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Abstract: In this paper we study radial solutions for the following equation1

�u(x) + f (u(x), |x |) = 0,2

where x ∈ R
n , n > 2, f is subcritical for r small and u large and supercritical for r3

large and u small, with respect to the Sobolev critical exponent 2∗ = 2n
n−2 . The solutions4

are classified and characterized by their asymptotic behaviour and nodal properties.5

In an appropriate super-linear setting, we give an asymptotic condition sufficient to6

guarantee the existence of at least one ground state with fast decay with exactly j zeroes7

for any j ≥ 0. Under the same assumptions, we also find uncountably many ground8

states with slow decay, singular ground states with fast decay and singular ground states9

with slow decay, all of them with exactly j zeroes. Our approach, based on Fowler10

transformation and invariant manifold theory, enables us to deal with a wide family11

of potentials allowing spatial inhomogeneity and a quite general dependence on u. In12

particular, for the Matukuma-type potential, we show a kind of structural stability.13

1. Introduction14

In this paper we focus on radial solutions for Laplacian equations of the form15

�u(x) + f (u(x), |x |) = 0, (1.1)16

where x ∈ R
n , n > 2, f is a suitable locally Lipschitz continuous function, satisfying17

f (0, r) = 0, super-linear in u. Since we just deal with radial solutions, we set r = |x |18

and we consider the equivalent singular O.D.E.19

(u′ rn−1)′ + f (u, r)rn−1 = 0, r ∈ (0,∞), (1.2)20
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where, abusing the notation, we have set u(r) = u(x) for |x | = r , and where “ ′ ” denotes21

the differentiation with respect to r . We are concerned with the study of asymptotic22

behaviour and nodal properties of the solutions to equation (1.2). The interest in equations23

of the family (1.2) started long ago from nonlinearities f of the form24

f (u, r) = k(r)u|u|q−2, q > 2, (1.3)25

where k is a differentiable positive function. The structure of solutions to this class of26

equations has been intensively studied in the literature, see e.g. [1,5,6,13,16,20,26,28,27

30,32,39–42] and references therein.28

It has been shown that, under very weak assumptions, solutions of (1.2) exhibit29

two behaviors as r → 0 and as r → ∞. Namely, u(r) may be a regular solution,30

i.e., u(0) = d �= 0 and u′(0) = 0, or a singular solution, i.e., limr→0u(r) = ±∞;31

similarly, u(r) may be a fast decay solution, i.e., limr→∞u(r)rn−2 = L �= 0, or a slow32

decay solution, i.e., limr→∞u(r)rn−2 = ±∞. We remark that, in many situations, it is33

possible to specify in more detail the behavior of singular and slow decay solutions: e.g.,34

if k(r) = cr δ , δ > −2, c > 0, then u(r)r
2+δ
q−2 → C as r → 0 or as r → +∞ respectively,35

where C is a computable constant (for more details, see Sect. 2, and [1,13,16,17], among36

others).37

Solutions of (1.2) are classified as ground states (G.S.) and singular ground states38

(S.G.S.). By G.S. we mean a regular solution u(r) defined for any r ≥ 0 such that39

limr→∞ u(r) = 0, while a S.G.S is a singular solution u(r) which is defined for any40

r > 0 and goes to 0 as r → +∞.41

It is well known that the structure of positive solutions of (1.2) changes drastically42

when the exponent q in (1.3) passes through some critical values related to the behaviour43

of the function k, due to the interaction between the exponent and the asymptotic behavior44

of k. In particular, when k is a constant, the critical value is given by the Sobolev critical45

exponent 2∗ := 2n
n−2 , while if k(r) = r δ , it becomes 2∗

δ = 2 δ+n
n−2 = 2δ

n−2 + 2∗. Such a46

phenomenon is better explained and incorporated in a more general framework by the47

introduction of the concept of natural dimension, see e.g. [37]. A further critical value48

which is relevant for the asymptotic behaviour of singular solutions is 2∗ := 2(n−1)
n−2 . In49

this paper we are interested in nonlinearities f which are subcritical for u large and r50

small, and supercritical for u small and r large.51

The prototypical nonlinearity we are interested in is (1.3), where k(r) > 0, k(r)52

differentiable for r > 0 and such that53

k(r) = Ars + o(rs) at r = 0 and k(r) = Brl + o(rl) at r = ∞, (1.4)54

for suitable values of the powers l, s. We also devote our attention to the study of the55

following classes of nonlinearities:56

f (u, r) = k(r) ×
{

u|u|q1−2, if |u| ≥ 1,

u|u|q2−2, if |u| ≤ 1,
(1.5)57

with q1, q2 > 2,58

f (u, r) = k2(r)
u|u|q2−2

1 + k1(r)|u|q1
, (1.6)59

with q1 > 1, q2 − q1 > 2, and60

f (u, r) = k1(r)u|u|q1−2 + k2(r)u|u|q2−2, (1.7)61
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with q1, q2 > 2. In all the cases (1.5), (1.6) and (1.7), we assume that the functions k, ki62

satisfy (1.4), and some further conditions.63

The aim of this paper consists in completing the analysis performed in [16] (see64

also [5,7,20,42]) with information concerning the nodal properties of solutions. Our65

main result, Theorem 2.4, gives sufficient conditions to have the following structure for66

positive and nodal solutions.67

Mix Let u(r, d) be the regular solution of (1.2) satisfying the initial condition68

u(0) = d > 0, u′(0) = 0.69

Then, there is a sequence 0 = d0 < d∗
0 ≤ d1 < d∗

1 ≤ d2 < d∗
2 ≤ · · · ≤ d j <70

d∗
j → +∞ as j → +∞, such that u(r, d∗

j ) are G.S. with fast decay with exactly71

j non-degenerate zeroes. In particular, u(r, d∗
0 ) is a positive G.S. with fast decay.72

Moreover, u(r, d) is a positive G.S. with s.d. for any d ∈ (0, d∗
0 ), while u(r, d) is a73

G.S. with s.d. with exactly j non-degenerate zeroes whenever d ∈ (d j , d∗
j ), for any74

j ≥ 1.75

Let v(r, L) be the fast decay solution of (1.2) such that76

lim
r→∞v(r, L)rn−2 = L .77

Then, there is an increasing sequence 0 = L0 < L∗
0 ≤ L1 < L∗

1 ≤ L2 < L∗
2 ≤78

· · · ≤ L j < L∗
j → +∞ as j → +∞, such that v(r, L∗

j ) are G.S. with fast decay with79

exactly j non-degenerate zeroes. Moreover, v(r, L) is a positive S.G.S. with f.d. for80

any L ∈ (0, L∗
0), while v(r, L) is a S.G.S. with f.d. with exactly j non-degenerate81

zeroes whenever L ∈ (L j , L∗
j ), for any j ≥ 1.82

For any k ≥ 0 there are uncountably many singular solutions uk(r) of (1.2) which83

have slow decay and have exactly k non-degenerate zeroes. In particular, there are84

uncountably many positive S.G.S. with slow decay u0(r).85

We emphasize that with the same argument we can obviously obtain the symmetric case,86

i.e. regular nodal solutions u with negative initial data, and fast decay nodal solutions v87

which are negative for r large.88

In the case of potentials of the form (1.3), we choose the powers in order to handle89

nonlinearities which are supercritical for r large and subcritical for r small. A particularly90

relevant example is given by the so called Matukuma equation (cf., among others [34,91

35]), which finds application in astrophysics (u represents the gravitational potential in92

a globular cluster), i.e.,93

k(r) = 1

ra + rb
, where − 2 < a <

n − 2

2
(q − 2∗) < b < (n − 2)(q − 2∗). (1.8)94

Potentials of type (1.3) are the most studied in the literature: in [42], the authors proved95

the structure result, but just for positive and regular solutions; this result was extended96

to the p-Laplace case in [20], and then completed by the analysis of positive singular97

solutions in [16].98

It is worth noticing that Yanagida in [39], using the monotonicity properties of the99

first zero R(d) of the solution u(r, d), proved the following theorem (we became aware100

of this paper just after this article was completed).101
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Theorem A. [39] Consider (1.2) with f satisfying (1.3), (1.4) and l < n−2
2 (q −2∗) < s.102

Assume that rk′(r)
k(r)

is decreasing, but not identically constant. Then, all the regular or103

fast decay solutions of (1.2) have a structure of type Mix, d∗
j = d j+1 and L∗

j = L j+1,104

for any j ≥ 0.105

Note that Theorem A applies e.g. to the case (1.8). Observe, moreover, that in [39]106

singular solutions are not considered; their analysis has been recently improved in [6,107

Theorem 1.2], proving the existence of singular-fast decay solutions and of singular-108

slow decay solutions, which are positive or have one zero, but with the restriction s ≤109

q(n − 2) − n.110

Here, we extend the result to singular-slow decay solutions with any number of zeroes.111

We further restrict the range of s by imposing s < (n − 2)(q − 2∗); such a requirement112

allows us to improve the estimates on the asymptotic behaviour of singular solutions.113

A further relevant contribution we provide in this paper consists in proving the nodal114

result without any monotonicity condition on rk′(r)
k(r)

, although we get d∗
j ≤ d j+1 and115

L∗
j ≤ L j+1.116

Since we just assume the asymptotic conditions (1.4), we can interpret our contribu-117

tion as the following structural stability result:118

Consider f satisfying (1.3) with k(r) = k1(r)+k2(r), where k1(r) is as in Theorem A, and119

k2(r) is a nonnegative function such that k2(r) ≡ 0 for any r ∈ ([0, 1/M] ∪ [M, +∞)),120

for a certain M > 0. Then, all the solutions of (1.2) have a structure of type Mix.121

So, roughly speaking, perturbations do not affect the existence result of Theorem A122

for positive and nodal solutions, but they may affect the “uniqueness” of these nodal123

solutions.124

We wish to remark that also in the papers [28,31,41] no monotonicity condition is125

required to get nodal solutions to (1.2) under potentials of the form (1.3). More precisely,126

under an asymptotic condition of type (1.4), the authors of these papers obtain regular-127

fast decay solutions to (1.2), but no information concerning slow decay or singular128

solutions is furnished.129

Following [6], we denote by T (u) := ∫
Rn f (u(x), |x |)dx the so called total curvature130

associated with u, which is relevant for associated problems in differential geometry.131

According to [11, Remark 1.4], it is worth stressing that, in the range of parameters132

considered, T (u) is finite whenever u has fast decay, independently of the behaviour of133

u (either regular or singular) at r = 0. Thus, singular solutions are “physical”. However,134

T (u) is infinite if u has slow decay. An analogous phenomenon occurs in the Matukuma135

equation: in this context T (u) represents the total mass (cf., among others [34,35]).136

In case of potentials of the form (1.5) and (1.6), we choose the powers in order to137

deal with nonlinearities, which are supercritical for u small and subcritical for u large,138

with respect to the Sobolev critical exponent 2∗. In this setting, we quote [7] and [10],139

dealing with the autonomous case, where the part of Mix concerning positive solutions is140

proved. Our work completes this analysis by studying the nodal properties and allowing141

spatial dependence.142

This paper has been inspired by [16], which introduces a unifying approach able to143

handle simultaneously nonlinearities of the form (1.3), (1.5), (1.6) and (1.7). In fact, in144

[16] structure Mix is obtained, but just for positive solutions, in the more general p-145

Laplace context. Here, we extend the analysis to nodal solutions, maintaining the main146

assumptions on the potentials, but we restrict to the classical Laplace case to clarify the147

argument and to avoid some major technical difficulties (arising especially in the p > 2148

case).149
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We now state the following consequence of our main Theorem (2.4).150

Corollary 1.2. Let us define λ(q) := n−2
2 (q −2∗) and η(q) := (n −2)(q −2∗). Assume151

either that152

1. f is of type (1.3), q > 2, k satisfies (1.4) where A, B > 0, −2 < l < λ(q) < s <153

η(q).154

2. f is of type (1.5), q1, q2 > 2, k satisfies (1.4), where A, B > 0, s, l > −2, λ(q1) <155

s < η(q1), and l < λ(q2).156

3. f is of type (1.6), q1 > 1, q2 − q1 > 2, ki satisfy157

ki (r) = Air
si + o(rsi ) at r = 0 and ki (r) = Bir

li + o(rli ) at r = ∞, (1.9)158

where Ai , Bi > 0 for every i ∈ {1, 2}, l2 > −2, s2 − s1 > −2,159

s2 + 2 >
q2 − 2

q1
s1, l1 <

(2 + l2)q1

q2 − 2
, (1.10)160

λ(q2 − q1) < s2 − s1 < η(q2 − q1), l2 < λ(q2). (1.11)161

4. f is of type (1.7), q1 > 2, q2 > 2, ki satisfies (1.9), where Ai , Bi > 0, si , li > −2162

for every i ∈ {1, 2} and163

max {λ(q1) − s1; λ(q2) − s2} < 0 < min {λ(q1) − l1; λ(q2) − l2} , (1.12)164

max {η(q1) − s1; η(q2) − s2} > 0. (1.13)165

Assume further that all the functions k, ki defined above are positive and Lipschitz166

for r > 0, then all the solutions of (1.2) have a structure of type Mix.167

The meaning of the restrictions on the parameters l, li , s, si , q, qi will be shortly clarified168

at Remark 4.1.169

Summing up, we propose a unified approach which allows us to deal with the case170

where f is subcritical for u large and r small, and supercritical for u small and r large,171

so that the change on the criticality of the potential may be due either to the dependence172

on u or to the dependence on |x |, or to a mixture of both. In this way, we complete173

the literature regarding nonlinearities f of the form (1.3) with a discussion of nodal174

singular solutions, and we improve the literature regarding nonlinearities f of the form175

(1.5), (1.6) and (1.7) with the entire study of nodal solutions (compare, in particular,176

with [6,7,16,39]), and by weakening the assumptions on f .177

Concerning the methods, in this paper we use Fowler transformation to convert (1.2) to178

a non-autonomous two-dimensional and to an autonomous three-dimensional dynamical179

system (cf. (2.2) and (2.6)–(2.7) below, respectively), which can be treated by means of180

invariant manifold theory. Multiplicity results arise by combining these techniques with181

the notion of rotation or winding number (cf. (3.5) below). We observe that similar182

approaches have been followed, among others, in [27] and [2], where multiplicity of183

solutions have been achieved for suitable autonomous problems of the form (1.1).184

We complete the paper with a brief analysis of the critical case185

f (u, r) =
j∑

i=1

cir
δi u|u|qi −2, ci ≥ 0, δi = n − 2

2
(qi − 2∗). (1.14)186

The idea to include this case originated from [6], devoted to the study of (1.2)–(1.3),187

involving critical nonlinearities as well as nonlinearities that are supercritical for r large188

and subcritical for r small. We extend the comparison with [6] by treating also the critical189
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case. Even in the general setting (1.14), we can draw all the trajectories and establish190

a correspondence between initial values and associated finite total curvature, extending191

Theorem 1.1 in [6]. In particular, by Fowler transformation we easily get the following192

result:193

Remark 1.3. Assume f as in (1.14), then all the regular solutions are positive, and the194

total curvature T (d) := T (u(r, d)) satisfies195

T (d) :=
∫

Rn
f (u(x, d), |x |)dx = d−1T (1).196

In particular, for any T > 0 there is a unique d = T (1)
T such that T (d) = T .197

Moreover, if d �= d0 there is a unique intersection R(d) between u(r, d) and u(r, d0),198

and limd→0 R(d) = +∞, limd→+∞ R(d) = 0, R(d) is monotone decreasing.199

Restricting to the critical situation considered in [6] with nonlinearities of the form200

f (u, r) = c1r δ1u|u|q1−2, we notice that the solutions of (1.2) are explicitly known201

(even in the p-Laplace context), see e.g. [15] for the case δ1 = 0. Concerning the case202

δ1 �= 0, it can be reduced to the δ1 = 0 case, by applying the natural dimension change203

of variable, see [37].204

Throughout the paper, we assume that 0 ∈ N.205

The paper is organized as follows: in Sect. 2 we introduce Fowler transformation206

to convert Eq. (1.2) into a system, we review some basic facts concerning the new207

formulation of our problem and we state the general result Theorem 2.4; in Sect. 3 we208

prove Theorem 2.4; in Sect. 4 we deduce Corollary 1.2 from Theorem 2.4 and we prove209

Remark 1.3.210

2. Basic Results on Fowler Transformation211

We devote the first part of this Section to introduce a change of variables known as212

Fowler transformation, see [12], which allows to pass from (1.2) to a two-dimensional213

dynamical system. Let us define214

αl = 2

l − 2
, γl = αl − (n − 2), l > 2215

xl = u(r)rαl yl = u′(r)rαl +1 r = et . (2.1)216

The new variables xl , yl differ from the given ones u, u′ in the presence of weight terms,217

which will help us to determine the asymptotic behaviors. Applying (2.1), we can rewrite218

(1.2) as the following two-dimensional system219 (
ẋl
ẏl

)
=

(
αl 1
0 γl

) (
xl
yl

)
+

(
0

−gl(xl , t)

)
, (2.2)220

which is as smooth as gl . Here and later “·” stands for d
dt , and221

gl(x, t) := f (x exp(−αl t), exp(t))e(αl +2)t . (2.3)222

We begin our discussion reviewing some well known facts concerning the t-independent223

case gl(x, t) ≡ gl(x). In particular, we consider f (u, r) = r δu|u|q−2, with q > 2 and224

δ > −2: in this case,225

l = 2
q + δ

2 + δ
�⇒ gl(x, t) = x |x |q−2,226
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so (2.2) is autonomous, and we have removed the singularity in r from (1.2). Note that227

if δ = 0, then l = q.228

Using invariant manifold theory [13,14,17], we see that if l > 2∗, the origin of (2.2)229

admits an unstable manifold Mu and a stable manifold Ms .230

Remark 2.1. In the origin the unstable manifold Mu is tangent to the x-axis, while the231

stable manifold Ms is tangent to the line y = −(n − 2)x .232

The manifold Mu (and Ms) is split by the origin in two connected components: one233

which leaves the origin and enters x > 0, say Mu,+ (respectively Ms,+), and the other234

that enters x < 0, say Mu,− (respectively Ms,−).235

Furthermore, there are a unique critical point P+ = (P+
x , P+

y ) in the x > 0 semiplane,236

and a unique one in the x < 0 semiplane, say P− = (P−
x , P−

y ); they are both stable if237

l > 2∗, unstable if 2∗ < l < 2∗ and centers if l = 2∗.238

Remark 2.2. Assume that gl(x, t) = x |x |q−2. Denote by X l(t; τ, Q) := (xl(t; τ, Q),239

yl(t; τ, Q)) the trajectory of (2.2) satisfying the initial condition X l(τ ) = Q ∈ R
2. Let240

u(r) be the corresponding solution of (1.2), then241

u(r) is a regular solution ⇐⇒ Q ∈ Mu,242

u(r) is a fast decay solution ⇐⇒ Q ∈ Ms .243

Moreover, if Q ∈ Mu,+, then u(0) = d > 0, while if Q ∈ Mu,−, then d < 0; similarly,244

if Q ∈ Ms,+, then limr→∞u(r)rn−2 = L > 0, while if Q ∈ Ms,−, then L < 0.245

Using the Pohozaev identity, see e.g. [13,14], it can be shown that the phase portrait is as246

in Fig. 1 when gl(x, t) = x |x |q−2. From the picture, we can classify completely positive247

and nodal solutions. As observed in [14], stable and unstable manifolds exhibit the same248

features sketched in Fig. 1, whenever gl(x, t) is t-independent, i.e. gl(x, t) ≡ gl(x), and249

satisfies the following super-linear condition:250

G0 gl(x) is a locally Lipschitz function such that xgl(x) > 0 for x �= 0, Gl(x) =251

gl(x)/x is decreasing for x < 0 and increasing for x > 0, and satisfies Gl(0) = 0,252

lim|x |→∞ Gl(x) = ∞.253

Remark 2.3. We observe that in [13,14] the whole analysis is developed just for Mu,+
254

and Ms,+. However, if gl(x) is odd as in Remark 2.2 (i.e. f (u, r) is odd in u), then Mu
255

and Ms are symmetric with respect to the origin, e.g. if Q ∈ Mu,+, then − Q ∈ Mu,−,256

and analogously for Ms . If gl is not odd but satisfies G0, it is trivial to check that Mu,−
257

is a slight deformation of M̄u,− = {− Q | Q ∈ Mu,+}, and similarly for Ms,−.258

We are now interested in describing the structure of the set of solutions of the gen-259

eral non-autonomous Eq. (2.2). We emphasize that our approach is based on the fact260

that (2.2) is locally Lipschitz continuous, and, in this setting, invariant manifold theory261

tools can be used. However, we wish to remark that, in absence of Lipschitz continuity262

assumptions, the results concerning positive solutions can still be proved using a more263

technical dynamical approach relying on Wazewski’s principle, see [16], or using a com-264

pletely different approach, as the one adopted in [20]. However, in [20] the nonlinearities265

considered are just of type (1.3) and there is no discussion concerning singular solutions.266

In order to extend the concept of stable and unstable manifolds and to present our main267

result, we introduce further assumptions which establish an asymptotic relation between268

the given non-autonomous problem and suitable autonomous ones (cf. [14,16,18] for269

similar assumptions).270
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Fig. 1. Sketch of the phase portrait of (2.2), when gl (x, t) is t-independent and satisfies G0. The unstable
manifolds Mu are the red solid lines, the stable manifolds Ms are the blue dashed lines, apart from the critical
case where they coincide and they are represented by a solid magenta line. In the critical case we have also
represented some further dashed and green trajectories corresponding to S.G.S. with slow decay (levels of
negative H ) and to sign changing solutions (levels of positive H ) (colour figure online)

G1 There is l > 2 such that gl(x, t) satisfies G0 for any t ∈ R.271

Gu There is lu > 2∗ such that for any x > 0 the function glu (x, t) converges to a272

t-independent function g−∞
lu

(x) �≡ 0 as t → −∞, uniformly on compact intervals.273

The function g−∞
lu

(x) satisfies G0.274

Moreover, glu (x, t) is differentiable in t in a neighbourhood of t = −∞, for any x ,275

and there is 	 > 0 such that limt→−∞ e−	 t ∂
∂t glu (x, t) = 0.276

Gs There is ls > 2∗ such that for any x > 0 the function gls (x, t) converges to a277

t-independent function g+∞
ls

(x) �≡ 0 as t → +∞, uniformly on compact intervals.278

The function g+∞
ls

(x) satisfies G0.279

Moreover, gls (x, t) is differentiable in t in a neighbourhood of t = +∞, for any x ,280

and there is 	 > 0 such that limt→∞ e	 t ∂
∂t gls (x, t) = 0.281

We emphasize that if G1 holds for a certain l > 2, then it holds for any L > 2 (see [14]).282

Now we are ready to state the main result of the paper.283

Theorem 2.4. Assume that u f (u, r) > 0 for u �= 0 and f (0, r) = 0, with f (u, r)284

locally Lipschitz in u ∈ R and differentiable in r ∈ (0, +∞). Suppose that there exists285

a continuous function h : [0, +∞) �→ [0, +∞) such that286

∫ x

0

∂

∂r
f (u, r) du ≤ h(r)

∫ x

0
f (u, r) du ∀(x, r) ∈ R × (0, +∞). (2.4)287

Moreover, assume that G1, Gu and Gs hold with288

2∗ < lu < 2∗ < ls . (2.5)289

Then, all the solutions of (1.2) have a structure of type Mix.290

220 2546
Jour. No Ms. No.

B Dispatch: 28/12/2015
Total pages: 27
Disk Received
Disk Used

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

Nodal Solutions for Supercritical Laplace Equations

In particular, our system has a subcritical autonomous behaviour as t tends to −∞ and a291

supercritical autonomous behaviour as t tends to +∞. We are able to draw the picture of292

the phase portraits in the asymptotic autonomous cases. The key idea to prove the result293

is to overlap and intersect in a suitable way stable and unstable manifolds.294

Remark 2.5. Assumption (2.4) is a well-known condition ensuring the continuability of295

the solutions of any Cauchy problem associated with (1.2) in r > 0. The proof of the296

global continuability result is based on an appropriate energy estimate combined with297

the Gronwall’s Lemma (cf., among others [4]).298

According to [8] and [36, Sect. 2.1], we point out that both the differentiability299

condition in the variable r and assumption (2.4) can be omitted in case of nonlinearities of300

the form f (u, r) := k(r)G ′(u), where k is a positive and Lipschitz function in [0, +∞),301

and G ∈ C1(R) with infR G > −∞. An analogous remark holds true for nonlinearities302

of the form (1.6), and it can be deduced by the approximation procedure developed in303

[36, Sect. 2.1]. This justifies the absence of assumption (2.4) in Corollary 1.2.304

Assume the validity of condition G1 in the rest of the paper.305

We now focus on the study of the properties of the two-dimensional system (2.2). Inspired306

by [2,18,27], we rewrite (2.2) as an equivalent three-dimensional autonomous system,307

adding the variable z = e	 t :308

⎛
⎝ ẋlu

ẏlu
ż

⎞
⎠ =

⎛
⎝αlu 1 0

0 γlu 0
0 0 	

⎞
⎠

⎛
⎝ xlu

ylu
z

⎞
⎠ +

0
−glu

(
xlu ,

ln(z)
	

)
0

. (2.6)309

Observe that all the trajectories converge to the z = 0 plane as t → −∞, so (2.6) is310

useful to investigate the asymptotic behavior in the past. If we assume Gu, the origin311

admits a two-dimensional unstable manifold denoted by W u. From standard argument312

of dynamical system theory, we see that the set W̃ u
lu
(τ ) = W u ∩ {z = e	τ } is a313

one-dimensional manifold, for any τ ∈ R. Note that W̃ u
lu
(−∞) := W u ∩ {z = 0}314

coincides with the unstable manifold Mu of the autonomous system (2.2) with l = lu315

and glu (x, t) ≡ g−∞
lu

(x).316

Similarly, we add to (2.2) the variable ζ = e−	 t and we get317

⎛
⎝ ẋls

ẏls
ζ̇

⎞
⎠ =

⎛
⎝αls 1 0

0 γls 0
0 0 −	

⎞
⎠

⎛
⎝ xls

yls
ζ

⎞
⎠ +

0
−gls

(
xls ,− ln(ζ )

	

)
0

. (2.7)318

Since all the trajectories of (2.7) converge to the ζ = 0 plane as t → +∞, (2.7) will319

provide information on the asymptotic behavior of trajectories in the future. When Gs320

holds, the origin admits a two-dimensional stable manifold denoted by W s. For any321

τ ∈ R, W̃ s
ls
(τ ) = W s ∩ {ζ = e−	τ } is a one-dimensional manifold. Observe that322

W̃ s
ls
(+∞) := W s ∩ {ζ = 0} coincides with the stable manifold Ms of the autonomous323

system (2.2) with l = ls and gls (x, t) ≡ g+∞
ls

(x).324

Let W u
lu
(τ ) and W s

ls
(τ ) be such that W̃ u

lu
(τ ) = W u

lu
(τ )×{z(τ )} and W̃ s

ls
(τ ) = W s

ls
(τ )×325

{ζ(τ )}.326

Since g(0, t) = 0 by assumption, the z-axis (0, 0, z) belongs to both W u and W s.327
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Remark 2.6. We remark that W u
lu
(T ) (respectively W s

ls
(T )) depends continuously on T ∈328

[−∞, +∞) (respectively on T ∈ (−∞, +∞]), see [23,26]. Indeed, if W u
lu
(T ) (respec-329

tively W s
ls
(T )) intersects transversally a line L in a point Q(T ) for T ∈ [−∞, +∞)330

(respectively for T ∈ (−∞, +∞]), then there is a neighbourhood I of T such that331

W u
lu
(τ ) (respectively W s

ls
(τ )) intersects L in a point Q(τ ) for any τ ∈ I , and Q(τ ) is332

continuous, see [26].333

Remark 2.1 admits an extension to the non-autonomous case. From standard argument334

in invariant manifold theory, we know that in the origin W u is tangent to the plane y = 0,335

while W s is tangent to the plane y = −(n − 2)x . However, we can get more with a336

construction involving exponential dichotomy, developed in [23], see also [14]. Denote337

by xl(t; τ, Q) = (xl(t; τ, Q), yl(t; τ, Q)) the trajectory of (2.2) satisfying the initial338

condition xl(τ ) = Q ∈ R
2.339

Lemma 2.7. Assume Gu and Gs, then W u
lu
(τ ) is tangent to the line y = 0, while W s

ls
(τ )340

is tangent to the line y = −(n − 2)x, for any τ ∈ R.341

Proof. Assume Gu and Gs, and set342

wu(τ ) := { Q | lim
t→−∞ xlu (t; τ, Q) = (0, 0)},343

ws(τ ) := { Q | lim
t→∞ xls (t; τ, Q) = (0, 0)}. (2.8)344

It can be proved that wu(τ ) and ws(τ ) are one-dimensional manifolds, since glu (x, t)345

and gls (x, t) are uniformly continuous for t ≤ τ and for t ≥ τ , respectively, see [23,24].346

In fact, from Gu and Gs we deduce that the manifold W u
lu
(τ ) coincides with the manifold347

wu(τ ) defined in (2.8), and W s
ls
(τ ) coincides with ws(τ ), for any τ ∈ R. Moreover, from348

G1 we know that glu (x, t) = o(x) uniformly for t ≤ 0, and gls (x, t) = o(x) uniformly349

for t ≥ 0, thus wu(τ ) is tangent to the line y = 0, while ws(τ ) is tangent to the line350

y = −(n − 2)x , for any τ ∈ R. Hence, the thesis follows. ��351

In order to understand the mutual position of W u and W s at a fixed instant τ , we352

introduce the manifolds:353

W u
ls (τ ) := {R := Q e−(αlu −αls )τ ∈ R

2 | Q ∈ W u
lu (τ )},354

W s
lu (τ ) := { Q := R e(αlu −αls )τ ∈ R

2 | R ∈ W s
ls (τ )}. (2.9)355

As in the autonomous case, the origin splits W u
l (τ ) (and W s

l (τ )) in two components, say356

W u,+
l (τ ) which leaves the origin and enters x > 0 (respectively W s,+

l (τ )), and W u,−
l (τ )357

which leaves the origin and enters x < 0 (resp. W s,−
l (τ )), for l = lu, ls . Similarly, we358

denote by W u,+ and W u,− (respectively W s,+ and W s,−) the two components in which359

the z-axis divides W u (resp. W s). From [14,17,18], we are able to extend Remark 2.2360

to the non-autonomous case:361

Lemma 2.8. Consider the trajectory xlu (t; τ, Q) of (2.2) with l = lu and the corre-362

sponding trajectory xls (t; τ, R) of (2.2) with l = ls . Then, R = Q e−(αlu −αls )τ . Let363

u(r) be the corresponding solution of (1.2). Assume Gu and Gs, then364

u(r) is a regular solution ⇐⇒ Q ∈ W u
lu (τ ) or R ∈ W u

ls (τ ),365

u(r) is a fast decay solution ⇐⇒ R ∈ W s
ls (τ ) or Q ∈ W s

lu (τ ).366

Moreover, u(0)=d > 0 iff Q ∈ W u,+
lu

(τ ), and d < 0 iff Q ∈ W u,−
lu

(τ ); limr→∞u(r)rn−2
367

= L > 0 iff R ∈ W s,+
ls

(τ ), and L < 0 iff R ∈ W s,−
ls

(τ ).368

220 2546
Jour. No Ms. No.

B Dispatch: 28/12/2015
Total pages: 27
Disk Received
Disk Used

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

Nodal Solutions for Supercritical Laplace Equations

We complete the discussion of the correspondences between (1.2) and (2.2) with the369

analysis of singular and slow decay solutions, based on standard invariant manifold370

theory. For analogous considerations, we refer, among others, to [18]. Assume Gu with371

lu > 2∗, and denote by P±(−∞) = (P±
x (−∞),−αlu P±

x (−∞)) the critical points372

(different from the origin) of the autonomous system (2.2), where l = lu and glu (x, t) ≡373

g−∞
lu

(x). Then, observe that (P±(−∞), 0) are critical points of (2.6), and they admit374

an unstable manifold which is one-dimensional for lu ≥ 2∗ and two-dimensional for375

2∗ < lu < 2∗. If ( Q, e	τ ) belongs to such a manifold, then limt→−∞xlu (t; τ, Q) =376

P±(−∞), and, consequently, the corresponding solution u(r) of (1.2) is a singular377

solution satisfying limr→0u(r)rαlu = P±
x (−∞).378

Similarly, assume Gs, and denote by P±(+∞) = (P±
x (+∞),−αls P±

x (+∞)) the379

critical points of the autonomous system (2.2), where l = ls and gls (x, t) ≡ g+∞
ls

(x).380

Then, observe that (P±(+∞), 0) are critical points of (2.7), and they admit a stable381

manifold which is one-dimensional for 2∗ < ls ≤ 2∗ and two-dimensional for ls > 2∗.382

If ( Q, e−	τ ) belongs to such a manifold, then limt→∞ xls (t; τ, Q) = P±(+∞), and,383

consequently, the corresponding solution u(r) of (1.2) is a slow decay solution satisfying384

limr→∞ u(r)rαls = P±
x (+∞).385

Lemma 2.9. Assume Gu with lu �= 2∗, let τ ∈ R and Q ∈ R
2; assume that xlu (t; τ, Q) >386

0 for any t ≤ τ , and let u(r) be the corresponding solution of (1.2). Then, either387

Q ∈ W u,+
lu

(τ ) or limt→−∞xlu (t; τ, Q) = P+(−∞); in the former case u(r) is regular388

and u(0) > 0, in the latter it is singular and limr→0u(r)rαlu = P+
x (−∞).389

If lu = 2∗ we have a third possibility: xlu (t; τ, Q) may be uniformly positive and390

bounded, so u(r) is singular.391

Similarly, assume Gs with ls �= 2∗, let τ ∈ R and Q ∈ R
2; assume that xls (t; τ, Q) >392

0 for any t ≥ τ ; let u(r) be the corresponding solution of (1.2). Then, either Q ∈393

W s,+
ls

(τ ), or limt→∞xls (t; τ, Q) = P+(+∞); in the former case u(r) has fast decay394

with limr→∞u(r)rn−2 = L > 0, in the latter it has slow decay with limr→∞u(r)rαls =395

P+
x (+∞).396

If ls = 2∗ we have a third possibility: xls (t; τ, Q) may be uniformly positive and397

bounded, so u(r) has slow decay.398

We emphasize that the symmetric result for definitely negative solutions holds true; the399

corresponding statement will be omitted for brevity.400

Hence, under the assumptions of Theorem 2.4, u is either regular, or singular, or it401

has infinitely many zeroes for r < 1; moreover, it has either fast or slow decay, or it has402

infinitely many zeroes for r > 1.403

We introduce a further Lemma to clarify the relationship between regular solutions404

u(r, d) of (1.2) and the corresponding trajectories xlu (t; τ, Q) of (2.2). The automonous405

case can be easily treated thanks to invariance for translations in t . In particular, fix Q ∈406

Mu,+ and consider the trajectory xlu (t; τ, Q) of (2.2) and the corresponding solution407

u(r, d(τ )) of (1.2). Then, arguing as in the proof of Remark 1.3, we find that d(τ ) =408

d(0)e−αlu τ , from which it follows that d is a strictly decreasing, continuous function of409

τ with limτ→−∞ d(τ ) = +∞ and limτ→+∞ d(τ ) = 0. In the non-autonomous case, an410

analogous property is satisfied.411

Lemma 2.10. Assume Gu with lu > 2∗, fix T ∈ R, and let ϒu(·, T ) : [0, +∞) →412

W u,+
lu

(T ) be a smooth (bijective) parametrization of W u,+
lu

(T ) such that ϒu(0, T ) =413

(0, 0). Let u(r, d(U )) be the solution of (1.2) corresponding to xlu (t; T, ϒu(U, T )).414
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Then, d(U ) is a strictly increasing function such that d(0) = 0 and limU→+∞ d(U ) =415

+∞.416

Note that we can parametrize W u,+
lu

(T ) directly with d. An analogous statement can be417

written for W s,+
ls

(T ) (which can be parametrized by L := limr→∞u(r)rn−2).418

Proof. Consider the parametrization of W u,+
lu

(T ) given by ϒu(·, T ) : [0, +∞) →419

W u,+
lu

(T ) such that ϒu(0, T ) = (0, 0). Observe first that, starting from ϒu(·, T ), we420

can construct a parametrization of W u,+
lu

(τ ) for any τ ∈ R, by setting ϒu(U, τ ) :=421

xlu (τ ; T, ϒu(U, T )). In fact, the function ϒu : [0, +∞) × R → R
2 is continuous in422

both the variables, and (U, τ ) → (ϒu(U, τ ), z(τ )) is an injective map in W u,+. Accord-423

ing to this parametrization, xlu (t; τ,ϒu(U, τ )) coincides with xlu (t; T, ϒu(U, T )) and424

corresponds to the given solution u(r, d(U )) for any τ ∈ R. Note, however, that this425

parametrization cannot be extended to a continuous parametrization of the whole W u,+,426

since ϒu(U, τ ) → (0, 0) as τ → −∞, which does not provide a parametrization of427

W u,+
lu

(−∞).428

Let B(δ) be the closed ball of radius δ > 0 centered in the origin. We can find429

a (small) δ > 0, independent of τ , such that the connected component W u,+
lu ,loc(τ ) of430

W u,+
lu

(τ ) ∩ B(δ) containing the origin is a graph on its tangent space, i.e. the x-axis,431

for any τ ≤ 0, see e.g. [24,26]. Moreover, for any Ū > 0, we can find a large enough432

N (Ū ) > 0 such that ϒu(U, τ ) ∈ W u,+
lu ,loc(τ ), whenever 0 ≤ U ≤ Ū and τ ≤ −N (Ū ).433

We now show that d(U ) is strictly increasing; the other properties easily follow.434

Let U2 > U1, then ϒu(Ui , τ ) ∈ W u,+
lu ,loc(τ ) for any τ ≤ −N (U2) and for i = 1, 2.435

Hence, ϒ(·, τ ) : [0, U2] → W u,+
lu

(τ ) is a graph on the x-axis, for any τ < −N (U2).436

In particular, xlu (τ ; T, ϒ(U1, T )) < xlu (τ ; T, ϒ(U2, T )) for any τ < −N (U2), and,437

consequently, u(r, d(U1)) < u(r, d(U2)) for any r < e−N (U2). Thus, d(U1) < d(U2).438

��439

2.1. Kelvin inversion. An important tool in the analysis of Eq. (1.2) is a change of440

variables classically known as Kelvin inversion, useful to transfer the information on441

regular and singular solutions to fast and slow decay solutions. Set442

s = r−1, ũ(s) = s2−nu(1/s), f̃ (ũ, s) = f (ũ sn−2, 1/s)s−2−n . (2.10)443

From a straightforward computation, we see that u(r) satisfies (1.2) if and only if ũ(s)444

satisfies the following equation445

d

ds
[ũs(s)s

n−1] + f̃ (ũ(s), s)sn−1 = 0, (2.11)446

where ũs := dũ
ds . The change of variables (2.10) brings regular, singular, fast decay447

and slow decay solutions of (1.2) into respectively fast decay, slow decay, regular and448

singular solutions ũ(s) of (2.11), and viceversa. In [18], it has been recently observed that449

clearer and more detailed information can be acquired by combining (2.10) with (2.1).450

Hence, when f satisfies Gu with l = lu > 2∗, then f̃ satisfies Gs with l = Ls > 2∗,451

where452

Ls = 2 − 2

γlu
= 2[lu(n − 1) − 2n]

lu(n − 2) − 2n + 2
, αLs = −γlu , γLs = −αlu .453
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Analogously, when f satisfies Gs with l = ls > 2∗, then f̃ satisfies Gu with l = Lu >454

2∗, where455

Lu = 2 − 2

γls
= 2[ls(n − 1) − 2n]

ls(n − 2) − 2n + 2
, αLu = −γls , γLu = −αls .456

Setting457

L = Ll = 2 − 2

γl
, x̃(t̃) = ũ(s)sαL , s = et̃ ,458

the Kelvin inversion transforms system (2.2) into the following459 ⎛
⎝

dx̃
dt̃

d ỹ
dt̃

⎞
⎠ =

(−γl 1

0 −αl

) (
x̃

ỹ

)
+

(
0

−gl(x̃,−t̃)

)
. (2.12)460

Note that to pass from (2.2) to (2.12) we just need to replace α by −γ , γ by −α and461

gl(x, t) by gl(x,−t). This way it is more clear that, roughly speaking, the difference462

between (1.2) and (2.11) consists in a simple reversion of time. Provided that we choose463

l > 2∗, observe that L > 2∗ ⇐⇒ l < 2∗ and L < 2∗ ⇐⇒ l > 2∗. In particular, sub-464

critical systems are driven in supercritical systems, and viceversa. Furthermore, W s
ls
(T )465

is brought into W u
Lu

(−T ), and W u
lu
(T ) is brought into W s

Ls
(−T ). This will help us to466

automatically translate results for regular and singular solutions into results for fast and467

slow decay solutions, and viceversa.468

3. The Main Result469

In the whole section we assume the hypotheses of Theorem 2.4 without further men-470

tioning.471

From Gs we know that W s
ls
(T ) exists for any T ∈ R. We recall that W s

ls
(+∞)472

coincides with the stable manifold Ms of the autonomous system (2.2) with l = ls and473

gls (x, t) ≡ g+∞
ls

(x). Since ls > 2∗ by assumption (2.5), W s,+
ls

(+∞) and W s,−
ls

(+∞) are474

unbounded spirals which rotate intersecting transversally the coordinate axes infinitely475

many times, see e.g. [13,14,17] and Fig. 1. Note that these intersections are unbounded476

sequences which do not accumulate in any point.477

For every solution xl := (xl , yl) of (2.2), we introduce polar coordinates478

θl = arctan(yl/xl), ρl = ‖xl‖. (3.1)479

Taking into account (2.1), we stress that if we switch between different values of l, say l480

and L , we get ρL(t) = exp[(αL −αl)t]ρl(t) and θL(t) = θl(t), so we drop the subscript481

in θ .482

From (2.1) and (2.2), we easily obtain483

dθ

dt
= (2 − n) sin θ cos θ − sin2 θ − gl(ρl cos θ, t)

ρl
cos θ. (3.2)484

Thus, the flow of (2.2) on the coordinate axes is transversal, and rotates clockwise for485

any t ∈ R.486

Lemma 3.1. The integer part of (
2θ(t)

π
) is decreasing in t.487
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From (3.2), according to Remark 2.1 and Lemma 2.8, we deduce that488

Lemma 3.2. Let (xls (t), ζ(t)) and (x̄ls (t), ζ(t)) be trajectories in W s,+ and W s,−,489

respectively; let θ s,+(t) and θ s,−(t) be the angular coordinates associated with xls (t) and490

x̄ls (t). Then, limt→+∞ θ s,+(t) = θ̄ := − arctan(n−2) ∈ (−π
2 , 0

)
, and limt→+∞ θ s,−(t)491

= θ̄ − π .492

For any τ ∈ R we construct a continuous parametrizations of W s,±
ls

(τ ), by setting493

�
s,±
ls

(·, ζ(τ )) : [0, +∞) → W s,±
ls

(τ ) × {ζ(τ )} such that �
s,±
ls

(0, ζ(τ )) = (0, 0, ζ(τ )).494

Then, we define continuous parametrizations of W s,±
ls

(+∞), by setting �
s,±
ls

(·, 0) :495

[0, +∞) → W s,±
ls

(+∞)×{0} such that �
s,±
ls

(0, 0) = (0, 0, 0). We have in fact obtained496

two parameters bijective parametrizations �
s,±
ls

: [0, +∞)×[0, +∞) → W s,± such that497

�
s,±
ls

(0, ζ ) = (0, 0, ζ ), which may be assumed to be continuous in both the variables,498

in view of Remark 2.6.499

Now we fix T ∈ R and we choose points Q±(T ) ∈ W s,±
ls

(T ); denote by W̄ s,±
ls

(T )500

the branches of W s,±
ls

(T ) between the origin and Q±(T ); let S±
T be the positive numbers501

satisfying �
s,±
ls

(S±
T , ζ(T )) = ( Q±(T ), ζ(T )).502

By adopting the same arguments in [2,18,27], it is possible to show that the number of503

rotations around the origin realized by the flow xls (·; T, Q±(T )) in the interval of time504

[T, +∞) coincides with the number of rotations performed by the branch W̄ s,±
ls

(T ).505

For this purpose, let us introduce the parametrization in polar coordinates of506

W̃ s,±
ls

(T ) = W s,±
ls

(T ) × {ζ(T )}, by507

�
s,±
ls

(S, ζ ) =
(

Rs,±
ls

(S, ζ ) cos(φs,±(S, ζ )), Rs,±
ls

(S, ζ ) sin(φs,±(S, ζ )), ζ
)

, (3.3)508

where ζ = ζ(T ) = e−	 T .509

According to (3.1), the trajectories xls (t; T, Q±(T )) can be parametrized by510

xls (t; T, Q+(T )) = (ρ
s,+
ls

(t) cos(θ s,+(t)), ρs,+
ls

(t) sin(θ s,+(t))),511

xls (t; T, Q−(T )) = (ρ
s,−
ls

(t) cos(θ s,−(t)), ρs,−
ls

(t) sin(θ s,−(t))). (3.4)512

Following [2,18,27], given a curve γ : [a, b] → R
2, we define its rotation number w(γ )513

by setting514

w(γ ) :=
[
θγ (b) − θγ (a)

2π

]
, (3.5)515

where [·] denotes the integer part and γ (t) = (ργ (t) cos θγ (t), ργ (t) sin θγ (t)). As516

pointed out in [18], we can extend this definition to a curve γ defined in a semi-open517

interval [a, b) if limt→b− θγ (t) exists (even if it is infinite). So, we can extend the518

definition to a curve γ (t) defined on [a, +∞) converging to (0, 0) as t → +∞, provided519

that γ (t) �= (0, 0) for any t ∈ [a, +∞) and limt→+∞ θγ (t) exists. By adapting the520

argument of [2,27], and, in particular, of Sect. 4 in [18] we can show the following521

Lemma 3.3. [2,18,27]. Take T ∈ R, Q+(T ) ∈ W s,+
ls

(T ) and Q−(T ) ∈ W s,−
ls

(T ), then522

w(�
s,+
ls

(·, ζ(T ))) = −w(xls (·; T, Q+(T ))),523

w(�
s,−
ls

(·, ζ(T ))) = −w(xls (·; T, Q−(T ))), (3.6)524

where �
s,±
ls

and xls are restricted to the intervals [0, S±
T ] and [T, +∞), resp.525
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Sketch of the proof We just sketch the proof, referring to [2,18,27] for details. We discuss526

the first equality in (3.6). The second one is analogous.527

Let �a be a path with the same graph and orientation as the curve (xls (t; T, Q+(T )),528

ζ(t)) defined for t ≥ T ; let �b be the path obtained following first W̄ s,+
ls

(T ) × {ζ(T )}529

from ( Q+(T ), ζ(T )) to (0, 0, ζ(T )) and then the segment which joins (0, 0, ζ(T ))530

to (0, 0, 0). Note that the orthogonal projection of (xls (t; T, Q+(T )), ζ(t)) on R
2 ×531

{ζ(T )} does not coincide with W̄ s,+
ls

(T ) × {ζ(T )}. Nevertheless, by adapting the argu-532

ment in [18, Sect. 4], we can construct an homotopy between �a and �b which pre-533

serves the endpoints ( Q+(T ), ζ(T )) and (0, 0, 0). This homotopy is obtained projecting534

(xls (t; T, Q+(T )), ζ(t)) on R
2 ×{ζ(T )} not orthogonally, but following W s,+. Once we535

build the homotopy, from a topological argument we deduce that the rotation numbers536

of �a and �b are equal, see [18, Sect. 4], and [2,27]. The minus sign in (3.6) follows537

from the fact that �b has opposite orientation with respect to �
s,+
ls

(·, ζ(T )). ��538

Proposition 3.4. Take T ∈ R, Q+(T ) ∈ W s,+
ls

(T ), Q−(T ) ∈ W s,−
ls

(T ), let S±
T be the539

positive numbers satisfying �
s,±
ls

(S±
T , ζ(T )) = ( Q±(T ), ζ(T )). Consider the parame-540

trizations (3.3) in polar coordinates of W s,±
ls

(T ), then, φs,±(S±
T , ζ ) = θ s,±(T ). More-541

over, xls (·; T, Q+(T )) and xls (·; T, Q−(T )) perform in the interval of time [T, +∞)542

the angles (θ̄ −φs,+(S+
T , ζ )) and (θ̄ −π −φs,−(S−

T , ζ )) around the origin, respectively.543

Proof. By Lemmas 3.1 and 3.2, xls (t; T, Q+(T )) performs in the interval of time544

[T, +∞) the angle (θ̄ − θ s,+(T )) around the origin. The thesis follows by using545

Lemma 3.3. The proof for xls (t; T, Q−(T )) is analogous. ��546

From Gu, Gs with 2∗ < lu < 2∗ < ls , we deduce the following lemma.547

Lemma 3.5. W s,+
ls

(T ) and W s,−
ls

(T ) are spirals rotating counterclockwise starting from548

(0, 0), and they intersect the coordinate axes infinitely many times for every T ∈ R.549

Proof. We develop the proof for W s,+
ls

(T ); the case of W s,−
ls

(T ) might be treated equiv-550

alently. As observed at the beginning of Sect. 3, we recall that the lemma holds for551

Ms,+ = W s,+
ls

(+∞). According to Remark 2.6, from a standard continuity argument552

we deduce that for every k ∈ N\{0} there exists Tk such that W s,+
ls

(T ) intersects the553

y coordinate axis at least k times, for T ≥ Tk . Let us denote by Ŵ s,+
ls

(Tk) the branch554

of W s,+
ls

(Tk) between the origin and its kth intersection with the y-axis, called P(Tk).555

According to Remark 2.5, the trajectory xls (t; Tk, P(Tk)) of (2.2) can be continued for556

any t < Tk . Consider now T < Tk . Denote by Ŵ s,+
ls

(T ) the branch of W s,+
ls

(T ) between557

the origin and xls (T ; Tk, P(Tk)), and by N (T ) the number of intersection of Ŵ s,+
ls

(T )558

with the y-axis. Let θ s,+(t) be the angular coordinate of xls (t; Tk, P(Tk)).559

Since the flow of (2.2) on the coordinate axes rotates clockwise (see Lemma 3.1),560

taking into account Proposition 3.4, we infer that N (t) is decreasing with t for any561

t ≤ Tk , whence N (T ) ≥ k for T < Tk . This completes the proof. ��562

From Lemma 3.5, recalling notation (3.3), we see that limS→+∞ φs,±(S, ζ(T )) = +∞563

for any T ∈ R. Moreover, φs,+(0, ζ(T )) = θ̄ and φs,−(0, ζ(T )) = θ̄ − π .564

As for W u, a similar situation occurs. Note first that assumption Gu ensures that565

W u
lu
(T ) exists for any T ∈ R. Recall that W u

lu
(−∞) coincides with the unstable manifold566

Mu of the autonomous system (2.2) with l = lu and glu (x, t) ≡ g−∞
lu

(x), so Mu,+ and567

220 2546
Jour. No Ms. No.

B Dispatch: 28/12/2015
Total pages: 27
Disk Received
Disk Used

Journal: Commun. Math. Phys.
Not Used
Corrupted
Mismatch



R
ev

is
ed

Pr
oo

f

F. Dalbono, M. Franca

Mu,− are unbounded spirals which rotate infinitely many times around the origin, see568

e.g. [13,14,17] and Fig. 1.569

Taking into account (3.2), Remark 2.1, Lemma 2.8 and the definition of polar coor-570

dinates (3.1) for a solution xl := (xl , yl) of (2.2), we easily conclude571

Lemma 3.6. Let (xlu (t), z(t)) and (x̄lu (t), z(t)) be trajectories in W u,+ and W u,−,572

respectively; let θu,+(t) and θu,−(t) be the angular coordinates of xlu (t) and x̄lu (t).573

Then, limt→−∞ θu,+(t) = 0 and limt→−∞ θu,−(t) = −π .574

Reasoning as in the stable manifold case, we define two-variables parametrizations of575

W u,± as follows:576

�
u,±
lu

(U, z) : [0, +∞) × [0, +∞) → W u,±,577

such that �
u,±
lu

(0, z) = (0, 0, z) for any z ≥ 0. Then, we introduce polar coordinates,578

by setting579

�
u,±
lu

(U, z) =
(

Ru,±
lu

(U, z) cos(φu,±(U, z)), Ru,±
lu

(U, z) sin(φu,±(U, z)), z
)

. (3.7)580

Fix T ∈ R, choose Q± ∈ W u,±
lu

(T ), consider the trajectories xlu (t; T, Q±(T )) of (2.2):581

according to (3.1), we denote by θu,±(t) the angular coordinates of xlu (t; T, Q±(T )).582

With arguments analogous to the ones developed above in the study of the stable583

manifold we can reprove the analogous of Lemma 3.3; then, using also Lemmas 3.6 and584

3.1, we can state the following result.585

Proposition 3.7. Take T ∈ R, Q±(T ) ∈ W u,±
lu

(T ), let U±
T > 0 be such that586

�
u,±
lu

(U±
T , z(T )) = ( Q±(T ), z(T )), then the trajectories xlu (·; T, Q+(T )) and587

xlu (·; T, Q−(T )) perform in the interval of time (−∞, T ] the angles φu,+(U +
T , z(T ))588

and φu,−(U−
T , z(T )) + π around the origin, respectively.589

Observe that �
u,±
lu

(U, z(T )) rotates clockwise on the coordinate axes as U moves from590

0 to U±
T , as well as the flows xlu (t; T, Q±(T )) as t moves from −∞ to T . As a direct591

consequence, θu,+(T ) = φu,+
(
U +

T , z(T )
)

< 0 and θu,−(T ) = φu,− (
U−

T , z(T )
)

< −π .592

As in the stable manifold case, we can prove the following lemma.593

Lemma 3.8. W u,+
lu

(T ) and W s,−
ls

(T ) are spirals rotating clockwise starting from (0, 0),594

and they intersect the coordinate axes infinitely many times for any T ∈ R.595

As a direct consequence, we obtain that limU→+∞ φu,±(U, z(T )) = −∞ for any T ∈ R.596

Moreover, φu,+(0, z(T )) = 0 and φu,−(0, z(T )) = −π .597

Recalling the definition of W u
ls
(T ) in (2.9), from a trivial topological argument we598

get the following result.599

Lemma 3.9. W u,+
ls

(T ) intersects W s
ls
(T ) in a sequence of points Q∗,+

j (T ), for any T ∈ R600

and any j ∈ N. Moreover, we can assume that Q∗,+
j (T ) ∈ W s,+

ls
(T ) if j is even, while601

Q∗,+
j (T ) ∈ W s,−

ls
(T ) if j is odd.602

Proof. Fix T ∈ R; taking into account the parametrization of W u,+
lu

(T ) in (3.7), we603

obtain the following parametrization of W u,+
ls

(T )604

�
u,+
ls

(U, z(T )) =
(

Ru,+
ls

(U, z) cos(φu,+(U, z)), Ru,+
ls

(U, z) sin(φu,+(U, z)), z
)

,605
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Nodal Solutions for Supercritical Laplace Equations

where Ru,±
ls

(U, z) := e−(αlu −αls )T Ru,±
lu

(U, z) and z = z(T ). Omitting, for simplicity,606

the dependence on T , according to (3.3) and (3.7), we define the curves �s,±(S) :607

[0, +∞) → R × [0, +∞) and �u,±(U ) : [0, +∞) → R × [0, +∞) by setting608

�s,±(S) := (φs,±(S), Rs,±
ls

(S)), and �u,±(U ) := (φu,±(U ), Ru,±
ls

(U )). (3.8)609

Note that the curves �s,± and �u,± are the liftings of W s,±
ls

(T ) and W u,±
ls

(T ), respec-610

tively. We recall that �u,+(0) = (0, 0) and limU→+∞ φu,+(U ) = −∞. In particular, the611

image of �u,+ splits the stripe {(θ, ρ) | θ ∈ R, ρ ≥ 0} into two open sets, say Al and612

Ar . We denote by Ar the set on the right of Al in the coordinate system with horizontal613

θ -axis. Let us define the curves:614

�s
2k(S) := (φs,+(S) − 2πk, Rs,+

ls
(S)) , �s

2k+1(S) := (φs,−(S) − 2πk, Rs,−
ls

(S)),615

(3.9)616

for k ∈ N, so that �s
0(S) = �s,+(S), �s

1(S) = �s,−(S) and �s
j is a translation of617

�s,+ for j even and of �s,− for j odd. Note that the curve �s
j cannot intersect �s

k if618

j �= k, since W s
ls
(T ) cannot have self-intersections. According to this notation, �s

j (0) =619

(θ̄ − jπ, 0) ∈ Al , and limS→+∞[φs,±(S) − π j] = +∞, for any j ≥ 0. Thus, from a620

continuity argument, it follows that for any j ≥ 0, there is at least one S > 0 such that621

�s
j (S) lies on the graph of �u,+, i.e. the graphs of �s

j (·) and �u,+(·) intersect at least in622

a point. Let us set623

U∗
j := min{U > 0 | �u,+(U ) ∈ �s

j (]0,∞[)},624

and let S∗
j > 0 be the value such that �s

j (S∗
j ) = �u,+(U∗

j ). Let us now define625

�
∗,+
j := �u,+(U∗

j ) = (φu,+(U∗
j ), Ru,+

ls
(U∗

j )),626

Q∗,+
j := (Ru,+

ls
(U∗

j ) cos[φu,+(U∗
j )], Ru,+

ls
(U∗

j ) sin[φu,+(U∗
j )]).627

By construction, Q∗,+
j ∈ W u,+

ls
(T )∩ W s

ls
(T ). Moreover, Q∗,+

j �= Q∗,+
k for k �= j , since628

W u
ls
(T ) cannot have self-intersections. ��629

Remark 3.10. By construction the sequence U∗
k is increasing in k ∈ N, since W u cannot630

have self-intersections.631

In fact, the sequences S∗
2k and S∗

2k+1 are increasing too. Since this property will not be632

used in the paper, its proof is left to the interested reader.633

Lemma 3.11. Let u(r, d∗
j ) be the solution of (1.2) corresponding to xls (t; T, Q∗,+

j ).634

Then, u(r, d∗
j ) is a regular, fast decay solution with exactly j non-degenerate zeroes. In635

particular, u(r, d∗
0 ) is a positive solution.636

The sequence d∗
j is increasing and d∗

j ↗ +∞.637

Proof. By construction, xls (t; T, Q∗,+
j (T )) is a homoclinic trajectory of (2.2), and the638

corresponding solution u(r, d∗
j ) of (1.2) is regular and has fast decay. Note that φs,+(S∗

j )−639

jπ = φu,+(U∗
j ) if j is even, and φs,−(S∗

j ) − ( j − 1)π = φu,+(U∗
j ) if j is odd. Thus,640

xls (·; T, Q∗,+
j (T )) performs in [T, +∞) the angle (θ̄−φu,+(U∗

j )− jπ) around the origin641
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by Proposition 3.4, while it performs in (−∞, T ] the angle φu,+(U∗
j ) by Proposition 3.7.642

Therefore, xls (t; T, Q∗,+
j (T )) performs for t ∈ R the angle643

θ̄ − φu,+(U∗
j ) − jπ + φu,+(U∗

j ) = θ̄ − jπ,644

which, in particular, is T -independent. This implies that xls (t; T, Q∗,+
j (T )) for t ∈ R645

makes exactly j semi-rotations clockwise around the origin (minus θ̄ ∈ (−π/2, 0)), so646

u(r, d∗
j ) has exactly j non-degenerate zeroes for r ≥ 0.647

The monotonicity of d∗
j follows from the monotonicity of U∗

j established in648

Remark 3.10 and from Lemma 2.10.649

Let us now prove that U∗
j is unbounded. Assume, by contradiction, that U∗

j ↗ Ū <650

∞ as j → +∞. If we set Q̄ = �
u,+
ls

(Ū , z(T )), we also have Q̄ ∈ W s,+
ls

(T ) and651

Q̄ ∈ W s,−
ls

(T ), a contradiction. Hence, U∗
j is unbounded, and, by Lemma 2.10, d∗

j is652

unbounded too. ��653

Remark 3.12. We emphasize that, a priori, the curves �u,+ and �s
j may have several654

intersections: in this case we have many regular solutions with fast decay and exactly j655

zeroes.656

Analogous versions of Lemmas 3.9 and 3.11 can be written for W u,−
ls

(T ). As for657

W u,+
ls

, we set658

Ũ∗
j := min{U > 0 | �u,−(U ) ∈ �s

j+1(]0, +∞[)},659

�
∗,−
j := �u,−(Ũ∗

j ) = (φu,−(Ũ∗
j ), Ru,−

ls
(Ũ∗

j )),660

Q∗,−
j := (Ru,−

ls
(Ũ∗

j ) cos[φu,−(Ũ∗
j )], Ru,−

ls
(Ũ∗

j ) sin[φu,−(Ũ∗
j )]).661

Similarly to (3.7), we define the curves662

�u
2k(U ) := (φu,+(U ) − 2πk, Ru,+

lu
(U )),663

�u
2k+1(U ) := (φu,−(U ) − 2πk, Ru,−

lu
(U )), (3.10)664

for k ∈ N, which, combined with (3.9), determine a net on the (θ, ρ)-plane. Here and665

below, we omit the dependence on T of all the variables in (3.10), when no confusion666

arises.667

For any t ∈ R and any j ∈ N, denote by �̄u,+(t), �̄u,−(t), �̄u
j (t), �̄s

j (t) the graphs668

of �u,+(·, t), �u,−(·, t), �u
j (·, t), �s

j (·, t), respectively.669

Moreover, set �̄u(t) := ∪
j∈N

�̄u
j (t), �̄s(t) := ∪

j∈N

�̄s
j (t) and �̄(t) := �̄u(t) ∪ �̄s(t).670

We emphasize that, by construction, a key invariance property holds. More pre-671

cisely, let �̄ Q̄ = (θ̄ , ρ̄) ∈ R × (0, +∞) be the polar coordinates of Q̄ and denote672

by �(t; T, �̄ Q̄) = (θ(t; T, �̄ Q̄), ρ(t; T, �̄ Q̄)) the polar coordinates of xls (t; T, Q̄)673

(assuming that �(t; T, �̄ Q̄) is continuous and �(T ; T, �̄ Q̄) = �̄ Q̄).674

Lemma 3.13. If �̄ ∈ �̄u,+(T ), �̂ ∈ �̄u,−(T ) and �̃ ∈ �̄s
j (T ), then �(t; T, �̄) ∈675

�̄u,+(t), �(t; T, �̂) ∈ �̄u,−(t) and �(t; T, �̃) ∈ �̄s
j (t), for any t ∈ R. Moreover,676

limt→−∞θ(t; T, �̄) = 0, limt→−∞θ(t; T, �̄) = −π and limt→+∞θ(t; T, �̄) = (θ̄ −677

jπ, 0).678
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Proof. Let �̄ be the polar coordinates of Q̄. Moreover, let xls (t, T, Q̄) and xlu (t, T, S̄)679

be the trajectories of (2.2) with S̄ := Q̄ e(αlu −αls )T and let u(r) be the solution of (1.2)680

corresponding to�(t; T, �̄). Then, by construction, xls (t; T, Q̄) ∈ W u
ls
(t), xlu (t; T, S̄) ∈681

W u
lu
(t) and u(r) is a regular solution. Hence, �(t; T, �̄) ∈ �̄u,+(t) for any t ∈ R. Fur-682

thermore, limt→−∞xlu (t; T, S̄) = (0, 0), and xlu approaches the origin tangent to the683

x positive semi-axis, so limt→−∞θ(t; T, �̄) = 0.684

The proofs concerning �̂ and �̃ are analogous and follow by Lemmas 3.6 and 3.2,685

respectively. ��686

We now introduce some sets which will play a fundamental role in the proof of our main687

theorem. In particular, we will devote our attention on the stripe between �̄u,+ and �̄u,−.688

Denote by Au(t) the open stripe in the (θ, ρ)-plane between �̄u,+(t) and �̄u,−(t);689

denote by Bs
j (t) the open stripe between �̄s

j−1(t) and �̄s
j (t). Finally, define K j (t) :=690

Au(t) ∩ Bs
j (t). From the first part of Lemma 3.13, it is easy to deduce that these sets691

satisfy the invariant property.692

Lemma 3.14. If �̄ ∈ Au(T ), Bs
j (T ), K j (T ), respectively, then �(t; T, �̄) ∈ Au(t),693

Bs
j (t), K j (t) for any t ∈ R, respectively.694

Remark 3.15. If �̄ ∈ K j (T ), then θ(t; T, �̄) ∈ (− jπ − π
2 , 0

)
for any t ∈ R. Indeed,695

by Lemma 3.1 combined with Propositions 3.4 and 3.7 we easily deduce that, for any696

t ∈ R, �̄u,+(t) cannot intersect the θ = 0 axis, while �̄s
j (t) cannot intersect the vertical697

line θ = −( jπ + π
2 ). Taking into account that K j (t) is contained in the region bounded698

by �̄u,+(t) on the right, �̄s
j (t) on the left and by the ρ = 0 axis from below, the thesis699

follows.700

Denote by �+(−∞) = (φ+(−∞), R+(−∞)) and �±(+∞) = (φ±(+∞), R±(+∞))701

the polar coordinates of the critical points P+(−∞) ∈ W u
lu
(−∞) and P±(+∞) ∈702

W s
ls
(+∞), respectively. According to the adopted notation and recalling that703

θ̄ = − arctan(n − 2) ∈ (−π/2, 0), we know that φ+(±∞) ∈ (θ̄ , 0) and φ−(+∞) ∈704

(θ̄ − π,−π).705

Finally define �+
2k(+∞) := (φ+(+∞) − 2kπ, R+(+∞)) and �−

2k+1(+∞) :=706

(φ−(+∞) − 2kπ, R−(+∞)).707

In order to give a first version of the proof of Theorem 2.4, we introduce two sim-708

plifying assumptions, which allow us to explain the main ideas avoiding technicalities.709

Such assumptions will be removed later on.710

H± For any j ∈ N there is a unique intersection between �̄u,±(T ) and �̄s
j (T ).711

Remark 3.16. Consider f of type (1.3) and assume rk′(r)/k(r) decreasing. Then, H+
712

and H− are satisfied.713

Proof. Yanagida in [39, Theorem 1] proved the existence of the sequence d∗
j of714

Lemma 3.11 under the assumptions of Remark 3.16, and showed that if u(r) and v(r)715

are distinct G.S. with f.d., then they have a different number of zeroes. On the contrary,716

from the proof of Lemma 3.11, it follows that two intersections between �̄u,+(T ) and717

�̄s
j (T ) correspond to two G.S. with f.d. with exactly j zeroes. So, this intersection is718

unique and H+ follows. To complete the proof, we observe that an analogous argument719

works for �̄u,−(T ). ��720
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Fig. 2. Sketch of the proofs of Lemma 3.11, Propositions 3.19 and 3.20, assuming H±

The proof of existence of G.S. with s.d, S.G.S. with f.d., and S.G.S. with s.d. is obtained721

with a geometrical argument developed on Figs. 2 and 3. More precisely, Fig. 2 refers722

to the case where H± hold, while Fig. 3 refers to the general case.723

We now show that if �̄ ∈ K j (T ), then the corresponding solution u(r) of (1.2) is724

singular-slow decay and has exactly j zeroes, under assumptions H±. To this purpose,725

we need some preliminary lemmas.726

Lemma 3.17. Assume H+ and H−. Consider �̂ ∈ Bs
2k(T ), �̃ ∈ Bs

2k+1(T ), then727

limt→∞�(t; T, �̂) = �+
2k(+∞), limt→∞�(t; T, �̃) = �−

2k+1(+∞) and the corre-728

sponding solutions û(r), ũ(r) of (1.2) have slow decay and are definitely positive and729

definitely negative for r large, respectively.730

Proof. Consider �(t; T, �̄) with �̄ ∈ Bs
j (T ), and let xls (t; T, Q̄) be the corresponding731

trajectory of (2.2), and ū(r) the corresponding solution of (1.2). According to the invari-732

ance property stated in Lemma 3.13, Bs
j (t)∩ �̄s(t) = ∅ for every t ∈ R, so ū(r) cannot733

be a fast decay solution. Moreover, according to Lemma 3.14, �(t; T, �̄) ∈ Bs
j (t) for734

every t ∈ R, so ū(r) cannot rotate indefinitely as r → +∞. Hence, from Lemma 2.9 we735

see that ū(r) has slow decay.736

Focusing now on W s
ls
(τ ), note that the two counterclockwise spirals W s,+

ls
(τ ) and737

W s,−
ls

(τ ) do not intersect each other and divide the (x, y)-plane into two connected738
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Fig. 3. Sketch of the proofs of Lemma 3.11, Propositions 3.22 and 3.23, when H± are removed

open sets, say Ms
0(t) and Ms

1(t), each of them containing only one critical point at739

t → +∞, say P+(+∞) ∈ Ms
0(+∞) and P−(+∞) ∈ Ms

1(+∞). Note that, by definition740

and according to Lemma 3.13, Bs
2k(+∞) and Bs

2k+1(+∞) represent a parametrization741

in polar coordinates of Ms
0(+∞) and Ms

1(+∞), respectively. From Lemma 2.9, we742

conclude that �(t; T, �̄) converges to the only critical point in Bs
j (+∞). More precisely,743

limt→∞�(t; T, �̂) = �+
2k(+∞), limt→∞�(t; T, �̃) = �−

2k+1(+∞), and the thesis744

follows. ��745

Recalling that Kelvin inversion allows us to translate results for slow decay solutions746

into results for singular solutions, from Lemma 3.17 combined with Lemma 3.13, we747

easily deduce the following result.748

Lemma 3.18. Assume H+ and H−. If �̄ ∈ Au(T ), then limt→−∞ θ(t; T, �̄) = φ+(−∞).749

The solution ū(r) of (1.2) corresponding to �(t; T, �̄) is singular and is definitely pos-750

itive for r small.751

The required multiplicity result for initial data in K j (T ) follows.752

Proposition 3.19. Assume H+and H−. If �̄ ∈ K j (T ), then the solution ū(r) of (1.2)753

corresponding to �(t; T, �̄) is singular-slow decay and has exactly j zeroes.754

Proof. By combining Lemmas 3.17 and 3.18 with the definition of K j (t), we deduce755

that ū(r) is a singular-slow decay solution.756

If �̄ ∈ K2k(T ), then limt→∞θ(t; T, �̂) = φ+(+∞) − 2kπ ∈ (θ̄ − 2kπ,−2kπ) and757

limt→−∞ θ(t; T, �̂) = φ+(−∞) ∈ (θ̄ , 0). Hence, �(t; T, �̄) intersects the vertical line758

θ = iπ − π
2 for any i ∈ {1, . . . , 2k}. Each of these 2k intersections corresponds to a759

zero of xls (·; T, Q̄), where xls (·; T, Q̄) is the trajectory of (2.2) and �̄ are the polar760

coordinates of Q̄. The exactness of the number of zeroes is a direct consequence of761

Lemma 3.1.762

With the same argument we see that if �̄ ∈ K2k+1(T ), then ū(r) has exactly 2k + 1763

zeroes, so the goal is achieved. ��764
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We now concentrate on regular-slow decay solutions. To this aim, we set765

au
j (T ) := {�u,+(U, T ) | U∗

j−1(T ) ≤ U ≤ U∗
j (T )},766

so that au
j (T ) is the arc of �̄u,+(T ) between �

∗,+
j−1(T ) and �

∗,+
j (T ).767

Given a path A, let us denote by Å the path A without endpoints. Notice that, by768

definition, åu
j ⊆ Bs

j ∩ �̄u,+. Hence, the following result holds.769

Proposition 3.20. Assume H+and H−. If �̄ ∈ åu
j (T ), then for every d ∈ (d∗

j−1, d∗
j )770

the solution ū(r, d) of (1.2) corresponding to �(t; T, �̄) is regular-slow decay and has771

exactly j zeroes.772

Proof. The proof follows by combining Lemma 3.13 with Lemma 3.17. As far as the773

number of zeros of ū(r, d) is concerned, we just need to observe that limt→∞θ(t; T, �̄) ∈774

(θ̄ − jπ,− jπ) and limt→−∞ θ(t; T, �̄) = 0, whenever �̄ ∈ åu
j (T ). The thesis easily775

follows. ��776

Note that Theorem 2.4 is an immediate consequence of Propositions 3.19 and 3.20777

combined with Lemma 3.11. Recalling that Kelvin inversion enables us to convert results778

for regular solutions into results for fast decay solutions, we easily deduce that all the779

solutions of (1.2) have a structure of type Mix with d∗
j = d j+1 for any j ≥ 0.780

Remark 3.21. We emphasize that assumption H+ implies that d∗
j = d j+1.781

Note that this equality has been proven by Yanagida [39] in Theorem A under the782

monotonicity assumption on rk′(r)
k(r)

.783

Now we remove assumptions H± to provide an exhaustive proof of Theorem 2.4. We784

need to adapt Propositions 3.19 and 3.20 to this more general setting.785

We recall that �
∗,+
j (T ) := (θ∗

j (T ), ρ∗
j (T )) are the polar coordinates of Q∗,+

j (T ).786

For every δ > 0, we define787

B j (T, δ) := {� = (θ, ρ) ∈ K j (T ) : |� − �
∗,+
j (T )| < δ},788

where |�| = √
θ2 + ρ2. Note that in the absence of assumptions H±, the set K j (T )789

can be disconnected. Hence, we choose δ > 0 small enough to ensure that B j (T, δ)790

is a connected set in K j (T ) and there exist U j (δ) ∈ (U∗
j−1(T ), U∗

j (T )), S j (δ) ∈791

(S∗
j−1(T ), S∗

j (T )) such that the border ∂ B j (T, δ) of B j (T, δ) is made up by792

�u,+([U j (δ), U∗
j (T )], T ), �s

j ([S j (δ), S∗
j (T )], T ) and a curve connecting them. More793

precisely,794

∂ B j (T, δ) ∩ �̄(T ) = �u,+([U j (δ), U∗
j (T )], T ) ∪ �s

j ([S j (δ), S∗
j (T )], T ),795

where �u,+([U j (δ), U∗
j (T )[, T ) ∩ �̄s(T ) = ∅, �s

j ([S j (δ), S∗
j (T )[, T ) ∩ �̄u(T ) = ∅.796

Let us denote by cl(B) the closure of the set B.797

We are now in position to state a revised version of Proposition 3.19, independent of798

conditions H±.799

Proposition 3.22. There exists δ̄ > 0 such that for every �̄ ∈ B j (T, δ̄), then the solution800

ū(r) of (1.2) corresponding to �(t; T, �̄) is singular-slow decay and has exactly j801

zeroes.802
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Proof. By Lemma 3.13, limt→−∞ θ∗
j (t) = 0 and limt→+∞ θ∗

j (t) = θ̄ − jπ .803

Recalling that θ̄ ∈ (−π/2, 0), we deduce the existence of T j >> 0 such that804

θ∗
j (−T j ) ∈ (−π/2, 0) and θ∗

j (−T j ) ∈ (− jπ − π
2 ,− jπ). Hence, using a continuity805

argument and taking into account Remark 3.15, we can choose ε > 0 small enough to806

guarantee that there is δ̄ = δ̄( j, ε) > 0 such that807

|�(t; T, �̄) − �
∗,+
j (t)| < ε ∀ �̄ ∈ cl(B j (T, δ̄)), |t | < T j ,808

−π

2
< θ(−T j ; T, �̄) < 0, − jπ − π

2
< θ(T j ; T, �̄) < − jπ. (3.11)809

Consider �(t; T, �̄) with �̄ ∈ B j (T, δ̄), and let ū(r) the corresponding solution of810

(1.2). According to the invariance property stated in Lemma 3.13, B j (T, δ̄)∩ �̄s(t) = ∅811

for every t ∈ R, so ū(r) cannot be a fast decay solution; B j (T, δ̄) ∩ �̄u(t) = ∅ for812

every t ∈ R, so ū(r) cannot be a regular solution. Moreover, from (3.11) combined813

with Lemmas 3.1 and 3.3, we infer that θ(t; T, �̄) ∈ (−π
2 , 0) for any t < −T j and814

θ(t; T, �̄) ∈ (− jπ − π
2 , jπ) for any t > T j . Since ū(r) cannot rotate indefinitely as815

r → ±∞, from Lemma 2.9 we conclude that ū(r) is a singular-slow decay solution.816

More precisely, limt→−∞ θ(t; T, �̄) = φ+(−∞), limt→∞θ(t; T, �̄) = φ+(+∞) −817

jπ if j is even, limt→∞θ(t; T, �̄) = φ−(+∞) − ( j − 1)π if j is odd.818

Arguing exactly as in the proof of Proposition 3.19, we obtain that ū(r) has exactly819

j zeroes. This completes the proof. ��820

We now concentrate on regular-slow decay solutions. To this aim, we set821

α j (T, δ) := {�u,+(U, T ) | U j (δ) < U < U∗
j (T )}.822

823

Proposition 3.23. If �̄ ∈ α j (T, δ̄) then for every d ∈ (d j , d∗
j ) the solution ū(r, d) of824

(1.2) corresponding to �(t; T, �̄) is regular-slow decay and has exactly j zeroes.825

Proof. Let ū(r, d) be the solution of (1.2) corresponding to �(t; T, �̄). By Lemma 3.13,826

ū(r, d) is regular, and limt→−∞ θ(t; T, �̄) = 0.827

By definition, α j (T, δ̄)∩�̄s(T ) = ∅, so ū(r) cannot be a fast decay solution. Observe828

that the inequalities (3.11) are satisfied by �̄ ∈ α j (T, δ̄), since α j (T, δ̄) ∈ ∂ B j (T, δ̄).829

Hence, with the same argument adopted in the proof of Proposition 3.22, we conclude830

that ū(r) has slow decay, and limt→∞θ(t; T, �̄) ∈ (θ̄ − jπ,− jπ).831

The thesis easily follows. ��832

Remark 3.24. It might be shown that the connected component of K j (T ) containing833

B j (T, δ̄) is made up by initial conditions corresponding to singular-slow decay solutions834

with exactly j zeroes, as well as the connected component of åu
j (T ) containing α j (T, δ̄)835

is made up by initial conditions corresponding to regular-slow decay solutions with836

exactly j zeroes, whose endpoints are regular-fast decay solutions.837

4. Proof of Corollary 1.2 and Remark 1.3838

Proof of Corollary 1.2. We begin the proof by explaining the origin of the restrictions839

on the parameters involved in the Corollary.840
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Remark 4.1. The inequality l < λ(q) < s < η(q) at point 1 is equivalent to841

2∗ < lu := 2
q + s

2 + s
< 2∗ < 2

q + l

2 + l
=: ls . (4.1)842

Analogously, the inequalities λ(q1) < s < η(q1) and l < λ(q2) at point 2 are equivalent843

to844

2∗ < lu := 2
q1 + s

2 + s
< 2∗ < 2

q2 + l

2 + l
=: ls . (4.2)845

Moreover, the inequalities in (1.11) correspond to846

2∗ < lu := 2
q2 − q1 + s2 − s1

2 + s2 − s1
< 2∗ < 2

q2 + l2
2 + l2

=: ls . (4.3)847

Finally, it is easy to show that the inequalities (1.12)–(1.13) are equivalent to848

2∗ < lu := max

{
2

q1 + s1

2 + s1
; 2

q2 + s2

2 + s2

}
< 2∗ < min

{
2

q1 + l1
2 + l1

; 2
q2 + l2
2 + l2

}
=: ls .849

(4.4)850

Now we are ready to prove the Corollary.851

1. When f is of type (1.3) and k satisfies (1.4) under the condition (4.1), it is easy to852

verify that853

glu (x, t) := k(et ) e−st x |x |q−2, gls (x, t) := k(et ) e−lt x |x |q−2,854

implying that g−∞
lu

(x) = Ax |x |q−2 and g+∞
ls

(x) = Bx |x |q−2. Thus, the thesis imme-855

diately follows.856

2. When f is of type (1.5) and k satisfies (1.4) under the condition (4.2), we obtain857

glu (x, t) := k(et ) e−st x |x |q1−2 if |x | ≥ e
2+s

q1+s t
,

gls (x, t) := k(et ) e−lt x |x |q2−2 if |x | ≤ e
2+l

q2+l t
,

858

from which we deduce that g−∞
lu

(x) = Ax |x |q1−2 and g+∞
ls

(x) = Bx |x |q2−2. The859

thesis is so achieved.860

3. When f is of type (1.6), ki satisfies (1.9) for every i ∈ {1, 2} under the condition861

(4.3), we get862

glu (x, t) := k2(et ) x |x |q2−2 eαlu (lu−q2)t

1 + k1(et ) |x |q1 e−αlu q1t .863

Taking into account (1.9)–(1.10), passing to the limit as t → −∞, we can conclude that864

g−∞
lu

(x) = A2

A1
x |x |q2−q1−2, since865

s2 + αlu (lu − q2) = s1 − q1αlu = −(s2 + 2)q1 + s1(q2 − 2)

q2 − q1 − 2
< 0.866
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Analogously, we obtain867

gls (x, t) := k2(et ) x |x |q2−2 e−l2t

1 + k1(et ) |x |q1 e
− (2+l2)q1

q2−2 t
,868

from which, according to (1.9)–(1.10), we infer that869

g+∞
ls (x) = B2 x |x |q2−2.870

4. When f is of type (1.7), ki satisfies (1.9) for every i ∈ {1, 2} under the condition871

(4.4), some further calculations lead to the following conclusions872

g−∞
lu

(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1x |x |q1−2 if lu = 2
q1 + s1

2 + s1

A2x |x |q2−2 if lu = 2
q2 + s2

2 + s2

A1x |x |q1−2 + A2x |x |q2−2 if lu = 2
q1 + s1

2 + s1
= 2

q2 + s2

2 + s2
,

873

g+∞
ls (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B1x |x |q1−2 if ls = 2
q1 + l1
2 + l1

B2x |x |q2−2 if ls = 2
q2 + l2
2 + l2

B1x |x |q1−2 + B2x |x |q2−2 if ls = 2
q1 + l1
2 + l1

= 2
q2 + l2
2 + l2

.

874

The goal is so achieved. ��875

The next brief paragraph is devoted to prove Remark 1.3, which extends Theorem876

1.1 in [6].877

Proof of Remark 1.3. Observe that if f is defined as in (1.14), then it satisfies G0 with878

l = 2∗ and g2∗(x, t) = ∑ j
i=1 ci x |x |qi −2.879

Since (2.2) is autonomous, it is invariant for translations in t . Thus, if x(t) solves880

(2.2), then xτ (t) := x(t − τ) is a solution too. Correspondingly, if u(r) solves (1.2),881

then uτ (r) := u(re−τ )e−α2∗ τ solves (1.2) too. As a consequence, in the critical case882

the solutions of (1.2) have a nice scaling property: setting U (r) := u(r, 1), any regular883

solution u(r, d) satisfies u(r, d) = U (rd2/(n−2))d, where d = e−α2∗ τ . We finally infer884

that885

T (uτ ) =
∫

R

g2∗(xτ (t)) eα2∗ t dt =
∫

R

g2∗(x(t − τ)) eα2∗ t dt886

= eα2∗ τ

∫
R

g2∗(x(t)) eα2∗ t dt = d−1T (u),887

which completes the proof of the first part of Remark 1.3.888

Now, let G(x) = ∑ j
i=1

ci
qi

|x |qi , then889

H(x, y) = α2∗ xy +
y2

2
+ G(x)890

is a first integral for (2.2) and we can draw all the trajectories. Regular solutions of (1.2)891

correspond to the family of homoclinic trajectories having graph contained in the 0 level892

set of H , see Fig. 1. The second part of Remark 1.3 easily follows. ��893
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