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Abstract

In this paper a physical model for the anomalous temperature time evolution (decay)

observed in complex thermodynamical system in presence of uniform heat source is

provided. Measures involving temperatures T with power-law variation in time as

T (t) ∝ tβ with β ∈R shows a different evolution of the temperature time rate Ṫ (t) with

respect to the temperature time-dependence T (t). Indeed the temperature evolution

is a power-law increasing function whereas the temperature time rate is a power-law

decreasing function of time.

Such a behavior may be captured by a physical model that allows for a fast thermal

energy diffusion close to the insulated location but must offer more resistance to the

thermal energy flux as soon as the distance increases. In this paper this idea has been

exploited showing that such thermodynamical system is represented by an heterogeneous

one-dimensional distributed mass one with power-law spatial scaling of its physical

properties. The model yields, exactly a power-law evolution (decay) of the temperature

field in terms of a real exponent as T ∝ tβ (or T ∝ t−β that is related to the power-law

spatial scaling of the thermodynamical property of the system. The obtained relation

yields a physical ground to the formulation of fractional-order generalization of the

Fourier diffusion equation.
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Fractional Fourier Transport, Power-law.

1. Introduction

Thermal energy transfer due to phonon-phonon diffusion is very often observed in

engineering and physical sciences leading to prediction of heat fluxes and temperature

fields by means of the well-known Fourier transport equation. In this latter relation

the instantaneous value of the thermal energy flux at any location is related to the

local spatial gradient of the temperature ([1]). The evolution of the temperature field

provided by the Fourier transport equation is an exponential growth or decay and it

proves to be accurate in several applications. However as soon as thermal energy flux is

investigated in complex, multiphase and multiscale conductors and/or in presence of

high frequency phenomena, then marked deviations of the exponential-type temperature

evolution from experimental data may be observed [2],[3]. Under these circumstances,

several generalization of the Fourier equation have been proposed in scientific literature

from the mid of the last century [4]. Inertial correction to pure diffusive heat transport,

including ballistic phononic transport, shows interesting features of the temperature

field as the propagation of second-sound thermal waves observed in superfluids [5]-[6]

and the pathological non-monotonic behavior of the entropy state function ([7],[8],[9]).

Fourier/Cattaneo models of thermal energy transport are not suitable, however, to

describe the power-law rising of the temperature in recent challenging applications.

Indeed an anomalous evolution of the temperature field has been observed in ultrafast

phenomena as the laser pulsatile radiation in biological tissues[10] as well as in thermal

energy transport in nanostructured materials [[11]].

In this context generalization of the Fourier transport equation has been proposed

replacing classical differential operators with their real-order (fractional) counterparts
d j f
dt j =

(
D j f

)
(t)→ dβ f

dtβ
= (Dβ f )(t) with β ∈ R [12].

This approach has been used in several context of physics and engineering yielding
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the so-called fractional-order Fourier transport equation ([13],[14],[15],[16]) or the

non-local fractional-order thermodynamics ([17],[18],[19],[20],[21]).

Despite the wide success beyond the introduction of fractional-order Fourier equa-

tions it has been only presented on phenomenological basis and no thermodynamical

systems have been provided, at the best of the author knowledge, with power-law time

scaling of the temperature.

This paper aims to fill this gap introducing an heterogeneous conductor that yields,

exactly, the anomalous time evolution of the temperature field as T (t)∝ tβ and β ∈ [0,1].

It is shown that, as the thermodynamical properties of the system vary as power-law of

the distance from the insulated border, a relation among the thermal properties of the

conductor and the exponent of the decay of the temperature field is obtained.

A similar feature was first encountered in the field of classical mechanics where the

anomalous material creep/relaxation has been modeled with a proper mechanical ladder

yielding the exact description of material hereditariness ([22][23],[24],[25],[26],[27]).

In other studies the presence of anomalous evolution of pressure and/or mass flux has

been related to the transport across fractal porous materials ([28],[29],[30]). In other

studies the physical representation of the spatial interactions involved in the use of

fractional-order calculus have been investigated (see e.g. [31],[32],[33]) also in the

context of long-range thermal energy fluxes [34],[35],[36])

The paper is organized as follow: In the next section a discrete thermodynamical

system will be shown to approximate the power-law evolution of the temperature field.

In sec.3 the non-homogeneous continuous thermodynamical system representation is

reported and it is shown to describe, exactly, the power-law evolution of the temperature

with exponent related to the heterogeneity of the material decay; Some conclusions

are reported in sec.4 whereas details on fractional-order operators generaling classical

operators have been reported in Appendix.
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2. A discrete mass representation of the anomalous temperature evolution

The idea described in this paper stems out from a physical consideration about the

temperature rising observed in complex thermodynamical systems as biological tissues,

nanostructured materials as well as in presence of multiphasic materials in which

different kinds of thermal energy carriers exist. Power-law temperature evolution is a

high rate phenomenon during the first time instants that is followed by a progressive

decay of the temperature time rate. Such an observation suggests that a thermodynamical

model capable to follow this phenomena shall allow for a fast thermal energy diffusion

close to the thermal energy source and it must be less compliant as the distance from

the source increase.

The challenge to describe the temperature evolution by means of such consider-

ation is exploited in this section introducing a proper thermodynamical system that

approximate the power-law evolution of the temperature time scaling.

To this aim let us consider the thermodynamical system in fig.(2 a) representing

n+ 1 masses m j = A j∆z with j = 1,2, ...,n+ 1, located at abscissas z j = j∆z and

∆z = l/(n+ 1) with l = (n+ 1)∆z the overall length of the system. The masses are

separated by adiabatic walls from the external environment so that thermal energy

exchange may occur only along the z direction and connected each other by a perfect

conductor. The thermodynamic state variables describing the system are assumed as the

macroscopic temperatures Tj(t) of the masses m j for j = 1,2, ...,n+1.

Energy balance of the jth mass m j of the system involves the rate of the internal

energy U j of the mass and the energy flux along the conductors m j, namely, q j(t) and

q j−1(t) that may be written as:

dU j(t)
dt

= m j
du j(t)

dt
= m jC

(V )
j

dTj(t)
dt

= A j−1q j−1(t)−A jq j(t) (1)

where we denoted C(V )
j the specific heat at constant volume of the mass m j that is

obtained as: C(V )
j =

(
∂u j

∂T

)
T0

assumed uniform for the considered temperature interval
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and u j(t) is the internal energy function density of the mass m j.

In the following it is assumed that only diffusive phonon-phonon interaction yields

thermal energy transport so that the jth flux may be expressed as:

q j(t) =−χ
(T )
j

Tj+1(t)−Tj(t)
z j+1− z j

=−χ
(T )
j

Tj+1(t)−Tj(t)
∆z

(2)

where we denoted χ
(T )
j the thermal conductivity of the j− th conductor. Substitution of

eq.(2) into eq.(1) yields the balance of the thermal energy as an the explicit differential

equation system in the temperatures Tj(t).

ρ∆zC(V )
j Ṫj(t) =

1
∆z

[
χ
(T )
j+1Tj+1(t)−

(
χ
(V )
j +χ

(V )
j+1

)
Tj(t)+χ

(T )
j−1Tj−1(t)

]
(3)

where we assumed A j−1 = A j = A for j = 1,2, ...,n+1 and that mass m j occupies the

volume A∆z so that, introducing the mass density ρ it may be expressed as: m j = ρA∆z

(see fig.2).

The energy balance equations reported in eq.(3) involve masses m j with j =

2,3, .....,n as the temperature of the mn+1 mass of the system has been set to the value

Tn+1 = 0 without loss of generality. Energy balance of mass m1 of the thermodynamical

system in fig.(2) involves an external thermal energy flux, denoted in the following q̄(t)

yielding:

C(V )
1 ∆zρṪ1(t)+χ

(T )
1

T2(t)−T1(t)
∆z

= q̄(t) (4)

In order to achieve an approximate description of the first mass temperature evolution

as T1 ∝ tβ of the system described by eqs.(3,4) a non-homogeneous thermodynamical

conductor shall be introduced.

In this regard we assume that the thermal conductivity χ
(V )
j and the specific heat
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coefficient C(V )
j varies along masses m j with the relations:

C(V )
j =

C(V )
α ( j∆z)−α

Γ(1−α)
(5a)

χ
(T )
j =

χ
(T )
α ( j∆z)−α

Γ(1−α)
(5b)

where Γ(•) is the Euler-Gamma function and the real exponent α belongs to the interval

−1≤ α < 1 for diffusion-type considerations that will be reported in the next section.

Coefficients C(V )
α and χ

(T )
α are specific heat and thermal conductivity with anomalous

physical dimensions as:

[
C(V )

α

]
=

L2+α T 2

K
;

[
χ
(T )
α

]
=

ML1+α

KT 3 (6)

Under these circumstances the mass temperature evolution Tj(t) ( j = 1,2, ..., ,n) is

ruled by the solution of the differential equation system:
pα Ṫ1(t)− rα [T2(t)−T1(t)] = q̄(t)

pα j−α Ṫj(t) = rα

[
( j+1)−α Tj+1 (t)− [( j+1)−α + j−α ]Tj (t)+( j−1)−α Tj−1 (t)

]
(7)

where we introduced the coefficients:

pα =
ρC(V )

α ∆z
Γ(1−α)

; rα =
χ
(T )
α

Γ(1−α)∆z
(8)

that may be converted to a compact notation as we introduce the n-dimensional temper-

ature vector T(t) ∈ Rn that gathers the mass temperatures Tj(t) as:

pα AṪTT (t)+ rα BTTT (t) = vq̄(t) (9)

where: In Eq. (9):

TT =

[
T1(t) T2(t) . . . Tn(t)

]
; vT =

[
1 0 0 . . . 0

]
(10)

where the apex T means transpose. The coefficient matrices A and B reads:
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A =



1−α 0 0 . . . 0

0 2−α 0 . . . 0

0 0 3−α . . . 0
...

...
...

. . .
...

0 0 0 . . . n−α


. (11)

B =



1−α −1−α 0 . . . 0

−1−α 1−α +2−α −2−α . . . 0

0 −2−α 2−α +3−α . . . 0
...

...
...

. . .
...

0 0 0 . . . (n−1)−α +n−α


(12)

Matrices A and B are symmetric and positive definite so that temperature evolution

reported in Eq. (9) may be obtained by using standard tools of linear analysis introduc-

ing an eigenvector decomposition of the differential system in eq.(7) with the linear

mapping:

A1/2T(t) = x(t) (13)

that substituted in eq.(9) yields, after premultiplication by A−1/2, a differential equation

for the unknown vector x obtained as:

pα ẋ+ rα Dx = ṽq̄(t) (14)
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where ṽ = A−1/2v and D is the matrix D = A−1/2BA−1/2 given as:

D =



1 −
( 2

1

) α
2 0 . . . 0 0

−
( 2

1

) α
2 1+

( 2
1

)α −
( 3

2

) α
2 . . . 0 0

0 −
( 3

2

) α
2 1+

( 3
2

)α
. . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . 1+
( n−1

n−2

)α −
( n

n−1

) α
2

0 0 0 . . . −
( n

n−1

) α
2 1+

( n
n−1

)α


(15)

that is D is symmetric and positive definite and it may be obtained straightforwardly as n

and α have been chosen. Once the differential equation of the temperature evolution has

been set the eigenvector decoupling of the system yields a nice picture of the temperature

evolution.

Indeed let ΦΦΦ be the eigenvector matrix whose columns are the orthonormal eigen-

vectors of D that is:

ΦΦΦ
T DΦΦΦ = ΛΛΛ; ΦΦΦ

T
ΦΦΦ = I (16)

where I is the identity matrix and ΛΛΛ is the diagonal matrix collecting the eigenvalues

λ j > 0 of D. In the following we order λ j in such a way that λ1 > λ2 > · · ·> λn. As we

indicate y(t) the modal coordinate vector, defined as:

x(t) = ΦΦΦy(t); y(t) = ΦΦΦ
T x(t) (17)

and we substitute in Eq. (14) a decoupled set of differential equation is obtained in the

form:

pα ẏ+ rα ΛΛΛy = v̄q̄(t) (18)

where v̄ = ΦΦΦ
T ṽ = ΦΦΦ

T A−1/2v = ΦΦΦ
T v.

The jth-equation of Eq. (18) reads:

ẏ j + γ j y j =
φ1, j

pα

q̄(t); j = 1, 2, 3, . . .n (19)
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where γ j = λ jrα/pα ≥ 0 and φ1, j is the jth element of the first row of the matrix ΦΦΦ

and it corresponds to a decoupled set of memory dependent conductors that may be

obtained from the integral description of the transport equation ([13],[14]) as the kernel

function is assumed in the form: K j(t−τ)= δ (τ)+γ jδ
′
(τ) with δ (•) the Delta function.

Additionally, it is worth noticing that the choice of exponential-type kernel function in

the memory equation of integral transport models yields, instead the Fourier-Cattaneo

model of thermal energy transport.

As a general consideration it must be observed that the presence of decaying eigen-

values γ1 ≥ γ2 ≥ ...≥ γn led to conclude that the more important contributions to the

initial, faster, temperature time rate is provided by the fist generalized conductors,

whereas the final decreasing time rate is contributed by the latter, memory-dependent,

conductors.

Indeed the solution of Eq. (19) is provided in the form:

y j(t) = y j(0)e−γ jt +
φ1, j

pα

∫ t

0
e−γ j(t−τ)q̄(τ) dτ (20)

where y j(0) is the jth component of the vector y(0) related to the vector of initial

conditions TTT (0) as:

y(0) = ΦΦΦ
T A1/2T(0). (21)

Solution of the differential equation system in Eq. (9) may be obtained as the modal

vector y(t) has been evaluated by solving Eq. (20) with the aid of Eqs. (13) and (17) as:

T(t) = A−1/2
ΦΦΦy(t). (22)

As we are interested to a relation among the heat flux applied to the first mass m1 and

the increment of the state variable, namely T1(t) we must evaluate the first element of

vector γγγ(t) obtained as:

T (t) = vT T(t). (23)

The expression of the eigenvalues and eigenvectors for of the system is obtained in
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closed-form for the specific case α = 0. In this case the thermodynamical constants of

the system reads C(V )
j =C0 and χ

(α)
j = χ0 yielding the coefficients of the differential

equation system, namely, p0 and r0 as:

p0 =C(V )
0 ∆z; r0 =

χ
(T )
0
∆z

(24)

The thermal balance equation system is then written in compact form, similarly to

the Eq. (9), as:

AṪTT +
1
4τ0

BTTT = v
q̄(t)

C(V )
0 ∆z

(25)

where4τ0 =
χ
(T )
0

C(V )
0 4z2

is a system-dependent relaxation time and the coefficient matri-

ces A = I and matrix B read:

B =



1 −1 0 . . . 0

−1 2 −1 . . . 0

0 −1 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2


(26)

The eigenvalues λ j and the normalized eigenvectors φφφ j of particular tridiagonal matrix

B may be found in [8],[9] and they are reported below:

λ j = 2−2cos
(

2 j−1
2n+1

π

)
, j = 1, 2 . . . , n (27)

φk, j =

√
4

2n+1
cos
[
(2 j−1)(2k−1)

2(2n+1)
π

]
, j,k = 1, 2 . . . , n. (28)

Using the Eq. (28) can be easily calculate the modal matrix ΦΦΦ, obtaining the following

equation in the modal space:

C(V )
0 4zẏ+

χ
(T )
0
4z

ΛΛΛy = v̄q̄(t) (29)

where v̄ = ΦΦΦ
T v and the jth-equation of the system (29), corresponding to the thermal
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balance equilibrium equation of the jth- conductor:

ẏ j +
λ j

4τ0
y j =

φ1, j

C(V )
0 4z

q̄(t), j = 1, 2, . . . ,n. (30)

yielding the solution of jth-equation as:

y j(t) = y j(0)e−
λ j
4τ0

t
+

φ1, j

4zC(V )
0

∫ t

0
e−

λ j
4τ0

(t−τ)q̄(τ) dτ (31)

and the temperature evolution of the first mass of the system reads:

T (t) = vT
ΦΦΦy(t) =

=
n

∑
j=1

[
φ1, jy j(0)e−

λ j
4τ0

t
+

φ 2
1, j

4zC(V )
0

∫ t

0
e−

λ j
4τ0

(t−τ)q̄(τ)dτ

]
.

(32)

The temperature evolution of the first mass m1 of the system is represented in fig.(2),

named T0(t), for an uniform thermal energy flux, that is q̄(t) = q̄0 = 1. It may be

observed that, as soon as a specified value of the exponent α is chosen, then a power-law

evolution of the temperature T1(t) ∝ tβ , with β a proper real number may be observed

(fig.2).

The temperature evolutions have been obtained assuming the overall lenght of the

conductor l = 30, C(V )
α = 1 and χ

(T )
α = 1. The three curves have involved number of

masses n = 4000 ,n = 1000 ,n = 2500 for α = 0.2, α = 0.0 and α = 0.2, respec-

tively. Several numerical analysis, not reported for brevity, showed that as soon as

the number n of masses increases and the length of the conductor l increases a better

approximation of a power-law up to a specified time instant tα is achieved. Value of

tα depends on the number of mass considered and, independently on the length of

the domain occupied by the system. Indeed, as soon as the number n increases for

fixed value of ∆z or the value of ∆z decreases for fixed number of masses n, larger

values of the time tα describing a curve fitted by a power-law tβ is obtained. In virtue

of this consideration it may be inferred that the choice of an unbounded, distributed

mass thermodynamical system may induce the exact representation of the power-law
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Figure 2: Temperature evolution for different values of the decaying exponent of the thermodynamical
properties of the system: Dots solution of the discrete mass system; Lines best fitting process with tβ

temperature evolution and a precise relation among the scaling parameter α and the

exponent decay β may be found as it is shown in the next section.

3. Exact thermodynamical representation of temperature power-law evolution

Thermodynamical analysis of the discrete mass system reported in previous section

revealed that, under some conditions about the macroscopic thermodynamical prop-

erties of the masses and the conductors, an approximate anomalous power-law time

dependence of the temperature as tβ is obtained.

In this section it is shown that the exact representation of the power-law time

dependence of the temperature is obtained as limiting case of the discretized mass

system presented in previous paper letting, at the same time n→ ∞, ∆z→ 0 and l→ ∞.

To this aim let us introduce the temperature field so that Tj (t)→ T (z j, t), and the

thermal energy flux field as q j (t)→ q(z j, t). In this respect, the balance equation

reported in eq.(1) has the expression:

13



ρC(V )(z)
∂T (z, t)

∂ t
=−∂q(z, t)

∂ z
(33)

that describes the balance among the rate of the thermal energy U̇ = ρ
∂u
∂ t

and the

differences among the outgoing q(z+ dz, t) and incoming q(z, t) thermal energies at

location z in unit time. Introducing the Fourier transport equation, obtained for ∆z→ 0

as:

q(z, t) =−χ
(T )(z)

∂T (z, t)
∂ z

(34)

in eq.(33) the diffusion temperature equation is obtained as:

ρC(V )(z)
∂T (z, t)

∂ t
=

∂

∂ z

[
χ
(T )(z)

∂T (z, t)
∂ z

]
(35)

where the thermodynamical properties of the distributed mass system are described

as continuous functions of the abscissa z as the continuous counterparts of eqs.(3 a,b)

C(V )
j →C(V )(z j) and χ

(T )
j → χ(T )(z j) that read:

C(V )(z) =
C(V )

α z−α

Γ(1−α)
; χ

(T )(z) =
χ
(T )
α z−α

Γ(1−α)
(36)

The boundary conditions associated to the temperature diffusion relation in eq.(33) are

obtained as the continuous conditions on the first m1 and the latter mn+1 mass of the

discrete system of the previous section as:

q̄(t) = lim
z→0
−χ

(T )(z)
∂T (z, t)

∂ z
; lim

z→∞
T (z, t) = 0 (37)

According to the observations reported in previous section two cases are considered:

i) the case of heat flux across an homogeneous thermodynamical system yielding a

temperature evolution as T0(t) ∝ t1/2 and ii) the case of the thermal energy transfer

across a non-homogeneous conductor that corresponds to an exact description of the

temperature evolution as T0(t) ∝ tβ with β related to the scaling exponent of the

14



thermodynamical properties α .

3.1. Temperature evolution in an uniform conductor: The power-law T (t) ∝ t1/2

Let us assume, in the following, that the mass density of the system is selected,

without loss of generality as ρ = 1 and α = 0. In this context the temperature equa-

tion,obtained by eq.(35) reads:

C(V )
0

∂T (z, t)
∂ t

= χ
(T )
0

∂ 2T (z, t)
∂ z2 (38)

with associated boundary conditions:

q̄(t) =− lim
z→0

χ
(T )
0

∂T (z, t)
∂ z

(39a)

lim
z→∞

T (z, t) = 0 (39b)

The solution of the temperature equation may be obtained of the temperature field in the

continuous domain is formulated in Laplace domain as:

C(V )
0 sT̂ (z,s) = χ

(T )
0 =

d2T̂ (z,s)
dz2 (40)

Solution of eq.(40) may be obtained as a linear combination of exponential functions

as:

T̂ (z,s) = B1 exp

−
√√√√C(V )

0 s

χ
(T )
0

z

+B2 exp


√√√√C(V )

0 s

χ
(T )
0

z

 (41)

Position of the boundary condition in eqs. (39a) and (39b) yields

B1 =
̂̄q(s)√

χ
(T )
0 C(V )

0

s−1/2 ; B2 = 0 (42)

yielding the temperature field T̂ (z,s) along the thermodynamic distributed system as:

T̂ (z,s) =
̂̄q(s)√

χ
(T )
0 C(V )

0

s−1/2 exp

−
√√√√C(V )

0 s

χ
(T )
0

z

 (43)

yielding, after inverse Laplace transform, a Riemann-Liouville fractional-order integral

([22]) among the ingoing thermal energy flux q̄(t) and measured temperature T0 (t) =

15



T (0, t) as:

T0 (t) =
1√

C(V )
0 χ

(T )
0

(
I

1
2
0+ q̄
)
(t) =

1
R1/2

(
I

1
2
0+ q̄
)
(t) (44)

The fractional-order relation in eq.(44) yields a power-law evolution of the temperature

as we assume an uniform flux q̄(t) =< t >0 with < • >0 the singularity function of

order 0 coalescing with the well-known Heaveside theta function. Indeed, in this case:

T0 (t) =
1

R1/2

(
I

1
2
0+ q̄
)
(t) =

1√
χ
(T )
0 C(V )

0

t1/2
∝ t1/2 (45)

That is as far as we control the ingoing flux at z = 0, the measured temperature at

the same location depends on the histories of the flux field with a fractional integral

order β = 1/2. As a consequence the temperature evolution for uniform heat flux, at the

same location, involves exactly a power-law time dependence with exponent β = 1/2 as

already observed in the discrete thermodynamical system reported in previous section

(see fig.2). It may be concluded that the distributed thermodynamical system considered

in this case, obtained as an asymptotic expansion of the corresponding discretized

counterpart shown in fig.(1 a), is the exact thermodynamical model of anomalous power-

law temperature evolution t1/2. The generalization to real powers of t as tβ will be

discussed in the next section.

3.2. The temperature evolution T (t) ∝ tβ (0≤ β < 1)

In this section the generalization of the exact result obtained previously to arbitrary

values of the exponent β is reported. In this regard it is shown that a linear one-to-one

relation exists among the scaling exponent of the thermodynamical property of the

system α and the exponent β .

The temperature field T (z, t) may be obtained introducing Laplace transform of

eq.(35) yielding an ordinary differential equation in Laplace domain as:

d
dz

[
χ
(T ) (z)

dT̂ (z,s)
dz

]
= sC(V )

α (z) T̂ (z,s) (46)
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that may be cast, after some straightforward manipulation as:

d2T̂ (s,z)
dz2 +

[
χ(T ) (z)

]′
χ(T ) (z)

dT̂ (s,z)
dz

− C(V ) (z)
χ(T ) (z)

sT̂ (s,z) = 0 (47)

Substitution for the thermal conductivity coefficient χ(T ) (z) and the specific heat C(V ) (z)

the corresponding power-laws reported in eqs.(36) the differential equation ruling the

temperature field reads:

d2T̂ (z,s)
dz2 − α

z
dT̂ (z,s)

dz
− τα sT̂ (z,s) = 0 (48)

with:

τα =
C(V )

α

χ
(T )
α

(49)

is an anomalous decaying time depending on the anomalous thermal properties of the

mass system.

The governing equation of the temperature field may be reverted into a Bessel

equation of the second kind introducing an auxiliary function: T (z,s) related to the

unknown function T̂ (z,s) by means of the non-linear mapping T̂ (z,s) = zα T (z,s). In

this setting the first and second-order derivatives involved in eq.(48) read, respectively:

dT̂ (z,s)
dz

= αzα−1T (z,s)+ zα dT (z,s)
dz

(50a)

d2T̂ (z,s)
dz2 =

d
dz

[
αzα−1T (z,s)+ zα dT (z,s)

dz

]
=

= α (α−1)zα−2T (z,s)+2αzα−1 dT (z,s)
dz

+

+ zα d2T (z,s)
dz2

(50b)

and substitutions into eq.(48) yield a modified Bessel equation for function T (z,s) as:

z2 d2T (z,s)
dz2 +αz

dT (z,s)
dz

−
(
z2

τα s+α
)

T (z,s) = 0 (51)

Eq.(51) may be solved in terms of the first and the second modified Bessel functions
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denoted, respectively Yβ (z
√

τα s) and Kβ (z
√

τα s) defined as:

Yβ (z) =
∞

∑
k=0

(z/2)β+2k

k!Γ(k+β +1)
(52a)

Kβ (z) =
π

2sin(2πβ )

[
Y−β (z)−Yβ (z)

]
(52b)

yielding a solution of the modified Bessel function in the form:

T̂ (z,s) = zβ
(
B1Yβ

(
z
√

ταs
)
+B2Kβ (z

√
τα s)

)
(53)

where we introduced the α-dependent relaxation time τα and the exponent β that is

related to the scaling exponent α as:

β =
(1+α)

2
(54)

Integration constants B1 and B2 in eq.(53) are defined as we impose the relevant boundary

conditions that are defined in Laplace domain as:

lim
z→0
−χ

(T )(z)
∂ T̂ (z,s)

∂ z
= ̂̄q(s) (55a)

lim
z→∞

T̂ (z,s) = 0 (55b)

yielding the integration constants:

B1 = 0 ; B2 =
2β Γ(β )

χ
(T )
α Γ(1−β )

(sτα)
−β/2̂̄q(s) (56)

and the temperature field of the distributed mass systems in the form:

T̂ (z,s) =
2β Γ(2(1+β ))(τα s)−β/2

χ
(T )
α Γ(1−β )

Kβ (z
√

sτα)̂̄q(s) (57)

As soon as the temperature T (z, t) has been obtained in the whole distributed system

the explicit relation among the measured temperature at z = 0 as a consequence of the
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ingoing flux of thermal energy is obtained as:

T̂0 (s) = lim
z→0

T̂ (z,s) =
s−β

Rβ Γ(β )
̂̄q(s) (58)

where the anomalous thermal diffusivity coefficient, Rβ is expressed in terms of the

physical properties of the conductor as:

Rβ =
Γ(2β )τ

β

α

χ
(T )
α 21−2β Γ(β )Γ(1−β )

(59)

The relation in eq.(58) yields, under the assumption of uniform thermal energy flux as

q̄(t) = 1, the time-varying temperature function T0(t) as the inverse Laplace transform:

T0(t) =
tβ

Rβ

∝ tβ (60)

thatis the power-law temperature time scaling observed in fig.(2) for the discretized

mass system considered in the analysis with β ∈ [0,1) .

Under the assumption that the thermal energy flux is a time-dependent function, the

inverse Laplace transform of eq.(58) yields

T0(t) =
1

Rβ

1
Γ(β )

∫ t

0
(t− τ)β−1q̄(τ)dτ =

1
Rβ

(
Iβ

0+ q̄
)
(t) (61)

that is a Riemann-Liouville fractional-order integral (see Appendix for details) of order

β ∈ [0,1) .

Eq.(61) represents the generalization of the Fourier-Cattaneo transport equation

in terms of fractional-order integrals obtained with an exact thermodynamical model

of thermal energy transport. It may be observed that a generalization of the Fourier-

Cattaneo equation involving fractional-order derivatives of the heat fluxes ([13][14])

may be obtained in the framework of the proposed model is possible as we include in

the analysis values of the decaying α in the interval −3≤ α ≤−1 (see e.g. [37]).

The inverse relation of eq.(61) may be obtained introducing the β−order fractional
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derivative of both sides of eq.(61) yielding:

q̄(t) = Rβ

(
Dβ

0+T0

)
(t) (62)

that is a fractional-order generalization of the transport equation analogous to fractional-

order generalization of the Darcy filtration equation as reported in ([37]).

The considerations reported in this section show that, as a fractional-order heat

transport equation is considered, three different physical models of thermal energy

transport may be involved: i); A Subdiffusive phonon-phonon transmission, ii); a Normal

phononic energy transport and iii); a Superdiffusive phononic energy transmission.

Indeed, in case ii), the Normal phononic energy transfer (β = 1/2) occurs in an

homogeneous media without any difference during the phononic path. If instead a

Subdiffusive thermal process (case i) is observed, then the phonons carrying thermal

energy moves freely close to the thermal energy source and they are, instead more

confined along their path in the conductor (β ≤ 1/2). A similar, but opposite, effect

(case iii) is involved in Superdiffusive thermal energy path (β ≥ 1/2) where the motion

of the phonons is more confined in the neighborhood of the thermal energy source and

it is less confined as the distance increases.

The aformentioned connection among the physics of the anomalous temperature

rising and classical thermodynamics has not been pointed out, at the best of the authors

knowledge, and it is useful to realize material conductors with sub/superdiffusive

properties at the nanoscale.

4. Conclusions

The anomalous temperature rising in the form of a time-varying power law as T (t) ∝ tβ

with β ∈ [0,1) can not be predicted with the use of the well-known equations of the

thermal energy transfer as the Fourier/Cattaneo equation and proper generalization

of the transpot equations in in terms of fractional-order calculus has been proposed.

However, beside the phenomenological replacement of the Cattaneo/Fourier equations
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with their fractional-order counterpat no physical model has been provided to describe

anomalous time scaling at the best of the author’s knowledge.

In this study it is shown that, based on the consideration that the power-law rising

show a fast time rate at the beginning followed by decreasing time rate a novel thermo-

dynamical model yielding the anomalous temperature evolution T ∝ tβ is proposed. The

idea stems out from the observation that a thermodynamical system with a functionally

graded thermodynamical parameters undergoes non-homogeneous temperature evolu-

tion. As a proper functional class of the parameters is considered in terms of power-laws

of the distance from the insulated border, then a time evolution of the temperature in the

form tβ is obtained. A specific relation on the scaling of the thermodynamical properties

and the exponent β has been explicitly obtained.

It is shown that a discrete mass system corresponds to an approximation of the

power-law tβ and, at the limit, the exact expression T0(t) ∝ tβ is obtained. In this

context the presence of a non-constant thermal energy flux yields a fractional-order

generalization of the Fourier transport equation is obtained providing a physical ground

to the use of fractional-order thermodynamics.
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Appendix: Remarks on fractional calculus

In this appendix the essential features of fractional calculus will be shortly discussed.

Let us consider a real-valued, Lebesgue integrable function f (x) ,x ∈ R such that

f (x) ∈ L1.The left and right Riemann-Liouville (RL) fractional-order integrals are

defined as:

(
Iα
+ f
)
(x)=

1
Γ(α)

∫ x
−∞

f (y)

(x− y)1−α
dy(

Iα
− f
)
(x)=

1
Γ(α)

∫
∞

x
f (y)

(y− x)1−α
dy

(63)

with α ∈ [0,1] and Γ(•) is the Euler-Gamma function. The left and right fractional

derivatives are defined as:

(
Dα
+ f
)
(x)=

1
Γ(1−α)

d
dx
∫ x
−∞

f (y)

(x− y)1−α
dy(

Dα
− f
)
(x)=

1
Γ(1−α)

d
dx
∫

∞

x
f (y)

(y− x)1−α
dy

(64)

As we assume that function f (x) ∈C1with C1the class of continuous functions with

continuous first derivative, then the left and right RL fractional derivatives coalesces

with the Marchaud (M) fractional operator that is defined as:

(
Dα
+ f
)
(x)=

α

Γ(1−α)

∫ x

−∞

f (x)− f (y)

(x− y)1+α
dy =

(
Dα
+ f
)
(x) (65)

for the left M fractional derivative, whereas, the right M fractional derivative is related
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to the right RL fractional derivative as:

(
Dα
− f
)
(x)=

α

Γ(1−α)

∫
∞

x

f (x)− f (y)

(y− x)1+α
dy =

(
Dα
− f
)
(x) (66)

The definition of RL and M fractional derivatives operating on functions defined on

bounded intervals [a,b]⊂ R involves integral terms as well as algebraic contributions

as:

(
Dα

a+ f
)
(x) =

f (a)
Γ(1−α)(x−a)α +

1
Γ(1−α)

∫ x

a

f (y)′

(x− y)α dξ (67)

(
Dα

b− f
)
(x) =

f (b)
Γ(1−α)(b− x)α −

1
Γ(1−α)

∫ b

x

f (y)′

(y− x)α dξ (68)

where f (y)′ =
d f
dy

, showing divergence at the boundaries of the considered domains,

unless function f (x)→ 0 faster than xα as x→ 0.

26



  

*Manuscript
Click here to download Source files (not built in PDF): Anomalous time scaling.tex

http://ees.elsevier.com/aop/download.aspx?id=149189&guid=99451c23-531c-4826-9cf0-97476fd8f95c&scheme=1


  

*Manuscript
Click here to download Source files (not built in PDF): bibliography.bib

http://ees.elsevier.com/aop/download.aspx?id=149188&guid=96e2af3f-f8df-4d70-98c7-f4d49d2eae8c&scheme=1


  

*Manuscript
Click here to download Source files (not built in PDF): figura1n.pdf

http://ees.elsevier.com/aop/download.aspx?id=149186&guid=52464794-6096-4838-84ca-3529f79b0775&scheme=1


  

*Manuscript
Click here to download Source files (not built in PDF): figura2.pdf

http://ees.elsevier.com/aop/download.aspx?id=149187&guid=0fabc772-e24b-412c-bc44-846780ce1215&scheme=1

