type if they both share a link to the same node in the other set. For instance,

the scientific collaboration network in [42] and [43] can be seen as the projection of the bipartite

system of authors and papers, where co-authored papers are only used to set a relationship between

any pair of authors. Thus, in our previous examples, if two users bought the same object or two

authors co-authored the same paper, then they are linked in the resulting projected network.

A problem that may arise is how to treat instances where nodes of one type share multiple links
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to nodes of the other type. The matter is easily solved by using a weighted projected network,

that is, by assigning a weight to the link between two nodes equal to the number of shared links

they have to nodes of the other set. If, for instance, two users bought the same 6 objects, their

corresponding link in the weighted projected network would weigh exactly 6.

Bipartite networks and their projections are widely used to study complex systems such as mobile

communication [44], [45], criminal activity [46], [47], interbank credit markets [48], [49], investors

activity [50], and recommendation systems for users and objects [51], [52].

A common feature of complex bipartite systems is heterogeneity, which typically characterizes

both sides of the system and makes the statistical analysis of various properties a challenging task.

Indeed, dealing with the projected network involves a loss of information, and it is quite easy to see

that the heterogeneity of the second set is sort of disregarded, in such a way that whether a link

between a pair of users is due to an object bought only by them, or whether they share this link

with most users, as is the case when an object was purchased by many, is a piece of information

completely lost in the projected network.

A useful way to represent a bipartite network is through its binary adjacency matrix B, whose

dimension is T × N if there are N elements in set A and T in set B, and whose elements vhi are

either 1, if there is a link between node i in set A and node h in set B, or 0 otherwise. For example,

the adjacency matrix representing the bipartite network in Fig. 1.1 is:

B =



1 0 0 1 1 0 0

0 1 0 1 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

1 1 0 1 1 1 1

0 0 0 0 0 1 0


, (1.1)

where a single column represents a user’s “profile” vector vi, which corresponds to the ordered list

of objects he bought in our previous example.

From the adjacency matrix B it’s easy to recognize a user’s degree Ki, that is, the total number

of objects he bought, as the sum of its profile vector, while an object degree wh is given by the total

number of users who bought it, that is, the sum of the row elements corresponding to the object:

Ki =
T∑

h=1

vhi and wh =
N∑
i=1

vhi. (1.2)
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1.3. Similarity measures

A central idea in social network analysis is how similar two nodes are, in particular, how to quantify

node similarity. Even such a simple concept as that of similarity invokes the question: similar in

respect to what? The way similarity is measured depends on how we look at the system, or more

specifically, at what property of the social relationship involved we are interested in, and in respect

to that property we define (and then quantify) how similar two nodes are.

Even the ability to predict links between nodes on the basis of their previous choices hinges on

the similarity measure chosen. Broadly speaking, in recommender algorithms developed for online

shops such as Amazon or ebay, there are two fundamentally different approaches to suggest to users

what to buy. One basically focuses on users similarity, by quantifying the fraction of objects in

common bought by a pair of users, the other one is based on objects similarity and measures the

fraction of users who bought that pair of objects. The fraction here indicates that the counts of

either objects or users is normalized, so that it can be divided by the sum of the respective degrees,

the minimum or maximum degree, etc. and both measures can be defined to be either symmetric

or asymmetric. The important point is that every other quantity we measure in the network, which

is based on the chosen similarity and our predicting ability itself are both strongly dependent on

this choice.

Since the focus is on the network, here similarity is determined only in respect to the information

already present within the network structure. In a bipartite network, the most basic concept of

similarity is called structural equivalence, that is, two nodes on one set, for example users, are

structurally equivalent if their profile vectors are close enough, meaning they share many links to

the same nodes in the other set, which is the case if, for instance, they bought more or less the

same objects.

A user’s profile vector can also be seen as a binary variable, so that measures of similarity

between a pair of (random) variables can be used as well, with the purpose of estimating the

similarity between the corresponding nodes (users) in the projected network, or, in the case of

random profile vectors, the noise in the similarity estimator employed.

1.3.1. Node Similarity in a Network

A straightforward way to define structural equivalence is by simply counting the number of links

shared by users i and j:

nij =

T∑
h=1

vhi vhj , (1.3)
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unfortunately, this being an absolute measure, it does not tell us how many shared links are

enough to consider two users similar. For this reason, we need to add to this measure some kind

of information involving node degrees and also quantify how many shared links there are in the

system, on average. By using the concept of scalar product in geometry, it’s easy to define a

measure called cosine similarity:

sij = cos(θ) =
vi · vj

|vi| |vj|
=

∑T
h=1 vhi vhj√∑
h v

2
hi

√∑
h v

2
hj

, (1.4)

and since the adjacency matrix 1.1 has only binary values, from 1.2 we see that∑
h

v2hi =
∑
h

vhi = Ki, (1.5)

so that the cosine similarity in Eq. (1.4) turns out to be the number of shared links by user i and

j, divided by the geometric mean of their repsective degrees:

sij =
nij√
KiKj

. (1.6)

However, even though the cosine similarity is a normalized measure that takes into account node

degree, it still does not consider randomness, or the presence of noise in the network.

Another well-known and widely used measure of similarity is the Jaccard index in [53], introduced

to measure the similarity between two sets, Oi and Oj , of elements as:

J(Oi, Oj) =
|Oi ∩Oj |
|Oi ∪Oj |

=
nij

(Ki +Kj − nij)
, (1.7)

here the sets are simply the objects selected by i and by j, that is, each user’s profile vector vi and

vj , thus the Jaccard index counts the number of objects in common (intersection between the sets)

out of the total number of objects selected by both (the union).

When one is dealing with weighted links, a further generalization of the Jaccard index, called

weighted Jaccard index, can be used in place of the regular one. For instance, when evaluating the

similarity between two weighted profile vectors, vwi and vwj , where both profile vectors are no longer

binary but each entry is now given by the weight whi(whj) of the corresponding link connecting

node i(j) in set A to object h in set B, the weighted Jaccard index takes the form:

Jw(vwi , v
w
j ) =

∑
h min [whi, whj ]∑
h max [whi, whj ]

, (1.8)
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which can be interpreted as a Tanimoto coefficient [54], since the length of the profile vectors equals

the total number of available objects.

The Jaccard index does not consider the heterogeneity of set B, namely, objects do not share

the same popularity. It’s quite understandable why objects selected by a vast majority of users or

even worse by all of them, cannot be used to extract meaningful information towards a personalised

recommendation, due to the fact that they are way too commonly liked to be telltales of anyone’s

tastes.

1.3.2. Similarity Measures between Variables

A widely employed similarity measure aimed at evaluating the mutual dependence of two random

variables is the Mutual Information (MI) in [55], which quantifies the information one can infer on

a variable by knowing the other. If the two random variables x ∈ X and y ∈ Y are distributed ac-

cording to the marginal probability distributions p(x) and p(y) with a joint probability distribution

p(x, y), the MI is defined as:

MI(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(1.9)

The MI is often employed as a measure of similarity between two signals when processing signals

from different sources. For instance, it can be used as a measure of efficiency in image fusing

techniques because it quantifies the amount of information from source images retained by the

fused image. However, perhaps one of the most common measure of similarity between partitions

of a network is the Normalized Mutual Information (NMI) [56], which is given by:

NMI(X,Y ) = 2
MI(X,Y )

H(X) +H(Y )
, (1.10)

where H(X) (H(Y )) is the marginal entropy of variable X (Y ),

H(X) = −
∑
x∈X

p(x) ln(p(x)), (1.11)

and is a measure of the lack of information in our possession about variable X. Basically, the

normalized version gives us an idea of what the knowledge of one variable can tell us on the other

one, when taking into account all that we don’t know about both.

The NMI will be used in Chapter 5 to evaluate the similarity between different partitions of a

network of the members of the Finnish parliament. In general, it can be used whenever one needs to

assess the similarity between any two matrices of the same dimension, for example when assessing
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the stability of an optimization algorithm that produces slightly different output matrices at every

run, the NMI allows to exactly quantify what “slightly” means and thus how stable the algorithm

is and how reliable its output.

When one is interested in measuring the similarity between two matrices as a whole instead,

for example between two adjacency matrices Σ1 and Σ2 obtained by juxtaposing all user’s profile

vectors, an easy choice is using the Frobenius distance, defined as the Euclidean norm of the

difference matrix Σ1−Σ2, that is, the square root of the sum of the absolute squares of its elements

[57]:

F (Σ1,Σ2) =
√
Tr[(Σ1 − Σ2)(Σ1 − Σ2)T ]. (1.12)

The Frobenius distance is an average measure of all the distances between any pair of elements

[58], [59]. It has the useful property of being invariant under rotation of the original matrices. The

drawback is that the matrices to be compared must have the same dimension, and the distance

itself is an extensive measure in that it grows as the dimension of the matrices increases. It shall

be used in Chapter 6 to evaluate the similarity between the correlation matrices corresponding to

four different years within a parliament in Finland.

1.3.3. Covariance and Correlation Estimators

More in general, in statistics the covariance between a pair of variables Xi and Xj is a measure

of their joint variability, that is, when both variables tend to change in the same direction, their

covariance is positive, if they show opposite behavior, the covariance is negative. The sign of the

covariance thus indicates the direction of the linear relationship between the two variables in a xy

plot.

However, there is an important distinction between the covariance of two random variables, which

can be interpreted as a property of their joint probability distribution, and the sample covariance

between two vectors of realizations of the random variables, which is an estimator of the covariance

between them. The covariance between Xi and Xj is defined by:

σij = E[(Xi −E[Xi]) (Xj −E[Xj ])] = E[XiXj ]−E[Xi]E[Xj ]. (1.13)

From the covariance, one can define the Pearson correlation coefficient between two variables,

ρij , as the ratio between the covariance of the two variables, σij , and their standard deviations σi

and σj :

ρij =
σij
σi σj

=
E[XiXj ]−E[Xi]E[Xj ]√[

E[X2
i ]− (E[Xi])2

] [
E[X2

j ]− (E[Xj ])2
] . (1.14)
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The correlation coefficient in Eq. (1.14) is a normalized covariance, whose magnitude is a measure

of the strength of the linear relation between the pair of variables, its value is always restricted to the

range −1 ≤ ρij ≤ 1. It is the most widely employed similarity measure between two variables, as it

allows to compare the pair’s similarity against what one would expect in a random scenario, indeed,

both the covariance and correlation coefficients provide an answer to the question: what similarity,

on average, would we expect of two users who bought their objects completely at random? An

answer to this question is given at the end of this section.

Let’s suppose we measure the sample covariance between two elements i and j in set A of a

bipartite system, that is, the similarity between their profile vectors. A component vih (vjh), with

h ∈ [1, ..., T ], of vector vi (vj) is equal to 1 if element i (j) is linked to node h in set B, and 0

otherwise. Therefore, the sample covariance between two binary vectors can be written as:

σ̂ij =
1

T

(
T∑

h=1

vhi vhj

)
− 1

T 2

(
T∑

h=1

vi,h

)(
T∑

h=1

vj,h

)
=

1

T

(
nij −

KiKj

T

)
, (1.15)

where the hat is henceforth used to denote an estimator, as opposed to its theoretical counterpart.

In Eq. (1.15) nij is the observed number of links in common between the pair of elements i and j,

of fixed degree Ki and Kj . For example, looking at Fig. 1.1, we have for the pair of nodes 4 and 5

in set A, of degree, respectively, K4 = 4 and K5 = 3, binary vectors v4 = {1, 1, 0, 1, 1, 0} and v5 =

{1, 0, 0, 1, 1, 0}, number of common links n45 = 3, a sample covariance of σ̂45 = (3− 12/6)/6 = 1/6.

From Eq. (1.15), we can easily derive the corresponding correlation estimator as done in [52], by

first calculating the standard deviation of the sample binary vector,

σ̂i =

√√√√ 1

T

∑
h

v2hi −

(
1

T

∑
h

vhi

)2

=

√
Ki

T
−
(
Ki

T

)2

, (1.16)

and dividing the sample covariance in Eq. (1.15) by the standard deviations of both vi and vj:

ρ̂ij =
σ̂ij
σ̂i σ̂j

=
nij − Ki Kj

T√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

) . (1.17)

This similarity measure, while being a generalization of the cosine similarity between nodes in

a network, has two interesting added properties: it is invariant for a rescaling of the system, that

is, when all the relevant quantities Ki,Kj , nij and T are multiplied by the same value, and it

can be interpreted in terms of the hypergeometric distribution of mean KiKj/T and variance
KiKj

(T−1)

(
1− Ki

T

)(
1− Kj

T

)
.
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Indeed, the similarity between two users is not only dependent on the number of objects selected

by both, but further depends on how much this number deviates from the expected number of

objects in common under a null-hypothesis where objects were sampled at random. The hyperge-

ometric distribution null-hypothesis applies when all objects are treated as identical in the sense

that they all have the same probability of being selected.

1.4. Filtering Methods

When processing signals, filtering techniques are usually employed to quantify the amount of noise

present in the signal and partially remove unwanted components from it. The procedure of data

filtering is a fundamental part of data processing, the defining characteristic of filters being the

complete or partial suppression of some part of the information contained in the data which is

undistinguishable from noise from the point of view of the data analyst.

In this section, we discuss filtering methods applied to covariance and correlation matrices, with

the purpose of on the one hand quantify the noise, or random part, of the correlations and on the

other hand discover an internal organization of groups of elements within the correlation matrix.

1.4.1. Hierarchical Clustering

Both the emergent mesoscopic structures and their self-organization within the system crucially

depend on the measure of similarity or distance chosen between elements in the system. A variety

of clustering methods have been proposed to identify communities of elements using as a similar-

ity measure the correlation matrix. The basic idea is again that elements belonging to a given

community share more information among them than with the rest of elements. This concept of

shared information is quantified by a similar measure, in this case being the correlation coefficient.

The whole purpose of clustering is to partition the system by grouping together similar elements

in clusters.

One of the main issues making partitioning the system harder, is the inevitable overlap of com-

munities boundaries. When one is dealing with communities at least partly contained in other

communities, we’re dealing with hierarchical clustering, which occurs when clusters are organized

in a nested hierarchical structure. For example, we can think of students of a University, belonging

to a scientific area such as Physics, thus at the level of Department they are all part of the same

community. In terms of their specializations though, they could for instance belong to a Quantum

physics group, or an astrophysics group, or a materials physics group and so on, in such a way that

at the sublevel of specialization they belong to different, nested, communities.

Two of the main clustering techniques are: Single Linkage Clustering (SLC) and Average Linkage
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Clustering (ALC). In what follows we’ll use the latter, which is usually better suited to the study

of multivariate biological systems due to its property of averaging interactions.

An interesting unsupervised method recently introduced in [60] adopts a graph-theoretic ap-

proach to extract clusters and hierarchies without having any prior information on the system.

The main idea is to directly use the topological properties of Planar Maximally Filtered Graphs

(PMFG) to build embedded networks which contain the subset of most significant links, and then

extrapolate from these both the intra-cluster and inter-cluster hierarchies. However, the PMFG is

a weighted graph, where the weights serve the purpose of capturing node similarity, so that one

still needs to be careful about the measure of similarity chosen to determine link weights.

If we start from a set of k elements, between which we define a pair-wise similarity measure,

for example the correlation coefficient, we end up with a k × k symmetric correlation matrix, over

which to apply a hierarchical clustering in order to orgnize the elements in nested clusters. The

product of the method is a dendrogram, which is a quantitative description of the clusters found.

Sometimes it is more convinient to use a distance measure dij between elements i and j, instead of

a similarity one. For example in this thesis we’ll adopt the measure of distance introduced in [61],

which is a function of the correlation coefficient given in Eq. (1.17):

dij =
√

2 (1− ρ̂ij), (1.18)

the latter is a well-defined metric, since it satisfies the three axioms of being null only if the two

elements i and j coincide, being symmetrical for the exchange of i with j, and obeying the triangular

inequality.

Single Linkage Clustering: Single linkage clustering is based on the idea of grouping clusters

in a dendrogram from the bottom up (agglomerative clustering), meaning that at each step the

algorithm merges two clusters which contain the closest pair of elements that do not belong to the

same cluster. One of the main drawbacks of this method lies in the fact that it tends to construct

clusters where elements near to each other within the same cluster are actually close together in

terms of distance, though elements far apart within the cluster may actually have a greater distance

from each other than to elements of different clusters.

At the start of the agglomerative clustering process, each cluster is made of just one element,

afterwards clusters are sequentially merged into larger clusters at some distance, until all elements

are positioned, in such a way that at each step the pair of closest clusters in terms of distance

are merged. Indeed, it is the very definition of closest that discriminates between the different

clustering methods.

For what concerns single linkage clustering, the distance between any two clusters is calculated
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over a single pair of elements, in particular, over the closest two belonging to one of the clusters each.

After calculating this shortest distance over all available pairs of clusters, the smallest distance value

at every step causes the merging of the two corresponding clusters whose elements are closest. The

product of the clustering procedure can be visualized as a dendrogram, which graphically displays

the final sequence of clusters mergings along with the corresponding distance at which the merging

occurred. In mathematical terms, the distance D(A,B) between a pair of clusters A and B is given

by the expression [62]:

D(A,B) = min
x∈A, y∈B

d(x, y), (1.19)

where A and B are any two sets of elements, and d(x, y) is the element-wise distance between x

and y.

Average Linkage Clustering: The ALC is widely employed in phylogenetic analysis and it again

builds a dendrogram reflecting the structure present in the pairwise distance matrix. At each step

of the algorithm, the nearest two clusters are merged into a higher-level cluster. The distance

between any two clusters A and B, D(A,B) is calculated as the average of all the distances d(i, j)

between pairs of elements xi ∈ A and yi ∈ B:

D(A,B) =
1

|A| · |B|
∑
xi∈A

∑
yj∈B

dij , (1.20)

where |A| and |B| indicate the number of elements belonging to cluster A and B, respectively. In

other words, at each clustering step, the updated distance between the clusters A∪B joined at the

previous step and a new cluster C is calculated as the averaging of the distances of each of the two

previous clusters from C, D(A,C) and D(B,C) as follows:

D(A ∪B,C) =
|A| ·D(A,C) + |B| ·D(B,C)

|A|+ |B|
. (1.21)

The ALC algorithm produces rooted dendrograms, but it requires an assumption of constant

rate, that is, it assumes that in the ultrametric tree all the distances from the root to every branch

tip are equal. It’s quite easy to see how the difference between the SLC and the ALC algorithm

lies simply in the measure of distance between clusters employed. Both algorithms can be adapted

to function with similarity matrices instead of distance ones, by just exchanging the search for the

minimal distance to one for maximal similarity.

Nonetheless, working with ALC may produce dendrograms which are different depending on

whether the input matrix entries were distances or correlations. Indeed, the difference in the output

trees is due to the non linear relationship between distance and correlation in Eq. (1.18). The SLC
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algorithm is immune from this issue because the transformation from correlations to distancies

is a monotonic function and thus it does not influence the search for a minimum. However, if

the similarity or distance measure employed is biased in itself, this translates to the resulting

hierarchical trees giving rise to false clusters, which do not convey real information on the system,

regardless of the algorithm adopted.

1.4.2. Spectral Analysis

Spectral analysis has been employed to investigate multivariate systems for more than 30 years. One

of the most widespread techniques is the Principal Component Analysis (PCA) [63], based on the

extraction of a number of the biggest eigenvalues of the correlation matrix of the system, followed

by the projection of the system on the subspace generated by the corresponding eigenvectors. The

purpose is to disregard the information contained in the lesser components and focus on the bulk

of the signal in order to reduce the dimension, that is, the complexity of the system. The main

problem of the method is the arbitrarity involved in deciding how many eigenvalues to keep. An

important point is that choosing a certain number of eigenvalues determines the percentage of

variance explained by the corresponding eigenvector.

An answer to how to fix the number of eigenvalues to choose for a given system is provided

by Random Matrix Theory (RMT), first introduced in the context of nuclear physics and then

extended to many other areas [64], [65]. Its purpose is to evaluate how statistical uncertainty

(noise) affects the estimation of the correlation matrix of a system. Suppose that we have n i.i.d.

variables X1, X2, . . . , Xn described by n indipendent random vectors of length T , with zero mean

and finite variance σ2. In the limit T → ∞, the correlation matrix of the vectors would just be

the Identity matrix, but when T is finite this is no longer the case. IN RMT it is proved that,

if Q = T/n is greater than or equal to one, in the limit T, n → ∞, the spectral density of the

eigenvalues of the covariance matrix is:

ρ(λ) =
Q

2πσ2λ

√
(λM − λ)(λ− λm), (1.22)

with λMm = σ2
(

1 + 1/Q± 2
√

1/Q
)

. Within this open interval, defined by the minimum and

maximum eigenvalues, the spectral density is non null due to the noise present in the matrix, and

it is usually referred to as the bulk of eigenvalues. If the matrix is made of correlations instead,

the variance is set to one. With the above formula, RMT quantifies exactly the role played by the

finite length of the sample vectors over the spectral features of the corresponding covariance and

correlation matrices, and the resulting noise as the bulk of eigenvalues.

The most important parameter is λM , which sets the threshold over which eigenvalues are con-
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sidered significative, that is, not due to finite-length noise. Typically, the biggest eigenvalue of

the covariance/correlation matrix corresponds to a sort of global trend or common behavior of the

variables. For this reason, one can hypothesize that the part of the matrix which is orthogonal to

the eigenvector corresponding to the biggest eigenvalue is just noise and re-define the variance of

this part, which is not explained by the first eigenvalue, as: σ2 = 1− λ1/n and reinsert this value

in Eq. (1.22) to calculate improved estimates of the interval borders, λ∗m and λ∗M . Nonetheless,

a fraction of a few percentages of the remaining eigenvalues still fall ouside the redefined interval,

and these are thought to probably capture residual information within the covariance matrix. Of

the eigenvalues falling within the interval one cannot say whether the corresponding eigenvectors

contain relevant information, because one cannot discern them from the noisy bulk.

Under the stated assumptions, it is possible to use RMT to extract the part of the covari-

ance/correlation matrix that contains real information on the variables and this has led some

authors to further attempt to explain the subspace associated to the other eigenvalues which fall

above the threshold, the second biggest, third biggest, etc., with specific clusters in the system

corresponding to relevant quantities. For example, in econometric studies of the covariance and

correlation matrices of the time series of assets and their returns, some have attempted to identify

the subspaces corresponding to the lesser eigenvalues as economic sectors.

The only problem with the former technique lies in the assumption of dealing with indipendent

and identically distributed random variables, which is not always the case. For example, when

using the adjacency matrix to describe a bipartite network, one calculates correlation matrices on

binary variables, which not necessarily behave, in terms of their spectral properties, as random

ones would.

1.5. Bias in Similarity Estimators

A challenging task when studying complex systems is that of resolving, without any prior clas-

sification or side-information, the self-organization of the system in groups experiencing a higher

internal correlation than with the rest of the system. The above mentioned filtering techniques can

suffer from an intrinsic information loss, while the alternative of adopting community detection

algorithms developed in network theory has focused predominantly on substituting network data

with correlation matrices. Such a replacement can prove to be intrinsically biased, because of its

inconsistency with the null hypothesis on which the algorithms are founded [66].

A quick way to explain why there would be a bias in the covariance and correlation coefficients as

a result of having discarded the heterogeneity in set B, either during the projection of the network

on set A or when constructing the estimators themselves, is by making a couple of examples.

An example could be the bipartite network of criminals and offences they committed, where we
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have two broad classes of criminals: specialists and generalists. The first kind usually specializies

on a few very specific crimes, which he then commits several times, while the second kind has

attempted a huge variety of crimes at least once during his lifetime. Obviously, this is a simplistic

way to categorize the heterogeneity of set A, and still it works and is widely employed by the police.

Looking at the other set in the network, we also find two macrocategories of crimes: rare offences

and common ones. As with criminals, the first type occurs rarely, such as very specific murders

in terms of victim and weapon used, on the contrary the second type encompasses very frequent

crimes such as stealing or freud. Intuitively, even if the projection or the building of a covariance

matrix keeps the first kind of information on criminals intact, by preserving set A’s heterogeneity,

the same cannot be said about set B’s heterogeneity. Indeed, from a methodological point of view,

both procedures de facto equiparate all offences on a same level and lose the information on how

frequent a given crime is.

A second example would be the bipartite network of customers and movies they bought, for exam-

ple on an online retailer. Again, either projecting on set A or calculating the covariance/correlation

matrix would keep the degree distribution of customers, and the information on who has very spe-

cific tastes (a horror movie fan) or quite generic ones (a TV serials fan) is stored along with it.

However, disregarding set B’s degree distribution is equivalent to no longer having any knowledge

on whether a given movie is a blockbuster or an auteur film for cinephiles.

Finally, if we look at the members of the Finnish parliament and the private initiatives they

submit during plenaries, we have again that, although we keep the information on wheteher a

given member is a submitter who writes many law proposals, or someone who prefers to take a

backseat and rarely submits anything, we still lose sight of the impact of the initiative itself: is it

something very sectoral, which only appeals to a small group of members or is it a large-scale and

much needed amendment of widespread interest?

Indeed, such a loss of sight of set B’s layer of heterogeneity produces above average positive

correlations between elements of set A, and one can no longer discern the origin of such a plus-

piece of positive correlation due to the loss of information on set B’s degree distribution. Moreover,

after performing a spectral analysis of the covariance/correlation matrix one can immediately see

that such apositive surplus correlation is not a global effect, but a cluster-specific one, influencing

elements of set A with a high degree more than others.
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In this chapter, for the first time, we address the questions: are all objects truly identical in real

systems? What is the effect of disregarding set B (objects) heterogeneity in a bipartite system? We

answer by developing a model where we demonstrate that, when one is interested in employing co-

variance and correlation estimators to measure node similarity, one finds out that binary estimators

are not sufficient to account for the double heterogeneity present in complex bipartite systems. In

general, our findings show how the presence of such a heterogeneity of degree may induce a bias in

covariance and correlation estimates, which, in turn, makes the task of discriminating information

from noise in the corresponding matrices even more impervious.

Furthermore, we attempt to remove the bias from covariance and correlation sample estimates, by

introducing for the first time weighted estimators that take into account, at once, the heterogeneity

on both sides of a bipartite network. Within our newly developed model, we also theoretically

quantify the improvement of the new weighted estimators as compared to the unweighted ones.

2.1. Expected Value of Covariance and Correlation Estimators

As it often happens when dealing with correlations, the evaluation of noise plays a crucial role. For

what concerns bipartite systems, the most widely used procedure to deal with noise is to randomize

the original network and use it as a null model. Such a randomization is achieved by performing a

rewiring of the full bipartite system, as detailed in [67]. Basically, one step in the rewiring procedure

consists in randomly sampling a pair of links in the bipartite network, involving two nodes on each

side and swap the target nodes in set B, if the newly formed links are not already present in the

system. For example, from Fig. 1.1, one randomly selects the pair of links 4− II and 6− IV and

swaps the target nodes in set B to obtain two new links 4−IV and 6−II, since neither 4 nor 6 were

already linked, respectively, to IV and II. If they had been, the swap would have been rejected

and a new pair randomly selected. In order to randomize the whole bipartite network, one needs

to perform a great number of swaps, stopping when the overlap between the original and rewired

networks, stabilizes around a minimum value, as measured by an appropriate self-similarity index.

Our main finding is that the rewiring of the bipartite network cannot get rid of all the structure

present in the covariance and correlation matrices, in at least two empirical sytems we studied.
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2. A Biased Urn Model

The residual structure, still present in the rewired network, appears to depend on both sets’ de-

gree distributions, that is, on the intrinsic double heterogeneity of the system. Thus, the sample

covariance and correlation estimators appear biased in such systems, and even worse, we find that

the bias is not uniform, in that it affects some groups of elements worse than others.

In this section, we propose a model which approximately describes the statistical properties of the

outcome of a rewiring procedure, that is, a model of a random bipartite system which shows both

the presence of the observed bias in covariance/correlation matrices and how it depends on both

degree distributions. The model we propose is a simplification of the problem which, nonetheless,

allows us to exactly preserve the degree distribution in set A of the bipartite network (the one we’re

interested in, users’ side), and to keep the degree distribution on average in set B (objects’ side).

The key idea is to model the random bipartite system as a sampling from a biased urn without

replacement, in order to preserve degree on set A’s side. Our aim is to show the presence of a bias

in the covariance and correlation coefficient in Eq. (1.15) and (1.17) of the randomized network,

by calculating their expected values, which diverge significantly from the expected value of zero as

users’ degree increases.

To show the presence of a bias, we describe a simplified situation, where nodes in set B only

have either a high degree, which we’ll formalize as a “heavy” weight w2, or a low degree w1 (a

“light” weight). If we now look at how random links would form between a node i in set A and

Ki nodes in set B, such a process can be modeled as a sampling of exactly Ki marbles from the

total of T marbles in set B. The crucial hypothesis is that we assume that marbles have two

different probabilities of being sampled. Specifically, m marbles have a probability to be sampled

proportional to an odd w2 (heavy), whereas the remaining T −m marbles have a probability to be

sampled proportional to w1 (light), and we define the odds-ratio as w = w2/w1 > 1. The odds-ratio

models the heterogeneity in set B. We’ll focus on Eq. (1.15), and show that the expected value of

σij is, in general, different from zero, if the odds-ratio w > 1.

In this model, a node i in set A samples a total of Ki marbles, of which kwi are heavy and

the remaining Ki − kwi are light. In a biased urn problem without replacement, the odds-ratio

w = w2/w1 is sufficient to describe the system, with the stochastic variable kwi ∈ [max(0,Ki− T +

m),min(Ki,m)] following the Wallenius non-central hypergeometric distribution [68]:

W (kwi ;T,m,Ki, w) =

(
m

kwi

)(
T −m
Ki − kwi

)∫ 1

0
(1− tw/Di)k

w
i (1− t1/Di)Ki−kwi dt, (2.1)

with Di = w (m− kwi ) + T −m− (Ki − kwi ).

If all marbles are distinguishable, that is, labeled, we now ask ourselves what is our expectation

on average for the number of shared marbles, nij , between two users i and j in set A. The expected

number of shared marbles E[nij |kwi , kwj ] conditional on kwi and kwj will be the sum of the expected
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2.1. Expected Value of Covariance and Correlation Estimators

number of heavy marbles in common, nwij , plus the expected number of light marbles in common,

n1ij :

E[nij |kwi , kwj ] = E[nwij |kwi , kwj ] + E[n1ij |kwi , kwj ]. (2.2)

Furthermore, given kwi and kwj , the pair of variables nwij and n1ij are independent, therefore the

probability distribution of the sum variable nij is simply the product of the former two’s ones:

P (nij |kwi , kwj ) =
∑

nw
ij+n1

ij=nij

P (nwij |kwi , kwj ) · P (n1ij |kwi , kwj ), (2.3)

and the latter two probability distributions underlying each of the two weight-groups of marbles

are Hypergeometric distributiosn, since both weight-groups are now homogeneous. Specifically, the

probability distributions that both i and j sampled exactly nwij shared heavy marbles out of the m

available ones and n1ij shared light marbles out of the remaining T −m are:

P (nwij |kwi , kwj ,m) =

(kwi
nw
ij

)(m−kwi
kwj −nw

ij

)(
m
kwj

) , (2.4)

and

P (n1ij |Ki − kwi ,Kj − kwj , T −m) =

(Ki−kwi
n1
ij

)(T−m−(Ki−kwi )

(Kj−kwj )−n1
ij

)
(

T−m
Kj−kwj

) . (2.5)

Thus, the expected values of the number of shared heavy marbles and of shared light marbles,

conditional on the values assumed by the variables kwi , k
w
j , are:

E[nwij |kwi , kwj ] =
∑
nw
ij

nwij P (nwij |kwi , kwj ,m) =
kwi kwj
m

, (2.6)

E[n1ij |kwi , kwj ] =
∑
nw
ij

n1ij P (n1ij |Ki − kwi ,Kj − kwj , T −m) =
(Ki − kwi )

(
Kj − kwj

)
T −m

. (2.7)

Finally, the total expected number of shared marbles, averaged over all the possible outcomes of

kwi , k
w
j is:

E[nij ] =
∑
kwi ,kwj

(
E[nwij |kwi , kwj ] + E[n1ij |kwi , kwj ]

)
W (kwi ) W (kwj )

=
µi µj
m

+
(Ki − µi)(Kj − µj)

T −m
, (2.8)
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2. A Biased Urn Model

where µi (µj) is the expected value of kwi (kwj ) under the Wallenius distribution in Eq. (2.1).

Unfortunately, no exact formula for the mean of the Wallenius distribution is known [68], however,

the approximate solution of the following equation is reasonably accurate [69]:

µi
m

+

(
1− Ki − µi

T −m

)w

= 1. (2.9)

Since we aim to demonstrate that the expected value of the covariance is non-null, even when

w ≈ 1, we look for an approximated solution by Taylor expansion of E[nij ] to second order in w,

E[nij ] ≈
T

m(T −m)

{
µi(1)µj(1) +

m

T
(KiKj −Kiµj(1)−Kjµi(1)) +

+

[
µi
dµj
dw

+ µj
dµi
dw
− m

T

(
Ki
dµj
dw

+Kj
dµi
dw

)]
1

(w − 1) +

+

[
dµi
dw

dµj
dw

+
1

2

(
µi
d2µj
dw2

+ µj
d2µi
dw2

)
− m

2T

(
Ki
d2µj
dw2

+Kj
d2µi
dw2

)]
1

(w − 1)2
}
, (2.10)

and, since µi(1) = mKi/T , we have that both the first order term and the terms containing second

derivatives of the mean cancel out, so that:

E[nij ] ≈
KiKj

T
+

T

m(T −m)

[
dµi
dw

dµj
dw

]
1

· (w − 1)2, (2.11)

which is quite different from what would be the expected result E[nij ] = KiKj/T in w = 1, if the

underlying distribution were the hypergeometric one.

In order to obtain the first derivative of µi(w), we derive both sides of Eq. (2.9), which is in the

form f(µi(w), w) = 1,

d

dw
f(µi(w), w) = 0 → ∂f

∂w
+
∂f

∂µi

dµi
dw

= 0 → dµi
dw

= − ∂f
∂w

(
∂f

∂µi

)−1
, (2.12)

and since,

∂f

∂w
=

(
1− Ki − µi(w)

T −m

)w

ln

(
1− Ki − µi(w)

T −m

)
(2.13)

∂f

∂µi
=

1

m
+

w

T −m

(
1− Ki − µi(w)

T −m

)w−1
, (2.14)

we find:
dµi
dw

∣∣∣∣
1

= −m(T −m)

T

(
1− Ki

T

)
ln

(
1− Ki

T

)
. (2.15)

20
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Figure 2.1.: Left panel: plot of f(x) = (1 − x) ln(1 − x) for x ∈ [0, 1], the function is strictly
negative and displays a minimum in xm = 1 − 1/e ' 0.632. Right panel: 3D plot of
f(x, y) = (1 − x) ln(1 − x) · (1 − y) ln(1 − y) for x, y ∈ [0, 1], the function is strictly
positive and shows a maximum in {xM , yM} = {1− 1/e, 1− 1/e}.

Finally, using the second order Taylor series of E[nij ] in Eq. (2.11) near w = 1 and inserting it

in Eq. (2.15), we can approximate the expected value of the covariance in Eq. (1.15) as:

E[σij ] =
E[nij ]

T
− KiKj

T 2
'

' m(T −m)

T 2

[(
1− Ki

T

)
ln

(
1− Ki

T

)][(
1− Kj

T

)
ln

(
1− Kj

T

)]
(w − 1)2.

(2.16)

To understand how the expected value of the covariance varies with user degrees Ki and Kj ,

we look at its functional form, that is, the strictly negative function f(x) = (1 − x) ln(1 − x),

whose minimum occurs in xm = 1− 1/e ≈ 0.632. However, the product in the second term of Eq.

(2.16) makes the second-order term positive, so that in a 3D plot the covariance actually displays

a maximum. Plots for f(x) and f(x, y) = f(x) · f(y) are shown in Fig. 2.1.

For what concerns the sample correlation in Eq. (1.17), its expected value near w = 1 can

be calculated from Eq. (2.16) dividing by the standard deviations, which depend solely on fixed

parameters:

E[ρij ] '
m(T −m)

T

√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

) ·
·
(

1− Ki

T

)
ln

(
1− Ki

T

)(
1− Kj

T

)
ln

(
1− Kj

T

)
(w − 1)2. (2.17)
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From Eq. (2.16) and Eq. (2.17) it’s easy to see how the expected value of both covariance and

correlation coefficients depends on i’s and j’s degrees, Ki and Kj , as well as on w, which is the ratio

of w2 to w1, here representing the heterogeneity of set B in the bipartite system. Thus, we’ve shown

there exists a bias due to the interplay between both sets’ heterogeneity in a bipartite system. Now,

we’d like to get rid of this bias, by defining new estimators of covariance and correlation, in such a

way that their expected values are zero.

2.2. Covariance and Correlation Estimators under a Binomial

Distribution

In this section, we aim to derive, in a simplified case, a new estimator of the covariance weighted in

such a way that its expected value is zero. Specifically, we assume that m >> 1 and Ki,Kj << m,

so that we can exactly calculate the expectation value of nij by assuming that the fishing process

occurs with replacement. Therefore, the probability that i randomly sampled kwi marbles with

weight w out of his set of Ki objects, can be approximated with the binomial distribution:

P (kwi ) = B(p,Ki), with p =
mw

m (w − 1) + T
, (2.18)

and the same holds true for j.

The approximation makes calculations straightforward because the mean of the binomial distri-

bution is well-known, E[kwi ] = pKi, thus, replacing these in Eq. (2.8), we obtain

E[nij ] =
p2KiKj

m
+

[Ki(1− p)][Kj(1− p)]
T −m

, (2.19)

and the expected value of the covariance between i and j is proportional to

E[nij ]−
KiKj

T
=
KiKj

T

m(T −m)(w − 1)2

[T +m(w − 1)]2
. (2.20)

This equation clearly demonstrates that, even in this approximation, E[σij ] is larger than zero

when w > 1.

Our aim here is to show that this effect can be corrected by opportunely rescaling by a weight

function the original binary vectors, which represent i’s and j’s user’s profiles. Specifically, now a

component h of vector vi
w (vj

w) is equal to 1/f(w) if i (j) is linked to an element h of weight w

in set B (heavy), to 1 if object h weighs 1 (light) and 0 otherwise.
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The sample covariance between vectors vi
w and vj

w becomes:

σ̂wij =
1

T

[
n̂wij
f(w)2

+ n̂1ij

]
− 1

T 2

(
kwi
f(w)

+Ki − kwi
)(

kwj
f(w)

+Kj − kwj
)
, (2.21)

and its expected value is

E[σ̂wij ] =
1

T

{
E[kwi ]E[kwj ]

mf(w)2
+

(Ki −E[kwi ])(Kj −E[kwj ])

T −m
+

− 1

T

[
Ki −E[kwi ]

(
1− 1

f(w)

)][
Kj −E[kwj ]

(
1− 1

f(w)

)]}
=

=
m(T −m)KiKj

T 2[T +m(w − 1)]2
(w − f(w))2

f(w)2
. (2.22)

According to Eq. (2.22), the expectation value of the covariance can be equal to zero if and only

if f(w) = w.

In order to understand if the weighted correlation estimator, defined starting from the weighted

covariance estimator in Eq. (2.21) retains the property of having a null expected value, we calculate

the sample variance of vector vw
i :

(σ̂wi )2 =
1

T

[(
kwi
w2

+Ki − kwi
)
− 1

T

(
kwi
w

+Ki − kwi
)2
]

=

=
1

T

{[
Ki − kwi

(
1− 1

w2

)]
− 1

T

[
Ki − kwi

(
1− 1

w

)]2}
=

=
1

T

{[
Ki−kwi

(
1− 1

w2

)]
− 1

T

[
K2

i −(kwi )2
(

1− 1

w

)2

−2Ki k
w
i

(
1− 1

w

)]}
=

=
1

T

{
Ki

(
1−Ki

T

)
−
(

1− 1

w

)[
kwi

(
1+

1

w

)
−(kwi )2

(
1− 1

w

)
−2Ki k

w
i

]}
.

(2.23)

In the first term of Eq. (2.23) we recognize the square of the standard deviation in Eq. (1.16),

but unfortunately, in the second term, we now find a dependance on kwi , which vanishes in the case

w = 1, but makes it so that E[σ̂wij ] = 0 is no longer a sufficient condition to have E[ρ̂wij ] = 0, since

E[ρ̂wij ] 6= E[σ̂wij ]/E[σ̂wi ]E[σ̂wj ]. Thus, we need to find an alternative way to compare the expected

values of the unweighted and weighted correlation estimators in order to see if we still have a benefit

when using the latter instead of the former. To this purpose, we employ a Taylor series expansion

of both near the point w = 1.
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2. A Biased Urn Model

Comparison of correlation estimators near w=1: Under the Binomial approximation, we can

write the weighted correlation estimator from the weighted covariance with f(w) = w by dividing

it for σwi σ
w
j . Its expected value will be the sum over all allowed values of the variables kwi , k

w
j ,

which are distributed according to the Binomial PMF:

E[ρwij ] =
∑
kwi ,kwj

E[ρwij |kwi , kwj ]B(p,Ki)B(p,Kj) =

=
∑
kwi ,kwj

kwi kwj
mw2 +

(Ki−kwi )(Kj−kwj )

T−m − 1
T

(
kwi
w +Ki − kwi

)(
kwj
w +Kj − kwj

)
√[

kwi
w2 +Ki−kwi −

1
T

(
kwi
w +Ki−kwi

)2][kwj
w2 +Kj−kwj −

1
T

(
kwj
w +Kj−kwj

)2]
·
(
Ki

kwi

)(
Kj

kwj

)(
mw

T +m(w − 1)

)Ki+Kj
(

T −m
T +m(w − 1)

)Ki−kwi +Kj−kwj
. (2.24)

The latter expression can be evaluated near w = 1, by using the Taylor series of the function:

F (w) = E[ρwij |kwi , kwj ]B(p,Ki)B(p,Kj). (2.25)

Afterwards, summation over kwi , k
w
j becomes straightforward by separating the variables and using

the well-known non-central moments of the binomial distribution expressed as a function of its

mean, standard deviation and skewness, all evaluated in w = 1:∑
kwi

kwi B(p(1),Ki) =
m

T
Ki, (2.26)

∑
kwi

(kwi )2B(p(1),Ki) =
(m
T
Ki

)2
+
m(T −m)

T 2
Ki, (2.27)

∑
kwi

(kwi )3B(p(1),Ki) =
m(T −m)

T 2
Ki

(
1− 2m

T
+

3m

T
Ki

)
+
(m
T
Ki

)3
. (2.28)

The zero and first order terms in the Taylor series are both null, so that the first non-null term

turns out to be the second order one:

E[ρwij ] ≈
d2E[ρwij ]

dw2

∣∣∣∣∣
1

(w − 1)2

2
=

m(T −m)

T 3

√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

)(w − 1)2, (2.29)

if we wish to compare the weighted estimator in Eq. (2.29) with the unweighted one, we need to

calculate the expected value of the latter, which can be explicitly written as a function of w since
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2.3. Covariance and Correlation Estimators under a Wallenius Distribution

in this case the denominator does not depend on the variables,

E[ρij ] =
∑
kwi ,kwj

E[ρij |kwi , kwj ]B(p,Ki)B(p,Kj) =

=

∑
kwi

(mKi − Tkwi )B(p,Ki) ·
∑

kwj
(mKj − Tkwj )B(p,Kj)

mT (T −m)

√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

) =

=
m(T −m)KiKj

T

√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

) · [ w − 1

T +m(w − 1)

]2
, (2.30)

and its Taylor expansion to second order in w = 1 is:

E[ρij ] ≈
d2E[ρij ]

dw2

∣∣∣∣
1

(w − 1)2

2
=

m(T −m)KiKj

T 3

√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

)(w − 1)2. (2.31)

Thus, we have demonstrated that our newly proposed weighted correlation coefficient in Eq.

(2.29) is an improvement over the regular unweighted one in Eq. (2.31), being exactly KiKj times

smaller.

2.3. Covariance and Correlation Estimators under a Wallenius

Distribution

In this section, we repeat the calculations of the previous one, but assuming an underlying Wallenius

distribution instead. We start from the Taylor series of the expected value of the correlation

coefficient up to second order in w:

E[ρij ] =
∑
kwi ,kwj

E[ρij |kwi , kwj ]W (kwi ,Ki, w)W (kwj ,Kj , w) =

=
∑
kwi ,kwj

(mKi − Tkwi )(mKj − Tkwj )

mT (T −m)σiσj
W (kwi ,Ki, w)W (kwj ,Kj , w) =

=
[mKi − Tµi(w)][mKj − Tµj(w)]

mT (T −m)σiσj
, (2.32)

we then calculate the zero order term, by keeping in mind that, when w = 1, the Wallenius

distribution becomes the Hypergeometric distribution, so that µi(1) = mKi/T and µj(1) = mKj/T ,
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2. A Biased Urn Model

E[ρij ]1 =
1

mT (T −m)σiσj
(mKi − Tµi(1)) (mKj − Tµj(1)) = 0. (2.33)

The first order term is also null,

dE[ρij ]

dw

∣∣∣∣
1

=− 1

m(T −m)σiσj

[
(mKj−Tµj(w))

dµi(w)

dw
+(mKi−Tµi(w))

dµj(w)

dw

]
1

= 0. (2.34)

Finally, the expected value of the correlation coefficient is given by its second order term,

E[ρij ] ≈
1

2

d2E[ρij ]

dw2

∣∣∣∣
1

(w − 1)2 =

=
m(T −m)

Tσiσj

(
1− Ki

T

)
ln

(
1− Ki

T

)(
1− Kj

T

)
ln

(
1− Kj

T

)
(w − 1)2,

(2.35)

which, as expected, is the same result previously obtained in Eq. (2.17).

At this point, we calculate the Taylor series up to second order in w = 1 of the weighted

correlation estimator in order to compare it with the unweighted one in Eq. (2.35). The conditional

expected value of the weighted correlation estimator is:

E[ρwij |kwi , kwj ] =
E[σwij |kwi , kwj ]

σwi σ
w
j

, (2.36)

where,

E[σwij |kwi , kwj ] =
1

T

[
kwi k

w
j

mf(w,Ki)f(w,Kj)
+

(Ki−kwi )(Kj−kwj )

T −m
+

− 1

T

(
Ki−kwi +

kwi
f(w,Ki)

)(
Kj−kwj +

kwj
f(w,Kj)

)]
, (2.37)

σwi =

√
Ki − kwi

(
1− 1

f(w,Ki)2

)
− 1

T

[
Ki − kwi

(
1− 1

f(w,Ki)

)]2
, (2.38)

σwj =

√
Kj − kwj

(
1− 1

f(w,Kj)2

)
− 1

T

[
Kj − kwj

(
1− 1

f(w,Kj)

)]2
. (2.39)

The weight functions f(w,Ki) and f(w,Kj) must now depend also on user degrees, as will be

demonstrated in section 2.4. Furthermore, Eq. (2.36) can be written in a form where it’s clear that
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2.3. Covariance and Correlation Estimators under a Wallenius Distribution

user i’s and j’s variables decouple:

E[ρwij |kwi , kwj ] =
1

mT (T−m)

[
(T−m)kwi +mf(w,Ki)(k

w
i −Ki)

σwi f(w,Ki)

][
(T−m)kwj +mf(w,Kj)(k

w
j −Kj)

σwj f(w,Kj)

]
,

(2.40)

and it can be shown that in w = 1 Eq. (2.40) reduces to its unweighted counterpart:

E[ρij |kwi , kwj ]1 =
(Kim− kwi T )(Kjm− kwj T )

mT (T −m)σiσj
, (2.41)

as it should be.

Thus, the zero order term after summation over kwi , k
w
j is null, exactly as it happened for the

unweighted one,

E[ρij ]1 =
∑
kwi ,kwj

E[ρij |kwi , kwj ]1H(kwi ,Ki,m, T )H(kwj ,Kj ,m, T ) =

=
E[(Kim− kwi T )] ·E[(Kjm− kwj T )]

mT (T −m)σiσj
= 0. (2.42)

Finally, as detailed in Appendix A, we find that:

dE[ρwij ]

dw

∣∣∣∣
1

= 0, (2.43)

and the first non-null term is the second order one, so that the expected value of the weighted

correlation coefficient near w = 1 is:

E[ρwij ] '
m(T −m)

T

√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

) (1− Ki

T

)[
h(T ) − h(T−Ki) +

(
1− 1

Ki

)
ln

(
1− Ki

T

)]
·

·
(

1− Kj

T

)[
h(T ) − h(T−Kj) +

(
1− 1

Kj

)
ln

(
1− Kj

T

)]
(w − 1)2. (2.44)

A graphic comparison between the unweighted estimator in Eq. (2.17) and the weighted estimator

in Eq. (2.44) is shown in Fig 2.3, where the improvement of the latter is clear.

However, to quantify in mathematical terms the improvement offered by the weighted estimator

over the unweighted one, we adopt the asymptotic expansion of the harmonic number,

h(T ) − h(T−Ki) ' − ln

(
1− Ki

T

)
− 1

2T

(
Ki/T

1−Ki/T

)
, (2.45)
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2. A Biased Urn Model

Figure 2.2.: Plot of the expected value of the unweighted correlation estimator (left) and of the
weighted one (right) as a function of Ki and Kj . Parameters are: T = 104 = 2m;
w = 2; {Ki,Kj} ∈ [1, 0.95T ]. Both assume the same value in {1, 1}.

Figure 2.3.: Plot of the harmonic number of order n (blue curve) and its asymptotic limit ln(n) +γ
(orange curve) as a function of n, where γ ≈ 0.577 is the EulerMascheroni constant.

valid when T →∞ and T >> Ki.

Within the former asymptotic limit, we have that the ratio of the expected value of the weighted

correlation coefficient to the unweighted one, near w = 1, reduces to:

E[ρwij ]

E[ρij ]
=

h(T ) − h(T−Ki)

ln
(

1− Ki
T

) + 1− 1

Ki

h(T ) − h(T−Kj)

ln
(

1− Kj

T

) + 1− 1

Kj

 '
'

(
1

Ki
− 1

2T

)(
1

Kj
− 1

2T

)
' 1

KiKj
. (2.46)

Thus, when T >> Ki,Kj , we find that the expected value of the weighted correlation estimator

is 1/KiKj times the expected value of the unweighted one, as already found in the Binomial
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2.4. Multivariate Weighted Covariance and Correlation Estimators

approximation.

2.4. Multivariate Weighted Covariance and Correlation Estimators

In the most general case, we’re dealing with n < T weight groups, each containing a number

m = {m1,m2, ...,mn} marbles of weight w = {w1, w2, ..., wn}. Each node i samples kqi marbles

out of weight-group q ∈ {1, ..., n}, for a total of marbles equal to his own degree Ki. Our aim

here is to show that the bias in the expected value of the covariance can be completely removed

by opportunely weighing the original binary vectors, as we’ve already done in the simplified case

with just n = 2 weight groups. Thus, rescaling the vectors with opportune weight functions leads

to the definition of a new covariance estimator, σ̂wij , which possesses the desired property that its

expected value be zero.

Specifically, focusing on node i, a component q of vector vw
i is now set equal to 1/f(wq,Ki) if i

randomly sampled a marble out of group q and 0 otherwise.

We can then reorder each user’s weighted vector vw
i as follows:

vw
i =

{
δ1

f(w1,Ki)
,...,

δm1

f(w1,Ki)
,

δm1+1

f(w2,Ki)
,...,

δm1+m2

f(w2,Ki)
,...,

δT−mn+1

f(wn,Ki)
,...,

δT
f(wn,Ki)

}
, (2.47)

where each δs is either 1 or 0, and the following constraints hold,

m1∑
s=1

δs = k1i , . . . ,

T∑
s=T−mn+1

δs = kni ;

T∑
s=1

δs =

n∑
q=1

kqi = Ki;

n∑
q=1

mq = T. (2.48)

Having thus re-normilized the original vectors by the weight functions f(wq,Ki), we can now

define the weighted covariance estimator as:

σ̂wij =
1

T

n∑
q=1

n̂qij
f(wq,Ki)f(wq,Kj)

− 1

T 2

 n∑
q=1

kqi
f(wq,Ki)

 n∑
q=1

kqj
f(wq,Kj)

 , (2.49)

where n̂qij is the number of marbles of weight wq in common between i and j.

Working under the multivariate version of the biased urn model introduced in section 2.2, we’re

now in the position to calculate the expected value of the weighted covariance. Under the Hyper-

geometric distribution hypothesis (see Eq. (2.8)) we have that,

E[nqij |k
1
i , ...k

n
i , k

1
j , ...k

n
j ] =

kqi k
q
j

mq
, (2.50)
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2. A Biased Urn Model

so that the expected value of the weighted covariance in Eq. (2.49) can be written as:

E[σwij ] =
1

T

n∑
q=1

 E[kqi ]

f(wq,Ki)

 E[kqj ]

mq f(wq,Kj)
− 1

T

n∑
p=1

E[kpj ]

f(wp,Kj)

 . (2.51)

From Eq. (2.51), we can define the group of weight functions f(wq,Kj) as those which zero

the expected value of the weighted covariance, that is, the solutions of the following system of

equations:

E[k1j ]

m1 f(w1,Kj)
− 1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0

E[k2j ]

m2 f(w2,Kj)
− 1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0

...
E[knj ]

mn f(wn,Kj)
− 1

T

n∑
p=1

E[kpj ]

f(wp,Kj)
= 0. (2.52)

System (2.52) is indeterminate and can be solved along with a constraint on the weight functions,

which can be expressed as a normalization constant αj , depending, at most, on j but independent

of the weight-groups. This degree of freedom reflects the fact that, out of the n weights, only n− 1

are independent in the sense that all weights can be arbitrarily scaled, by for example dividing

them for the greatest one wn, so that the odds-ratios vector becomes w = {w1/wn, w2/wn, . . . , 1}
and all its values range in the interval [0, 1]. By doing so, all the weight functions can be written

as proportional to the expected value of the number of marbles sampled in that weight-group:

f(wq,Kj) = αj

E[kqj ]

mq
, with q ∈ [1, n] ∧ αj ∈ <, (2.53)

with the expected value E[kqj ] depending also on wq. From Eq. (2.53) one can further deduce that

a dependance on degree Kj could be also conatined in αj as well as E[kqj ].

To sum up, by defining the weight functions f(wq, kj) with Eq. (2.53), it’s guaranteed that the

expected value of the weighted covariance estimator in Eq. (2.49) is zero.

From Eq. (2.51) it’s straightforward to define the weighted correlation estimator as the Pearson
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2.4. Multivariate Weighted Covariance and Correlation Estimators

correlation coefficient of the weighted vectors:

ρ̂wij =
σ̂wij

σ̂wi σ̂wj
=

=

∑n
q=1

nq
ij

f(wq ,Ki)f(wq ,Kj)
− 1

T

(∑n
q=1

kqi
f(wq ,Ki)

)(∑n
q=1

kqj
f(wq ,Kj)

)
√√√√[∑n

q=1
kqi

f(wq ,Ki)2
− 1

T

(∑n
q=1

kqi
f(wq ,Ki)

)2][∑n
q=1

kqj
f(wq ,Kj)2

− 1
T

(∑n
q=1

kqj
f(wq ,Kj)

)2
] .

(2.54)

Again, from Eq. (2.54) one realizes immediately that having E[σwij ] = 0 is not a sufficient

condition for E[ρwij ] = 0, since variables {ki,kj} appear in the denominator as well. However, we

can approximate E[ρwij ] by its Taylor series near w = 1 and show that its value is less than the

Taylor series of E[ρij ].

A smart choice for the normalization constant: A smart way to define αj is to require that,

when all weights are set equal, the weighted covariance reduces to the unweighted one. Such a

consistency condition implies that, when

w1 = w2 = · · · = wn = w, (2.55)

we automatically end up with

f(w1,Kj) = f(w2,Kj) = · · · = f(wn,Kj) = 1, (2.56)

so that the weighted covariance reverts to the binary one.

Thus, we need to set the normalization constant as follows:

αj =
mq

E[kqj ]∗
=

T

Kj
, (2.57)

where the limit distribution when all the weights are identical is just the Hypergeometric one, of

mean E[kqj ]∗ = mqKj/T . As expected, αj depends on Kj , but not on the weights, so that it is the

same for all the weight-groups.

A set of equations to define the weight functions: In the multivariate case, the Wallenius

distribution PDF for the vector kj = {k1j , k2j , ..., knj }, with odds-ratios w = {w1, w2, ..., wn} and
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2. A Biased Urn Model

number of marbles per weight group m = {m1,m2, ...,mn}, takes the form:

W (kj;m,w) =
n∏

q=1

(
mq

kqj

)∫ 1

0

n∏
q=1

(1− twq/D)k
q
j dt, (2.58)

with

D = w · (m− kj) =
n∑

q=1

wq(mq − kqj ). (2.59)

The group means µq = E[kqj ] with q ∈ [1, n] satisfy the system of equations:

(
1− µ1

m1

)1/w1

=

(
1− µ2

m2

)1/w2

= ... =

(
1− µn

mn

)1/wn

, (2.60)

with the constraint
∑n

q=1 µq = Kj .

From this constraint and Eq. (2.53), we can write each group mean µq in terms of the weight

functions,
µq
mq

=
Kj f(wq,Kj)∑n
p=1mp f(wp,Kj)

, (2.61)

and inserting Eq. (2.61) in Eq. (2.60), we find a set of equations for the weight functions:(
1− Kj f(w1,Kj)∑n

p=1mp f(wp,Kj)

)1/w1

= ... =

(
1− Kj f(wn,Kj)∑n

p=1mp f(wp,Kj)

)1/wn

. (2.62)

System (2.62) provides a way to directly calculate the weight functions, without having to com-

pute the group means first.

2.5. Covariance and Correlation Estimators under a Multinomial

Distribution

In this section, we write down the weighted estimator for the correlation coefficient in the easier

case when the variables are distributed according to a mulinomial distribution, and quantitatively

show the improvement it offers over the unweighted one. We show the results in the multivariate

case using the multinomial distribution, since calculations with the Wallenius distributions are

quite lengthy due to the Taylor series involved, and obtain the same results as in the bivariate

case. Indeed, the multinomial distribution is a good approximation of the Wallenius one when

Ki,Kj << T , so that it is extremely unlikely for a user to sample the same marble twice.

In the multinomial approximation, the vector kj = {k1j , k2j , ..., knj } is distributed according to the
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2.5. Covariance and Correlation Estimators under a Multinomial Distribution

multinomial distribution kj ∼ M(Kj ;p) with p = {p1, p2, ..., pn} being the vector of probabilities

ps = msws/
∑n

q=1mqwq. The expected value for the outcome ksj is simply E[ksj ] = Kjps.

In this approximation, it’s rather easy to write an expression for the generic function f(ws,Kj)

which does not depend on degree Kj (as already found in the binomial approximation):

f(ws) =
TE[ksj ]

Kjms
→ f(ws) ∝ ws. (2.63)

Again, this choice for the group of weight functions is enough to have∑
ki,kj

E[σwij |ki,kj]M(Ki;p)M(Kj ;p) = 0, (2.64)

but it’s not sufficient to also zero the expected value of the correlation coefficient:

E[ρwij ] =
∑
ki,kj

E[ρwij |ki,kj]M(Ki;p)M(Kj ;p), (2.65)

where from Eq. (2.54) we have that:

E[ρwij |ki,kj] =

∑n
q=1

[
kqi
wq

(
kqj

mqwq
− 1

T

∑n
p=1

kpj
wp

)]
√√√√[∑n

q=1
kqi
w2

q
− 1

T

(∑n
q=1

kqi
wq

)2] [∑n
q=1

kqj
w2

q
− 1

T

(∑n
q=1

kqj
wq

)2
] . (2.66)

As expected, Eq. (2.66) evaluated at {w1 = 1, w2 = 1, ..., wn = 1} reverts to the conditional

expected value of the unweighted correlation coefficient:

E[ρij |ki,kj] =

∑n
q=1

kqi k
q
j

mq
− KiKj

T√
Ki

(
1− Ki

T

)
Kj

(
1− Kj

T

) . (2.67)

Starting from Eq. (2.67), we can exactly calculate the expected value of the unweighted correla-

tion coefficient:

E[ρij ] =
∑
ki,kj

E[ρij |ki,kj]M(Ki; p1, ..., pn)M(Kj ; p1, ..., pn)

=
KiKj

σiσj

 ∑n
q=1mqw

2
q(∑n

q=1mqwq

)2 − 1

T

 , (2.68)
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2. A Biased Urn Model

which, as expected, is null in w = 1.

If we Taylor expand Eq. (2.68) near w = 1, we get:

E[ρij ] ≈ E[ρij ]1 + ∇ (E[ρij ])|1 · (w − 1) +
1

2
(w − 1)T H(E[ρij ])|1 (w − 1), (2.69)

where the gradient and Hessian matrix can be exactly calculated, and depended all on the product

KiKj :

∂

∂ws
E[ρij ]

∣∣∣∣
1

=
2KiKjms

σiσj

ws
∑n

q=1mqwq −
∑n

q=1mqw
2
q(∑n

q=1mqwq

)3

1

= 0,

∂2

∂w2
s

E[ρij ]

∣∣∣∣
1

=
2KiKjms

σiσj

(∑n
1 mqwq)

2−4msws
∑n

1 mqwq+3ms
∑n

1 mqw
2
q(∑n

q=1mqwq

)4

1

=
2ms (T −ms)

T 3σiσj
KiKj ,

∂2

∂wp ∂ws
E[ρij ]

∣∣∣∣
1

=
2KiKjmsmp

σiσj

3
∑n

q=1mqw
2
q − 2(ws + wp)

∑n
q=1mqwq(∑n

q=1mqwq

)4

1

= −2msmp

T 3σiσj
KiKj . (2.70)

With in mind a comparison between the Taylor series of the expected values of the unweighted

and weighted estimators, we now calculate the Taylor series near w = 1 of the latter:

E[ρwij ] =
∑
ki,kj

E[ρwij |ki,kj]M(Ki;p)M(Kj ;p) =
∑
ki,kj

F (ki,kj,w). (2.71)

Since E[ρwij ]1 = E[ρij ]1, the zero order term is null.

To prove that the first order term is also null, we rewrite the weighted correlation coefficient as

a function of y = 1/w, which makes calculations easier:

E[ρyij |ki,kj] =

∑n
q=1

[
kqi yq

(
kqjyq/mq −

∑n
p=1 k

p
j yp/T

)]
√[∑n

q=1 k
q
i y

2
q − 1

T

(∑n
q=1 k

q
i yq

)2][∑n
q=1 k

q
jy

2
q − 1

T

(∑n
q=1 k

q
jyq

)2] . (2.72)
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Then
∂E[ρyij ]

∂ys
=
∑
ki,kj

∂F (kw
i ,kj,y)

∂ys
, (2.73)

with

F (ki,kj,y) = E[ρyij |ki,kj] ·M(Ki;p) ·M(Kj ;p). (2.74)

By carrying out calculations (see Appendix B), we find that,

∂E[ρyij ]

∂ys
= 0, (2.75)

and by reverting to the original set of variables ws = 1/ys, we again find:

∂E[ρwij ]

∂ws
= −y2s

∂E[ρyij ]

∂ys
= 0. (2.76)

Let’s now turn to the calculation of the elements of the Hessian matrix (see Appendix B), whence

we’re able to calculate the second derivatives of the expectation value of the weighted estimator:

∂2E[ρwij ]

∂w2
s

∣∣∣∣∣
1

=

[
2y3s

∂E[ρyij ]

∂ys
+ y4s

∂2E[ρyij ]

∂y2s

]
1

=
2ms(T −ms)

T 3σiσj
(2.77)

for the diagonal terms, and

∂2E[ρwij ]

∂wp∂ws

∣∣∣∣∣
1

=

[
y2sy

2
p

∂2E[ρyij ]

∂yp∂ys

]
1

= −2msmp

σiσjT 3
, (2.78)

for the off-diagonal ones.

Both are, again, 1/KiKj times smaller than the corresponding terms in the second order Taylor

expansion of the expected value of the binary correlation estimator, see Eq. (2.70).
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In this chapter, we demonstrate the power of the methodology developed in Chapter 2 by applying

the newly introduced weighted estimators to two real systems, one social and the other biological.

By doing so, we can directly compare the results obtained with the binary estimators as opposed

to the unbiased ones.

However, from a conceptual point of view, the weighted estimators have the drawback that both

covariance and correlation between any two given elements in the system now depend on all the

others, in such a way that adding or removing even a single element influences the value of the

estimator. To prove the stability of the weighted estimators against such a change in the system,

we run a robustness analysis and show that the proposed estimators are rather robust to changes

in the system composition up to 30%.

Finally, it is not obvious how to estimate the weight-groups and odds-ratios which are used in

the calculation of the weight functions appearing in the weighted estimators, when one does not

know them a priori. In what follows, we make the simple assumption that the weight of an object

in set B of the bipartite system is equal to the number of users in set A which are linked to it,

although being reasonable, this is a rather rough estimate.

In the final section of this chapter, we tackle the problem of estimating both the weight-groups

and the odds-ratios from the data itself at the same time, by introducing a three steps method that

allows to identify the weight-groups first and then calculate the corresponding odds-ratios, when

one does not have any prior information on either. Afterwards, we compare the efficiency of our

procedure against the easiest possible choice of weight, that is, using directly set B’s heterogeneity

as a weight in the estimators.

3.1. Empirical Datasets

In this section, we employ the weighted covariance and correlation estimators we developed in

Chapter 2, against the unweighted ones, with the aim of showing how the new estimators get rid

of the noise present in the rewired network. As a matter of fact, in order to calculate the weighted

covariance and correlation, we simply derive the weight functions as shown in section 2.3 and use

them to weigh users’ vectors, over which we then compute the covariance and correlation coefficient.
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Data

Social dataset Biological dataset

T 1,808 4,873
wm − wM 2 - 150 3 - 66

N 199 66
Km −KM 2 - 793 362 - 2,243

nL 32,024 83,675

Table 3.1.: T is the number of initiatives/COGs; wm−wM is their heterogeneity, that is, the range
(min-max) of degree distributions; N is the number of MPs/organisms; Km−KM is the
range (min-max) of their degree distributions; nL is the number of links in the bipartite
network.

The datasets taken into consideration are two, one pertains to the social sciences and the other

one to the biological sciences. The social database [70] consists of 1,808 private initiatives submitted

between 2011 and 2014 by 199 members of the Finnish parliament (MPs), along with information

on who signed each initiative. Data cover an entire parliament of the duration of four years. The

resulting bipartite system displays MPs in set A and initiatives they signed in set B. Info on MPs

include their party and district of election. Parties in Finland are: Christian Democrats (KD),

Centre party (KESK), National Coalition party (KOK), Finns party (PS), Swedish People’s party

(RKP), Social Democratic party (SDP), Left alliance (VAS) and Green League (Vihr).

The biological data comes from the COG database 1, which stands for Clusters of Orthologous

Groups of proteins, from the sequenced genomes of prokaryotes and unicellular eukaryotes [71], [72].

The database consists of 4,873 COGs present in 66 genomes of unicellular organisms, belonging

to 3 broad macro-groups: Archaea, Bacteria or Eukaryota. The corresponding bipartite system

consists of organisms in set A and COGs present in their genome in set B. Organisms belong to

12 different phyla: Actinobacteria (Act), Archaea of type Crenarchaeota (ArC) and Euryarchaeota

(ArE), Cyanobacteria (Cya), Eukariota (Euk), Gram-negative Proteobacteria of type α (Gr-a), β

(Gr-b), ε (Gr-e), γ (Gr-g), Gram-positive bacteria (Gr+), Hyperthermophilic bacteria (HyT) and

other bacteria (Oth).

The fundamental property in both datasets that makes them well-suited for our purpose is the

high degree of heterogeneity present in both sets of the bipartite system, as can be seen from

TABLE 3.1. However, such a high degree of heterogeneity is frequently found in many other

bipartite systems, belonging to a variety of research fields.

1available at http://www.ncbi.nlm.nih.gov/COG
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3.2. Random Rewiring of a Bipartite Network

Figure 3.1.: Jaccard index as a function of the number of shuffles for the rewired social (left) and
biological (right) networks, in log-log scale. A unit in the x-axis corresponds to 1,000
shuffles.

3.2. Random Rewiring of a Bipartite Network

If we want to assess the noise present in the correlation matrix computed according to Eq. (1.17),

one of the approaches used in the literature is the rewiring of the bipartite network [67], explained

in section 2.1. Our rewiring algorithm samples randomly a pair of MPs/organisms according to

a probability distribution equal to their degree distribution, then samples randomly two initia-

tives/COGs out of those already linked to the first sampled pair, again according to the degree

distribution of initiatives/COGs. Then, if neither in the pair is already linked to the other’s sam-

pled initiative/COG, the two links are swapped, otherwise the swap is rejected. The swapping

procedure is iterated many times, until full randomization is achieved. Such an algorithm performs

a random rewiring of the entire bipartite system, preserving both sides degree distributions.

In the former procedure, the only problem lies in understanding when to stop, that is, we need

a measure of randomness. We employed the Jaccard similarity index in Eq. (1.7) as a measure of

randomness, terminating the algorithm after one million shuffles for the social dataset and after

five million for the biological dataset, well after the Jaccard index stabilised around a minimum

(see Fig. 3.1).

We can now compare the weighted estimators against the unweighted ones, over both datasets.

The first result, as shown in Fig. 3.2, is that the weighted covariance estimator completely destroys

the structure still present in the unweighted covariance matrix of the rewired network. This feature

translates also to the weighted/unweighted correlation coefficients in Fig. 3.3, although, where

in our model the expected value of the weighted covariance estimator is zero, we only have an

approximated result for what concerns the expected value of the weighted correlation estimator.

In Fig. 3.4 we show how the weighing, though getting rid of the noise, still grasps the clustered
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Figure 3.2.: Covariance matrices of the rewired MPs (top-row) and organisms (bottom-row) bipar-
tite network, calculated without weighing the vectors (left) and weighing them (right).
Matrices are ordered by increasing degree to better show the bias and diagonals have
been colored white. The Color Key scale is identical in all figures.
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3.2. Random Rewiring of a Bipartite Network

Figure 3.3.: Correlation matrices of the rewired MPs (top-row) and organisms (bottom-row) bipar-
tite network, calculated without weighing the vectors (left) and weighing them (right).
Matrices are ordered by increasing degree to better show the bias and diagonals have
been colored white. The Color Key scale is identical in all figures.
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structure present in the system.

An unexpected result is that the weighted correlation matrix seems to actually better identify the

clusters in the COGs dataset (bottom row), due to its higher resolution power which encompasses

a broader scale of values, displayed within the matrix in violet (negative values), zero (red), orange

(low), yellow (average) and green (high) whereas the unweighted matrix only features positive cor-

relations, making it harder to distinguish clusters. Indeed the weighted matrix on the bottom-right

shows a clustering which more accurately reproduces organisms’ phyla. For example, it neatly dis-

criminates Archaea (red and orange in the left color-bar), Eukariota (Salmon) and Bacteria (all the

rest), by also grouping together Gram-negative bacteria (shades of green), Gram-positive bacteria

(blue), Hyperthermophilic bacteria (violet), Actinobacteria (pink) and Cyanobacteria (cyan).

Within the Finnish parliament correlation matrix in Fig. 3.4 top row, we can see how the

weighing destroys the cluster of party KESK, thus indicating how this cluster is probably more

due to noise than to a real collaboration between MPs, while at the same time the cluster of

party PS survives compact and appears to be a real one. This finding is in accord with the

general trend observed in [70], where the evolution of this network over 4 Finnish parliaments is

studied. In fact, during previous terms, MPs collaborated by district and by party both, with

party beeing more charcterizing in the opposition and district subclustering predominating within

the government. If we look at the unweighted matrix, it appears that not only the two opposition

parties strongly cluster while at the same time displaying a negative correlation with each other, but

also the government splits in a right-wing and a left-wing subcluster. Such a striking change from

the previous terms was attributed to the sudden rise in numbers of the populist party PS. From

the weighted matrix instead we can see that the situation is in truth more in line with previous

parliaments, with district subclustering reappearing at the government.

3.3. Robustness Analysis when Sampling a Subset of Data

One of the advantages offered by the proposed weighted estimator is that it depends on both sets’

degrees, however the drawback is that, if we were to sample a subset of the nodes of interest

(MPs/organisms), the degree distribution of the other set (initiatives/COGs) would decrease as

well and, as a result, the weighted correlations would change between the nodes in the subset of

interest. Thus, the unwanted side-effect is that the correlation coefficient between any two elements

would depend on who else is also present in the subset. For this reason, a robustness analysis is in

order, to show how the weighted estimator holds up when subsetting data.

We ran 1,000 random samplings of, respectively, 90%, 80% and 70% MPs/organisms out of

the rewired network, then plotted the Frobenius distance between pairs of weighted correlation

matrices (by taking each time the intersection of those present in both matrices), the Frobenius
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3.3. Robustness Analysis when Sampling a Subset of Data

Figure 3.4.: Unweighted (left) against weighted (right) correlation matrices of MPs (top) and or-
ganisms (bottom), ordered by hierarchical clustering with average linkage performed
on each matrix. The left-side bar is colored according to party (left legend) or phylum
(right legend), the top bar is colored according to districts (right legend). Diagonals
have been colored white. The Color Key scale is identical in all figures.
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3. Applications to Empirical Systems

Figure 3.5.: Robustness analysis performed on the weighted correlation coefficient between MPs
(top) and between organisms (bottom) in the rewired network. We display in violet
the distribution of Frobenius distances between weighted correlation matrices, in yellow
the distribution of weighted-Identity distances, in green the distribution of unweighted-
Identity distances.

distance in Eq. (1.12) between the weighted correlation matrices of the samples and the identity

matrix (which corresponds to the noiseless null-model) and the Frobenius distance between the

unweighted correlation matrices of the samples and the identity matrix. In order to compare

matrices of different dimensions, we renormalized each distance by
√
n(n− 1), where n is the size

of both the matrices over which the distance is calculated.

From Fig. 3.5 we can clearly see that, although the distribution of distances between weighted

correlation matrices broadens and shifts to the right as the percentage of sampled elements de-

creases, it still stands to the left of the weighted-Identity matrix distance distribution, which keeps

well to the left of the unweighted-Identity one. We can thus conclude that the weighted estimator

proves rather robust even when sampling subsets of data.

3.4. Weight-groups and Odds-ratios Estimation

Up to now we’ve run all the calculations under the following assumption: the odds-ratios estimator

w is exactly equal to the heterogeneity of set B in the bipartite system, meaning, for example,

that in the Finnish parliament the weight of an initiative is equal to the number of MPs who

signed it and in the COGs dataset, the weight of a COG is equal to the number of organisms in

whose genome it shows up. Such a rough estimate has the benefit of automatically defining the

weight-groups vector m as well, by grouping together all the initiatives/COGs which have the same
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3.4. Weight-groups and Odds-ratios Estimation

weight.

In truth, the estimation of the odds-ratios in a Wallenius distribution with different sampling

processes, that is, a different number of total marbles sampled by each user, is not straightforward

in and of itsels, and has not been thoroughly investigated in the literature. In this section, we

propose a simple method, whose efficacy is proven through simulations, of determining first the

groups of marbles of different weight and then the weight corresponding to each group. In this

context, we’ll show the improvement the weighted estimators for both covariance and correlation

offer over the simple idea of just dividing the original vectors vi (vj) by the weight w defined by

set B’s exact degrees, as inspired by the reading of Newman’s paper [43], which shall henceforth be

referred to as Newman’s estimator. Basically, when one is dealing with empirical data possessing low

hetereogeneity on both sets, the Wallenius distribution can be approximated either by a Multinomial

distribution (when Ki,Kj << T ) or a Hypergeometric one (when all the weights are about equal),

however Newman’s estimator as well as the regular Pearson coefficients become dramatically biased

as heterogeneity on both sides of the system grows, as is typically the case in many complex systems.

Specifically, the use of Newman’s estimator hides two strong approximations: (i) the composition

of the biased urn, by taking the weights equal to the degree distribution of set B and weight-groups

accordingly (this is in general not true), (ii) the underlying distribution, which inthis case is the

Multinomial, with weight functions simply equal to the weights.

The setting of the simulation is as follows: we define set A heterogeneity, by fixing vi’s degree

for every i, we consider four groups of marbles of equal size, and set the odds-ratios as w =

{0.05, 0.2, 0.5, 1}, since all the weights can be normalized in terms of any of the other weights.

We ran an exploratory simulation with m = {1000, 1000, 1000, 1000}, encompassing the whole

spectrum of values of Ki, from 10 to 3990 in steps of 10 for a total of 300 users. With these initial

parameters, the simulation runs a random sampling from a biased urn with the odds-ratios w, one

user at a time, then the marbles sampled in each weight-group are labeled randomly out of the total

set of labeled marbles, so that the corresponding user’s profile binary vector can be constructed.

Finally, the adjacency matrix is built by just stacking all profile vectors one next to the other,

taking care of removing any marbles in the biased urn which were never sampled by any user.

Having thus constructed our synthetic database, we can easily calculate Newman’s covariance and

correlation estimators by simply dividing every row of the matrix by its corresponding marble’s

weight, which is just the number of users who sampled it, and then computing the unweighted

estimators on the resulting matrix.

For what concerns our newly proposed weighted estimators, in order to calculate the weight

functions f(wh,Ki) one needs to estimate both the weight-groups m and the odds-ratios w from

the synthetic dataset. In order to do so, we suggest a 3 steps procedure:
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1. Calculate the distribution of the marbles in weight-groups by

a) counting the number of users who sampled each marble, that is the sum of each row of

the binary matrix (the row-sum),

b) tallying all the marbles (the rows in the matrix) sampled by the same number of users

(all those with the same row-sum), which is simply the distribution of the marbles in

weight-groups, and plotting this distribution as a xy curve, where the y is the tally

(number of marbles with a given row-sum) and the x is the corresponding row-sum.

2. The main issue is how to identify the groups under the obtained xy curve, a task accom-

plished, for example, by using a segmented algorithm on a linear fit of the curve, to de-

termine the points psi where the slope of the curve changes. These breaking points iden-

tify the group of marbles in a given row-sum interval, so that one can calculate the vector

m = {m1,m2, . . . ,mn} and which marbles belong to each group. Notice that each group

needs to contain more than one point of the xy curve, in order for the odds-ratios equation

detailed at the next step to work, and it’s up to one whether to use left closed or right closed

intervals.

3. Once one knows the groups of marbles, the odds ratio can be estimated by setting the heaviest

group weight equal to one: wn = 1, and then building a vector of n− 1 weights for each user,

according to the following equation inspired by Eq. (2.60):

wi
q =

ln
(
1− kiq/mq

)
ln (1− kin/mn)

. (3.1)

From Eq. (3.1) it’s possible to reconstruct each weight by averaging over all the users and

keeping in mind that, in a multivariate Wallenius distribution, the odds-ratios are distributed

according to a log-normal:

〈wq〉 = exp
(〈

ln
(
wi
q

)〉
i

)
. (3.2)

The odds-ratios estimates obtained from Eq. (3.2) get more and more accurate as the number

of users and marbles in each group grows and the better one identifies the weight-groups.

Obviously, when going from Eq. (3.1) to Eq. (3.2), one needs first to remove all the values

of wi
q that are either 0, 1 or infinite.

In Fig. 3.6 we report the results of the exploratory simulation, by showing the distribution of

the row-sums of the synthetic data matrix, the identification of weight-groups through a linear

segmented algorithm, the plot of both covariance and correlation estimators calculated with New-

man’s weight and with our weighted estimators as a function of users’ degree: KiKj/T
2, ∀i, j > i.
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Parameters obtained from the algorithm

Finnish parliament rewired network

psi 3 16 62 133
m 307 806 653 39 3
w 0.0096 0.0202 0.1040 0.7150 1

COGs rewired network

psi 5 16 29 48 64
m 1367 1792 718 669 250 77
w 0.0040 0.0121 0.0378 0.1027 0.2558 1

Table 3.2.: Parameters obtained by running the segmentation algorithm on the xy plot of the
number of initiatives(COGs) with a given number of signatures(appearing in a given
number of genomes), as a function of the corresponding number of signatures(number of
genomes) and afterwards computing the odds-ratios. The break-points psi retrieved by
the segmentation algorithm are used to determine the weight-groups vector m, whose
corrresponding odds-ratios vector w is calculated according to Eq. (3.2).

In Fig. fig:hist histograms of covariance and correlation coefficients calculated with both types of

weights are shown.

After exploring the spectrum of KiKj/T
2 ∈ [0, 1], we ran two simulations with initial param-

eters closer to our empirical datasets, by setting user’s degrees exactly equal to those of each

dataset, the weight-groups vector m = {500, 500, 500, 500} for the Finnish parliament and m =

{1200, 1200, 1200, 1200} for the COGs dataset andthe odds-ratios vector w = {0.05, 0.2, 0.5, 1}.
The results are shown in Fig. 3.8 and Fig. 3.9.

From all the simulations we ran, it’s quite clear that the weighted estimators perform better

than Newman’s ones, which are still affected by a bias growing as user’s degree increases. There

are many other ways in which one can attempt to identify the weight-groups in empirical datasets

when they are unknown a priori, but ours is quite simple and works well when the groups are not

too superimposed.

In Fig. 3.10 and 3.11 we show the above described method to identify groups and relative odds-

ratios for the rewired matrices of the Finnish parliament and COGs databases. The parameters we

obtained from the algorithm are summarized in TABLE 3.2.

From Fig. 3.10 and 3.11 one can see how it is not always straightforward to single out the

weight-groups in real systems. Nonetheless, the weighted covariance and correlation coefficients

are still closer to their expected values of zero than their Newman’s counterparts. In TABLE 3.3

we report the measures of the ratio of mean to standard deviation µ/σ, of the skewness Sk and

of the kurtosis K for the weighted and Newman’s covariance estimators, wcov and Ncov, while in

TABLE 3.4 the same parameters for the weighted and Newman’s correlation estimators, wcor and
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Figure 3.6.: Exploratory simulation, top row shows the ditribution of the row-sums of the data
matrix and the segmented fit used to identify the weight-groups, mid row shows the plot
of Newman’s covariance (left) and weighted covariance (right) as a function of KiKj/T

2

and the bottom row shows the same plot of Newman’s correlation and weighted one.
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Figure 3.7.: Exploratory simulation, top row shows the histograms of Newman’s (left) and weighted
(right) covariance estimators and the bottom row shows the histograms of Newman’s
(left) and weighted (right) correlation estimators.
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Figure 3.8.: Simulation run with parameters similar to the Finnish parliament dataset, top row
shows the ditribution of the row-sums of the data matrix and the segmented fit used
to identify the weight-groups, mid row shows the plot of Newman’s covariance (left)
and weighted covariance (right) as a function of KiKj/T

2 and the bottom row shows
the same plot of Newman’s correlation and weighted one.
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Figure 3.9.: Simulation run with parameters similar to the COGs dataset, top row shows the ditri-
bution of the row-sums of the data matrix and the segmented fit used to identify the
weight-groups, mid row shows the plot of Newman’s covariance (left) and weighted
covariance (right) as a function of KiKj/T

2 and the bottom row shows the same plot
of Newman’s correlation and weighted one.
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Figure 3.10.: Finnish parliament rewired matrix, top row shows the distribution of the row-sums of
the real data rewired matrix and the segmented fit used to identify the weight-groups,
mid row shows the plot of Newman’s covariance (left) and weighted covariance (right)
as a function of KiKj/T

2 and the bottom row shows the same plot of Newman’s
correlation and weighted one.
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Figure 3.11.: COGs rewired matrix, top row shows the distribution of the row-sums of the real
data rewired matrix and the segmented fit used to identify the weight-groups, mid
row shows the plot of Newman’s covariance (left) and weighted covariance (right)
as a function of KiKj/T

2 and the bottom row shows the same plot of Newman’s
correlation and weighted one.
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Standardized moments in covariance distributions

wcov in COGs Ncov in COGs wcov in FP Ncov in FP

µ/σ -0.33 -0.69 0.12 -0.14
Sk 0.28 -1.33 2.12 -1.09
K 4.06 6.52 16.5 40.5

Table 3.3.: Measures of the first four standardized moments of the distributions of weighted and
Newman’s covariance estimators for the COGs (left) and the Finnish Parliament (right)
rewired networks. Specifically, we report the ratio of mean to standard deviation µ/σ,
the skewness Sk and the kurtosis K for both covariance estimators.

Standardized moments in correlation distributions

wcor in COGs Ncor in COGs wcor in FP Ncor in FP

µ -0.006 -0.013 0.003 -0.002
σ 0.018 0.019 0.026 0.024
Sk 0.54 0.26 3.41 7.22
K 3.86 3.50 27.7 135.7

Table 3.4.: Measures of the first four standardized moments of the distributions of weighted and
Newman’s correlation estimators for the COGs (left) and the Finnish Parliament (right)
rewired networks. Specifically, we report the mean µ, the standard deviation σ, the
skewness Sk and the kurtosis K for both correlation estimators.

Ncor, are reported.
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Political systems such as the European parliaments and the US congress represent a class of social

systems. The elected members of a legislature form many types of policy networks. In basic terms,

the Members of a Parliament (MPs) can be considered as the nodes in a network where interactions

between MPs represent network links. One such policy network is formed by MPs private initiatives.

When two or more MPs cooperate by co-signing a private initiative, a link is established between

cosponsors of the initiative. When politicians collaborate, an interesting question is who cooperates

with whom and why? The main research problem we address is to characterize the structure of

private initiative networks. Thus, a crucial question is which would be the determinants of the

private initiative policy network.

Such a policy network analysis has been previously carried out in certain presidential systems, as

for example the US Congress. The structure of similarity of the US Congress has been investigated

by using network theory methodologies in [73], where the authors built a hierarchical tree of congress

members based on law initiatives they cosponsored and attempted to characterize the two biggest

communities found in terms of parties (Republicans and Democrats), by using the concept of

modularity. Here, however, perhaps for the first time, a typical European parliamentary multiparty

system is studied.

European legislatures have been considerably rarely studied in the field of private initiatives when

compared with the U.S. which has a long history of scholarly literature analyzing private bills in

the Congress from various points of view. This asymmetry can partly be explained considering the

political importance of private initiatives. The European parliamentary systems mainly operate

with government bills, thus leaving private initiatives in a rather marginal role, while in presidential

systems private bills are much more important tools of policy making. The handful of European

studies have almost exclusively focused on analyzing the motivational side of this activity, i.e. why

MPs draft private initiatives in vast amounts, well knowing that the prospects of getting one passed

are almost nil. To address this question, private initiative drafting has been shown to be strongly

tied with electoral connection theories, according to which the purpose of such drafting is mainly

the cultivation of representatives personal vote. In the European context, it has been shown that

nuances of the electoral systems seem to provide incentives to draft private initiatives.

Aside from motivational aspects, we follow the small strand of U.S. spawned research, which
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has aimed at finding and characterizing private initiative cosponsor communities within the full

cosponsor network. The main characteristics or determinants in presidential systems have been

shown to include MPs party affiliation, electoral district and committee membership.

Although being placed in this framework, our analysis focuses on a EU parliament and it is

also extended beyond legislative initiatives by including every type of private initiative MPs are

allowed to draft in the parliament. The political system under scrutiny is the Finnish parliament,

which is a typical parliamentary system among its peers in Europe. In addition to the government,

the parliament has the right to initiate legislation as well. The thousands of private initiatives by

MPs have a primary signer, however, they are rather often supported by a multitude of co-signers,

thus forming a network of co-sponsorships. We are interested in studying the core-structure of the

network of relationships between MPs and its evolution over the years. More importantly, as private

initiatives are introduced in thousands per electoral term, we face a methodological challenge in

trying to analyze dense policy networks.

4.1. Legislatures, Private Initiatives and Cosponsoring

In order to shed light on the similarities and differences between presidential and parliamentary

systems we shall briefly review both. To start with, the U.S. system does not have formal gov-

ernment bills, since legislation must be spawn within the Congress. This, by definition, implies

private initiatives being very important. However, even the congressmen cannot act alone, as they

depend on the executive leadership and party leadership [74], [75]. Lindblom in [76] estimated 80%

of initiatives enacted into law as originating within the executive branch. The executive branch

and party leadership act as strong background forces. In parliamentary systems this relationship is

direct as legislatures almost exclusively process government bills. For example, in [77] the author

concludes that 99% of the government bills are successful against 99% of private initiatives failing

in Finland. It is no surprise then that initiatives are sometimes referred to as pseudolegislation. De-

spite other differences between the systems, European governments and the U.S. executive branch

are both very influential in what is to become actual policy. In this sense, Congressmen or MPs are

both somewhat on the side track, yet they draft and cosponsor private initiatives in vast numbers.

A scholarly answer to the previous puzzle has its roots in the representatives’ electoral connection

and in their personal vote [78], [79], and it implies that the main audience of the initiatives are

the voters themselves. Private initiatives are drafted in order to cultivate representatives personal

vote. Often, re-election is considered one of the main motives behind representatives activities.

In the U.S. Congress, anecdotal evidence supporting this view can be found in [80], where the

author finds a combination of institutional and political forces which constrain Senators in their

use of initiative sponsorship and in [81], where the authors found that, to a certain extent, private
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bill cosponsoring depends on MPs’ electoral circumstances, institutional position and state size.

There is also evidence about differences in the need for personal vote, depending on the size of

representatives home constituency, mandate type or variations in electoral systems, resulting in

certain MPs possibly having an incentive to draft more private initiatives than others. In [82]

the authors find support for this claim in the Belgian proportional flexible list system, and similar

evidence has been found regarding Finland and Estonia in [83], [84], [85]. A formal model of private

initiatives introduction is established in [86] and tested against data from the French parliament.

Another scholarly answer to initiative drafting and cosponsoring argues that the main audience

for private initiatives lies within the legislature. The legislative connection theory suggests MPs

being more interested in the subject matter than in credit claiming. In [87] the authors set out to

test which theory accounts for the empirical data best, between the electoral connection and the

parliamentary connection, finding support for the latter. In [88], the authors argue that private

initiatives serve the purpose of signaling support, ideology and expertise. Furthermore, they show

that having many cosponsors does not necessarily help private initiatives. In [89] the author reports

a similar phenomenon regarding Finland.

Few studies modeling cosponsoring as social networks have been carried out. In [90] the au-

thor defines a measure of network connectedness in order to find the most influential legislators

in the Congress during 1973-2004, [91] is a survey of network centrality measures, where the au-

thor discusses connectedness and roll call votes and finds a weak but positive connection between

connectedness and vote choice. Moreover, in [92] a strong correlation between roll-call vote and ini-

tiative cosponsorship patterns in the U.S. House of Representatives and in the Argentine Chamber

of Deputies is found.

In [93] the authors examine the social network structure of the Congress and find it exemplifying

characteristics of a small-world network, where actors are densely interconnected with few inter-

mediaries. In [73], using the concept of modularity, the authors set out to identify the community

structure of Congressmen who are connected by private initiative cosponsorship. They show how

the cosponsor patterns follow the party trench line between Democrats and Republicans. Only

a few intermediary legislators cosponsor private initiatives over party lines. Such a modularity

analysis reveals cooperation among Congressmen within the same state or neighboring states. This

is seen as reasonable since many private initiatives have a pork-barrel nature and are aimed at

benefitting the (co)sponsors’ home districts. Cosponsor patterns are found to break the party line

in one instance where a group of southern Democrats consistently cosponsor legislation with Re-

publicans from the same area. However, the group has significantly diminished in size over time

and is nowadays somewhat small.

In a cross-national analysis of policy networks in Latin America (Argentine and Chile) [94],

treating private initiative cosponsoring as a social network, the authors give a probability-based
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interpretation, according to which the likelihood of a policy tie is greater if the MPs share the same

party affiliation, are assigned to the same committee or come from the same electoral district. Such

an interpretation does not, however, reveal a network structure or communities within it.

4.2. Theoretical Expectations based on MPs Attributes

The advantage of taking a statistically validated network approach lies in the fact that such a

method does not employ any pre-classification of MPs nor is based on any meta-data or other

knowledge of existing connections between them. The structure of cosponsoring, i.e. the initiatives

and the cosigners, alone determine network communities. From the point of view of a theoretical

political scientist, we may ask what kind of communities we should expect to find in such a system.

Both theories revolving around private initiatives, the electoral connection and the parliamentary

connection theory provide certain implications. The logic of the personal vote in the first theory

suggests that the best option would be to draft initiatives alone in order to reap most of the

potential benefits. Additional cosponsors from ones own or from other party groups decrease the

potential benefits to the sponsoring MP.

Our data in part supports this view, as half of the initiatives are not cosponsored. However,

a second option would be to cooperate with one’s own party comrades, ensuring that the poten-

tial benefits remain within the party group. Hence, while only being second best, the electoral

connection theory does not entirely overrule party group cosponsoring. On the other hand, the

legislative connection theory suggests MPs being policy oriented, in pursue of good public policy

[95], [96]. In this case, the target of initiatives is within the parliament, implying active support

seeking among fellow MPs. The cosponsors could thus arise from party group comrades, fellow

committee members, representatives from the same sex or may form as completely ad hoc support

groups. While both theories open up certain cosponsor combinations, the aim of the study is to

identify which cosponsor structures are the most stable and recurring.

In general, the well-formulated argument that policy networks should reflect the cohesion of par-

ties, responsiveness to district level principals and jurisdictional expertise, points out that sharing

the same party affiliation, electoral district or committee membership should enhance the proba-

bility of policy ties. The latter reasoning is also supported to some extent by the results in [73].

As a local starting point, in [97] the author predicts the existence of four (co)sponsor categories

specific to the Finnish parliament: single MP, party group, multiple party groups and electoral

district based private initiatives. Whether cooperation based on committee memberships or gender

is relevant in Finland, however, remains an open question.

In our study, we consider certain specific attributes: MPs party affiliation, electoral district,

committee assignment and gender. We also consider more general attributes: whether an electoral
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district is in a metropolitan (Helsinki and Uusimaa) area or in a rural area (all others), the gov-

ernment/opposition status of the party groups as well as its political position (left, center or right

wing party).

In Finland, as in other parliamentary systems, party groups generally consist of somewhat like-

minded MPs, however, party groups tend to be rather well disciplined as well. These are prereq-

uisites for maintaining a coalition government, which must enjoy the support of the parliament.

Overall parliamentary systems are very party oriented so it is natural to assume party affiliation

to be one of the key community determinants.

While MPs act as representatives of various parties and ideologies they also act as representatives

of their home constituencies and thus of the different geographical areas of the country: legislators

elected from the same electoral districts are likely to share preferences for distributive policies

that target their constituencies. While legislative initiatives mostly concern statewide legislation,

budget motions are almost exclusively aimed at MPs home constituencies. As is obvious this is a

fundamental difference. Budget motions seek funding for local infrastructure projects such as roads,

bridges or hospitals, on the other hand private initiatives tend to be read by ministry officials and

in rare occasions might later re-appear as parts of government bills. In this sense, the strongest

signal for a constituency project (to be perhaps included in the states budget later) is a joint

budget motion by every MP in the district. In fact, often certain district initiatives are drafted

and re-submitted year after year. A Finnish feature is the yearly practice to circulate the drafting

responsibility among parties in the district.

In [94] the authors find shared committee membership as increasing the likelihood of cospon-

soring bills. Committee service enhances MPs policy expertise and the recurring contacts create

opportunities to share information on policy preferences and interests. In the Finnish parliament,

plenary agenda items are first considered by the appropriate committee(s). At committee level,

however, the committee composition reflects party groups seat shares, leading to a government-

opposition setting inside committees. Every party group is represented in nearly every committee.

This aspect lowers the likelihood of committee membership as a network community determinant

as it would require systematic within committee cooperation over party lines.

In a historic perspective, an unofficial women network has been found in the Finnish parliament.

The network, however, refers to the earlier days of the parliament when relatively few women acted

as MPs. Nowadays female MPs constitute roughly 40% of representatives and the Nordic countries

are known as the forerunners in equality between sexes. For these reasons, a gender polarization is

not expected in the last parliaments.

From time to time, media are eager to describe certain issues as capitol area against the rest of

the country. The capitol area, located in the south of the country, represents close to 20% of the

population. The geographically small capitol area consists of two electoral districts: Helsinki (the
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capitol city) and Uusimaa (the surrounding area). Such an attribute, should it be validated within

a given community, would indicate a polarization of the country toward a north-south axis. In any

case, rather than other districts of the country acting together, it is sort of more expected for the

capitol area MPs to act in unison.

The general government/opposition supporting parties attribute has an exploratory nature. It

can be triggered by the presence of a big party affiliation characterized community, according to the

government/opposition status of the party group(s) in question. However, it can also be triggered

without the party attribute, which suggests parts of government/opposition groups systematically

cosponsoring initiatives.

The last general attribute of left-right status behaves as the previous one. A big party-characterized

community can also trigger the left/center/right attribute depending on the political orientation

of the group(s). Although, the attribute can also be triggered without a party characterization,

indicating small parts of certain groups acting in unison.

4.3. Private Initiatives

Before inroducing the datasets under study, we provide a brief introduction to the Finnish context

and its key properties. Finland is a somewhat typical European parliamentary multiparty system.

The 200 MPs in the parliament are elected every fourth year. The general elections are proportional

using open candidate lists. During 1999-2014, the country was divided into 15 electoral districts

and the number of MPs elected from each one reflect population sizes. The more densely populated

areas in the south of the country constitute relatively small districts, while the northern districts are

geographically larger and have less MPs. The metropolitan area of Helsinki and Uusimaa occupies

55 (27%) seats in the parliament.

Eight political party groups were present in the parliament during 1999-2014. A significant

change occurred in the 2011 general elections, when the populist right-wing PS (True Finns) party

group resulted in a landslide victory, bringing their seats from just a few to about 40. Accordingly,

the political landscape, as a result, involved four large parties (KESK, KOK, SDP and now PS),

instead of the former three, which had permained as the basic structure in the parliament at least

from the early 1980s. Governments up to 2010 included a combination of two of the large parties,

with the third acting as the main party at the opposition. After the formation of Katainen’s sixpack

government in 2011, the opposition consisted for the first time of two large parties (KESK and PS).

The private motion system follows a set of rules, procedures and conventions. First of all, private

initiatives are an individual right. Unlike certain other parliaments, there are no party group or

committee initiatives. The right of an MP to introduce motions is included in the Constitution,

according to which MPs have the right to introduce: 1) A legislative motion containing a proposal
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for the enactment of an Act. 2) A budgetary motion containing a proposal for an appropriation to

be included in the state’s budget supplementary budget, or for other budgetary decision. 3) A pe-

titionary motion containing a proposal for the government to draft a law or to take other measures.

4) A topical debate (DEB) to be held in a plenary session. Legislative motions can be introduced

whenever the parliament is in session, and budgetary motions are submitted in connection with

the state’s annual budget or any supplementary budgets. While the debate proposals are processed

by the Speakers Council, all other motions are processed by a standing committee as decided by

the plenary. The cosigners must sign initiatives before they are handed to the parliament’s cen-

tral administration. The first signatory of a motion can withdraw the motion without consulting

cosponsors. According to a long standing convention, the cabinet ministers maintain their seats in

the parliament, however they do not engage in private initiative drafting or cosponsoring.

The private initiative system has undergone only modest changes over the decades. Among its

European peers, the finnish private motion system belongs to the more liberal ones. In [74] the

author surveyed five restrictions with respect to private initiative rules and procedures. Regarding

the finnish parliament these restrictions appear as: first, there are no numerical limits to how many

motions MPs can introduce. Second, the only time limits refer to budget motions. Third, the only

technical requirements refer to legislative initiatives, which have to be written in the form of an

act like government bills. Fourth, there are no limitations on the contents of the motions. Fifth,

killing (or burying) a motion in committee after its plenary introduction is the practice used by the

parliament to stop private motions from reaching further deliberation. As the parliament first and

foremost operates with government bills, private initiatives only very rarely become laws. Rather,

many of the legislative initiatives are in fact minor revision suggestions for government bills. As

these initiatives have to be processed together with government bills, it ensures their consideration

in committees and plenary, however, they are themselves passed only in very rare occasions.

The database under scrutiny consists of every legislative and budget initiative submitted in the

Finnish parliament between 1999 and 2014, along with information about the (co)sponsoring MPs,

including their gender, electoral district, party affiliation and committee membership. Complemen-

tary information stored in the database comprises who submitted each initiative, who signed it and

the year it was submitted. While roughly half of the initiatives have only one signature, there are

also initiatives that connect almost every MP to every other, having well over 100 cosponsors. The

total number of initiatives is 21.069 and the data is reconstructed from the freely accessible official

database of the Finnish parliament. Since a parliament lasts four years, our data encompasses four

parliaments: Dataset I corresponds to the 1999-2002 parliament, Dataset II to 2003-2006, Dataset

III to 2007-2010 and Dataset IV to 2011-2014. Summary statistics are shown in TABLE 4.4. See

TABLE 4.1 for political parties with their abbreviations, number of seats and political position,

TABLE 4.2 for the electoral districts and TABLE 4.3 for government/opposition coalitions.
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Parties, political position and number of seats

I II III IV

KD 10 7 7 6
(Right) (4.2%) (5.3%) (4.9%) (4.0%)
KESK 48 55 51 35

(Centre) (22.4%) (24.7%) (23.1%) (15.8%)
KOK 46 40 50 44

(Right) (21.0%) (18.6%) (22.3%) (20.4%)
PS 1 3 5 39

(Right) (1.0%) (1.6%) (4.1%) (19.1%)
RKP 12 9 10 10

(Centre) (5.1%) (4.6%) (4.6%) (4.3%)
SDP 51 53 45 42
(Left) (22.9%) (24.5%) (21.4%) (19.1%)
VAS 20 19 17 14

(Left) (10.9%) (9.9%) (8.8%) (8.1%)
VIHR 11 14 15 10
(Left) (7.3%) (8.0%) (8.5%) (7.3%)

Table 4.1.: Political parties, with party’s political position (in parenthesis) and seats for each
parliament. The numbers in parenthesis give percentage of the total number of
votes. KD=Christian Democrats, KESK=Center Party, KOK=National Coalition
Party, PS=True Finns, RKP=Swedish People’s Party, SDP=Social Democratic Party,
VAS=Left Alliance, VIHR=Green League.

Electoral districts with seats

Åland alan 1
Etelä-savo esav 6
Häme hame 14
Helsinki hels 21
Central Finland keski 10
Kymi kymi 12
Lapland lapp 7
Oulu oulu 18
Pirkanmaa pirk 18
North Karelia pkar 6
Pohjois-Savo psav 10
Satakunta sata 9
Uusimaa uusi 34
Vaasa vaas 17
Varsinais-Suomi vars 17

Table 4.2.: Electoral districts, their abbreviations, and number of seats.
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Government and Opposition

I II III IV

KOK KESK KESK KD
RKP RKP KOK KOK

Gov. SDP SDP RKP RKP
VAS VIHR SDP

VIHR VAS
VIHR

KD KD KD KESK
KESK KOK PS PS

Opp. PS PS SDP
VAS VAS

VIHR

Table 4.3.: Parties in the Government (top panel) and Opposition (bottom panel) coalitions for
each parliament.

Dataset summary statistics

I II III IV

N 2,467 3,163 3,143 1,808
hi 2-144 2-175 2-136 2-150
M 179 186 183 199
hm 2-445 4-524 2-696 2-793

Table 4.4.: Summary statistics for each parliament: N is the number of initiatives signed by at least
2 MPs, hi is the heterogeneity of initiatives, that is, the range (min-max) of signatures
initiatives receive, M is the number of MPs who signed at least 2 initiatives, hm is the
heterogeneity of MPs, that is, the range of signatures MPs affix (min-max).
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5. Structure and Evolution of the Finnish

Parliament via a Network Analysis

Since our goal is to gain a quantitative understanding of the system introduced in Chapter 4 and

follow the dynamics of its structure over time, in this Chapter we take a network approach to

discover the internal ordering of the system in communities and to characterize them. To this

purpose, we look at the database of initiatives as a bipartite network in which there are two sets of

nodes—MPs on the one side, and initiatives on the other—where an MP is linked to an initiative

if he signed it. According to that description, two MPs would show a “similar” profile if they had

signed “several” initiatives together. To provide a quantitative meaning to the expressions “similar”

and “several”, recently, a method for filtering out statistically significant links in bipartite networks

has been proposed [98]. This approach has already been used to investigate the structure of several

systems, including stock returns in a financial market [99], the interbank market [100], a mobile

communication network [101], and a large survey on aging [102].

By further applying a clustering method, we select a number of statistically validated MPs’

communities which represent the network core, as suggested in [103]. Attributes of MPs within

each community can themselves be statistically validated in much the same way, to reveal which of

them appear as collaboration driving forces, such as their party or electoral district. Our findings

are in agreement with the above mentioned theories from political scientists on what determines

private initiatives cosponsorship.

Our results indicate that the methodology we employ is able to single out both local and global

characteristics of a social system such as a parliament, which appear consistent with pre-existent

theories in political science. Although our conclusions pertain to the Finnish parliament, the

techniques we used are exportable to any similar systems, paying due attention to any necessary

adjustments when carrying them over to a different political context.

Unfortunately, the results presented in this Chapter have been obtained and published before

realizing there was an issue concerning the distribution used as a null model when filtering the

network to obtain the Bonferroni network. The distribution we employed at the time was the

hypergeometric distribution, whle we afterwards found out that a more approriate null model

would have been the Wallenius distribution, which also accounts for set B’s heterogeneity through
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the odds-ratios. Nonetheless, we still obtained a strong filtering of the network, the methodology

proved sound and can be safely employed if one pays due attention to the approximations involved

when choosing a null hypothesis.

5.1. Network Construction

In this Section, we deal with the problem of a very dense projected MPs network by constructing

statistically validated networks (SVNs) of MPs which point towards the presence of preferential

relationships within each parliament. After having revealed the informative structure of the par-

liament system, we detect MPs’ communities and find out whether these can be characterized by

attributes such as party and electoral district. The aim is to identify key features that drive the

formation of communities made of MPs.

Our system is a bipartite network, consisting of MPs on the one side and initiatives they either

proposed or signed on the other. Henceforth we treat first signers, that is, those who initially

propose the initiative, simply as signers. When studying bipartite networks, one can obtain a

network made of nodes of the same type by projecting on the corresponding set of nodes. In our

case, by projecting on the MPs set, we obtain a network made of connections (links) between MPs

(nodes). The projection establishes a link between each pair of MPs who sign the same initiative.

However, it’s well known that such projection often produces a highly connected network, due to

the heterogeneity inherent in both sets. This effectively hides the most informative structure of

the system, therefore we apply the validation method developed in [98]. Ultimately, this resolves

the validated, informative links from the random ones. Our system is highly connected, indeed

the density of links defined as the fraction of links present in the nework, m, over the number of

maximum possible links between the M nodes,

D =
2m

M(M − 1)
, (5.1)

ranges between 0.93 and 0.99.

Before projecting on the MPs’ set, the heterogeneity of the initiatives’ set needs to be given

due consideration. Indeed, initiatives display a number of signatures ranging from just a few (low

degree), up to three quarters of the parliament (high degree). To account for this effect, we follow

the method in [98] and divide initiatives in bins Bq according to their degree, so that each subset

of the bipartite network now comprises initiatives with a specific degree range dimin-dimax (which

highly reduces heterogeneity on the initiatives’ side), and only those MPs who actually signed them.

Considering a range of degrees proves necessary for higher degrees, to keep statistical resolution high

in the resulting bins. We set the binning intervals equal for all four datasets, assuming that the final
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results do not strongly depend on the choice made. The set of bins is: B1 = {2}, B2 = {3}, B3 =

{4}, B4 = {5}, B5 = {6}, B6 = {7}, B7 = {8}, B8 = {9}, B9 = {10}, B10 = {11 − 13}, B11 =

{14− 20}, B12 = {21− 40}, B13 = {41− 100}, B14 = {> 100}.
If we now consider a pair of MPs, i and j in bin Bq and each signed respectively Kq

i and Kq
j

initiatives, out of the total number N q of initiatives within the bin, we expect to find a number X

of initiatives they co-signed, purely at random, that follows the hypergeometric distribution if we

assume that all initiatives have the same weight,

H(X|Nq,K
q
i ,K

q
j ) =

(Kq
i

X

)(Nq−Kq
i

Kq
j−X

)
(
Nq

Kq
j

) , (5.2)

thus, it’s straightforward to assign a p-value to the link between i and j within the bin, under the

hypergeometric distribution null hypothesis in Eq. (5.2),

pqij = 1−
nq
ij−1∑
X=0

(Kq
i

X

)(Nq−Kq
i

Kq
j−X

)
(
Nq

Kq
j

) , (5.3)

where nqij is the number of initiatives i and j co-signed, in Bq. The p-value in Eq. (5.3) represents

the probability of randomly obtaining a value equal to or greater than what was actually observed,

nqij . The univariate significance level of the test, or threshold value, is usually set at either 5%

(α = 0.05) or 1% (α = 0.01). In our case, we perform multiple tests, by validating the full set of

links over all bins simultaneously. For this very reason, we need to control for false positives, or the

familywise error rate, by introducing a multiple test corrected threshold. The most conservative

choice, in terms of type I errors, is applying Bonferroni correction [104], [105], which is just the

threshold α divided by the total number of tests performed m:

αB = α/m, (5.4)

hereafter, we chose a univariate threshold of α = 0.01 and validated each link between i and j if

pqij < αB =
0.01

m
, (5.5)

that is, if the p-value associated with the link is smaller than the threshold at 1% corrected according

to the Bonferroni criterion for multiple comparisons. This is the strictest threshold which controls

for the presence of false positives.

The last step is obtaining the weighted network. In fact, a link between the same pair of MPs

could be validated over different bins. We account for this effect by assigning a weight to each
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Bonferroni Network statistics

I II III IV

MB 172 177 161 153
mB 1633 1839 1162 1811
f 10.4% 10.9% 7.2% 9.9%

µ(w) 4.1±2.0 3.6±1.9 3.3±1.9 2.9±1.5
µ(wB) 1.4±0.8 1.4±0.7 1.6±1.0 1.3±0.7

w-range 1-8 1-6 1-9 1-8

Table 5.1.: Bonferroni network statistics for parliaments I to IV . The number of MPs involved
in the validated network MB, the number of validated links mB, the percentage of
validated links f out of the total number of original links, the mean weight µ(w) of the
original network links and its s.d., the mean weight of validated links µ(wB) along with
its s.d., and links’ weight range in the Bonferroni Network.

link equal to the number of bins the link was validated in. Since we aim at building a validated

weighted network (Bonferroni network hereafter), MPs who signed less than 2 initiatives, as well

as initiatives with less than 2 signatures, have no relevance to our analysis and have thus been

omitted. The Bonferroni network’s general statistics are shown in TABLE 5.1, along with some

properties of the full network, that show the advantage accorded by this filtering method.

Basically, we’re interested in studying how MPs cluster together on the basis of the initiatives

they co-sign, thus the null hypothesis and validation allow us to distinguish information from

noise. Indeed, according to our findings presented in Chapter 2 the correct null hypothesis should

be the Wallenius distribution and not the hypergeometric one, however even by just using the

hypergeometric distribution with the strictest Bonferroni threshold, we already obtain a very strong

filtering of the noisy links.

5.2. Community Detection and Characterization

After building the network, our main interest lies in finding out whether it’s internally organized

in communities, and ultimately, which attributes (additional information on MPs) characterize

each community. However, partitioning a network is neither straightforward nor simple, there

are a variety of algorithms that attempt to do so, each with its benefits and shortcomings [106].

Nonetheless, the majority of techniques relies on the concept of modularity [107], [108]:

Q =
1

2m

∑
ij

(
Aij −

KiKj

2m

)
δ(Ci, Cj), (5.6)
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Modularity and Normalized Mutual Information

I II III IV

Q 0.51 0.56 0.61 0.53
µ(NMI) 0.87 0.91 0.92 0.90

Table 5.2.: Modularity for the best partition Q and overall mean of the Normalized Mutual Infor-
mation between the best partition and each of the other 5 partitions, µ(NMI).

where m is the total number of links in the network, Aij the adjacency matrix, Ki and Kj are

node i’s and j’s degrees, the sum is carried out over all the nodes and the delta function returns 0

if i’s and j’s communities are different, Ci 6= Cj , and 1 otherwise. The goal of every algorithm is to

maximize the modularity over all partitions found, iteratively.

In our case, we chose a community detection software named Radatools 1, which employs a

combination of different algorithms [109], [110], [111], [112], allows for weighted networks and

multiple repetitions of each algorithm, thus producing very high modularities. We tried different

combinations of algorithms, run one after the other in cascade, as detailed in the software’s manual.
2 For each cascade, we ran several repetitions and usually had the best results by using 200

repetitions of (vi) e b r f b r. Furthermore, in order to check the stability of our best partition, we

evaluated the similarity between the former and each of the other partitions found with the various

cascades, by means of the Normalized Mutual Information (NMI) [55], [113], introduced in Eq.

(1.10). As TABLE 5.2 indicates, we found a high mean similarity, which shows a good stability of

the best partition, regardless of the algorithm cascade chosen.

After finding a stable partition of the system, we look for each community’s characterizing

attributes by validating any additional information on MPs contained in the database. This is

accomplished in a similar fashion as what done in the previous section when validating links, by

following the method in [103]. The method makes use of the hypergeometric distribution to assess

the probability that a given attribute is over-expressed in the elements of a community in respect

to all the elements of the investigated set. Again, each attribute is validated, community-wise, if

the associated p-value falls below the Bonferroni threshold at 1% of significativity.

The attributes we consider are both specific, such as an MP’s party, district and gender, and

more generic, as whether the district was in a rural or metropolitan area (Helsinki and Uusimaa),

whether the party was in the government or in the opposition and its political position (right,

centre or left). Overall, we found a satisfactory characterization of communities by party, district

1Radatools 3.2, Copyright (c) 2011 by S. Gomez, A. Fernandez, J. Borge-Holthoefer and A. Arenas, all rights
reserved.

2(i) t (tabu search) r (fine-tuning by reposition) f (fine-tuning by fast algorithm) r; (ii) e (extremal otpimization) r
f r; (iii) t r f r e r; (iv) e r f r t r; (v) t b (fine-tuning by bootstrapping based on tabu search) r f b r; (vi) e b r f
b r.

69



5. Structure and Evolution of the Finnish Parliament via a Network Analysis

Communities in the I parliament

NC Party District Area Coalition Position

53 SDP,VAS pirk rural gov left
48 KESK - - opp centre
23 KOK uusi metro gov right
15 - vars - - -
12 RKP vaas - - -
11 VIHR - - - left
10 KD - - opp right

Table 5.3.: Community characterization for the I parliament. NC is the number of MPs in each
community, characterizing attributes are indicated on the top row: Party, District, Area,
Party’s Coalition and Party’s Political Position. Communities are ordered by decreasing
size.

Communities in the II parliament

NC Party District Area Coalition Position

40 KOK - - opp right
35 VIHR uusi metro - left
26 VAS psav - - left
25 KESK pkar,kymi rural gov centre
18 - hame,vars - - -
15 PS vaas - - -
9 - pirk - - -
5 - esav - - -
4 - sata - - -

Table 5.4.: Community characterization for the II parliament.

or both and some characterization by area, coalition and political position, see TABLES 5.3, 5.4,

5.5 and 5.6. Surprisingly, gender doesn’t appear characterizing, indicating there is no influence of

an MP’s gender over whom he collaborates with.

Still, the most interesting result is that, although party appears more explanatory for the first

dataset, showing up in all communities, both party and district concur to characterize communities

in the second and third datasets, with district growing in importance. Finally, party reverts to

being the most characterizing attribute for the last dataset, although this has been shown to be

a product of the biased correlation estimator in Chapter 3. Indeed, it appears that collaboration

moved from being among MPs of the same party to being among MPs from the same district, as

time passed by, with the last parliament going against the trend. The Bonferroni Network for the

third parliament is shown in Fig. 5.1 and this is the best example of districts playing a major role

in how MPs cooperate. Broadly speaking, the power of our method lies in the fact that it allows us

70



5.2. Community Detection and Characterization

Communities in the III parliament

NC Party District Area Coalition Position

37 SDP - rural opp left
30 PS uusi metro - -
22 RKP vaas - - centre
20 VAS - - opp left
14 - pirk - - -
13 - vars - - -
12 - hame - - -
10 - esav - - -
3 - lapp - - -

Table 5.5.: Community characterization for the III parliament.

Communities in the IV parliament

NC Party District Area Coalition Position

60 SDP - - gov left
40 PS - - opp right
40 KESK - - opp centre
13 RKP vaas - - -

Table 5.6.: Community characterization for the IV parliament.

to quantitatively characterize communities within the network and is further able to reveal changes

occurring in the structure of the collaboration web among MPs, from parliament to parliament.
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Figure 5.1.: Bonferroni Network for the III parliament. The map in red lines shows elec-
toral districts in Finland, node shapes indicate each MP’s party: hexagon=KD,
diamond=KESK, ellipse=KOK, rectangle=PS, V=RKP, parallelogram=SDP, trian-
gle=VAS, octagon=VIHR. Nodes are located either on the map, according to their
district of origin or outside the map, when party characterization dominates. To em-
phasize the network partition, links within each community are displayed in black,
links between communities are in light gray. All communities are well characterized by
district, with the exception of parties VAS and SDP, on the left-hand side.
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Parliament via a Correlation Analysis

In this last Chapter, we perform a correlation analysis of MPs with the aim of gaining insight on

the nested structure of communities. To this purpose, we construct a hierarchical tree of members

from their correlation matrix, which allows to study the hierarchical structure of communities [61],

[114] and investigate its evolution. Specifically, we study parliament dynamics yearly, by looking at

how correlations inside each party and between parties, as well as within and between government

and opposition, vary over time. We then use the Frobenius distance to measure how similar each

year of a parliament is to the next one, within each parliament.

However, all the results we obtained are based on the similarity measure between nodes, which

was at the time the (binary) Pearson correlation coefficient due to the fact that these results were

published before stumbling upon the problem of the bias affecting the latter correlation coefficient.

Thus, we expect the results presented here to suffer from the bias discussed in Chapter 2.

Finally, we investigated the role played by specific individuals, at a local level, by developing ad

hoc statistical indeces which capture the local topology of the network, that is, how single nodes

act within their respective communities. In particular, we analized whether very active individual

act mainly as proponents who gather consensus, or as bulk-signers who support their own political

group.

6.1. Correlation Analysis

In this section, we investigate the structure of the correlation matrix with the aim of building

a hierarchical tree of MPs. The advantage offered by the correlation matrix over the network

approach, is exactly the hierarchical orderingof MPs, which allows to look for substructures within

each cluster. On the other hand, we have the drawback of losing the quantitative tool used to

discriminate the random part of the correlations present in the system.

Obviously, the first step is to obtain a correlation matrix of MPs, by using a correlation coefficient

which captures the similarity between patterns of signatures. Specifically, we’d like to evaluate the

similarity between a pair of MPs i and j by adopting a measure that takes into account the number
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of joint signatures nij and the number of individual signatures Ki and Kj . We used Pearson

correlation coefficient in Eq. (1.17), since we didn’t know at the time that in bipartite systems such

an unweighted correlation estimator would prove biased.

6.1.1. Hierarchical Trees

Hierarchical trees are built by using the average linkage method, that is, by successively merging

pairs of clusters A and B according to a mean distance between elements xi ∈ A and yj ∈ B

according to Eq. (1.21), and applied to distance matrices obtained from correlation ones according

to Eq. (1.18). By looking at all trees, we find again that both parties and districts play a role in

how MPs cluster together, within each parliament. Such a strong characterization by party, district

and coalition gives an insight on what actually determines MPs affiliation to a specific cluster.

The main result lies in the hierarchical structure revealed by this method: the opposition tends to

cluster strongly by party, while the government shows a collaboration among parties and a further

subclustering by district. We chose to display figures just for the last two parliaments, where the

change in the system’s structure is more striking, see Fig. 6.1 and Fig. 6.2.

Political position doesn’t appear to be crucial, in general, left-wing parties are somewhat closer

together than right-wing ones. On the other hand, coalition plays a major role, with government

and opposition parties neatly separated. Specifically, opposition parties show closed ranks, while

the government cluster doesn’t show much of a party structure. Finally, some districts seem to

work together, in particular, the metropolitan ones of Uusimaa and Helsinki. This behaviour is

common to the first three parliaments, see Fig. 6.1 for the hierarchical tree of the third parliament.

An exception to this overall behaviour is represented by the last parliament, where we found the

government coalition clustering mainly by party instead of by district, against the trend of the

previous years, as shown in Fig. 6.2.

6.1.2. Structure of the Correlation Matrix

Here, we focus on the correlation matrices for the last two parliaments (see Fig. 6.3), where the

subclusters are easily seen, along with the change of structure from one parliament to the next.

MPs are arranged according to the hierarchical trees in Fig. 6.1 and 6.2.

Apparently, during the III parliament there’s a higher overall correlation and small district-

clusters at the government, along with 4 bigger party-clusters at the opposition. On the other

hand, during the last parliament, a collaborative government is clearly seen as a yellow huge cluster

with a left and right subdivision and some party-subclusters. For the opposition, there are now

only 2 very compact parties, which slightly collaborate with the government and are negatively

correlated with each other. By comparing the general structure of the correlation matrices, we
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6.1. Correlation Analysis

Figure 6.1.: Clustering of MPs during the III parliament. On the left, leaves and branches are col-
ored according to parties, circle-shaped leaves indicate nodes in the government (top
half of the tree), while triangles indicate nodes in the opposition (bottom half). Color-
ing on the right-side tree is according to district. The x-axis shows correlation values,
going from 0 (no correlation) to 1 (maximum correlation), the spacing is not linear due
to the measure of distance chosen. Party dominates in the opposition (bottom-left),
while district sub-clustering occurs in the government (top-right).
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Figure 6.2.: Clustering of MPs during the IV parliament. On the left, leaves and branches are
colored according to parties, circle-shaped leaves indicate nodes in the government
(top half of the tree), while triangles indicate nodes in the opposition (bottom half).
Coloring on the right-side tree is according to district. The x-axis shows correlation
values, going from 0 (no correlation) to 1 (maximum correlation), the spacing is not
linear due to the measure of distance chosen. Here party dominates strongly both in
the opposition and in the government, while district ceases to matter.

76



6.1. Correlation Analysis

Figure 6.3.: Correlation matrices of MPs for III (top panel) and IV (bottom panel) parliament.
The color key displays negative correlations in red, near-zero values in orange, mild
correlations in yellow and high correlations in green. Colored bars on the side indicate
either MPs’ party (left bar) or district (top bar), as displayed by side legends. In each
matrix, MPs are ordered according to the correponding hierarchical tree. In the III
parliament, district sublclustering can be clearly discerned within the government (top-
right square). Party clustering is present in the opposition (bottom-left 4 clusters).
In the IV parliament, we find party subclustering within the government (top-right
square), with right-wing parties at the top and left-wing parties at the bottom. The 2
opposition parties are on the lower-left corner and are negatively correlated. Here we
notice how district subclustering disappears.
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draw the conclusion that party counts more than district during the last parliament and opposition

parties make a statement of behaving in opposite ways, which is a noticeably different trend from

what seen in previous parliaments. Our approch is thus able to detect the change that occurs in

the system’s structure when the parliament changes, and to quantitatively assess the different webs

of collaboration/antagonism that arise within it.

6.2. Dynamical Features within and over Parliaments

In this section, we take a more detailed look at the dynamical features, in particular by following

the annual evolution of the correlation matrix within each parliament. Correlation matrices are

now computed year by year, and arranged in blocks representing parties, in order to have a closer

look at how interactions evolve within each party (diagonal blocks) and between them (off-diagonal

blocks).

6.2.1. Average Correlations

We are interested in how correlations within each party and among parties evolve year by year.

The purpose here is to obtain a closer look at the dynamics of interactions between MPs depending

on the party they belong to. We consider the mean correlation calculated over MPs belonging to

each specific party (intra-party), and the mean correlation calculated between MPs of a party with

those of all the other parties (inter-party).

From Fig. 6.4 and 6.5, we can see how each party presents its own pattern of collaboration

with every other party, which is not constant over the years, not even within a single parliament.

Nonetheless, there are some general trends, for example it’s apparent how the first and even more

so the last parliament catch the eye for having more spread out mean correlations, while the

second and third parliaments (in the middle) display a narrower, more alike pattern. Moreover,

the mean inter-party correlation tends to be positive during the I parliament, closer to zero during

the II, it turns negative for opposition parties during the III (kd, ps, sdp, vas) and plunges even

further for opposition parties during the last parliament (kesk, ps). Error bars were calculated by

bootstrapping data 1000 times and choosing 5-95% confidence intervals, all of them are of the order

of 10−2. The overall mean correlation between a party and all the others, all parliaments considered,

is strictly positive, ranging from 0.06 to 0.12. So, on average, ps is the least collaborative, while

kok, sdp and vihr seem the most willing to collaborate, as expected from parties often at the

government. Therefore, we can see the behavioral change of parties, especially in correspondance

to a change of parliament.

To understand how correlations vary within government and opposition coalitions, we repeated
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Figure 6.4.: Mean correlation between parties, over time. Panel a) Inter-party mean correlation
between KD and all the others; b) KESK-others; c) KOK-others; d) PS-others; e) RKP-
others; f) SDP-others; g) VAS-others; h) VIHR-others. Red horizontal lines mark the
0-value. Vertical lines separate parliament. The general trend shows higher inter-party
mean correlation during the I parliament, decreasing, packed together, going below
zero, mean correlation values during the II and III parliaments and increasing, broader
values during the last parliament (with the sole exception of the 2 opposition parties).
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Figure 6.5.: Mean correlation within each party, over time. Panel a) Intra-party mean correlation
for party KD; b) KESK; c) KOK; d) PS; e) RKP; f) SDP; g) VAS; h) VIHR. Vertical
lines help distinguishing each parliament. In general, the trend indicates that when
parties are at the government (shown in green) they have lower mean correlation than
when at the opposition (shown in red). In any case, intra-party mean correlation values
are on average higher than inter-party ones, as expected. Error bars are 6 standard
deviations of the mean.
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Figure 6.6.: Panel a): Mean intra-party correlation for government parties (green squares), and
for opposition parties (red circles), over time. Opposition parties display a higher
mean correlation throughout the parliament. Panel b): mean inter-party correlation
between all government parties (green squares), between all opposition parties (red
circles) and between government and opposition parties (black triangles), over time.
Here correlations between government parties become noticeably higher over time than
those between government and opposition, which still best those between opposition
parties. The 3 curves tend to spread out over time, and again collaboration between
government parties is high, whilst that between opposition parties grows scarcer and
scarcer. Error bars are 6 standard deviations of the mean. Vertical lines separate
parliaments, and the 0-value is clearly indicated.
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Figure 6.7.: Distribution of correlations between MPs of opposition parties. Panel a) I parliament;
b) II parliament; c) III parliament; d) IV parliament. The shaded area (in blue)
represents correlations within each party, the rest are correlations between opposition
parties. All distributions are two-peaked, showing how collaboration is strong within
each party (right peak), but weak between different opposition parties (left peak), this
feature grows stronger from parliament to parliament and is enhanced during the last
one.
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the whole analysis by grouping parties according to their coalition. Our main finding is that the

mean correlation tends to be higher within parties at the opposition than within those at the

government, while collaboration is higher between parties at the government than between those

at the opposition, as expected (see Fig. 6.6). Collaboration between government and opposition is

definitely low, but still higher than collaboration between parties at the opposition, whose mean

correlation quickly becomes negative by the end of the second parliament, remains negative during

the III and takes a dive during the fourth. When looking at mean inter-party correlation, we also

notice how the trend is for the 3 curves to spread out over time.

In order to stress how high values of the mean correlation within the opposition do not reflect

a collaboration between opposition parties, we also looked at the distribution of the correlations.

What we found is that these high values within the opposition are only due to high intra-party

correlations, but do not point towards a strong collaboration between parties, as shown in Fig. 6.7.

In fact, the distribution is not homogeneous, but displays 2 peaks. By coloring the area due to

intra-party correlations, we can explicitly see how indeed these fall on the high side (right peak),

while correlations between opposition parties (left peak) center on near-zero values for the first 3

parliaments and turn negative during the last one. On the other hand, if we look at the distribution

of correlations within the government, we find that it is rather homogeneous, which is an indication

of how government parties present more of a united stance.

6.2.2. Annual Distance within each Parliament

Finally, we study the Frobenius distance introduced in Eq. (1.12) between the correlation matrices

of MPs corresponding to the 4 different years composing each parliament. We aim to understand

whether there are similar years within a parliament and unusual ones, in terms of how MPs cooper-

ate as expressed by the correlation matrix relative to each year. In order to compare two matrices

using this measure, their dimension must be the same. For this reason, we restricted the analysis

to MPs who signed at least 1 initiative per year (and thus are active every year).

The results are shown in Fig. 6.8 for all parliaments, although it should be borne in mind that it’s

not possible to compare different parliaments, since the corresponding correlation matrices involve

different MPs, are in general of different dimension, and the value of the Frobenius distance strongly

depends on the dimension of the matrices involved. From Fig. 6.8, we can see an initial stabilising

trend, followed by a diverging one. Indeed, for the first parliament, the most anomalous year is the

first, when it has just formed, while the last 2 years are the most similar. The second parliament is

in a sort of stable equilibrium, while for the last two parliaments, the trend is diverging, with the

3rd and 4th years most dissimilar and the first two being more or less alike.
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Figure 6.8.: Frobenius distance between correlation matrices corresponding to a year and the one
immediately after, within each parliament. Different symbols indicate different parlia-
ments, separeted by vertical black lines: squares for the I parliament, circles for the II,
triangles for the III and diamonds for the last one.

6.3. Internal Structure: Reciprocity and Disparity

We now turn our attention to individual MPs. Specifically, we are looking for special nodes, as for

example MPs of relevance for their own party (local leaders), or MPs who gain favour from many

others (influential people), as well as those who mostly sign other MPs’ initiatives (followers). In

order to perform this local analysis, we now exploit the information stored in the database about

who initially submitted each initiative.

6.3.1. Reciprocity

A feature of our social system we’re interested in is reciprocity, or in other words the tendency of

an MP to reciprocate a signature he received. As a measure of reciprocity between two MPs, we

suggest the following:

ri,j =
ni→j − nj→i

ni→j + nj→i
, i < j (6.1)

where ni→j stands for the number of signatures by i on initiatives proposed by j and nj→i is vice-

versa. The two extreme categories are the one with r = 0, implying full reciprocity, and the one

with r = ±1, implying unreciprocation of signatures (from i to j or from j to i). Interestingly,

most MPs fall in these two categories, meaning that either they fully reciprocate all signatures they

receive (r = 0), or they just gain signatures from others without ever returning them (r = ±1).

In our data we can single out a few MPs in each parliament who receive an outstanding amount

of signatures from all the others (from several hundreds, to a few thousands), which they do not

reciprocate. TABLE 6.1 shows the top three scorers in reciprocity during the last parliament.
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Reciprocity top 3 scores

Surname Party Signatures

Tiilikainen KESK 3,002
Ruohonen PS 1,412
Kalmari KESK 292

Table 6.1.: Reciprocity top 3 scorers (in italics) for the IV Parliament. All are from opposition
parties (in bold letters) and receive the highest number of unreciprocated signatures.

6.3.2. Disparity

From a more general point of view, an interesting feature of the internal structure of our network is

the presence of net givers and net receivers of signatures. We introduced four centrality measures,

that aim to weigh the tendency of an MP to sign others’ initiatives against his tendency to receive

signatures. Basically, we’re introducing “disparity” measures of out-degree/in-degree imbalance

in our bipartite network. The measures we consider take into account the number of initiatives

proposed and signed by MP i, the number of signatures MP i received, the number of different

MPs who signed i’s initiatives and the number of different MPs whose initiatives i signed. Unfortu-

nately, given the several dimensions of heterogeneity involved, there is no unique way to calculate

out-degree/in-degree imbalance for our system. The first measure we consider is the number of

initiatives np proposed by MP i minus the total number of initiatives he signed, ns, normalized to

the sum:

d1 =
np − ns
np + ns

, (6.2)

if d1 is positive, it indicates that MP i tends to propose more initiatives than he signs: he’s more

focused on submitting proposals than on signing any.

The second measure is the number of signatures i received on average per initiative he proposed

nr/np, minus the number of initiatives he signed, normalized to the sum:

d2 =
nr/np − ns
nr/np + ns

, (6.3)

if d2 is positive, it means that MP i receives more signatures per initiative than he affixes. Whoever

scores high here, proposed very successful initiatives, without signing many of those proposed by

others.

The third measure is the absolute number nr of signatures i received minus the number of

initiatives he signed, normalized to the sum:

d3 =
nr − ns
nr + ns

, (6.4)
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a positive value of d3 implies an MP is a net receiver overall, regardless of how many initiatives he

proposed.

The last measure is a bit different from the previous three in that it focuses on MPs instead of

signatures. It counts the number of different MPs mr from whom i received a signature minus the

number of different MPs ms whose initiatives he signed, normalized to the sum:

d4 =
mr −ms

mr +ms
, (6.5)

d4 is a direct proxy of whether an MP has a wide network of collaboration: a high (low) score here

indicates an MP is a global receiver (signer), whose activity reaches over different clusters.

TABLE 6.2 and 6.3 show the top and bottom 10 scorers, respectively, for all these measures.

Looking at who comes out on top, in terms of the number of unreciprocated signatures received

and the scores on the four disparity measures, and considering also the lowest scores, we get the

following picture, consistent over all parliaments: there are very few highly active MPs who rank

top, the leaders, and a bulk of MPs who rank low and are mainly signers.

Opposition parties are the most active, channeling initiatives through one or two choice MPs

who are not party leaders, but often are veterans, chairmen, or in a high position within the

party, while the rest of the party act as signers. This is easily seen by looking at the maximum

number of unreciprocated signatures received, at measures d1 (high number of proposals) and d3

(high absolute number of signatures received), where we find the same pair of MPs from opposition

parties, who show a rather high level of activity, followed by some MPs from government parties who

display a moderate activity. Government parties dominate measures d2 and d4, with the first one

representing the mean number of signatures received per proposal, and the second one measureing

the number of signatures received by different MPs. This is probably due to the way government

parties collaborate among them by both proposing and signing each other’s initiatives, and in so

doing they display a larger area of influence. Although the top scores appear dominated by the

government, with just a few very active MPs at the opposition, the lowest scores are completely

ruled by the latter. The reason for this is probably that the whole party focuses support for its

spokesmen, trying its best to push their plans through, since they can’t count on any substantial

collaboration outside their own party. The scenario revealed by this analysis is one of a compact

government with a strong collaboration web between parties, where some moderately active MPs

split the job of proposing and signing initiatives, thus widening their collaboration network across

party lines. On the other hand, each opposition party presents a united front, channeling proposals

through one or two MPs and raising consensus within the party for maximum gain.

86



6.3. Internal Structure: Reciprocity and Disparity

Disparity top 10 Scores

Surname Party np ns nr ms mr d1

Tiilikainen KESK 147 40 4750 26 39 0.57
Thors RKP 22 15 31 10 4 0.19
Ruohonen PS 195 168 6174 45 51 0.07
Arhinmaki VAS 3 6 30 5 11 -0.33
Nylander RKP 7 17 7 11 3 -0.42
Nylund RKP 23 59 83 21 40 -0.44
Gestrin RKP 6 17 20 13 7 -0.48
Hanninen VAS 3 13 12 9 8 -0.62
Kanerva KOK 9 41 102 34 26 -0.64
Eloranta SDP 9 41 136 26 75 -0.64

Surname Party np ns nr ms mr d2

Harkimo KOK 1 41 103 31 103 0.43
Kopra KOK 1 44 101 33 101 0.39
Sarkomaa KOK 1 27 56 19 56 0.35
Makela KOK 4 36 256 29 133 0.28
Kymalainen SDP 2 55 188 39 135 0.26
Mantymaa KOK 1 72 120 33 120 0.25
Arhinmaki VAS 3 6 30 5 11 0.25
Sinnemaki VIHR 2 13 39 10 34 0.20
Kataja KOK 3 35 143 26 132 0.15
Lapintie VAS 1 27 31 13 31 0.07

Surname Party np ns nr ms mr d3

Tiilikainen KESK 147 40 4750 26 39 0.98
Ruohonen PS 195 168 6174 45 51 0.95
Makela KOK 4 36 256 29 133 0.75
Arhinmaki VAS 3 6 30 5 11 0.67
Satonen KOK 5 50 247 31 129 0.66
Pelkonen KOK 5 45 190 35 130 0.62
Kataja KOK 3 35 143 26 132 0.61
Autto KOK 4 57 225 39 136 0.60
Kauma KOK 4 37 131 28 89 0.56
Tolvanen KOK 4 52 183 32 109 0.56

Surname Party np ns nr ms mr d4

Kataja KOK 3 35 143 26 132 0.67
Toivakka KOK 4 46 145 26 133 0.67
Makela KOK 4 36 256 29 133 0.64
Satonen KOK 5 50 247 31 129 0.61
Kalmari KESK 11 229 427 40 162 0.60
Kalliorinne VAS 6 46 151 30 117 0.59
Pelkonen KOK 5 45 190 35 130 0.58
Mantymaa KOK 1 72 120 33 120 0.57
Viitamies SDP 6 65 174 33 122 0.57
Autto KOK 4 57 225 39 136 0.55

Table 6.2.: Disparity top scorers for the IV parliament, we report the top 10, that is, 5% right tail
of the distribution. Each panel corresponds to a disparity measure, in order from top
to bottom: d1, d2, d3, d4. Opposition parties are in bold letters. The top 3 scorers in
Reciprocity, all from opposition parties, also score high in disparity measures (in italics).
The trend is similar over all parliaments.

87



6. Structure and Evolution of the Finnish Parliament via a Correlation Analysis

Disparity worst 10 Scores

Surname Party np ns nr ms mr d1

Puumala KESK 1 215 101 36 101 -0.99
Koskela PS 3 528 53 56 28 -0.99
Vaatainen PS 1 368 25 54 25 -0.99
Vahamaki PS 3 455 30 58 10 -0.99
Alatalo KESK 2 208 14 47 11 -0.98
Lintila KESK 2 229 35 32 34 -0.98
Lohi KESK 2 239 2 43 1 -0.98
Maijala KESK 2 205 110 48 104 -0.98
Eerola PS 4 460 143 66 76 -0.98
Virtanen PS 2 244 21 37 13 -0.98

Surname Party np ns nr ms mr d2

Lohi KESK 2 239 2 43 1 -0.99
Korhonen KESK 13 226 33 47 14 -0.98
Pirttilahti KESK 27 265 79 50 23 -0.98
Torniainen KESK 18 245 34 43 11 -0.98
Hautala KESK 49 278 207 48 13 -0.97
Kaikkonen KESK 24 215 79 46 41 -0.97
Rundgren KESK 3 239 10 44 8 -0.97
Vehkapera KESK 6 223 18 43 10 -0.97
Niikko PS 31 565 296 63 38 -0.97
Yrttiaho VIHR 3 56 3 39 1 -0.96

Surname Party np ns nr ms mr d3

Lohi KESK 2 239 2 43 1 -0.98
Jaskari KOK 1 50 1 31 1 -0.96
Peltokorpi KESK 1 71 2 5 2 -0.95
Rundgren KESK 3 239 10 44 8 -0.92
Yrttiaho VIHR 3 56 3 39 1 -0.90
Vahamaki PS 3 455 30 58 10 -0.88
Alatalo KESK 2 208 14 47 11 -0.87
Vaatainen PS 1 368 25 54 25 -0.87
Tiainen VAS 1 64 5 44 5 -0.86
Vehkapera KESK 6 223 18 43 10 -0.85

Surname Party np ns nr ms mr d4

Lohi KESK 2 239 2 43 1 -0.95
Yrttiaho VIHR 3 56 3 39 1 -0.95
Jaskari KOK 1 50 1 31 1 -0.94
Feldt SDP 2 23 2 18 1 -0.89
Ojala SDP 4 43 7 29 2 -0.87
Saarinen SDP 6 47 11 32 3 -0.83
Palm KD 7 74 28 36 4 -0.80
Tiainen VAS 1 64 5 44 5 -0.80
Mustajarvi VIHR 13 65 16 46 5 -0.80
Jaaskelainen KD 6 59 24 25 4 -0.72

Table 6.3.: Disparity worst 10 scorers for the IV parliament, we report the bottom 10, that is, 5%
left tail of the distribution. Each panel corresponds to a disparity measure, in order
from top to bottom: d1, d2, d3, d4. Opposition parties are in bold letters. Lowest scores
are dominated by opposition MPs who mainly support their spokesmen. The trend is
similar over all parliaments.
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7. Conclusions

The main purpose of the present work was to introduce and critically compare similarity measures

in complex, bipartite systems. Besides reviewing what is already known about widely employed

similarity measures in Chapter 1 with a particular focus on those used when studying bipartite

networks, in Chapter 2, for the first time to our knowledge, we show the drawbacks when one

attempts to apply such measures to systems characterized by a high degree of heterogeneity in

both sets of the bipartite network, we furthermore trace back the origin of the problem to the

underlying distribution and address the issue by constructing unbiased similarity estimators, which

have been corrected through appropriate weight functions.

After providing evidence of biasing in the (binary) covariance and correlation coefficients in

highly heterogeneous bipartite systems, in Chapter 3 we show how such a bias is already apparent

in two empirical systems, one social and the other biological, when one looks at the correlation

and covariance matrices of their randomly rewired networks. Indeed, after randomly rewiring a

network, any association between pairs of nodes should be destroyed, nonetheless, both matrices

turn out to be structured.

To explain the former structure and devise an unbiased estimator, in Chapter 2 we developed a

simple formation model of a random bipartite network, as a sampling without replacement from a

biased urn by nodes of set A. The labeled marbles in the biased urn represent nodes in set B and

possess different weights in order to simulate the heterogeneity of the degree distribution of set B.

Our newly proposed model is an approximation of the randomly rewired network, in the sense that

set B’s degree distribution is preserved on average within the model, while it is preserved exactly

in the rewired network.

According to the biased urn model, two users randomly and independently sample a number

of marbles equal to their own degree, the underlying distribution being the Wallenius non-central

hypergeometric distribution. One can then calculate the expected value of random co-occurrence

within each weight group, that is, the number of marbles with the same label randomly sampled

by two different users, by using the standard hypergeometric distribution. Our new model also

predicts a second order correction to the expected value of the binary covariance, which depends

on both users degree and quadratically on the weights, when they approach homogeneity.

The starting point in constructing the unbiased estimator was the idea of getting rid of the
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weights by dividing the original user’s binary vectors, featuring a 1 if there’s a link between the

user and a corresponding item on the other side of the network and a 0 otherwise, by ad hoc weight

functions. The latter are chosen in such a way as to satisfy the requirement of zeroing the expected

value of the covariance in the purely random case. By doing so, we automatically end up with a

new estimator of covariance whose expectation value is zero under random rewiring by construction

and it is thus unbiased.

By using the same weight functions, the expected value of the correlation keeps showing a second

order bias in w. However, such a bias is much smaller than the one in the unweighted estimator,

being exactly 1/(KiKj) times smaller, with Ki and Kj being users’ degrees. Furthermore, from a

more practical point of view, we’ve shown that such an improvement in the correlation estimator

de facto zeroes the expected value of the correlation coefficient under random rewiring as well, at

least for a broad range of users’ degrees, in both the real-world examples analyzed.

In Chapter 3, we show how the newly introduced covariance and correlation estimators perform

better than the unweighted ones at grasping the clustered structure of two different empirical

bipartite networks. Specifically, they better capture aggregation by phyla in the COGs dataset and

better discriminate between real and noise-induced clusters in the Finnish parliament dataset.

The impact of a bias in binary covariance/correlation estimators can produce unwanted effects

when measuring node similarity in a bipartite network. For example, we could have a pair of users

on Amazon’s database, who bought the same three blockbuster movies, Avatar, Lord of the rings

and Star wars. The binary correlation between this pair of users would be exactly one, but the

same value would correspond to another pair, who also bought three movies, albeit auteur ones

like Tarkovskij’s Solaris, Bunuel’s The Milky Way and Kim Ki-duk’s 3-Iron. However, it’s intuitive

to see that the first pair probably has very little in common in terms of tastes, if not for a generic

liking towards fantasy/Sci-fi blockbusters, while the second pair are almost certainly cinephiles.

The regular binary correlation estimator cannot discriminate between these two very different

typologies of users, because it equiparates movies on a same level by disregarding completely their

heterogeneity. Furthermore, customers who bought a great number of movies appear strongly

correlated even when in reality they don’t share the same tastes, this positive overestimation of

their similarity being a byproduct of the correlation bias. Even worse, since the bias increases with

users degree, Amazon would be recommending the wrong products, with little reliability, to their

most important customers: those who buy the most.

The same reasoning holds true for example in biological datasets and genome analysis. If two

organisms share the same terms of the gene ontology, it should make a difference whether the

corresponding molecular processes are fundamental and appear across many species or very specific

to just one class of organisms. Again, the regular covariance/correlation coefficients completely

ignore this piece of information, which is contained in set B’s heterogeneity.
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On the contrary, our newly developed weighted estimators provide an advantage over the regular

ones for two main reasons:

1. they include set B’s heterogeneity in the form of weight functions, thus keeping track of the

information stored in set B’s degree distribution.

2. they destroy the fake structure in the covariance/correlation matrices, which is only due to

the inteplay between set A’s and set B’s heterogeneity (exactly for the expected value of the

weighted covariance estimator, and to second order approximation for the expected value of

the weighted correlation), thus also getting rid of their dependency on set A’s degrees.

Our study can both serve as a warning to other researchers when using binary correlation and

covariance to investigate bipartite systems with a high heterogeneity on both sides, and as a solution

to the problem, in that we propose weighted estimators, which get rid of the bias. As a future

prospect, we’d like to explore how to use the biased urn model we developed to associate a level of

statistical significance with co-occurrence in bipartite systems based on the Wallenius distribution,

which might have implications on the construction of statistically validated networks, as explained

in the methodological part of Chapter 5.

In Chapter 5, the statistically validated network method has been used to retrieve the informative

structure of a social system, the Finnish parliament, introduced and discussed in Chapter 4. Even

if the hypergeometric null hypothesis employed to filter out random links works well at reducing

link density, we expect the Wallenius non-cenral hypergeometric distribution to be a better null

model for our data and in the future we plan on calculating the correct p-values in this case. After

reducing the density of links in our network to the fundamental core, we detected communities of

Members of the Parliament (MPs), and characterized them in terms of party and electoral district.

The result is that collaboration between MPs is driven by party, especially for MPs belonging to

the opposition, and by the district of election, especially for those belonging to the parties that

support the government.

At difference with other studies on Finnish MPs and candidates [115], gender does not appear

to play any major role in the collaboration of MPs. This result indicates that the observed polar-

ization by gender (and across party) of some political views does not influence the actual behavior

of MPs when it comes to proposing and signing initiatives. The characterization of communities

in terms of electoral district and party is rather stable across the first three parliaments under

scrutiny. However, a major change of the collaboration structure occurs between the third and

fourth parliament, due to the outburst of the PS (True Finns) party in 2011 election. As a conse-

quence, the number of parties which are large in terms of representatives increased from three to

four. Furthermore, such an outburst triggered a polarization of MPs behavior in terms of party,

even within the government coalition.
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7. Conclusions

The statistically validated network analysis does not allow one to gain deep insight about the

behavior of MPs who show peculiar patterns of signatures, nor about the internal structure of the

revealed communities. To gain a closer insight into the nested structure of communities, on how

they emerge and on how collaboration profiles change from parliament to parliament, in Chapter

6 we performed a correlation analysis and constructed hierarchical trees of MPs, based on pairwise

correlation.

In Chapter 6, we have shown how the structure of similarity of MPs changes from a parliament to

the next, due to the varying composition of the parliament itself. A major change of the system’s

structure occurs between the third an fourth parliament. Indeed the increased number of MPs

from the PS party in the last parliament, not only changed dramatically the composition of the

parliament in terms of the relative weight of parties, but it also polarized the behavior of MPs,

who became less prone to cooperation outside their own party. Such an inter-party collaboration,

though, is more pronounced among parties that support the government, and such a stylized fact

is persistent throughout the sixteen years analyzed. The result is that government and opposition

show an intrinsically different behavior in that, within the former, collaboration happens across

party lines, with distinct sub-clusters characterized by the district of election, whilst, within the

opposition, parties close ranks and tend not to collaborate with each other. Consequently, different

parties in the opposition can even become negatively correlated, as is the case during the last

parliament. Such a behavior of opposition parties is so extreme that they tend to collaborate more

with parties that support the government than within the opposition.

The correlation analysis also shows how the parliament inner workings change, according to the

Frobenius distance between correlation matrices of one year and the next within a single parliament.

Specifically during the first parliament we observe a negative trend of the Frobenius distance over

the years, indicating that the correlation structure of the parliament tends to stabilize over time.

Such a stabilizing trend almost disappears in the second parliament, where the similarity between

the correlation matrices is stable over time. In the third parliament, we observe an inversion of

trend, and correlation matrices at the end of this parliament are more different than those at the

beginning. Finally, such a de-stabilizing trend becomes very pronounced in the last parliament.

Finally, to study the system from the perspective of influential MPs, we develop ad hoc measures,

and look at MPs as leaders and followers. The result is once again a different behavioral pattern

between the opposition, which channels all initiatives through one or two leaders who gather sig-

natures from the bulk of followers within their own party, and the government, which develops a

wider collaboration web, displaying a variety of influential MPs who split the load between them.

The quantitative analysis of initiative co-signature has revealed the structure of the collaboration

network among MPs and its evolution over time, by also revealing how deeply such a structure

changed in 2011, that is, in correspondance to the rise of the populist party (PS) a fact that changed
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the number of major players within the parliament from 3 to 4. An interesting possible expansion

of this analysis to other northern parliaments, with the aim of comparing different political systems

in similar countries, is a future project. However, we expect the results presented in the correlation

analysis in Chapter 6 to suffer from the bias in Pearson correlation coefficient explained in Chapter

2, which was not corrected since the here presented study of the Finnish parliament was carried out

and published before discovering the issue of biasing in the (binary) Pearson correlation coefficient.

Overall, this thesis has served the purpose of showing how a bias in node similarity may arise

even in randomized networks as an emergent property strongly linked to the system inherent

heterogeneity. After demonstrating how the origin of such a positive bias has its source in the

non homogeneous weight of the other set of nodes in the bipartite network, we proposed a way to

circumvent it. Finally, we conducted a comprehensive study of a European parliament and shown

the efficacy of applying network methodologies to political systems. We stress that all the results

presented in Chapter 2 to 6 are original and are at the core of the 3 papers they spawned.
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A. Taylor Series of the Weighted Correlation

under a Wallenius Distribution

A.1. First Order Term

For what concerns the first order term in the Taylor series, we have

dE[ρwij ]

dw

∣∣∣∣
1

=
∑
kwi ,kwj

d

dw
E[ρwij |kwi , kwj ]W (kwi )W (kwj )

∣∣∣∣
1

=
∑
kwi ,kwj

dF (kwi , k
w
j , w)

dw

∣∣∣∣
1

, (A.1)

where we defined

F (kwi , k
w
j , w) = E[ρwij |kwi , kwj ] ·W (kwi ) ·W (kwj ), (A.2)

and first evaluate the derivatives of F (xi, xj , w) near w = 1, and then sum over the variables.

Then,

dF (kwi , k
w
j , w)

dw

∣∣∣∣
1

=
dE[ρwij |kwi , kwj ]

dw

∣∣∣∣
1

H(kwi ,Ki)H(kwj ,Kj) + E[ρij |kwi , kwj ]·

·
(
dW (kwi ,Ki, w)

dw

∣∣∣∣
w=1

H(kwj ,Kj) +H(kwi ,Ki)
dW (kwj ,Kj , w)

dw

∣∣∣∣
1

)
, (A.3)

where H(kwi ,Ki) is the Hypergeometric distribution.

From the set of equations which define the weight functions, Eq. (2.62), it’s easy to show that,

df(w,Ki)

dw

∣∣∣∣
1

=

(
1− T

Ki

)
ln

(
1− Ki

T

)
, (A.4)

thus, the first derivative of the conditional expected value of the weighted estimator is

dE[ρwij |kwi , kwj ]

dw

∣∣∣∣
1

=
1

m(T −m)σiσj

[
1

Ki

df(w,Ki)

dw

∣∣∣∣
1

kwi (Ki − kwi )(Kjm− kwj T )+

+
1

Kj

df(w,Kj)

dw

∣∣∣∣
1

kwj (Kj − kwj )(Kim− kwi T )

]
. (A.5)
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A. Taylor Series of the Weighted Correlation under a Wallenius Distribution

It’s also possible to exactly calculate the first derivative of the Wallenius distribution and show

that its value in w = 1 is:

dW (kwi ,Ki, w)

dw

∣∣∣∣
1

= −
(
h(T ) − h(T−Ki)

)
Ki

(Kim− kwi T )H(Ki, k
w
i ), (A.6)

where h(k) is the kth harmonic number h(k) =
∑k

n=1 1/n.

Now, we’re in the position to calculate:

dF (kwi , k
w
j , w)

dw

∣∣∣∣
1

=

{
1

m(T −m)σiσj

[
df(w,Ki)

dw

∣∣∣∣
1

kwi
Ki

(Ki − kwi )(Kjm− kwj T )+

+
df(w,Kj)

dw

∣∣∣∣
1

kwj
Kj

(Kj−kwj )(Kim−kwi T )

]
−

(Kim−kwi T )(Kjm−kwj T )

mT (T −m)σiσj
·

·

(h(T )−h(T−Ki)

)
ki

(Kim−kwi T )+

(
h(T )−h(T−Kj)

)
Kj

(Kjm−kwj T )

 ·
·H(kwi ,Ki)H(kwj ,Kj). (A.7)

By summing over the variables kwi , k
w
j and keeping in mind that,

E[(Kjm− kwj T )] = TE[(E[kwj ]− kwj )] = 0 (A.8)

E[(Kim− kwi T )] = TE[(E[kwi ]− kwi )] = 0, (A.9)

we obtain:

dE[ρwij ]

dw

∣∣∣∣
1

=
1

m(T −m)σiσj

{
1

Ki

df(w,Ki)

dw

∣∣∣∣
1

(KiE[kwi ]−E[(kwi )2])E[(Kjm−kwj T )]+

+
1

Kj

df(w,Kj)

dw

∣∣∣∣
1

(KjE[kwj ]−E[(kwj )2])E[(Kim− kwi T )] +

−
(
h(T ) − h(T−Ki)

)
Tki

E[(Kim− kwi T )2]E[(Kjm− kwj T )]+

−

(
h(T ) − h(T−Kj)

)
TKj

E[(Kim− kwi T )]E[(Kjm− kwj T )2]

 = 0, (A.10)

and prove that the first order term in the Taylor series is null.
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A.2. Second Order Term

A.2. Second Order Term

We start from the second derivative of the function F (kwi , k
w
j , w),

d2F (kwi , k
w
j , w)

dw2

∣∣∣∣∣
1

=
d2E[ρwij |kwi , kwj ]

dw2

∣∣∣∣∣
1

H(kwi ,Ki)H(kwj ,Kj) + 2
dE[ρwij |kwi , kwj ]

dw

∣∣∣∣
1

·

·
(
dW (kwi ,Ki, w)

dw

∣∣∣∣
1

H(kwj ,Kj) +H(kwi ,Ki)
dW (kwj ,Kj , w)

dw

∣∣∣∣
1

)
+ E[ρij |kwi , kwj ]

(
2
dW (kwi ,Ki, w)

dw

∣∣∣∣
1

dW (kwj ,Kj , w)

dw

∣∣∣∣
1

+

+
d2W (kwi ,Ki, w)

dw2

∣∣∣∣
1

H(kwj ,Kj)+H(kwi ,Ki)
d2W (kwj ,Kj , w)

dw2

∣∣∣∣∣
1

)
. (A.11)

The second derivative of the weight function, obtained by twice deriving both members of Eq.

(2.62), is

d2f(w,Ki)

dw2

∣∣∣∣
1

=

(
1− T

Ki

)
ln

(
1− Ki

T

)[(
1− 2m

Ki

)
ln

(
1− Ki

T

)
− 2m

T

]
, (A.12)

so that the second derivative of the conditional expected value of the weighted estimator is:

d2E[ρwij |kwi , kwj ]

dw2

∣∣∣∣∣
1

=
1

mT (T −m)σiσjK4
iK

4
j

{
(kwj T −Kjm)kwi (Ki − kwi )K4

j (Ki − T ) ln

(
1− Ki

T

)
·

·
[
2mK2

i +T ln

(
1−Ki

T

)
(K2

i +mKi−2TKi−2Kik
w
i +3Tkwi )

]
+

+ (kwi T −Kim)kwj (Kj − kwj )K4
i (Kj − T ) ln

(
1− Kj

T

)
·

·
[
2mK2

j +T ln

(
1−Kj

T

)
(K2

j +mKj−2TKj−2Kjk
w
j +3Tkwj )

]
+

+ 2K2
iK

2
j (Ki−T)(Kj−T)T 2 ln

(
1−Ki

T

)
ln

(
1−Kj

T

)
kwi (Ki−kwi )kwj (Kj−kwj )

}
.

(A.13)
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A. Taylor Series of the Weighted Correlation under a Wallenius Distribution

The second derivative of the Wallenius distribution is:

d2W (kwi ,Ki, w)

dw2

∣∣∣∣
1

=

{
2(h(T ) − h(T−Ki))

Ki(T −Ki)
(kwi −m)(kwi T −Kim)+

−T [Kim
2+(K2

i −2KiT−2mT+T 2)kwi +(2T−Ki)(k
w
i )2]

K2
i (T−Ki)

Ai

+
(kwi T −Kim)2

K2
i

Bi

}
H(Ki, k

w
i ), (A.14)

with

Ai = [h(T−1) − h(T−Ki)]
2 +

∞∑
i=0

[
1

(i+ T −Ki + 1)2
− 1

(i+ T )2

]
, (A.15)

Bi = [h(T ) − h(T−Ki+1)]
2 +

∞∑
i=1

[
1

(i+ T −Ki + 1)2
− 1

(i+ T )2

]
, (A.16)

The second derivative of the function F (kwi , k
w
j , w) thus becomes,

d2F (kwi , k
w
j , w)

dw2

∣∣∣∣∣
1

= H(kwi ,Ki)H(kwj ,Kj)

{
d2E[ρwij |kwi , kwj ]

dw2

∣∣∣∣∣
1

+

+ 2
dE[ρwij |kwi , kwj ]

dw

∣∣∣∣
1

[
(h(T−Ki) − h(T ))(Kim− kwi T )

Ki
+

+
(h(T−Kj) − h(T ))(Kjm− kwj T )

Kj

]
+

(Kim− kwi T )(Kjm− kwj T )

mT (T −m)σiσj

·
[
2

(h(T−Ki) − h(T ))(Kim− kwi T )

Ki

(h(T−Kj) − h(T ))(Kjm− kwj T )

Kj

+
2(h(T ) − h(T−Ki))

Ki(T −Ki)
(kwi −m)(kwi T −Kim)+

−T [Kim
2 + (K2

i − 2KiT − 2mT + T 2)kwi + (2T −Ki)(k
w
i )2]

K2
i (T −Ki)

Ai

+
(kwi T −Kim)2

K2
i

Bi +
2(h(T ) − h(T−Kj))

Kj(T −Kj)
(kwj −m)(kwj T −Kjm)

−
T [Kjm

2 + (K2
j − 2KjT − 2mT + T 2)kwj + (2T −Kj)(k

w
j )2]

K2
j (T −Kj)

Aj

+
(kwj T −Kjm)2

K2
j

Bj

]}
. (A.17)
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A.2. Second Order Term

and the second derivative is:

d2E[ρwij ]

dw2

∣∣∣∣∣
1

=
∑
kwi ,kwj

d2F (kwi , k
w
j , w)

dw2

∣∣∣∣∣
1

=

=
2T

m(T−m)σiσjKiKj

(
1− T

Ki

)
ln

(
1−Ki

T

)(
1− T

Kj

)
ln

(
1−Kj

T

)
· (KiE[kwi ]−E[(kwi )2])(KjE[kwj ]−E[(kwj )2])+

+
2

m(T −m)σiσjKiKj

[
Kj

(
1− T

Ki

)
ln

(
1− Ki

T

)
(h(T−Kj) − h(T ))

· (KiE[kwi ]−E[(kwi )2])E[(Kjm− kwj T )2] +Ki

(
1− T

Kj

)
ln

(
1−Kj

T

)
· (h(T−Ki) − h(T ))(KjE[kwj ]−E[(kwj )2])E[(Kim− kwi T )2]

]
+

+
2(h(T−Ki)−h(T ))(h(T−Kj)−h(T ))

mT (T−m)σiσjKiKj
E[(Kim−kwi T )2]E[(Kjm−kwj T )2]. (A.18)

Finally, by summing over the variables kwi , k
w
j and using the equations,

E[g(kwi )] ·E[(Kjm− kwj T )] = E[g(kwi )] · TE[(E[kwj ]− kwj )] = 0, (A.19)

E[g(kwj )] ·E[(Kim− kwi T )] = E[g(kwj )] · TE[(E[kwi ]− kwi )] = 0, (A.20)

E[(Kim− kwi T )2] = T 2E[(E[kwi ]− kwi )2] = T 2σ2[kwi ] =
Kim(T −m)(T −Ki)

T − 1
, (A.21)

E[(kwi )2] = σ2[kwi ] + (E[kwi ])2 =
Kim(T −m)(T −Ki)

T 2(T − 1)
+

(
Kim

T

)2

, (A.22)

we have the following result:

d2E[ρwij ]

dw2

∣∣∣∣∣
1

=
2m(T−m)(T−Ki)(T−Kj)

T (T−1)2σiσj

[
h(T )−h(T−Ki)+

(Ki−1)

Ki
ln

(
1−Ki

T

)]
·
[
h(T ) − h(T−Kj) +

(Kj − 1)

Kj
ln

(
1− Kj

T

)]
. (A.23)

If we now observe that T >> 1, the expected value of the weighted estimator is:

E[ρwij ] ≈
m(T −m)

Tσiσj

(
1− ki

T

)[
h(T ) − h(T−ki) +

(
1− 1

ki

)
ln

(
1− ki

T

)]
·

·
(

1− kj
T

)[
h(T ) − h(T−kj) +

(
1− 1

kj

)
ln

(
1− kj

T

)]
(w − 1)2. (A.24)
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B. Taylor Series of the Weighted Correlation

under a Multinomial Distribution

B.1. First Order Term

The first derivative of F (ki,kj,y = 1/w) is:

∂F (ki,kj,y)

∂ys
=
∂E[ρyij |ki,kj]

∂ys
M(Ki;p)M(Kj ;p) + E[ρyij |ki,kj]·

·
(
∂M(Ki;p)

∂ys
M(Kj ;p) +M(Ki;p)

∂M(Kj ;p)

∂ys

)
. (B.1)

We know that the multinomial distribution PMF is,

M(Ki;p) =
Ki!

k1i !k2i !...kni !

n∏
q=1

p
kqi
q , with pq =

mq

yq
∑

lml/yl
. (B.2)

The first derivatives of the probabilities are:

∂pq
∂ys

=
∂

∂ys

(
mq

yq
∑

lml/yl

)
=
pqps
ys

∂ps
∂ys

=
∂

∂ys

(
ms

ys
∑

lml/yl

)
=
ps(ps − 1)

ys
.

The first derivative of the Multinomial distribution is thus,

∂M(Ki;p)

∂ys
=

Ki!

k1i !k2i !...kni !

∂

∂ys

 n∏
q=1

p
kqi
q

 =
Ki!

k1i !k2i !...kni !
·

·

k1i pk1i−11

p1ps
ys

∏
q 6=1

p
kqi
q + ...+ ksi p

ksi−1
s

ps(ps − 1)

ys

∏
q 6=s

p
kqi
q + ...+ kni p

kni −1
n

pnps
ys

∏
q 6=n

p
kqi
q

 =

=
Ki!

k1i !k2i !...kni !

n∏
q=1

p
kqi
q

(
ps
ys

∑
q

kqi −
ksi
ys

)
=
M(Ki;p)

ys
(psKi − ksi ) . (B.3)
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B. Taylor Series of the Weighted Correlation under a Multinomial Distribution

The first derivative of E[ρyij |ki,kj] is

∂

∂ys
E[ρyij |ki,kj] =

∂

∂ys

(
N√
DiDj

)
=

2N ′DiDj −N(D′iDj +DiD
′
j)

2(DiDj)3/2
, (B.4)

where we defined

N =
∑
q

kqi k
q
j

mq
y2q −

1

T

∑
q

kqi yq
∑
p

kpj yp, (B.5)

N ′ =
∂N

∂ys
= 2

ksi k
s
j

ms
ys −

1

T

(
ksi
∑
p

k
wp

j yp + ksj
∑
q

k
wq

i yq

)
, (B.6)

Di =
∑
q

kqi y
2
q −

1

T

(∑
q

kqi yq

)2

, (B.7)

D′i =
∂Di

∂ys
= 2ksi

(
ys −

1

T

∑
q

kqi yq

)
, (B.8)

Dj =
∑
q

kqjy
2
q −

1

T

(∑
q

kqjyq

)2

, (B.9)

D′j =
∂Dj

∂ys
= 2ksj

(
ys −

1

T

∑
q

kqjyq

)
. (B.10)

We now calculate everything in y = 1, so that Di(1) = σ2i and Dj(1) = σ2j :

∂

∂ys
E[ρyij |ki,kj]

∣∣∣∣
1

=
1

(σiσj)3

{
(σiσj)

2

msT

[
ksi
(
Tksj −msKj

)
+ ksj (Tksi −msKi)

]
+

−

(∑
q

kqi k
q
j

mq
− KiKj

T

)[
ksi

(
1− Ki

T

)
σ2j + σ2i k

s
j

(
1− Kj

T

)]}

=
1

msσiσj

[
ksi

(
ksj −

ms

T
Kj

)
+ ksj

(
ksi −

ms

T
Ki

)]
−E[ρij |ki,kj]

(
ksi
Ki

+
ksj
Kj

)
.

(B.11)

We can now explicitly calculate the first derivative of the function F (ki,kj,y):

∂F (ki,kj,y)

∂ys

∣∣∣∣
1

= M(Ki;p(1))M(Kj ;p(1))

{
1

msσiσj

[
ksi

(
ksj −

ms

T
Kj

)
+ ksj

(
ksi −

ms

T
Ki

)]
+

+E[ρij |ki,kj]

[
ms

T
(Ki +Kj)− ksi

(
1 +

1

Ki

)
− ksj

(
1 +

1

Kj

)]}
. (B.12)

102



B.1. First Order Term

If we sum over the variables and use the moments,

E[ksi k
q
i ] = σ[ksi k

q
i ] + E[ksi ]E[kqi ] =

msmq

T 2
Ki(1−Ki), (B.13)

E[(ksi )
2] = σ2[ksi ] + (E[ksi ])

2 =
Kims

T 2
(Kims + T −ms), (B.14)∑

q 6=s

E[ksi k
q
i ] =

Ki(Ki − 1)ms

T 2
(T −ms), (B.15)

∑
q

E[ksi k
q
i ] =

∑
q 6=s

E[ksi k
q
i ] + E[(ksi )

2] =
K2

ims

T
, (B.16)

we have that,∑
ki

ksiM(Ki;p(1))
∑
kj

[(
ksj −

ms

T
Kj

)]
M(Kj ;p(1)) = E[ksi ]E[ksj −E[ksj ]] = 0 (B.17)

∑
ki

[(
ksi −

ms

T
Ki

)]
M(Ki;p(1))

∑
kj

ksjM(Kj ;p(1)) = E[ksi −E[ksi ]]E[ksj ] = 0 (B.18)

∑
ki,kj

E[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) = E[ρij ] = 0, (B.19)

∑
ki,kj

ksiE[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) =
Kj

σiσjT

(∑
q

E[ksi k
q
i ]− msK

2
i

T

)
= 0, (B.20)

∑
ki,kj

ksjE[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) =
Ki

σiσjT

(∑
q

E[ksjk
q
j ]−

msK
2
j

T

)
= 0. (B.21)

From the above equations, it is straightforward to prove that:

∂E[ρyij ]

∂ys

∣∣∣∣∣
1

=
∑
ki,kj

∂F (ki,kj,y)

∂ys

∣∣∣∣
1

= 0. (B.22)
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B.2. Second Order Term

We start from the expression of the second derivative of the function F (ki,kj,y):

∂2F (ki,kj,y)

∂y2s
=
∂2E[ρyij |ki,kj]

∂y2s
M(Ki;p)M(Kj ;p) + 2

∂E[ρyij |ki,kj]

∂ys
·

·
(
∂M(Ki;p)

∂ys
M(Kj ;p) +M(Ki;p)

∂M(Kj ;p)

∂ys

)
+ E[ρyij |ki,kj]·

·
(

2
∂M(Ki;p)

∂ys

∂M(Kj ;p)

∂ys
+
∂2M(Ki;p)

∂y2s
M(Kj ;p) +M(Ki;p)

∂2M(Kj ;p)

∂y2s

)
.

(B.23)

The second derivative of the multinomial distribution is easily calculated from the first derivative,

∂2M(Ki;p)

∂y2s
=

∂

∂ys

[
M(Ki;p)

ys
(psKi−ksi)

]
=
M(Ki;p)

y2s

[
p2sKi(1+Ki)−2psKi(1+ksi )+(ksi )

2+ksi
]
.

(B.24)

The second derivative of E[ρyij |ki,kj] can be calculated from its first derivative as well,

∂2E[ρyij |ki,kj]

∂y2s
=

1

4(DiDj)5/2
{

3ND2
i (D′j)

2−2DiDj

[
D′j(2N

′Di−ND′i)+NDiD
′′
j

]
+

+ D2
j

[
N(3(D′i)

2 − 2DiD
′′
i ) + 4Di(N

′′Di −N ′D′i)
]}
, (B.25)

where,

N ′′ =
∂2N

∂y2s
= 2ksi k

s
j

(
T −ms

msT

)
, (B.26)

D′′i =
∂2Di

∂y2s
= 2ksi

(
1− ksi

T

)
, (B.27)

D′′j =
∂2Dj

∂y2s
= 2ksj

(
1−

ksj
T

)
. (B.28)
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In y = 1, we obtain:

∂2E[ρyij |ki,kj]

∂y2s

∣∣∣∣∣
1

=E[ρij |ki,kj]

[
(ksi )

2

(
3

K2
i

+
1

σ2i T

)
+(ksj )

2

(
3

K2
j

+
1

σ2jT

)
+

2

KiKj
(ksi k

s
j )

− ksi
σ2i
−
ksj
σ2j

]
+

[
(ksi )

2ksj

(
− 4

msσiσjKi

)
+ ksi (k

s
j )

2

(
− 4

msσiσjKj

)
+ (ksi )

2 2Kj

Tσiσjki
+ (ksj )

2 2Ki

TσiσjKj
+ 2 (ksi k

s
j )

(
T +ms

Tmsσiσj

)]
. (B.29)

At this point, we can explicitly calculate the second derivative of function F (ki,kj,y) evaluated

in y = 1:

∂2F (ki,kj,y)

∂y2s

∣∣∣∣
1

=

{
∂2E[ρyij |ki,kj]

∂y2s

∣∣∣∣∣
1

+ 2
∂E[ρyij |ki,kj]

∂ys

∣∣∣∣∣
1

[ms

T
(Ki +Kj)− (ksi + ksj )

]
+

+E[ρij |ki,kj] ·
[
(ksi + ksj )(1 + ksi + ksj ) +

m2
s

T 2
(Ki +Kj)(1 +Ki +Kj)+

− 2ms

T
(Ki +Kj)(1 + ksi + ksj )

]}
M(Ki;p(1))M(Kj ;p(1)) =

=

{
E[ρij |ki,kj]

[(
1 +

3 + 2Ki

K2
i

+
1

Tσ2i

)
(ksi )

2 +

(
1 +

3 + 2Kj

K2
j

+
1

Tσ2j

)
(ksj )

2+

+
2(1 +Ki)(1 +Kj)

KiKj
ksi k

s
j +

(
1− 2ms(1 +Ki)(Ki +Kj)

TKi
− 1

σ2i

)
ksi +

+

(
1− 2ms(1 +Kj)(Ki +Kj)

TKj
− 1

σ2j

)
ksj +

ms

T 2
(Ki +Kj)[ms(1 +Ki +Kj)− 2T ]

]

+

[
− 4(1 +Ki)

msσiσjKi
(ksi )

2ksj −
4(1 +Kj)

msσiσjKj
ksi (k

s
j )

2+

+
2Kj(1 +Ki)

TσiσjKi
(ksi )

2 +
2Ki(1 +Kj)

TσiσjKj
(ksj )

2 +
2[T +ms + 3ms(Ki +Kj)]

msTσiσj
ksi k

s
j+

− 2msKj(Ki +Kj)

T 2σiσj
ksi −

2msKi(Ki +Kj)

T 2σiσj
ksj

]}
M(Ki;p(1))M(Kj ;p(1)).

(B.30)

In Eq. (B.30), there’s a simmetry for permutation of i with j. To sum over ki,kj, we’ll employ
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the following equations for the moments of the Multinomial distribution:

E[kqi (ksi )
2] =

mqms

T 3
Ki(Ki − 1)[T +ms(Ki − 2)], (B.31)∑

q 6=s

E[kqi (ksi )
2] =

ms(T −ms)

T 3
Ki(Ki − 1)[T +ms(Ki − 2)], (B.32)

E[(ksi )
3] =

mski
T 3

[T 2 + 3msT (Ki − 1) +m2
s(Ki − 1)(Ki − 2)], (B.33)∑

q

E[kqi (ksi )
2] =

∑
q 6=s

E[kqi (ksi )
2] + E[(ksi )

3] =
ms

T 2
K2

i [T −ms +msKi], (B.34)

E[(ksi )
2] =

msKi

T 2
[T −ms +msKi], (B.35)

E[(ksi )
2ksj ] = E[(ksi )

2]E[ksj ] =
m2

sKiKj

T 3
[T −ms +msKi], (B.36)

E[ksi k
s
j ] = E[ksi ]E[ksj ] =

m2
sKiKj

T 2
. (B.37)
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From these we have that:∑
ki,kj

(ksi )
2E[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) =

=
1

σiσj

∑
ki,kj

M(Ki;p(1))M(Kj ;p(1))

[∑
q

kqi k
q
j

mq
− KiKj

T

]
(ksi )

2 =

=
1

σiσj

(∑
q

1

mq

mqKj

T
E[kqi (ksi )

2]− KiKj

T
E[(ksi )

2]

)
=

=
1

σiσj

(
Kj

T

ms

T 2
K2

i [T −ms +mski]−
KiKj

T

msKi

T 2
[T −ms +msKi]

)
= 0, (B.38)∑

ki,kj

ksi k
s
jE[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) =

=
1

σiσj

∑
ki,kj

M(Ki;p(1))M(Kj ;p(1))

[∑
q

kqi k
q
j

mq
− KiKj

T

]
ksi k

s
j =

=
1

σiσj

∑
q 6=s

1

mq
E[kqi k

s
i ]E[kqjk

s
j ] +

1

ms
E[(ksi )

2]E[(ksj )
2]− KiKj

T

m2
s

T 2
KiKj

 =

=
1

σiσj

[
m2

s(T−ms)

T 4
KiKj(1−Ki)(1−Kj)+

ms

T 4
KiKj(T−ms+msKi)(T−ms+msKj)−

m2
s

T 3
K2

iK
2
j

]
=
ms(T −ms)KiKj

T 3σiσj
, (B.39)∑

ki,kj

ksiE[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) = 0, (B.40)

∑
ki,kj

E[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) = 0. (B.41)

Finally, we can calculate the second derivative of the expectation value of the weighted correlation

estimator in y = 1:

∂2E[ρyij ]

∂y2s

∣∣∣∣∣
1

=
2(1 +Ki)(1 +Kj)

KiKj

ms(T −ms)KiKj

T 3σiσj
− 4(1 +Ki)

msσiσjKi

m2
sKiKj

T 3
[T −ms +msKi]

− 4(1 +Kj)

msσiσjKj

m2
sKiKj

T 3
[T −ms +msKj ] +

2Kj(1 +Ki)

TσiσjKi

msKi

T 2
[T −ms +msKi]+

+
2Ki(1 +Kj)

TσiσjKj

msKj

T 2
[T −ms +msKj ]

2[T +ms + 3ms(Ki +Kj)]

msTσiσj

m2
s

T 2
KiKj+

− 2msKj(Ki +Kj)

T 2σiσj

ms

T
Ki −

2msKi(Ki +Kj)

T 2σiσj

ms

T
Kj =

2ms(T −ms)

T 3σiσj
. (B.42)
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For what concerns the off-diagonal terms, we proceed in much the same way and start from the

cross derivative of F (ki,kj,y):

∂2F (ki,kj,y)

∂yp∂ys
=
∂2E[ρyij |ki,kj]

∂yp∂ys
M(Ki;p)M(Kj ;p)+

∂E[ρyij |ki,kj]

∂ys

(
∂M(Ki;p)

∂yp
M(Kj ;p) +M(Ki;p)

∂M(Kj ;p)

∂yp

)
+

∂E[ρyij |ki,kj]

∂yp

(
∂M(Ki;p)

∂ys
M(Kj ;p) +M(Ki;p)

∂M(Kj ;p)

∂ys

)
+

E[ρyij |ki,kj]

(
∂M(Ki;p)

∂ys

∂M(Kj ;p)

∂yp
+
∂M(Ki;p)

∂yp

∂M(Kj ;p)

∂ys
+

+
∂2M(Ki;p)

∂yp∂ys
M(Kj ;p) +M(Ki;p)

∂2M(Kj ;p)

∂yp∂ys

)
. (B.43)

The second derivative of the multinomial distribution is,

∂2M(Ki;p)

∂yp∂ys
=

∂

∂yp

[
M(Ki;p)

ys
(psKi − ksi )

]
=
M(Ki;p)

ysyp
[(psKi−ksi )(ppKi−kpi )+Kipspp], (B.44)

while the second derivative of the conditional expected value of the weighted estimator is,

∂2E[ρyij |ki,kj]

∂yp∂ys

∣∣∣∣∣
1

=
E[ρij |ki,kj]

σ2i σ
2
jTK

2
iK

2
j

[
σ2jK

2
j (K2

i +3σ2i T )(ksi k
p
i )+σ2iK

2
i (K2

j +3σ2jT )(ksjk
p
j )

+ σ2i σ
2
jTKiKj(k

s
i k

p
j + kpi k

s
j )
]

+
2

σiσjmpmsTKiKj
·[

K2
jmsmp(k

s
i k

p
i ) +K2

imsmp(k
s
jk

p
j ) +

KiKjmsmp

2
(ksi k

p
j + kpi k

s
j ) +

−KjmpT (ksi k
p
i k

s
j )−KjmsT (ksi k

p
i k

p
j )−KimpT (ksi k

s
jk

p
j )−KimsT (kpi k

s
jk

p
j )
]
.

(B.45)

We’re now in the position to explicitly write down the seond derivative of the function F (ki,kj,y)
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calculated in y = 1:

∂2F (ki,kj,y)

∂yp∂ys

∣∣∣∣
1

= M(Ki;p(1))M(Kj ;p(1))

{
∂2E[ρyij |ki,kj]

∂yp∂ys

∣∣∣∣∣
1

+

+
∂E[ρyij |ki,kj]

∂ys

∣∣∣∣∣
1

[mp

T
(Ki +Kj)− (kpi + kpj )

]
+

+
∂E[ρyij |ki,kj]

∂yp

∣∣∣∣∣
1

[ms

T
(Ki +Kj)− (ksi + ksj )

]
+

+ E[ρij |ki,kj]
[(ms

T
Ki − ksi

)(mp

T
Kj − kpj

)
+

+
(mp

T
Ki − kpi

)(ms

T
Kj − ksj

)
+
msmp

T 2
(Ki +Kj)+

+
(ms

T
Ki − ksi

)(mp

T
Ki − kpi

)
+
(ms

T
Kj − ksj

)(mp

T
Kj − kpj

)]}
= M(Ki;p(1))M(Kj ;p(1))

{[(
1

σ2i T
+

3

K2
i

+
2

Ki
+ 1

)
ksi k

p
i +

+

(
1

σ2jT
+

3

K2
j

+
2

Kj
+ 1

)
ksjk

p
j +

(
1

KiKj
+

1

Kj
+

1

Ki
+ 1

)
(ksi k

p
j + kpi k

s
j )+

+
msmp

T 2
(Ki +Kj)(1 +Ki +Kj)

]
E[ρij |ki,kj]−

1

σiσjT 2
[mpKj(Ki +Kj)k

s
i +

+ msKj(Ki +Kj)k
p
i +mpKi(Ki +Kj)k

s
j +msKi(Ki +Kj)k

p
j+

− 2KjT

(
1 +

1

Ki

)
ksi k

p
i − 2KiT

(
1 +

1

Kj

)
ksjk

p
j − T (1 +Ki +Kj)(k

s
i k

p
j + kpi k

s
j )+

− 2mpT

ms
(Ki +Kj)k

s
i k

s
j −

2msT

mp
(Ki +Kj)k

p
i k

p
j +

2T 2

ms

(
1 +

1

Ki

)
ksi k

p
i k

s
j+

+
2T 2

mp

(
1 +

1

Ki

)
ksi k

p
i k

p
j +

2T 2

ms

(
1 +

1

Kj

)
ksi k

s
jk

p
j +

2T 2

mp

(
1 +

1

Kj

)
kpi k

s
jk

p
j

]}
.

(B.46)
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Again, we exploit the simmetry for permutation of i with j and use the following equations,

E[kqi k
s
i k

p
i ] =

mqmsmp

T 3
Ki(Ki − 1)(Ki − 2), (B.47)∑

q 6=s,p

E[kqi k
s
i k

p
i ] =

msmp(T −ms −mp)

T 3
Ki(Ki − 1)(Ki − 2), (B.48)

∑
q

E[kqi k
s
i k

p
i ] =

∑
q 6=s,p

E[kqi k
s
i k

p
i ] + E[(ksi )

2kpi ] + E[ksi (k
p
i )2] =

msmp

T 2
K2

i (Ki − 1), (B.49)

∑
q

1

mq
E[kqi k

s
i ]E[kqjk

p
j ] =

∑
q 6=s,p

mqmsmp

T 4
KiKj(Ki − 1)(Kj − 1) +

mp

T 2
Kj(Kj − 1)E[(ksi )

2]+

+
ms

T 2
Ki(Ki − 1)E[(kpj )2] =

msmp

T 3
KiKj(KiKj − 1), (B.50)

to evaluate:

E[ρijk
s
i k

p
i ] =

∑
ki,kj

(ksi k
p
i )E[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) =

=
Kj

σiσjT

(∑
q

E[kqi k
s
i k

p
i ]−KiE[ksi k

p
i ]

)
=

=
Kj

σiσjT

[msmp

T 2
K2

i (Ki − 1)−Ki
msmp

T 2
Ki(Ki − 1)

]
= 0, (B.51)

E[ρijk
s
i k

p
j ] =

∑
ki,kj

(ksi k
p
j )E[ρij |ki,kj]M(Ki;p(1))M(Kj ;p(1)) =

=
1

σiσj

(∑
q

1

mq
E[kqi k

s
i ]E[kqjk

p
j ]−

msmpK
2
iK

2
j

T 3

)
= − msmp

T 3σiσj
KiKj . (B.52)
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We can now calculate the off-diagonal term of the Hessian matrix, in y = 1:

∂2E[ρyij ]

∂yp∂ys

∣∣∣∣∣
1

=

(
1

σ2i T
+

3

K2
i

+
2

Ki
+ 1

)
E[ρijk

s
i k

p
i ] +

(
1

σ2jT
+

3

K2
j

+
2

Kj
+ 1

)
E[ρijk

s
jk

p
j ]+

+

(
1

KiKj
+

1

Kj
+

1

Ki
+ 1

)
(E[ρijk

s
i k

p
j ] + E[ρijk

p
i k

s
j ])+

+
msmp

T 2
(Ki +Kj)(1 +Ki +Kj)E[ρij ] +− 1

σiσjT 2
[mpKj(Ki +Kj)E[ksi ]+

+ msKj(Ki +Kj)E[kpi ] +mpKi(Ki +Kj)E[ksj ] +msKi(Ki +Kj)E[kpj ]+

− 2KjT

(
1 +

1

Ki

)
E[ksi k

p
i ]− 2KiT

(
1 +

1

Kj

)
E[ksjk

p
j ]+

−T (1+Ki+Kj)(E[ksi ]E[kpj ]+E[kpi ]E[ksj ])−2T (Ki+Kj)

(
mp

ms
E[ksi ]E[ksj ]+

ms

mp
E[kpi ]E[kpj ]

)
+ 2T 2

(
1+

1

Ki

)
E[ksi k

p
i ]

(
E[ksj ]

ms
+
E[kpj ]
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)
+2T 2

(
1+

1

Kj

)
E[ksjk

p
j ]

(
E[ksi ]
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+
E[kpi ]
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)]
=

=

(
1

KiKj
+

1

Kj
+

1

Ki
+ 1

)(
−2

msmp

T 3σiσj
KiKj

)
+

− 1

σiσjT 2

[
mpKj(Ki +Kj)
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T
Ki +msKj(Ki +Kj)

mp

T
Ki+

+ mpKi(Ki +Kj)
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T
Kj +msKi(Ki +Kj)

mp

T
Kj+

−2KjT

(
1 +

1
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)
msmp

T 2
Ki(Ki − 1) +−2KiT

(
1 +

1

Kj

)
msmp

T 2
Kj(Kj − 1)+

− T (1 +Ki +Kj)
2msmp

T 2
KiKj − 2T (Ki +Kj)

2mpms

T 2
KiKj+

+ 2T 2

(
1 +

1

Ki

)
msmp

T 2
Ki(Ki − 1)

2Kj

T
+ 2T 2

(
1 +

1

Kj

)
msmp

T 2
Kj(Kj − 1)

2Ki

T

]
=

= −2msmp

σiσjT 3
. (B.53)
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C. R codes

In this Appendix we report the R code used in this thesis to calculate the weighted covariance and

correlation estimators. The R function below takes as input an N × 2 matrix containing the N

links of the bipartite system written as starting node in column 1 and target node in column 2 of

the matrix. After choosing a value of either 1 or 2 for the option user, which selects the column

of nodes belonging to the set of interest in the network, and a logical value of either TRUE or

FALSE for the option x.cov, the function calculates either the weighted covariance estimator or the

weighted correlation estimator between the nodes of the set of interest.

#Weighted covariance and correlation estimator. The input, x, is a matrix of links in the bi-

partite system of n users and T objects. The input matrix x has 2 columns, one of users (labeled

from 1 to n) and one of objects (labeled from 1 to T), a row represents a link from a user to an

object. Options: whether to compute covariance (x.cov=TRUE) or correlation (x.cov=FALSE),

which set of the bipartite network is the one of interest (user=1) or (user=2). It requires the

package BiasedUrn installed.

WeightedEst <–function(x, x.cov=TRUE, user=1,w=NULL)

{
library(BiasedUrn)

if(user == 1) object <–2 else object <–1

#number of nodes on user’s side.

n <–length(unique(x[ ,user]))

#user’s degree distribution.

k <–as.numeric(table(x[ ,user]))

#number of nodes on object’s side.

T <–length(unique(x[ ,object]))

#T*n binary matrix of the bipartite network, with entries either 0 or 1.

data <–matrix(0, nrow=T, ncol=n)

for(i in 1:n) data[x[x[ ,user] == i,object], i] <–1

#order rows by increasing object’s degree.
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data <–data[order(rowSums(data)), ]

colnames(data) <–names

if (!is.null(w)) #vector of odds-ratios

w <–sort(unique(rowSums(data)))

#vector of weight-groups

m <–as.numeric(table(rowSums(x)))

else #vector of odds-ratios as a numerical vector input with odds corresponding to objects in set

2

w <–as.numeric(as.vector(w))

#vector of weight-groups

m <–as.numeric(table(w))

#use package BiasedUrn to calculate group-means under Wallenius distribution, then compute

weight functions and divide binary matrix by weight functions.

mu <–0

f <–0

for(j in 1:n)

{
mu <–meanMWNCHypergeo(m, k[j], w, precision = 0.1)

f <–sum(m)/k[j] * mu/m

wdata[ ,j] <–data[ ,j] / rep(f, times=m)

}
#output covariance or correlation depending on the value of x.cov.

if(x.cov==TRUE) return(cov(wdata))

else return(cor(wdata))

}

The above code was used to compute the weighted covariance/correlation matrices in Fig. 3.2,

3.3, 3.4. The algorithm uses a rough estimation of odds-ratios, which associates to each element

in set B a weight equal to the number of elements in set A linked to it, that is, the sum of the

row corresponding to that object in the binary matrix of the system. The code includes another

option, w, which allows to input the odds-ratios vector from the outside. The odds-ratios vector

could for instance be known a priori from other sources of information, or estimated from the data

itself according to the procedure illustrated in section 3.4.
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