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 ‘If we were to name the most powerful assumption of all, which leads one on and on 

in an attempt to understand life, it is that all things are made of atoms, and that 

everything that living things do can be understood in terms of the jigglings and 

wigglings of atoms.’  

Richard Feynman, Nobel Prize in Physics 1965 
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1 INTRODUCTION  
 

The most important issue in Medicinal Chemistry is without any doubt the drug 

design part, often referred to as rational drug design or simply rational design. It 

represents the process of finding new drugs based on the knowledge of a biological 

target or all the biochemical steps in which the target is involved [1]. Most 

commonly, The aim of a drug discovery process is to find an organic small molecule 

responsible for modulating the biochemical patterns of a cell process. The activation 

or inhibition of a biomolecule function, such as of a protein or of a nucleic acid, 

results in turn in a therapeutic benefit to the patient. In its basic sense, rational drug 

discovery involves the design of molecules that, showing a highly complementary 

chemistry to a specific target, can interact with it, starting a cascade of biochemical 

responses. In addition to organic small molecules new classes of drugs become 

everyday increasingly important as, for example, biopharmaceuticals and especially 

therapeutic antibodies. In order to test and validate these protein-based therapeutics, 

different techniques for improving the affinity, selectivity, and stability of them have 

also been developed [2]. 

In the drug design process, prediction of binding affinity is nowadays the most 

improved task and, at the same time, the most reliable. However, there are many 

other properties, such as bioavailability, metabolic half-life, and side effects that 

must be optimized prior to get a safe and efficacious drug. These pharmacokinetic 

parameters are yet difficult to predict through rational design techniques. 

Nevertheless, today, more attention has been focused on selecting candidate 

molecules presenting physicochemical properties that can lead to fewer 

complications during development and hence can help in the pathway from lead 

compound to marketed drug [3]. Furthermore, in silico methods, used prior to in 

vitro experiments, have shown a huge benefit in predicting possible ADME 

(Absorption, Distribution, Metabolism, and Excretion) properties for the potential 

candidates as well as their toxicological profiles [4]. In contrast to traditional 

methods of drug discovery based on testing candidate drugs through in vitro and in 

vivo assays, and connecting the retrieved effects to treatments, rational drug design is 

based on an initial hypothesis that a desired effect is due to the modulation of a 

precise biological target, specifically tuned by a structurally complementary 

molecule. The first issue of rational drug design is the knowledge of the real 
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involvement of the target in the studied biochemical disease pathway. This can be 

sometimes confirmed by the association between target mutations and disease states 

[5]. The second is the druggability of the chosen target. This relies on the target 

capability of binding to a small molecule for the modulation of its activity [6]. In a 

rational drug discovery protocol, the research of small molecules potentially capable 

to bind to a specific target begins with a screening of libraries containing probable 

drug candidates. This process can be assessed as “wet screening” or may be done 

through the computational means searching for drug and lead-likeness of compounds 

[7]. Several methods are available to estimate drug-likeness such as Lipinski's Rule 

of Five and a range of scoring methods such as lipophilic efficiency [8]. 

The optimisation process of a drug design protocol is characterised by a huge 

number of properties that must be simultaneously tuned. For this reason, it is of 

common use to adopt some multi-object optimization techniques [9]. Finally, despite 

all the efforts made in the last years to optimise drug discovery protocols, a 

successful drug design campaign seems to be mostly reliant on serendipity and 

bounded rationality [10]. 

 

In the last years, the application of computational techniques in drug discovery and 

development process has gained in popularity, implementation, and appreciation. 

Different terms have been applied to this area, the most common used are computer-

aided drug design (CADD), molecular modelling and in silico drug design. The 

success behind CADD application is due to its capability of increasing the hit rate of 

novel drug compounds when compared to the classical HTS approach. Compared to 

the latter, in silico methods allow the use of combinatorial chemistry and a much 

more targeted search, thanks to publicly available databases growth. The main scope 

of molecular modelling is to explain the molecular basis of therapeutic activity of 

some molecules and predict possible derivatives that would improve activity [11, 

12]. In a drug discovery campaign, computational techniques are usually used for 

three major purposes: 

 (1) Filter large compound libraries into smaller sets of predicted active compounds 

that can be tested experimentally leveraging chemical and biological information 

about ligands and/or targets to identify and optimize new drugs; 

 

 (2) Guide the optimization of lead compound, whether to increase its affinity or 
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optimize drug metabolism and pharmacokinetics properties such as absorption, 

distribution, metabolism, excretion, and the potential for toxicity (ADMET); 

(3) Help in the rational design of novel compounds, either by modifying starting 

molecules or by tying together fragments into novel chemotypes.  

Fast expansion in this area has been made possible thanks to advances in 

computational software and hardware, and increasing database of publicly available 

ligand molecules and target protein structures. One of the most important advantages 

in the use of in silico methods is the reduction of chemical space size and, thereby, 

the possibility to focus on more promising candidates for lead discovery and 

optimization. The main goal of virtual screening is therefore to eliminate compounds 

with undesirable properties and enrich the set of molecules with desirable properties. 

In another words, in silico modelling is used to significantly minimize time and 

resource requirements of chemical synthesis and biological testing. As shown in Fig. 

1.1, in silico methods become nowadays more and more important as a first step of 

the entire workflow for the drug discovery process, avoiding possible false positive 

or false negative results in the search of possible hits to develop. In the last years, in 

fact, there has been a rapid growth of virtual screening usage, as confirmed by the 

increase in the number of citations matching keywords “virtual screening”. By using 

the SCOPUS database [13], it is possible to check that the articles explicitly 

reporting the keyword “virtual screening” steeply increase about the year 2000 

reaching a number of articles 20 times higher in 2015. 
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Fig.1.1 Virtual screening workflow adopted prior to in vitro assays 

!
D.V. Green of GlaxoSmithKline in a review published in 2003 concluded with: “The 

future is bright. The future is virtual” [14]. Already in 2003, it was estimated that 

computer modelling and simulations would account for ~ 10% of pharmaceutical 

R&D expenditures and that they will have rose to 20% by 2016 [15]. In these days, 

PriceWaterhouseCoopers has published “Pharma2020”, the latest market research 

about the state of the art and the future of computational chemistry within the 

pharmaceutical companies [16]. In Fig. 1.2, the comparison between the state of the 

art and future predictions is reported. 
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Fig.1.2 comparison between state of the art and future predictions in CADD usage in pharma 

industries 
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Referred to CADD there are two major types of drug design. The first is referred to 

as ligand-based approach [17], and the second, structure-based [18] Fig. 1.3. 

 
Fig.1.3 Ligand-based and Structure-based approaches in drug discovery 

 

Ligand-based drug design is usually adopted when there is no 3D structural 

knowledge of the target studied. The use of molecules known to be active on the 

biological target of interest is the starting point used for such an approach. This kind 

of design strategy is also called indirect drug design because, starting from known 

active compounds on a specific protein, it tries to find the essential chemical features 

useful for interacting with that target. Once all the structural information has been 

collected it is in fact possible to search for chemical similarity between known and 

new molecules. One of the most applied ligand-based approaches is based on the 

indirect building of a pseudo receptor derived from a pharmacophore model that 

defines the minimum necessary structural characteristics a molecule must possess in 

order to bind to the target. In other words, a model of the biological target binding 

pocket may be built based on the knowledge of what binds to it, and this model in 

turn may be used to design new molecular entities that interact with the target [19–
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21]. A pharmacophore model can be considered as an abstraction of molecular 

features necessary for the molecular recognition between a ligand and a biologic 

macromolecule. The IUPAC defined it as “an ensemble of steric and electronic 

features that is necessary to ensure the optimal supramolecular interactions with a 

specific biological target and to trigger (or block) its biological response” [22].  

The pharmacophore features include hydrophobic centroids, positive or negative 

ionisable sites, hydrogen bond acceptors or donors and aromatic rings (Fig.1.4). 

These pharmacophore features may be located on the ligand or may be project points 

presumed to be located in the receptor [23]. 

 
 

Fig.1.4 Pharmacophore model generated with Ligandscout software. In yellow 
hydrophobic features are represented, hydrogen-bond acceptors are signed in red 
and hydrogen-bond donors in green. Blue rings stands for aromatic features 

 

Another common ligand-based method relies on cheminformatics. In this case, 

ligand structural information is converted into molecular descriptors, and, through 

statistical analysis, one can predict possible target for a new molecule. This kind of 

prediction is based on the structural similarity between the new molecule and a 

known set of compounds. Such an approach has been developed and applied to the 

search of new potential drugs [24, 25]. Ligand-based drug design can be also 

exploited to search for a quantitative structure-activity relationship (QSAR). In this 

approach, one can determine the statistical correlation between calculated properties 

of molecules, expressed as molecular descriptors, and their experimental biological 

activity. Once found the most robust model, the information can be exploited to 

predict the activity of new analogues [26, 27]. A QSAR model has the form of: 

 

  Eq.1 



! 8!

 

In the last years, a more complete approach has been developed: 3D QSAR. This 

term refers to the application of force field calculations based on three-dimensional 

structure of molecules. It exploits the calculation of non-covalent empirical 

potentials between atom couples, such as the Lennard-Jones potential, rather than 

using experimental constants to define the interatomic interactions. Some of the 

parameters analysed are the steric fields (shape of the molecule), the hydrophobic 

regions (water-soluble surfaces), and the electrostatic fields [28–30]. 

 

Structure-based drug design exploits the knowledge of the three dimensional 

structure of the biological target, obtained through methods such as X-ray 

crystallography or NMR spectroscopy [31, 32]. The lack of target 3D structure can 

be overtaken by means of a homology model of the target, using the experimental 

structures of similar proteins. In this case, the studied protein will be folded 

according to the amino acid sequence homology with other proteins having known 

folding structures [33, 34]. In case of low homology levels, it is possible to assess 

folding prediction through the use of protein threading. In this technique, also known 

as fold recognition, each amino acid in the target sequence is assigned to a position 

in a template structure, and an evaluation of how well the target fits the template is 

done. After the best-fit template is selected, the structural model of the sequence is 

built [35, 36]. Starting from the knowledge of the biological target structure, 

candidate drugs can be optimally designed by medicinal chemists, predicting their 

binding affinity and selectivity. The two main structure based techniques are the 3D 

pharmacophore modelling [21, 37, 38] and molecular docking [39, 40].  

Pharmacophore modelling is more and more preferred to docking for several reasons. 

First of all, it is more universal. In fact, pharmacophores represent chemical 

functions, applicable not only to a specific bounded molecule, but also to unknown 

ones. Secondly, it is very efficient because the computational resources needed for 

the pharmacophore modelling are really poor. For this reason, it is very suitable for 

large libraries virtual screening. In the end, it also allows researchers to tune it on the 

fly adding and removing features or adjusting their tolerance in order to optimise 

both the sensitivity and selectivity of the screening.  

Molecular docking is usually applied to deeply evaluate the interaction between a 

small molecule and a protein at the atomic level. This helps to study the behaviour of 
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small molecules in the binding site of target proteins and to deepen biochemical 

paths. The docking protocol consists of two main parts: firstly, the prediction of the 

ligand position, conformation and orientation within the binding site (usually 

referred to as pose) then, on a determined pose, the evaluation of the binding affinity. 

These two steps rely on what is defined as searching algorithm (for the pose 

research) and scoring function, for the binding affinity calculations [39, 41]. 

Different types of molecular docking have been developed in the last years. The two 

main approaches exploit ligand flexibility or receptor and ligand flexibility 

respectively. In the former, ligand conformations may be generated prior to docking 

or within the receptor binding cavity [42]. To select proper energetically 

conformations of ligands, knowledge-based [43] or force field-based methods  are 

used [44].  

The above mentioned in silico approaches used in drug design can be roughly further 

classified based on the purpose of their application [45]. One of the most used 

applications of CADD is the virtual screening. It consists in the search of new 

ligands as potential drugs for a specific target by searching large databases of 3D 

structures of small molecules that can well fit into the binding pocket of a protein or 

on a pharmacophore model. A second strategy is the de novo design of ligands. In 

this case, molecules are designed starting from the essential interaction pattern within 

the binding pocket by assembling molecular fragments that can satisfy those 

interactions. The strength of such an approach is that molecules created are not 

present in any database, but are new entities [46]. The last approach consists in the 

optimisation of already existing molecules to maximise the efficacy or to minimise 

side effects while maintaining the essential features to interact with the chosen target 

[47]. 

In the last years a new way of using CADD has been more and more adopted. It is 

based on the integration between screening techniques with simulation ones as, for 

example, Molecular Dynamics (MD). 

MD in drug design has demonstrated to give a huge impact in the improvement of 

drug design strategies. The knowledge of molecular motions can be fundamental for 

understanding compatibility between two different molecules. Thanks to the modern 

techniques, the initial idea of a frozen receptor that can accommodate a small 

molecule without mutating its conformation –also known as “Lock-and key” model 

[48] - has been largely substituted by a modern idea of dynamic receptor that 
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undergoes some conformational changes based on the ligand to bind [49, 50]. In 

Figure 1.5 the general process of molecular dynamics calculations is reported. 

 
Fig.1.5 Simplified Scheme of molecular dynamics calculations 

 

The first step of MD is the availability of a 3D target structure. This can be obtained 

throughout X-ray crystallography, Nuclear Magnetic Resonance (NMR), or by 

homology-modelling. The 3D coordinates of the receptor structure will be used as 

starting point for the integration of the equation of motion. For this calculations, 

Energy, expressed as forces between atoms, is calculated exploiting Force Field (FF) 

parameters according to the formulas reported in Figure 1.6 [51]. The FF contains all 

the information useful for the calculation of the total energy of the molecules, 

including bonded and non-bonded terms relatives to atoms within the simulation. 

In FF parameters, the bonded part of measurement contains chemical bonds 

stretching and atomic angles variations modelled as simple virtual springs. Dihedral 

angles are instead represented by sinusoidal functions that approximate the energy 

differences between eclipsed and staggered conformations. The non-bonded terms 

are represented by van der Waals interactions, for the neutral species, Lennard-Jones 

6-12 potential, and using Coulomb’s law for the charged interactions [52].  
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Fig.1.6 Example of empirical Force Field parameters 

 

Even though current force fields present some weaknesses because of several 

approximations and simplifications, MD simulations play today a very important role 

in drug discovery because they are the only way to study receptor motions. Just a 

single protein conformation, for example, tells little about protein dynamics. The 

static models can be valuable to study the structure of a protein, but drug binding or 

molecular recognition in general are dynamic processes otherwise not 

comprehensible if not through the use of MD. The molecular recognition process 

involves in fact different possible arrangements of both ligand and protein and not 

their unique and static conformation. 

Following the receptor theory, ligands can bind and stabilize only a subset of the 

different conformations of a receptor and this can cause an induced shift of all the 

receptor conformations towards the most appropriate to bind the ligands [49]. 

Moreover, once bound to the protein, the ligand can induce some rearrangements in 

the binding pocket that are not reproducible in its absence [53]. In the last few years, 

several approaches have been adopted to simulate the flexibility and dynamicity of 

the receptors to adopt in virtual screening campaigns. For example, recently, Lexa et 

al. published a review where it is possible to study all the different approaches 

adopted in order to take into account protein flexibility for molecular docking [54]. 

Herein, some of the mentioned methods are presented. One of the most common 

approaches is the so called “soft docking”. This technique exploits the attenuation of 
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the Lennard–Jones repulsion term between the receptor and the ligand allowing some 

minimal backbone movement and side-chain flexibility. Movements are then 

followed by a rigid-body protein relaxation protocol [55].  In the relaxation methods, 

the docked complex is taken as a starting point for focusing on protein flexibility by 

modelling induced-fit effects. The main limitation of this approach is that the 

dynamic simulation can be only assessed on an all-atom structure: it cannot be 

performed if the protein is not explicitly represented (e.g. docking grid). Monte Carlo 

(MC) or MD simulations are actually the most adopted techniques to perform 

complex relaxation and interactions study. Such a kind of refinement is usually 

performed after the docking process is finished and the best pose for docking is 

chosen and it allows other investigations such as solvent effects, examination of the 

kinetic stability, and prediction of ΔGbind [56, 57]. The last two methods present the 

limitation that there is not a real view to the conformational modification of the 

target during the binding process with the ligand. For these reasons other new 

algorithms have been proposed, for example the induced fit docking method. In the 

latter, the docking simulation is run considering ligand and protein side chains as 

flexible to explore new conformational space. The main limitation of such an 

approach is that its computational requirements are a limitation feature, especially on 

large-scale virtual screening studies. Furthermore, the only conformational space of 

the protein is relative to side chains rotamers, it is in fact based on the use of side 

chain conformation libraries [58, 59]. Most published methods for flexible protein–

ligand docking are based on a limited number of receptors and are usually applied to 

small molecule libraries, that make the evaluation of the methods difficult. The use 

of a large test set is in fact vital in the performance assessment of a new screening 

method especially when one wants to measure performance across a range of 

different targets. Moreover, the use of a dynamical approach to docking is more 

resource and time-intensive than semi-flexible docking.  

The use of multiple receptor conformations for docking however may sometimes 

decrease the selectivity of the screening process increasing, for example, the false 

positive rate. The use of multiple conformations may also lead to the creation of a 

ligand optimal for an average receptor structure that is not experimentally accessible, 

a so-called ‘paradoxical inhibitor’. To avoid this kind of risks it is possible to take 

into consideration only receptor conformations that are present in low-energy 

landscape of the protein. This issue has driven many researchers to focus on the 
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choice of the optimal method for the selection of the possible receptor conformation 

to adopt in the screening process. 

The dynamic approach has also been adopted in pharmacophore based virtual 

screening. In these cases, structure-based pharmacophore features are generated 

starting from protein-ligand complexes taken from molecular dynamics. Recently, a 

dynamic pharmacophore approach has been proposed by Choudury et al. In their 

work, some snapshots are extracted from MD and structure-based pharmacophore 

models are generated within the protein-ligand complexes chosen. The built models 

are then compared with the docking approach using known active and inactive 

compounds [60].  

Another way to study dynamic pharmacophore, starts from MD to cluster trajectory 

frames based on the root mean square deviation (RMSD) of the protein-ligand 

system or the most populated conformations of the receptor [61, 62]. The RMSD for 

frame x is reported in Equation 2. The procedure is repeated for every frame in the 

simulation trajectory. 

 

  Eq.2 

 
where N refers to the number of atoms in the analysed selection; 
tref is the reference time, (typically the first frame is adopted as the reference 
and it refers to time t=0);  
r' is the position of the selected atoms in frame x after it has been superimposed 
on the reference frame, where frame x is recorded at time tx.  
 

One of the limitations of these approach is represented by the dismissing of the 

dynamic information from the MD simulations and the consideration of only some 

coordinates chosen by the operator. Such a method is in fact strongly biased by the 

ability of the MD simulation to represent the configurational space and the operator 

capability to select the most representative frames out of the whole simulation [63, 

64]. Moreover, the ligand binding process could be related to a unique receptor 

conformation, maybe not representative in the dynamic trajectory and this could be 

missed in the clustering approach. In this case the use of dynamic pharmacophore 

represent a real thread for the virtual screening campaign [65, 66]. 

The methods described above, developed for integrating protein flexibility in 

docking and pharmacophore modelling present several flaws and the output 

generated could be of ambiguous correctness. Overall, the main, problematic step 
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always seems to be the correct choice of protein conformation to adopt to generate 

docking grid or pharmacophore models.  

For molecular docking, one should run a number of virtual screening experiments 

equal to the number of obtained coordinate sets. Unfortunately, the choice of 

significant structures is no obvious because it is not possible to detect a priori which 

coordinate set will give good results in virtual screening. From a virtual screening 

point of view, in fact, every protein conformation that results in a differently ranked 

molecule list contains potentially important information. 

For the pharmacophore approach, the models generated from the MD trajectory (one 

pharmacophore model for each coordinate set) are equal to the number of screening 

runs and also in this case every model carrying out new information could be crucial 

in the realisation of a screening campaign. Comparing the two methods, dynamic 

structure-based pharmacophore models present less variability compared to the 

dynamic docking approach based on the coordinate of the amino acid side chains. 

Pharmacophore feature space is very limited compared to configuration space of the 

protein side chains coordinates. The geometry tolerance of the pharmacophore 

features allows to find the same models for slightly different protein configurations.  

A possible evident solution for reducing bias in the dynamic approach to virtual 

screening could be the development of a protocol capable to really explore all the 

coordinates generated during the MD simulation without having to choose some 

structures or conformations. Obviously such an approach results to be very time and 

resources consuming and it is strongly related to the number of atoms to simulate and 

to the libraries to screen.  
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2! AIMS OF THE WORK AND OUTLOOKS 

!

The aim of my PhD project was the development, optimisation, and implementation 

of new in silico virtual screening protocols. 

Specifically, this thesis manuscript is divided into three main parts, presenting some 

of the papers published during my doctoral work. 

The first one, here named CHEMOMETRIC PROTOCOLS IN DRUG 

DISCOVERY, is about the optimisation and application of an in house developed 

chemometric protocol. This part has been entirely developed at the University of 

Palermo - STEBICEF Department - under the guide of my supervisors. During the 

development of this part I have personally worked on the tuning and optimisation of 

the algorithm and on the docking campaigns to obtain molecule conformaitons. 

The second part, THE APPLICATION OF MOLECULAR DYNAMICS TO 

VIRTUAL SCREENING, presents a new approach to virtual screening, in 

particular the attention is focused on different approaches to the application of 

protein flexibility and dynamics to virtual screening.  

This part, has been carried out in cooperation with the University of Vienna - 

Department of Pharmaceutical Chemistry. For these works I have worked in the 

development of the general workflow, to a lesser extent to the programming (coding) 

part of the applications used and I mainly focused on the realisation of the screening 

campaigns and results interpretation.  

The third and last part, COMPUTATIONAL CHEMISTRY IN POLY-

PHARMACOLOGY AND DRUG REPURPOSING, concerns the study of the in 

silico methods applied to two main topics of the drug discovery process, such as the 

drug repurposing and the polypharmacology. In this part I will briefly describe what 

published in two reviews dealing to the above mentioned topics. 

In conclusion during this doctoral project, I have demonstrated how the use of in 

silico tools can be useful in the drug discovery process. The Chemometric protocols 

developed and optimised represent in fact a helpful strategy to use for target fishing. 

Whereas, the application of molecular dynamics to virtual screening, especially for 

pharmacophore modelling, is a new way to deepen crucial features to be adopted in 

the search of new putative active compounds. 
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3 CHEMOMETRICS AND DRUG DESIGN  
 

Some of the in silico methods such as molecular docking and pharmacophore 

modelling could be considered as the modern virtual application of the elderly lock-

and-key model based on the structural complementarity between a ligand molecule 

and a receptor [48, 67, 68].  

In the recent years, these methods have demonstrated to give an important boost to 

the pharmaceutical research. On one hand there has been an increase of the 

computational approaches reliability. On the other hand, however, the putative leads 

discovered through the computational methods, once synthesized and tested in vitro 

can sometimes disappoint the researchers’ expectations. Such a problem causes a 

waste of a huge amount of time and resources. Moreover, some of the discarded 

compounds can be instead potentially good candidates to develop. Such a kind of 

issue is always referred as a false positive and false negative ratio capability of a 

virtual screening technique. Another interesting aspect is that compounds that 

sometimes are discarded for a target, can be interesting on others, as suggested in 

several works [69, 70]. For instance, two main aspects known as 

“polypharmacology” and “drug repurposing”, are known to have shifted researchers’ 

efforts to constantly try to characterize drug-biological target associations [71, 72].  

The structural knowledge of targets and ligands has allowed to use chemical and 

sequence similarities among molecules and receptors to identify putative drugs to be 

addressed towards different targets in [73, 74]. For this reason, in the first stage of a 

drug discovery campaign could be useful to test early candidates towards a panel of 

different biological targets [75]. The possible correlation between ligand and target 

structures is a well-known issue, but unfortunately today it is still not possible to 

unambiguously interpret it.  

In computational chemistry, the molecular structure can be identified and categorized 

by molecular descriptors. Molecular descriptors have been successfully adopted by 

several disciplines, such as chemistry, pharmaceutical sciences, environmental 

protection policy, and health researches, as well as in quality control. These 

parameters can be considered as the translation of a chemical property (i.e. chemical 

structure) into numbers. This kind of conversion, allows treating chemical properties 

from a mathematical point of view, expanding the exploration panorama that can be 

applied to molecules. As defined by Roberto Todeschini [76, 77]: 
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"The molecular descriptor is the final result of a logic and mathematical 

procedure which transforms chemical information encoded within a symbolic 

representation of a molecule into a useful number or the result of some 

standardized experiment." 

 

Following this definition, molecular descriptors can be categorized into two main 

groups: theoretical molecular descriptors, directly connected to the symbolic 

representation of the molecule, and physico-chemical properties or experimental 

measurements, such as logP or molar refractivity. 

In molecular modelling, theoretical molecular descriptors are usually adopted. This 

group can be further considered as a collection of smaller groups:  

•!  0D-descriptors (i.e. constitutional descriptors, count descriptors); 

•!  1D-descriptors (i.e. list of structural fragments, fingerprints); 

•!  2D-descriptors (i.e. graph invariants); 

•!  3D-descriptors (such as, for example, 3D-MoRSE descriptors, WHIM 

descriptors, GETAWAY descriptors, quantum-chemical descriptors, size, 

steric, surface and volume descriptors); 

•!  4D-descriptors (such as those derived from GRID or CoMFA methods, 

Volsurf). 

The above classification is taken from the book “The handbook of molecular 

descriptors” by Roberto Todeschini [77].  

The use of a single molecular descriptor is not enough to predict a biological target 

for a molecule. However, the use of a carefully selected set of molecular descriptors 

can be a very powerful translator that can reveal important information about 

necessary structural features of a molecule to interact with a specific receptor. For 

example, topological descriptors based on a multiple bioactive reference structures 

have been employed in similarity-based virtual screening, showing to be potentially 

more effective than fingerprints, scaffold-hopping or ligand topological 

pharmacophores [78, 79]. 

Recently, the use of molecular similarity approach, has been more and more adopted 

for the discovery of some potential lead compounds [80]. Nonetheless, it is important 

to point out that a chemical similarity between two molecules, expressed as similar 

molecular descriptors’ chemical space, is not always synonym of same biological 

activity [81, 82]. 
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In the last years, the research group I worked with for my PhD has developed an 

approach based on the use of the molecular descriptors as the mean through which 

building biological lock models for different targets in order to identify new putative 

drug molecules. This indirect approach starts with the calculation of molecular 

descriptors for known inhibitors of a selected target. Based on the molecular 

descriptors values, the idea is to build a target profile, here called lock model, which 

is created on the structural features of its specific binders. The research of new 

candidates is based on the possibility of finding new molecules responding to the 

structural requisites for the target profile previously created [24]. 

All the chemical structures have been collected from the BindingDB, a Public 

database including chemical structures classified by biological activity [83]. 

The first key step of this in house method, called Virtual Lock-and-Key Approach 

(VLKA), was the random choice of 47 biological targets, form now indicated as Tn 

presenting known inhibitors with measured biological activity available in the 

BindingDB. 

Starting from these structures, known inhibitors were chosen from BindingDB and 

CODESSA PRO software [84] was used in order to calculate a set of molecular 

descriptors. This software is able to calculate about 1000 molecular descriptors, from 

0D to 3D. As mentioned before, the aim of the protocol is to build a lock model for 

each biological target (Tn) starting from a target profile traced by molecular 

descriptors value of its known inhibitors. In order to choose a compound selection 

for the lock model constitution, a biological data cut-off was adopted (Ki, IC50, 

EC50) [24]. For the creation of the protocol, 173 molecular descriptors were chosen 

in order to have not blanks for all the selected compounds constituting the lock set. 

For the calculation of 3D-molecular descriptors, global minimum conformations 

from in vacuo minimisation were selected. Mean (m) and standard deviation (s) of 

the molecular descriptors values (Xi,j) for each biological target (Tn) were calculated 

(Fig. 3.1A). The hypothesis behind the protocol is that the value of each molecular 

descriptor of a suitable inhibitor should be close to the same molecular descriptor 

mean (m) calculated for all the inhibitors of the same biological target. Starting from 

that, every molecular descriptor value [Xi,j(Tn)] of the compounds, included in the 

Lock set, was converted into a numerical coefficient in relation the closeness to m 

(Fig. 3.1B), as reported in Eq. (3.1): 
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if Xi,j(Tn) > µ ± σ, ! α = 0; 

(eq.3.1) if (µ-½σ) < Xi,j(Tn)< (µ+½σ), ! α 
= 1;  

if –σ < Xi,j(Tn) <-½σ, ! α = 0.5; 
if +½σ < Xi,j(Tn) <+σ, ! α = 0.5. 

 
where: X represents the molecular descriptor value; 
i is related to the structure; 
j is related to the molecular descriptor; 
Tn represents the biological target. 
 

Basically, each biological target needs specific chemical-physical properties to be 

activated, so, it is wise to assume that some molecular descriptors could express 

better than the others the key structural requirements for the specific biological 

target. Starting from this consideration, the molecular descriptors values were 

weighed for each Tn on the basis of the α coefficients determined for the lock set, by 

considering the sum of the α value for each descriptor (Dj) for all compounds, 

belonging to the specific biological target (Fig. 3.1C). The following step was to 

normalize these values by defining the !Dj coefficients (Fig. 3.1D) as reported in 

Eq. (3.2).  
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Fig. 3.1 Virtual lock-and-key approach flow chart. A: Calculation of Mean (m) and 
standard deviation (s) of the molecular descriptors values (Xi,j) for each biological 
target (Tn); B: Conversion of each molecular descriptor value [Xi,j(Tn)] in a 
coefficient; C: Molecular descriptors weighing by a coefficient for each biological 
target (Tn); D: Normalization step by defining the uDj coefficients; E: Partial scores 
4 calculation; F: Total score V calculation  

 

     (eq. 3.2) 

where: i, j, and Tn are defined in Eq. (3.1);  
 

 

represents the higher α sum of all 
molecular descriptors belonging to 
specific biological target. 
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The αi,j(Tn) and ωDj coefficients were used to calculate the affinity of all the 7352 

compounds under investigation for each biological target. Thus according to Eq. 

(3.4) the partial score φ was calculated, and the total score Φ was defined as sum of 

φ Eq. (3.3) (Fig. 3.1 E-F). 

 

 

(eq. 3.3) 

 
(eq. 3.4) 

where: "i,j represents the partial score; 
# represents the total score; 

i, j, and Tn are defined in Eq. (3.1) 
 

All the calculated scores, for all the structures for each biological target were 

converted in rankings. 

 

At the end, the Φ scores rank all the 7352 database compounds with respect to the 47 

biological target. Inhibitors related to each biological target should occupy the higher 

rankings. To verify this hypothesis the enrichment score (E%), considered as the 

percentage of correct classification, was calculated according to eq. (3.5): 

 
 

  (eq. 3.5) 

where: W represents hypothetical lowest rankings; 
B represents hypothetical highest rankings; 

P represents the obtained rankings. 
 

Two different E% scores: E%1 related to the “lock set”, and E%2 for the “total set” 

of a biological target were calculated. The E%1 reached an average value of 80.4% 

and for many targets values up to 95%, and the E%2 reached an average value of 

79.0% (Fig. 3.2). 
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Fig.3.2 E% for the lock and total set!

 

As previously mentioned, the core of VLKA protocol consists in setting-up a “lock 

model” for a biological target, starting from the respectively known inhibitors. In this 

scenario, molecular descriptors could be considered as pins of a lock (receptor 

binding pocket) to be released by a key (molecule) (Fig. 3.3a). Considering this 

assumption, a new molecule could be considered an inhibitor of a biological target if 

the values of its molecular descriptors fall in the calculated range values for the set of 

known inhibitors for the same target. 

Briefly, for each structure, the range of molecular descriptors constituting a “lock 

pin” were defined considering the mean value of them (D mean) and the standard 

deviation (s) as tolerance (Fig. 3.3b). When the molecular descriptors values of a 

molecule fall into these defined ranges the lock can be released and the structure can 

be considered as a potential inhibitor (Fig. 3.3c). 

To be released, a real lock needs that all pins must fit the lock structure whereas, in 

this protocol, the higher is the number of fit pins, the higher will be the affinity to the 

considered biological target. 

In the VLKA, the biological target lock pins are represented by a sequence of 173 

molecular descriptors. 
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Fig. 3.3 From the lock to biological target. a) How a real lock works; b) The range 
of “lock pin” molecular descriptors values (mean m ` s) can be considered the “pin 
tolerance”; c) When all the molecular descriptors values fall into the “pin 
tolerances” the biological target “releases”.  
 

The affinity score of a molecule against a specific target is then evaluated as the 

number of the molecular descriptors “fitted” (Fig. 3.3). 

Moreover, as mentioned before, not all the molecular descriptors have the same 

weight in the lock constitution: some of them are really representative for the lock 

while some of them can be omitted. So it was necessary to prioritize some 

descriptors among others. Using this approach, it was possible to rank molecules of 

the training set based on their affinity against the protein set. What was expected 

from these assumptions was that inhibitors of a specific biological target should be 

retrieved in the higher ranking positions for that target. 
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3.1 Conf-VLKA: A structure-based revisitation of the 

Virtual Lock-and-Key Approach
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3.1.1 Introduction 

 

Starting from the in house application VLKA, in the attempt to deepen the ligand 

conformation influence on the protocol, we decided to test the same previous 

algorithm of scoring and ranking starting from the docked conformation of ligands. 

Docking calculation was used for two different purposes: to retrieve docking scores, 

first (in order to test the algorithm for target assignation and possible off target 

application), then to provide the docked pose of ligands into the relative targets to be 

used in the VLKA method. The docked ligand poses were in fact used to re-calculate 

the 142 3D-descriptors (Conf-VLKA), out of the total 173 descriptors originally used 

in the VLKA. In fact, the remaining 31 descriptors out of the initial 173 set were 1D 

and 2D, and they did not need to be re-calculated because not influenced by ligands 

conformation. The original VLKA results, based on molecular descriptors obtained 

with in vacuo optimized structures [24], were then compared to the new approach in 

the attempt to evaluate the likely influence of 3D ligand conformation on the 

protocol prediction capability. The comparison between the two methods was also 

made, by analysing docking results in scoring and ranking molecules, for the 

different targets [85].  

 

3.1.2 Material and Methods  

Target choice 

Being the most important issue of the approach the comparison of the new protocol 

with the previous one, we decided to maintain the same targets and ligands of the 

original method [24]. 

VLKA algorithm: scoring and ranking 

For the algorithm details please refer to the previous paragraph VIRTUAL LOCK 

AND KEY APPLICATION [24]. 

Ligand Structure similarity evaluation  

In order to check the structural diversity of ligands for each target set, preventing the 

enrichment of redundant molecular analogues, we set up a topological evaluation of 

the whole database. For each target, ligand structures were submitted to calculation 

of radial fingerprint [86], molprint2D fingerprint [87] and MACCS keys [88] and 

then analysed in terms of Tanimoto distance [89] using similarity matrix on 
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CANVAS [90, 91]. The Tanimoto similarity cut-off value usually chosen as index of 

similarity is above 0.75 [92]. 

3D biological structures selection and optimization 

To carry out this comparative approach, the 3D structures of the biological targets 

included in the VLKA have been downloaded from the RCSB Protein Databank 

(PDB) [93], complexed with co-crystalized ligands. The selected structures were 

submitted to the optimization and refinement process using Protein Preparation 

Wizard utility of Maestro Schrödinger suite. During this process bond orders were 

assigned, the missing hydrogens were added, the disulfide bonds were eventually 

assigned, the water molecules were deleted, the protonation of aminoacids were 

determined. At the end, the hydrogen bonds of the proteins were optimized, and 

restrained minimization was carried out on heavy atoms converging to RMSD equal 

to 0.30 Å, and on the hydrogen atoms. 

Docking and descriptors calculation 

The ligands co-crystalized within PDB structures were extracted and docked using 

Glide XP high performance docking procedure [94–96], as a test for pose prediction 

quality of the searching docking algorithm. The 7352 compounds of the VLKA were 

submitted to the docking and scoring procedure versus the own target, and then 

versus the entire biological targets dataset. The best ligand pose for each compound 

was selected according to the XP Glide Score. Once docked, 3D molecular 

descriptors for the best pose structures were re-calculated as in the original work 

[24]. 

 

3.1.3 Results and Discussion 

 

The aim of this work was to explore the VLKA protocol capability using docked 

conformation of ligands. The original approach was based on molecular features of 

known inhibitors expressed as 1D, 2D, and 3D descriptors calculated on in vacuo 

conformation of molecules. The new method was based on the 3D descriptors 

calculation on the best docked conformations of each compound. This last approach 

(Conf-VLKA), in our opinion, could give a new interesting point of view due to the 

fact the original descriptor matrix consisted of only 31 1D/2D descriptors over 173, 

the total descriptors used [24]. So it is plausible to observe a variation in most of the 

values due to the change of 3D conformation of molecules. Consequently, the 
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“locks” and the pin tolerance could result different from the original VLKA. To set 

up the study, biological targets were taken from RCSB Protein Data Bank. 43 out of 

47 biological targets were retrieved into the PDB because of a lack for some 3D 

structures such as CAMK2 (Calmoduline Kinase 2), CB2 (Cannabinoid Receptor 2), 

Ghrelin Receptor (GHSR), and Diacylglycerol acyltransferase (DGAT-1). Even 

though it is common practice to re-build protein structures by means of homology 

modelling, when these ones are not available in databases, this procedure, starting 

from the primary sequence, allows obtaining calculated structures and hence less 

reliable structures respect to experimental ones. So, finally we decided to discard 

targets for which 3D-structures were unavailable. For many targets, multiple 

structures were retrieved, and for some targets (CA-4, CDK4, CT), no bound ligand 

was available. All the 3D biological structures, taken into account, are reported in 

Table 3.1. 
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Table 3.1. Target PDB ID and relative crystalised ligands codes 
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Table 3.1. cont.  

 
 

According to the Glide docking procedure, target grids were calculated on the 3D 

coordinates of the crystallised ligand within the PDB crystal. For those targets not 

bearing any ligand, we decided to exploit the PDBsum database information to 

calculate target grids [36], on the residues identified to be part of the binding pocket. 

Cognate docking was applied to the PDB dataset to test the docking searching 

algorithm capability. The root mean square deviation (RMSD) between the re-

docked pose of the ligand and the original co-crystalized one was the accuracy 

parameter chosen. Generally, the lowest is the RMSD the most accurate is the 

docking algorithm, this also allowing us to choose the more suitable target structure 

(Table 3.2).  
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For systems presenting more than one PDB available, the one presenting the lowest 

RMSD value was chosen. The cut-off value for choosing a system was set as < 2.0 

Å. For a few systems we had to choose the lowest value that was anyway quite 

higher than 2.0 Å (Table 3.3). 
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Table 3.2. RMSD values for targets with multiple 3D structures 
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Table 3.3. 3D PDB structures selected 

 
The next step was the application of the docking on the 7352 VLKA compounds. For 

each target, docking calculations were performed on specific target compounds (lock 

set and total set), and on the rest of the entire VLKA dataset. For three targets 

(Asparaginyl Endopeptidase, AE; Aldosterone Syntase, CYP11B2, Delta Opioid 

Receptor, DOR), no docked pose was generated for the majority of the compounds, 

so we decided to exclude them from the analysis because not significant. The best 

pose for each molecule was chosen according the Glide Score and visual inspection 

in order to avoid atomic clashes. The docked conformation of molecules was then 
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submitted to the VLKA algorithm. As previously explained, in the VLKA, the 

structural affinity of a compound towards a specific target is expressed by a score 

(Φ), calculated on the weighted average values of molecular descriptors. Based on 

this parameter each compound is ranked versus each receptor creating the E% score 

for every target analysed; the highest is the score, the highest is the probability that 

the ligand is correctly assigned to its target. At this step of our study, we replaced the 

Φ scores with the docking scores, and recalculated the E% scores. The application of 

docking protocol gave us results for 40 out of 47 targets included in the original 

VLKA. The simple use of docking algorithm for target assignment of molecules 

pointed out that E%, both in case of lock set (E%1) and test set (E%2), are lower 

than the E% scores of the original VLKA, with a mean value of 60.0%. Just for few 

targets, the E% scores exceed the 80.0% (Figure 3.4). These results reflect that the 

use of docking scores did not revealed suitable for this kind of approach, maybe 

because the docking score itself does not take into account the structural features of 

compounds for target assignation of molecule, but simply evaluate the energetic 

profile of the ligand-protein interaction. One of the reasons why this approach gave 

to us a lower capability compared to the original one could be due to the docking 

scoring function. In fact, it does not work the same on all the targets. For this reason 

we wanted to use docking only to consider the molecules poses to recalculate 3D 

descriptors instead of using docking score. 
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Figure 3.4. E%1 (blue) and E%2 (red) related to docking scores 

 
 

New 3D descriptors values (calculated on the docked conformation of ligands) were 

inserted into the matrix of the 7352 compounds and the latter was submitted to 

VLKA algorithm (Conf-VLKA). As last step, the E% scores were calculated again 

on the new scoring and ranking results. The average E%1 related to the lock set 

showed a value of 86%, quite greater than the average E%2 related to test set of 

inhibitors (79.1%). In some cases (11-betaHSD1, BCL2, BCL-xl, CRFR1) E%1 and 

E%2 showed a more evident rise, while other targets such as ALF, GC, MMP-13, 

PDK-1, E%2 resulted in a moderate predictive ability (>60%). 

In Figure 3.5 we report the E% for the new approach. 
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Fig. 3.5 E1% (blue) and E%2 (red) related to 3D descriptors calculated from docking 

poses 
 

In order to avoid analogue redundancies in the ligands set used in this protocol, we 

wanted to assess structural similarity evaluation of compounds. For each target, 

ligand structures were submitted to fingerprint calculations as described in the 

methods section. For the ligand sets analysed, no values higher than 0.75 between the 

structures belonging to the same target set. 

 

The aim of this paper is to compare three different approaches: the original VLKA, 

where molecular descriptors are calculated on in vacuo optimized structures, with 

two more approaches, one based on docking scores and the other exploiting docked 

conformation of ligands for 3D molecular descriptors calculation. 

In the original VLKA approach, the average E%1 achieved the 80.4%, and the E%2 

hit the 78.9%. In some cases (11betaHSD1, AE, BCL-2, CRFR1, DGAT-1, PSP1) 

E%2 yielded a high level of predictive capability (98%). For other biological targets 

(ALF, BCL-xl, CT, DHFR, DOR, GC, GSK3α, PDK-1) E%2 showed lower values, 

but despite this, E% values confirmed a quite good predictive capability (>60.0). 

Only for ALF, this value dropped to 53.1%. In the cases of ABL, ARA1, AROM, 

AURORA-A, CA-4, CDK4, CSP1, DAT, ER-alpha, the obtained data resulted 

interesting because E%2 is higher than E%1. In the second approach, the one based 
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on docking score, the average E%1 and E%2 values were lower than the first above 

mentioned approach, both near to the 60%. Just few target showed prediction 

capability >80% (BCL2, CA-1, and PSP1). 

In the last approach, the conf-VLKA, the average E%1 was 86%, and for many 

targets it rose up at 98%. The average E%2 was 79.1%, just greater than E%2 in the 

original approach. In conclusion, we found that the use of the simple docking score 

for target fishing is not always reliable, maybe because of a caveat of docking scores 

which, is known, are not fully related to the protein-ligand binding energy. Docking 

is much more interesting when used to explore ligand conformations inside the 

binding pocket. In fact, in the last approach, the use of docked ligand conformations 

to recalculate the 3D descriptors and the locks, slightly enhanced the E%1 and E%2 

compared to the original approach (ΔE%1=+6%, ΔE%2=+0.2%). Even though the 

average accuracy of the prediction is similar to the previous one, the most interesting 

data is that for certain targets there was a rise of the E%. For BCL-xl target an 

increase of 11% for the E%1 and a 18%. E%2 were observed. For ER-alpha the 

value of E%1 rose up from 30% to 58% and the variation of the E%2 was only of the 

3%. The best results were observed for MMP-13 (ΔE%1=+41%, ΔE%2=+18%) and 

CDK-4 (ΔE%1=+ 9%, ΔE%2=+6%). Also the PTP-1B target showed a significant 

variation of the E% values with a ΔE%1=+25%, ΔE%2=+14%. 

 

In the light of these considerations, the best results and the strongest variation 

between the old approach and the Conf-VLKA occur for dataset compounds with a 

high degree of branching considered as number of rotamers. This could be justified 

by the fact that the most branched is the molecule the most it will be sensible to 

conformation variations and the best it will be represented by 3D descriptors, as 

demonstrated by Good et al. in 2004 [97, 98]. 
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3.1.4 Conclusions 

 

In this paper, we modified the previous in house developed VLKA protocol in order 

to analyse the ligand conformational effect on the protocol capability, in particular, 

calculating 3D molecular descriptors on the docked conformation of ligands. Our 

VLKA protocol was designed to predict the possible biological target for new 

molecules starting from the structural information contained in molecular descriptors 

calculated on a set of known inhibitors. This first protocol was able to correctly 

predict biological target for the whole dataset with a good degree of reliability (80%) 

[24], and revealed experimentally useful to optimize the biological activity of some 

pyrimidine derivatives [99, 100]. Applying the structure based approach to VLKA 

we observed that, the use of the simple docking scores instead of molecular 

descriptors, revealed not satisfactory results, instead, the Conf-VLKA showed 

slightly better results (86%) than the first VLKA protocol for certain target sets, for 

others no interesting variations were observed. On the light of these considerations, it 

seems like the conf-VLKA approach works slightly better, compared to the previous 

protocol, when applied to targets whose ligands present a highly branched structure. 

According to what already found by Good et al., in a work on the effect of chemical 

structure complexity on molecular descriptors weight for ligand-based virtual 

screening [97, 98]. Another issue to be addressed is that probably the performance of 

the Conf-VLKA is connected to the docking algorithm that works better on some 

proteins more than others. VLKA and Conf-VLKA revealed different strength 

points. While VLKA revealed really fast and immediate to apply, Conf-VLKA, 

although need more computational time, on some proteins revealed a small rise in 

performance, especially for systems in which compounds have a great number of 

torsional bonds and branching. Nevertheless, both approaches (VLKA and Conf-

VLKA) are totally user-defined, so that it is suitable for the use of in vacuo 

descriptors calculation or the descriptors calculation based on binding conformation 

of ligands. This work is a first preliminary study on the ligand conformational effect 

on the VLKA protocol capability. We are now working on the same protocol using 

induced fit docking in order to take into account the target flexibility induced by 

ligands. 
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4. DYNAMIC APPROACH TO VIRTUAL SCREENING  
 

Proteins are constitutionally flexible molecules. They exert their biological function 

undergoing various conformational changes more or less wide. This aspect covers a 

huge importance for the exploration of protein – ligand interactions [50, 101]. The 

receptor and ligand flexibility and the induced conformational changes should be 

considered to correctly estimate the binding mode and the thermodynamics behind 

the binding process [102]. Unfortunately, drug design and virtual screening 

campaigns often neglect these aspects, using a static representation of the protein 

target. Several approaches have been introduced in computational chemistry software 

to take into consideration protein flexibility [103, 104]. The most representative are: 

side-chain flexibility [105], soft docking, induced fit [106, 107] and conformational 

ensemble-based docking [108, 109]. A correct incorporation of protein dynamics for 

drug design is still a challenging task. It has been shown in many cases that including 

protein flexibility leads to higher rates of false positives, since a larger number of 

putative ligands can be accommodated into different conformations of the binding 

pocket [110, 111]. 

Frequently, virtual screening protocols are set up on a conformational ensemble of 

proteins in order to include protein flexibility. Such an approach is based on behalf 

of proteins existing as an ensemble of substates of activation represented by different 

conformations [112, 113]. The main step of this approach is the generation of  

protein conformational ensembles prior to docking and the subsequent binding 

simulation of small molecules within the protein binding pocket of different 

size/shape [114, 115]. However, the approach strongly depends on the sampling 

quality chosen. One of the biggest limitations in using static X-ray or NMR receptor 

structures is that the available experimental conformations may not be sufficient to 

represent suitable conformations of the binding site for correct prediction of 

accommodation of new ligands [116, 117]. Despite the various methods adopted to 

sample protein flexibility, it is still difficult to collect suitable receptor conformations 

to be used prior to virtual screening processes [118, 119]. 

Often, protein conformations are collected starting from MD simulations [120–123]. 

One of the recently developed method to use MD prior to virtual screening is 

presented in the Relaxed Complex Scheme (RCS) approach [124]. Another MD-

based approach is based on the sampling of the Receptor Conformation Ensemble, 
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appropriate for accommodating ligands, which are chemically and structurally 

diverse and thus unbiased toward a particular class of ligands [125]. Recently, this 

approach was successfully employed for ligand profiling of drug metabolizing 

enzymes sulfotransferases. In their work, Martiny et al. adopted docking on RCE 

generated by MD simulations, combined with hierarchical conformational clustering 

of different binding site conformations [126]. 

Another interesting approach, adopted by Rueda et al. is to explore collective 

movement-based conformational changes [127]. In his work, Rueda exploits cross-

docking on the ensemble structures generated by MD. In the last years, receptor 

flexibility has been also assessed using a potential grid representing the receptor 

deformed through selected collective movements and global structural changes 

following ligand binding [128]. However, considering a large number of modelled 

conformations may sometimes lead to less predictive VS results compared to those 

obtained by using the best performing crystal or NMR structures, due to the possible 

generation of non-native protein-ligand conformations [129, 130]. 

Applying these concepts to structure-based pharmacophore screening, it is important 

to point out that the pharmacophore model is sensitive to the atomic coordinates of 

the protein-ligand complex from which it was derived The first issue is closely 

linked to the source of the coordinates for the protein-ligand complex, whose 

coordinates are usually taken from the Protein Data Bank (PDB) [93]. Very often, 

the protein structures solved by X-ray crystallography may be affected by errors such 

as crystal contacts and solvent effects; for this reason, the reliability of protein-ligand 

coordinates has been frequently questioned [131, 132]. Proteins and small molecules 

are inherently dynamic and undergo a wide range of motions, ranging from the 

vibrations of individual bonds to collective, large structural movements. The crystal 

structure of the protein-ligand complex represents only a single snapshot of a 

dynamic system, providing neither information about the conformational flexibility 

of the ligand, nor about motions of the residues in and near the binding pocket [133, 

134]. Thus, pharmacophore models derived from such structures might include 

features that are artefacts, caused either by crystal packing effects or by the single set 

of coordinates of the structure.  Moreover, these PDB-derived pharmacophore 

models could contain too few or too many features resulting in a limited use. 

Increased number of pharmacophore features are normally accompanied by a loss of 

sensitivity, and usually pharmacophore models composed of more than seven 
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chemical features are not suitable for database screening [135]. In this regard, the 

most important issue becomes the choice of reliable criteria to prioritize them. In the 

last years, several efforts have been made to integrate the natural dynamic behaviour 

of proteins in pharmacophore models. One proposed approach was based on the 

multi-complex pharmacophore models. Here, the models were derived from multiple 

crystal structures of the same protein in contact with different small molecules. 

Protein-ligand interaction patterns were extracted from the available structures and 

merged in pharmacophore maps [135, 136]. This approach, however, is limited to 

proteins for with multiple crystal structures are available and which have the same 

binding mode: it does not really consider the dynamics of the ligand-protein 

complex. 

One very general way to avoid dependence on a single set of coordinates is the use of 

molecular dynamics (MD) simulations to generate multiple sets of coordinates and 

use these as the basis for pharmacophore models. MD simulations have proven 

invaluable to understand the dynamics of biomolecules [137–139]. Several 

approaches have been proposed to generate trajectories of protein-ligand complexes, 

subsequently clustered to extract representative structures as reliable pharmacophore 

models. [140, 141]. Most recently, Choudhury et al. presented a new way to build 

pharmacophore models from MD simulation. For each structure saved during MD 

simulations, one pharmacophore was generated and then ranked based on docking 

and screening results [60]. 

In the next chapters of this PhD thesis, I will present the chronological pathway of 

the study carried out to explore the use of a new approach to the pharmacophore 

screening: The Dynamic Pharmacophore. 

In Chapter 4.1 I will present the results of a method based on the application of the 

MD prior to the pharmacophore modelling [142]. In Chapter 4.2 I will describe an 

approach based on the most frequent pharmacophore features retrieved from MD 

simulations and then adopted as pharmacophore model [143]. In Chapter 4.3 the 

application of the “most frequent features” method to the study of the IGF-1R 

(insulin-like growth factor-1 receptor) kinase domain is reported [144].  

Finally, chapter 4.4 will concern an innovative approach to the dynamic 

pharmacophore model, based on a different starting point compared to those 

discussed in the previous chapters. Several PDB crystal structures were explored, 
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containing different ligands, to check the occurrence of a common interaction pattern 

and maintained during the MD simulations[145]. 
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4.1 Comparing pharmacophore models derived from 

crystal structures and from molecular dynamics simulations 
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4.1.1 Introduction  

!

The aim of this study was to compare pharmacophore models obtained from the 

crystal structure of a ligand-protein complex with the pharmacophore models derived 

from the last frame of a molecular dynamics (MD) simulation. The pharmacophore 

model obtained from the crystal structure of a ligand-protein complex was called 

“initial pharmacophore model”, models created from the last frame of the MD 

simulation has been defined as “MD pharmacophore models”. Considering the final 

structure of a given MD simulation is the most basic MD-refined structure 

refinement protocol. Even though the approach is simple, it can resolve some of the 

problems connected to protein-ligand structures obtained from X-ray crystallography 

[146–148]. In our opinion, the comparison between the initial pharmacophore model 

and the MD-refined models can give some crucial information for constructing a 

reliable pharmacophore models [142]. 

In this work we investigated two main issues: 

1.)! Is there any difference in terms of number and type of pharmacophore 

features comparing the crystal structure derived model with the MD-refined model? 

2.)! Is there a difference in the ability of the initial pharmacophore model and the 

MD-refined pharmacophore model to distinguish between active and decoy 

compounds? 

The first question was answered by visual inspection of the obtained pharmacophore 

models. To answer the second question we screened active/decoy databases of the 

investigated protein-ligand complexes to calculate receiver operating characteristic 

(ROC) curves and enrichment factors [149, 150]. 

We analysed 6 different protein ligand systems (PDB CODE: 1J4H, 3BQD, 2HZI, 

3L3M, 1UYG and 3EL8). Structures were chosen from the DUD-E database. This 

database provides datasets of known actives and calculated decoys for protein-ligand 

complexes. From these complexes using selection criteria that were governed by 

system size, number of ligands present and kind of ions in complex with the ligand 

or protein [151].  

The virtual screening process was used starting from the pharmacophore model as a 

query for classification of compounds into decoy and active compounds, assigns 

score values and constructs a sorted list of these compounds using the score as key. 

The number of true positive compounds retrieved using a specific pharmacophore 
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model as opposed to the number hypothetically found if compounds were screened 

randomly was expressed as Enrichment Factor (EF) [152, 153] as defined in Eq. 

(4.1). 

 

 

 
(Eq.4.1) 

Where: tphitlist is the number of true positive in the hitlist; 
fphitlist corresponds to the number of false positive in the hitlist; 

NA and ND are the number of active and decoy compounds in the testset. 
 

Enrichment factors can range from 1 - molecules are sorted randomly - to > 100, 

which means that only a small percentage of the order list needs to be screened in-

vitro to find a large number of active molecules [149]. 

 

4.1.2 Materials and Methods 

!

PDB quality control 

The quality and correctness of the PDB structures was audited using the Quality 

Control server [154]. Modeller 9.15 was used if residues were missing [155]. 

Subsequently all structures were analysed with PropKa 3.1 in order to check the 

protonation state of the protein and the ligand [156, 157]. 

Molecular Dynamics 

CHARMM-GUI was used to set up the simulations and the CHARMM software 

package to run them [158, 159]. The CGenFF and paramchem was used to obtain 

parameter and topology files for the small molecules [160, 161]. For all the 

CHARMM/openMM version was used to run molecular dynamic simulations for 6 

protein-ligand complexes [162]. The systems were solvated in rectangular water 

boxes with TIP3P water molecules. Electrostatic interactions were computed by the 

particle-mesh-Ewald method. From the starting structures we carried constant 

pressure, constant temperature MD simulations (Berendsen thermostat and barostat). 

The length of each simulations was 20 ns; the time step was 2 fs and SHAKE was 

used to keep all bonds involving hydrogen atoms fixed. Before each simulation we 

equilibrated the protein-ligand-water system for 25ps with a time step length of 1fs. 
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RMSD calculation 

The RMSD was analysed using the python package MDAnalysis [163]. For the 

protein the RMSD of the C-alpha atoms was calculated and for the ligand the RMSD 

of all heavy atoms was calculated against the initial PDB structure. Target and 

reference structures were aligned on C-alpha atoms before the RMSD was 

calculated, the ligand was not independently aligned. 

LigandScout 

For generating structure-based pharmacophore models and screening libraries 

LigandScout 4.09.1 was used. Screening was performed using the command line tool 

iscreen provided by LigandScout [164]. The screening database for the protein 

systems were generated using the decoys and actives from the DUD-E database 

[151]. 

 

4.1.3 Results and Discussion 

!

Quality control of protein-ligand structures  

For one protein (3EL8) it was necessary to add missing residues. Using the software 

Modeller 13 residues from residue number 411 to 423 were inserted [155]. The 

amino acid sequence was obtained from the DNA sequence of the protein from the 

NCBI database [165]. The protonation state and side chain orientation was set in 

accord with propka [156, 157] and the Quality Control Check provided by the Joint 

Center for Structural Genomics [154]. 

RMSD 

For all protein-ligand systems the root mean square deviation (RMSD) for the 

protein and the ligand was independently calculated and is shown in Fig. 4.1. The 

ligand and the protein RMSD values were calculated with the aligned C-alpha atoms 

of the target and reference structure. 

The RMSD of the protein and ligand was analysed to detect large scale movements 

of the protein or the ligand. In addition, we used the deviation of the ligand to 

determine if the ligand reaches a stable binding state. The RMSD plots of the 

different ligands show very similar behaviour. The RMSD usually changes in the 

beginning to an average value from which the ligand deviates only marginal. This 

transition happens fast, e.g. 2HZI reaches the average value of 1.03 Å in less than 0.1 

ns and has a standard deviation of 0.2 Å from the mean. The ligand of 1J4H is the 
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only exception - it takes nearly 2.5 ns to reach the stable plateau around the average 

value of 1.58. 

For the protein the behaviour of the RMSD was in the range of normal conduct 

during a MD simulation. 

 

 
Fig 4.1 The root mean square deviation (RMSD) of the protein (in red) and the 
ligand (in blue) is provided as a function of time for the six analyzed protein-ligand 
complexes. The RMSD is calculated against the aligned PDB structure. The protein-
ligand complex is aligned based on the protein backbone. For all systems the ligand 
and the protein experiences a rapid RMSD deviation from the original structure of at 
least 0.5 Angstrom (Å). The different RMSD ranges on the y-axis should be noted. 
 

Comparing pharmacophore models 

In Fig. 4.2 the 2D view of the ligand together with the assigned pharmacophore 

features is reported. The pharmacophore model obtained from the PDB file and the 

MD-refined pharmacophore model are shown for every protein-ligand system. 

For all analyzed systems the initial pharmacophore model and the MD-refined 

pharmacophore model differs. Of the six analysed systems the amount of 

pharmacophore features for the initial model decreased in three cases, in one case the 

amount of features (but not the kind of features) stayed the same and in two cases the 

amount of features increased compared to the pharmacophore model obtained with 
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the MD-refined pharmacophore model. Looking at specific feature types it is 

interesting to note that hydrophobic features do not change in amount nor in involved 

atoms. In contrast none of the aromatic features are present in the MD-refined 

pharmacophore model. Most of the variability in the pharmacophore features was 

found to be due to hydrogen bond acceptors and donors. 
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cont. 
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Fig 4.2 Comparing the initial pharmacophore model and the MD-refined 
pharmacophore model. The features in yellow indicate hydrophobic features, the 
vector features in read indicate hydrogen bond acceptors, the vector features in 
green indicate hydrogen bond donors, the feature spheres in blue with associated 
vectors indicate aromatic features and the features in blue with multiple lines 
associated indicate salt bridges. 
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Virtual screening results 

In Fig. 4.3 the ROC curves for the different protein-ligand systems are shown. 

For 1J4H the initial pharmacophore model and the MD-refined pharmacophore 

model cannot distinguish between actives and decoys. 

For 1UYG the MD-refined pharmacophore model can distinguish between active and 

decoy compounds. With one omitted feature the overall ability to separate actives 

and decoys is better than with zero omitted features, but the enrichment factor for the 

first percent is lower. The initial pharmacophore model with zero omitted features 

can distinguish between active and decoy compounds for the first percent of the 

results, but above the 5% mark it favors decoys over actives. The model with one 

omitted features has among the top ranking results only false positive compounds but 

after the 1% mark it favors actives over decoys. 

The MD-refined pharmacophore model for 2HZI favors active over inactive 

compounds for zero, one and two omitted features. This is not always visible in the 

ROC curve but looking at the enrichment factor it becomes clear that even the 

pharmacophore model with zero omitted features favors actives. The model with one 

omitted features favors actives only in the highest ranking results, the model with 

two omitted features favors actives for all results. The initial pharmacophore model, 

with one and two omitted features, favors actives. 

For 3BQD the MD-refined pharmacophore model with one and two omitted features 

has a high enrichment factors (27.9 and 20.2 for 100%) as well as the initial 

pharmacophore model with one or two omitted features of 18.6 and 6.6 for 100%. 
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Fig 4.3  
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Fig 4.3 The receiver operating characteristic (ROC) curve for the different protein-ligand systems is shown. The true positive rate is 
seen on the Y axis and the false positive rate on the X axis. The number next to the PDB code indicates the number of omitted 
features: 0 means that no features were omitted, 1 or 2 means that either one or two features were omitted during the screening. In 
the plots the number of total hits, the area under the curve (AUC) and the enrichment factor (EF) is shown at 1%, 5%, 10% and 
100%. For 3EL8 the MD-refined pharmacophore model with one and two omitted features has high enrichment factors (10.8 and 3.3 
for 100%) whereas the initial pharmacophore model with zero or one omitted features has no preference for actives, with two 
omitted features the model has a slight overall preference for active compounds (ER: 1.7 for 100%) 



! 53!

The MD-refined pharmacophore model for 3L3M with zero omitted features has an 

overall preference for actives, but this effect is only marginal. The same model with 

one omitted features has a significant early enrichment but the sensitivity decreases 

after the 5% mark. The initial pharmacophore model with zero omitted features is not 

able to return any results, with one omitted feature the model has a good early 

enrichment (23.7%) with constant sensitivity. 

The screening results obtained from the MD-refined pharmacophore model and from 

the initial pharmacophore model are different. With the exception of 1J4H, for which 

both pharmacophore models performed badly, either the refined pharmacophore 

model or the initial pharmacophore model were able to favor active compounds over 

inactive ones - in some cases e.g. 3BQD both were able to distinguish between the 

groups. Depending on the preferred result (early enrichment vs overall enrichment 

factor) the interpretation of the overall performance of the two approaches can vary. 

Simply looking at early enrichment (considering only the enrichment factor above 

1% of the total compounds) the pharmacophore model obtained with the MD-refined 

pharmacophore model performs better for 1UYG, on average for 2HZI, for 3BQD 

and for 3EL8. The initial pharmacophore model performs better for the screening on 

the compounds for 3L3M. 

Considering the enrichment factor at 100% of analysed compounds the MD-refined 

pharmacophore model performs better for 1J4H (even though still badly), on average 

for 1UYG, on average for 2HZI, for 3BQD. In the analysed cases the overall 

enrichment factor mirrors the results obtained from the early enrichment results. 

 

4.1.4 Conclusions 

!

The findings reported in this work suggested that the refinement of pharmacophore 

models using molecular dynamic simulations is an important starting point for better 

exploring ligand protein interactions. Even very simple structure refinement 

approaches, like the reported one, lead to pharmacophore models that return on 

average better screening results. 

Additional interaction information can be unveiled analysing the dynamic behaviour 

of protein and ligand and harvesting these information can lead to better 

pharmacophore models that can target specific binding sites or interact with 

transitional conformations. For this reason in the future we aim to deepen the real 
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dynamics of the pharmacophore feature assessing a study of the time evolution and 

frequency of the encountered features, this is so far, to our knowledge, an approach 

still not investigated by the computational chemists. 
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4.2 Evaluating the stability of pharmacophore features 

using molecular dynamics simulations
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4.2.1 Introduction 

!
In this work we investigated the dynamics and the stability of the structure-based 

pharmacophore out of 12 protein-ligand complexes. Starting from an MD simulation 

a pharmacophore model for each structure produced during the simulation was 

generated. Through the creation of a called merged pharmacophore model we took 

into consideration all features that are seen either in the experimental structure (PDB 

X-ray structure) or any of the snapshots generated during the MD simulation. Thus, 

it incorporates the dynamics of the protein—ligand complex. The frequency with 

which individual features could be a useful way to prioritize the features if needed 

and to detect which ones only appear rarely. 

For each system, a 20ns simulation in aqueous solution was carried out, and a 

merged pharmacophore model was derived as just outlined. In this proof-of-concept 

work we focus foremost on exploring three key questions concerning the viability of 

our approach. 

1.! What are the differences between the traditional pharmacophore models 

constructed from the PDB structures (the PDB pharmacophores) and the merged 

pharmacophore model? 

2.! Are the features arising most frequently during the MD simulation also 

present in the PDB pharmacophore model? 

3.! In addition to answering the first two questions for each of the complexes 

studied, we also explore how the four principal types of pharmacophore features 

(hydrophobic features, aromatic features, ionizable group features and hydrogen 

bond features) behave in this respect. 

As mentioned before, the information about pharmacophore feature frequencies may 

aid in prioritizing features. For example features that are present in the 

pharmacophore model derived from the PDB structure, but occur only rarely during 

the MD simulation (e.g., less than 5% of the time) might represent artifacts and 

should possibly be discarded. Conversely, features that are not present in the PDB 

structure, but appear very frequently during the MD simulation (e.g., more than 90% 

of the time) should be regarded as important. Even though the frequency information 

alone may not be enough to rank features, it can help make an informed decision 

which features to keep/add and which to ignore, particularly if a pharmacophore 

model has too many features. 
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4.2.2 Materials and Methods  
 

For this study twelve different protein-ligand complexes were selected from the 

PDB: 1J4H, 1XL2, 2HZI, 3L3M, 1UYG, 3EL8, 2GTK, 2P54, 3BQD, 2AZR, 2OJ9 

and 2OJG. The choice of complexes was somewhat arbitrary, though guided by the 

following considerations: system size (solvated protein-ligand complex less than 

70,000 atoms), only a single ligand, no metal ions involved in the binding. The 

complexes will be referred to by their PDB code. The following terminology will be 

used. The pharmacophore model obtained based on the experimental structure is 

referred to as PDB pharmacophore model, features specific to a PDB model as PDB 

features. In the merged pharmacophore model all observed pharmacophore features 

are mapped on the ligand, the merged model includes features present in the crystal 

structure, as well as features occurring during the MD. Features not present in the 

crystal structure, i.e., seen only during the MD simulation, will be referred to as MD 

derived features. 

PDB quality control 

The quality and correctness of the PDB structures was audited using the Quality 

Control server [154]. Modeller 9.15 was used if residues were missing [155]. 

Subsequently all structures were analysed with PropKa 3.1 in order to check the 

protonation state of the protein and the ligand [156, 157]. 

Molecular Dynamics 

We used CHARMM-GUI to set up the simulations and the CHARMM software 

package to run them [158, 159]. The CGenFF and paramchem was used to obtain 

parameter and topology files for the small molecules [160, 161]. For all the 

CHARMM/openMM version was used to run molecular dynamic simulations for 6 

protein-ligand complexes [162]. The systems were solvated in rectangular water 

boxes with TIP3P water molecules. Electrostatic interactions were computed by the 

particle-mesh-Ewald method. From the starting structures we carried constant 

pressure, constant temperature MD simulations (Berendsen thermostat and barostat). 

The length of each simulations was 20 ns; the time step was 2 fs and SHAKE was 

used to keep all bonds involving hydrogen atoms fixed. Before each simulation we 

equilibrated the protein-ligand-water system for 25ps with a time step length of 1fs. 

RMSD calculation 
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The RMSD was analysed using the python package MDAnalysis [163]. For the 

protein the RMSD of the C-alpha atoms was calculated and for the ligand the RMSD 

of all heavy atoms was calculated against the initial PDB structure. Target and 

reference structures were aligned on C-alpha atoms before the RMSD was 

calculated, the ligand was not independently aligned. 

Pharmacophore generation 

For generating structure-based pharmacophore models and screening libraries 

LigandScout 4.09.1 was used to generate a structure based pharmacophore model for 

each frame saved during the MD simulation (2000 pharmacophore models) and for 

the PDB structure [164]. 

The resulting 2001 pharmacophore models for each protein—ligand complex were 

analyzed as follows. Each pharmacophore feature has two properties: the ligand 

atoms that are part of the feature and the feature type. If both properties of a 

pharmacophore feature were present in two models, then this feature was considered 

identical and the frequency count of this specific feature was incremented. In this 

manner we obtained statistics how often a certain feature was present during the 

course of the MD simulation. Separate statistics were made for features not present 

in the PDB pharmacophore model, i.e., features only seen during the MD simulation. 

Using this frequency information, the merged pharmacophore model encompassing 

all features seen during the simulation was constructed by mapping the features on a 

representative 2D and 3D structure of the ligand. 

 

4.2.3 Results and Discussion 

!
All trajectories were inspected visually to ensure that no large scale movement took 

place and that the ligand remained within the binding side at all times. For all twelve 

systems, the RMSD of the Cα-atoms was in an acceptable range. The same was true 

for most ligands, except for 2OJ9 and 2OJG. In the case of 2OJ9, the imidazole and 

pyridine moieties of the ligand rotated freely during the MD simulation, causing an 

average ligand RMSD of 5.6 Å. Similarly, the dimethylamino and phenyl group of 

the ligand in 2OJG was highly flexible. Nevertheless, even in those two cases the 

protein-ligand complexes were stable during the simulation. 

In Fig. 4.4 the merged pharmacophore models of all twelve systems are shown. The 

models contain all encountered features, and the frequency (in percent) with which a 

feature occurs is given (the numbers in the small boxes in Fig. 4.4). This schematic 
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representation provides an overview of the stability / robustness of the individual 

features in the twelve complexes. 

 

 
Fig.4.4 Merged pharmacophore models mapped on the 2D representation of the 
ligand for all twelve protein-ligand systems studied. Individual figures are labeled by 
the PDB code. Feature types are color-coded as follows: yellow spheres indicate 
hydrophobic features (H), grey/white chessmate spheres indicate aromatic 
interactions (AR), small green spheres indicate hydrogen bond donors (HBD), small 
red spheres indicate hydrogen bond acceptors (HBA), blue spheres indicate 
positively ionizable groups (PI), and big pink spheres indicate negatively ionizable 
groups (NI). The numbers in boxes indicate the frequency in percent with which a 
feature is found in each of the individual pharmacophore models from which the 
merged model was constructed (cf. Methods). The box color indicates the feature 
type: H (yellow), AR (black), HBA (light green), HBD (red), PI (blue), NI (pink). 
Filled boxes indicate features not present in the crystal structure, i.e., which appear 
only in the course of the MD simulation 
 

Even a cursory inspection of Fig 4.4 shows that in all protein-ligand systems there 

are MD derived features, i.e., pharmacophore features which appear during the MD 

simulations; these are indicated by the shaded background of the boxes listing the 

frequency information. The number of the MD derived features, however, varies 

considerably, from one in, e.g., 2HZI up to five in, e.g., 2P54. Similarly, MD derived 
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features can occur very rarely (less than 5% of the time), see, e.g., 1J4H, as well as 

very frequently (more than 90% of the time), e.g., 2GTK. 

The merged pharmacophore models shown in Fig 4.4 can be roughly divided into 

two groups: (1) pharmacophore models, for which the MD simulation added little 

new information, i.e. any MD derived features had low frequencies, and (2) 

pharmacophore models, for which MD simulation revealed information that can be 

helpful for further work with the models, i.e. the model has PDB features that 

disappeared completely during the MD simulation or occurred only infrequently and 

MD-derived features that appeared with high frequencies. 

We considered 2HZI, 1J4H, 3L3M, 2AZR and 2P54 to be members of group (1). All 

of them display high frequencies for most PDB features and low frequencies for 

MD-derived features. In particular, 2HZI and 1J4H are prototypical members of this 

first group: only one (2HZI) or two (1J4H) MD derived features were observed, and 

their frequencies were very low. By contrast, the assignment of the other three 

complexes to group (1) was a bit more ambiguous. E.g., there were eight MD derived 

features in 3L3M, and one PDB feature only had a frequency of 17% during the MD 

simulation. However, all MD derived features were observed very rarely (1-8%), and 

the “low-frequency” PDB feature is an aromatic feature. As will be discussed below, 

aromatic features in general tended to occur with low frequencies during the MD 

simulations; thus, 17% is a relatively high value for an aromatic feature. Because of 

this, we feel that 3LM1 is best assigned to group (1); in the case of 2AZR and 2P54, 

the situation is similar. 

We considered 2OJG, 3BQD, EL8, 1XL2, 2OJ9, 2GTK and 1UYG to belong to 

group (2). All of them have either PDB features that occur rather infrequently during 

the MD simulation (1XL2, 2OJ9), MD-derived features with high frequencies 

(2OJG, 3BQD) or both (3EL8, 1UYG, 2GTK). 

Two examples for group (2) should be considered in detail: the pharmacophore 

model for 2OJ9 and 2OJG. The pharmacophore model for 2OJ9 has one hydrogen 

bond acceptor and one hydrogen donor PDB feature with frequencies below 25%. 

The three other PDB features - all of them hydrophobic features - have frequencies 

above 90%. There are six MD-derived features. While one of the MD-derived 

hydrogen bond donor features has is seen more than 50% percent of the time, the 

other MD-derived features have low frequencies. For this pharmacophore model the 
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MD simulation shows that some of the initial PDB features are not stable during the 

MD simulation. 

The pharmacophore model for 2OJG has only two PDB features, one hydrophobic 

and one hydrogen bond donor feature, whereas the merged model contains three 

additional MD-derived features (one additional hydrogen bond donor feature and two 

hydrogen bond acceptor features). All three had a high frequency of occurrence 

(>70%). Their absence in the PDB pharmacophore model may have been caused by 

an unfavorable pose of the ligand in the binding pocket of the crystallized protein. 

The members of groups (2) provide good examples how dynamics influences the 

pharmacophore hypothesis. On the one hand, PDB features which exhibit low 

frequencies during the MD simulation could be artifacts of the initial protein-ligand 

coordinates. If these features are kept for virtual screening, they could result in 

erroneous/misleading hits. On the other hand, MD derived features can be essential 

to construct a usable pharmacophore model. With the PDB pharmacophore model of 

2OJG virtual screening would not be possible since a minimum of three features are 

normally necessary. By contrast, the merged model with five features would provide 

a usable starting point for virtual screening. While Fig 4.4 illustrates the effect of 

dynamics on the individual pharmacophore models of the twelve complexes studied 

here, Table 4.1 summarizes the behavior of feature types during the MD simulations. 

For each of the six basic pharmacophore feature types (hydrophobic (H), hydrogen 

bond acceptor (HBA), hydrogen bond donor (HBD), negatively ionizable (NI), 

positively ionizable (PI), and aromatic (AR), first the total (=cumulative) number of 

occurrences in all twelve merged models is listed in Table 4.1 (column 'Merged 

features, total'). This number is then broken down into features present in the PDB 

model (columns 'PDB features' in Tab.4.1) and features only seen during the MD 

(columns 'MD derived features'). For each of these two groups, the total number of 

occurrences, as well as the numbers of occurrences present >90% and >50% of the 

simulation time are given. 
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Table 4.1. Overall occurrence of pharmacophore feature types in the 12 systems 
studied. 

 
a) For the meaning of abbreviated feature types see Fig. 4.4 
b) Total count how often a feature type occurs. 
c) Number of instances of a particular feature type present >90% during the MD simulation. 
d) Number of instances of a particular feature type present >50% during the MD simulation. 
 

Overall, PDB features appear more stable than MD derived ones. If one sums up all 

entries in column 'PDB features, >50%' of TAB 1 and compares to the sum of 

column 'PDB features, total', one finds that 79% (67 out of 85) of the PDB features 

are present 50% or more during the MD simulation. The same calculation for MD 

derived features gives 24% (12 out of 50). This distinction becomes even more 

pronounced if one repeats this analysis for all features present >90% during the MD 

simulation, which gives 66% for PDB features vs. 10% for MD derived features. 

However, at the same time Table 4.1 illustrates that dynamics affects the various 

feature types quite differently. Consider e.g., aromatic features (AR). There are 

significantly more MD derived aromatic features (9) than aromatic PDB features (4). 

Both of them occur rather infrequently, i.e., for AR all entries in columns >50% and 

>90% are zero (last line of TABLE 4.1). The reverse situation is found for 

hydrophobic features (H). Here, there are substantially more PDB than MD-derived 

features, and, particularly in the PDB case, the robustness of the feature is high (40 

out of 43 hydrophobic PDB features are present >90% of the time). 

The AR and H features are the most extreme examples, the other four feature types 

(HBA, HBD, NI, PI) lie between these two. Clearly, aromatic features appear much 

more sensitive to small changes resulting from the motions of ligand and protein 

during the MD simulation compared to hydrophobic features. Hydrogen bond 

acceptor and hydrogen bond donor types follow the hydrophobic type in terms of 

prevalence. Similarly to the hydrophobic features, the stability of the PDB features is 

higher than for the MD-derived features. More than 70% of the PDB hydrogen bond 

features (HBA and HBD together) belong to the >50% group; for the MD-derived 



! 63!

hydrogen bond features this number drops to 22%. However, there are slightly more 

MD-derived hydrogen bond features (32) than PDB hydrogen bond features (31). In 

particular, the number of MD derived HBA features (25) is larger than that of the 

PDB HBA features. 

The differences in stability between feature types have much to do with the 

definitions of / criteria for the various feature types. 

The low frequency of the aromatic features is the consequence of the rules used to 

classify them: The geometric constraints on the aromatic ring plane are easily 

violated by flexible aromatic rings, e.g., rings that can rotate; furthermore, the rule 

set that atom groups on the protein side have to fulfil to be regarded as counterpart of 

an aromatic interaction are rather strict. 

The relatively large number of MD-derived HBA features is the result of the 

chemical nature of the ligands (most ligands have multiple groups that can act as 

hydrogen bond acceptors) and the definition of hydrogen bond interactions. 

LigandScout uses angle and length criteria for the classification of hydrogen bond 

features; i.e., the interaction partner must be within a specified angle range and 

nearer than a certain distance threshold [164]. Thus, on the one hand, the constraints 

for hydrogen bond features are more rigorous compared to the hydrophobic feature, 

and a miniscule change in geometry can toggle whether an acceptor-donor pair is 

classified as a hydrogen bond or not. Consequently, the dynamical behavior of 

hydrogen bond features is different than that of hydrophobic features (data not 

shown). On the other hand, the amino acids acting as potential interaction partners 

for hydrogen bond acceptor features (threonine, tyrosine, lysine, cysteine, glutamine, 

serine, histidine, arginine) have mostly small atom groups that can rotate and move 

during the MD simulation. Thus, while a particular hydrogen bond is broken, the 

partner on the protein side can be often easily replaced by another amino acid. 

In contrast the high stability of the hydrophobic features is also the consequence of 

the rules governing the classification as a hydrophobic feature. Specifically, in 

LigandScout, the interaction partner on the macromolecular side can be located 

anywhere between 1.0 and 5.9 Å away, and the requirements for atom groups on 

ligand and protein side to be considered part of a hydrophobic interaction are rather 

unspecific [164]. Finally, there is a small number of ionizable features present in the 

systems studied (four NI, two PI). Again, the stability of this features can be 

regarded as a consequence of the feature definition used. For a ionizable group in the 
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ligand to be considered an ionizable feature, LigandScout requires the presence of an 

opposite ionizable group on the macromolecule side within a distance of 1.5 to 5.6 

Å. Given this generous constraint, this feature will be present during most of the 

simulation time, provided a counterpart is available at all [164]. 

 

4.2.4 Conclusions 

!

We have shown that different pharmacophore feature types display varying stability 

during the MD simulations. On average PDB features are more stable than MD-

derived features, but there are notable exceptions. These exceptions represent 

pharmacophore features that are not accessible using only the PDB structure and in 

one example (2OJG) these additional feature were necessary for further work with 

the pharmacophore model. 

We believe that the presented results indicate that the frequency information 

obtained using MD simulation can be used to refine the pharmacophore model 

(add/remove features) - yet we acknowledge the fact that frequencies between 

different feature types might not be comparable, at least not on a linear scale. Using 

these results as a first step we will continue our work on this topic and will 

investigate the possibility of pharmacophore model refinement using information 

obtained through MD simulations. 
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4.3  Pharmacophore models derived from molecular 

dynamics simulations: A case study 
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4.3.1 Introduction  

!

In the previous chapter we investigated the possibility of improving pharmacophore 

model using molecular dynamic simulations to get the most frequent pharmacophore 

features. In this case study we present preliminary results that extend the analysis to 

one protein-ligand system for virtual screening. We analysed the variability of the 

interaction partners of the pharmacophore model and analyse the occurrence of 

features as a function of time. From this analysis two pharmacophore models are 

derived based on the frequency of interactions and the time resolved dynamics of the 

pharmacophore features. 

The used protein-ligand complex was the PDB code 2OJ9 and represents the crystal 

structure of the IGF-1R (insulin-like growth factor-1 receptor) kinase domain in 

complex with a benzimidazole inhibitor. Overexpression of IGF-1R has been 

demonstrated in a variety of tumors, including glioma, lung, ovary, breast, 

carcinomas, sarcomas, and melanoma [166]. This protein-ligand complex was 

chosen from the analysed complexes in [143] because the pharmacophore model 

contains a balanced number of the most common features (3 hydrophobic features, 3 

hydrogen bond donor features, 2 hydrogen bond acceptor features, 3 aromatic 

features). 

Typically, most ligands of protein kinases bind in the hinge region at the folding cleft 

of the N- and C-lobes. Common scaffolds that bind this region contain two hydrogen 

bond features, usually a donor-acceptor pair that interact with the hinge backbone. 

The PDB pharmacophore model displays the typical hydrogen bond interaction 

pattern with MET103 and GLU101, as described in the literature [166]. 

As fully described in our published paper [143], starting from MD simulation, every 

10 ps the coordinates were saved resulting in 2000 coordinate sets, we also 

considered the initial PDB one. A pharmacophore model was derived from each 

structure that was obtained during the MD simulation. For further analysis a 

consensus pharmacophore model (a merged pharmacophore model) was generated 

which consists of all features that are present either in the experimental structure or 

in any snapshot generated during the multiple MD simulations, thus it incorporates 

information about the dynamics of the protein-ligand complex. The frequency with 

which individual features are present permits to rank/prioritize the features if needed 

and to detect outliers, i.e., features seen only rarely. Additionally, the interaction 
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partners for each pharmacophore feature were analyzed and an interaction map 

(interaction matrix) was constructed. An interaction maps allows to quantitatively 

analyze the interaction partners of pharmacophore features. As a final step the 

frequency of the pharmacophore features was analyzed as a function of time. 

Combining these different analysis methods for the dynamics of the pharmacophore 

features make allows to consciously derive pharmacophore models that are different 

than the corresponding model obtained with the PDB structure. Starting from the 

merged pharmacophore model, we run a virtual screening using an active and decoys 

database retrieved from DUD-E [151]. 

 

4.3.2 Materials and Methods 

!

For the MD simulation methods and Pharmacophore generation I refer to the original 

papers describing the method [143] or to the previous chapter. 

Virtual Screening:  

Virtual screening was performed using known active and calculated decoy molecules 

obtained from the DUD-E database [151]. The database provided 226 actives and 

9395 decoys. All molecules were prepared as libraries for the screening using the 

command line tool idbgen provided by LigandScout. Conformers were generated 

using the icon best option in idbgen, this option produces a maximum number of 200 

conformations for each molecule processed. 

Interaction matrix generation: 

The columns of the interaction matrix indicate all amino acid residues that are 

involved in a pharmacophore feature at some point during the MD simulations, the 

rows designate all pharmacophore features and the values in the matrix indicate how 

often a specific amino acid was involved in a specific pharmacophore feature. In this 

way it is possible to analyze the number of interaction partners and also their 

statistical frequency. The numeric values were coded as a heat map – the colors 

range from blue (zero interaction) to dark red (interaction at every time step). The 

numeric values for hydrogen bond and aromatic interactions are given explicitly in 

the heat map for values below 400. The interaction map was generated using the 

python package matplotlib [167]. 
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Frequency Plot generation: 

For the MD simulations a frequency plot is calculated. This plot shows the 

occurrence of the features as a function of time. This is calculated as follows: The 

pharmacophore models are chronologically sorted and for every pharmacophore 

feature an occurrence list is calculated. Every time a pharmacophore model at a 

specific time step displays a specific feature 1 is inserted at the time step defined 

position in the list, otherwise 0 gets inserted. This results in a list with 2001 entries 

for every pharmacophore feature, which contains zeros and ones. In the end these 

lists are reduced by summing over chunks of 100 entries – resulting in a new list with 

20 entries containing numbers between 100 and 0. To obtain a graphical 

representation, these lists are subsequently plotted using the python package 

matplotlib. 

 

4.3.3 Results and Discussion  

!

The trajectory of the protein-ligand complex was visually inspected to ensure that no 

large scale movements took place and that the ligand remained within the binding 

site at all times. The root mean square deviation (RMSD) values of the Cα-atoms of 

the protein were in an acceptable range (the RMSD plot for the ligand and protein 

backbone is shown in Fig. 4.5). In contrast, the RMSD values of the ligand are rather 

high (ranging to a maximum of 9 Angstrom). 
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Figure 4.5. The root mean square deviation (RMSD) in Angstrom (Å) of the protein 
backbone (in blue) and the ligand (in red) as a function of time for the analysed 
protein-ligand 
 

In Fig. 4.6 representative structures for the first (Fig. 4.6 (1)) to the fourth quarter 

(Fig. 4.6 (4)) of the MD simulation are shown. As can be seen the pyridine moieties 

of the ligand rotates freely during the MD simulation, but also the translation of the 

imidazole contributes to the elevated RMSD values. Nevertheless, the protein-ligand 

complex was stable during the simulation. 
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Figure 4.6. The ligand inside the binding pocket is shown at 4 different timesteps. 
The length of the MD simulation is divided in 4 equally long parts and clustering is 
performed based on the RMSD of the ligand. A representative ligand structure is 
extracted from the most populated cluster and shown from 4.6 (1)(representative 
structure of most populated cluster from 0 to 5 ns) to (4) (representative structure of 
most populated cluster from 15 to 20 ns). The amino acids that are most common in 
hydrogen bond interactions are explicitly labeled 
 

The frequency of the specific pharmacophore features and the interaction map for 

2OJ9 are shown in Fig. 4.7. 

The initial pharmacophore hypothesis (shown in Fig. 4.7 A) includes 5 

pharmacophore features (which will be called PDB features) and during the MD 

simulation 6 additional pharmacophore features (3 aromatic features, 1 hydrogen 

bond acceptor and 2 hydrogen bond donor features) are revealed (which will be 

called MD derived features). 

As can be seen in Fig. 4.7 A, most of the MD derived pharmacophore features have a 

lower statistical frequency than the PDB features – only the MD derived feature 

HBD1 occurs more often than HBD3 or HBA2 (both are PDB features). A further 

observation that can be drawn from Fig. 1A is that hydrophobic features are far more 

stable during the MD simulation than hydrogen bond features and that aromatic 

features are the most unstable feature type. This finding is in accordance to our 

previous findings reported in [143]. 
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Figure 4.7. Analysis of the dynamics of the pharmacophore features of 2OJ9. (A) 
shows a 2D representation of the ligand with the pharmacophore features mapped 
on the structure. Yellow spheres represent hydrophobic (H) interactions, small green 
circles indicate hydrogen bond donor (HBD) features and small red circles hydrogen 
bond acceptor (HBA) features. Black and white chess-fields represent aromatic 
features (AR). For every feature a box is shown, providing the feature name that is 
used in part (B) and (C) of the figure and information about the statistical frequency 
(given in percent and rounded to integers) of the specific feature. Dashed outlined 
boxes indicate features that are not present in the PDB pharmacophore, continuous 
lined boxes indicate features that are present in the PDB pharmacophore. The color 
of the boxes are consistent with the colored row labels in part (B) and the colored 
lines in part (C) of the figure. (B) shows the interaction matrix as heat-map. The row 
names indicate the pharmacophore features and the column names the interaction 
partners of the pharmacophore features. The column names consist of three parts, 
separated by underscores: the first part indicates the feature type, the second part 
the 3-letter amino acid code and the third part the residue number of the amino acid. 
The entries in the interaction map are color coded, ranging from dark blue to dark 
red (as shown in the legend of Fig. B.). The absolute values of the cells in the 
interaction map are written as numbers for all feature types other than hydrophobic 
features if the number of interaction is below 400. (C) shows the statistical frequency 
of the features as a function of time. Thick enclosing lines indicate pharmacophore 
features that were present in the pharmacophore model obtained with the PDB 
structure, whereas thin, dashed lines indicate features that are not present in the 
PDB structure. The Y-axis corresponds to the number of occurrences of the specific 
feature per binned time-step and the X-axis corresponds to the binned time-steps. 
For a detailed description of this plot see the Methods Section, 'Frequency Plot 
generation'.  
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A closer look at Fig. 4.7 B reveals why most hydrophobic features have such stable 

and high frequencies – they interact with multiple interaction partners at the same 

time, thus preserving the interaction even in the case that one interaction partner 

leaves the range of influence of the ligand. It should be noted that the presented 

hydrogen bond features also have multiple interaction partners, but, indicated by the 

numbers for the different interaction partners for the hydrogen bond features, this 

feature type changes rarely between them, and if so, the change is slow and 

infrequent. 

Fig. 4.7 C shows additional time resolved information about the frequencies of the 

pharmacophore features. As can be seen, the three hydrophobic features occur 

steadily above 95% for all binned time-steps – with the exception of H1 between the 

binned time-step 5 and 8. Around the same binned-time steps the frequency of HBA2 

and HBD3 (both PDB features) drops and HBD1 (MD derived feature) appears with 

a subsequent frequency of around 70%. The high frequency of HBD1 is only partly 

represented in the total frequency (as seen in Fig. 4.7 A), since the feature was not 

present for the first quarter of the simulation. Our analysis provides an explanation 

for what happens at these binned time-steps. The RMSD value of the ligand starts to 

rise (shown in Fig. 4.6) and the movement of the ligand results in a change of the 

presented interaction partner, therefor we observe the drop in the frequencies for 

HBD3 and HBA2. The data presented in Fig. 4.7, especially in Fig. 4.7C, suggest, 

that the pharmacophore model which is appropriate for the first quarter of the 

simulation (based on the frequencies of the features) does not represent the second 

half of the simulation. Considering the different frequencies of the pharmacophore 

features two pharmacophore models are proposed: The first model contains the three 

hydrophobic features and HBD3 and HBA2 – this is the pharmacophore model 

derived from the PDB structure (and will be called subsequently PDB 

pharmacophore model). The second pharmacophore model contains the three 

hydrophobic features but HBA2 and HBD3 are exchanged in favor of HBD1 and 

HBD2 (and this model will be called MD derived pharmacophore model). These two 

pharmacophore models represent the pharmacophore features with different 

frequencies in the beginning and at the end of the MD simulation. Especially in the 

light of the work in [166], the reported findings are interesting. Although in the 

presented study a different tautomer was used than in [166], the typical hydrogen 

pattern with MET103 and GLU101 is present. But it appears as if the interaction 
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with LEU26 and ASP107 (as shown in Fig. 4.7 B) can also play an important role. In 

the following section the virtual screening results with these two pharmacophore 

models against a library of known actives and calculated decoys will be shown and 

discussed in detail. 

 

The screening results (the receiver operator curve, enrichment factor and number of 

total hits) for the different pharmacophore models are shown in Fig. 4.8 Both 

pharmacophore models are able to discriminate between actives and decoys, and thus 

both provide good early enrichment. 

The PDB pharmacophore model gives rise to 81 hits and the enrichment factor at 

1.5% is 24.7. The pharmacophore hypothesis is able to retrieve 45 of the 226 active 

compounds. 

The MD derived pharmacophore model leads to 530 hits, the early enrichment factor 

at 1.5% is 6.2. The pharmacophore model retrieves 66 of the 226 active compounds 

in the library. 
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Figure 4.8. The receiver operating characteristic (ROC) curves and the two 
pharmacophore models are shown. In the ROC curve the true positive rate on the Y 
axis is plotted against the false positive rate on the X axis. The number of total hits 
and the enrichment factor (EF) are shown at 1%, 5%, 10% and 100%, respectively. 
In (A) the pharmacophore model obtained with the PDB structure and the virtual 
screening results are shown. In (B) the pharmacophore models with two MD derived 
hydrogen bond donor features and the virtual screening results are shown. For the 
description of the graphical 2D representation of the pharmacophore features see 
legend of Fig. 4.7. 
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A closer look at the hit-list obtained with both pharmacophore models reveals that 

the PDB pharmacophore model retrieves 33 active molecules that are not present in 

the hit-list obtained with the MD derived pharmacophore model. The MD derived 

pharmacophore model retrieves 54 unique hits – the hit-list of both pharmacophore 

models share only 12 active molecules. This is not surprising since the 

pharmacophore models are different and represent two distinct interaction modes.  

These two pharmacophore models can be used together – the PDB pharmacophore 

model is more likely able to distinguish between active and decoy models, but the 

MD derived pharmacophore model correctly identifies a higher number of active 

molecules. Since both models share only 12 active molecules in the resulting hit list, 

combining the results of these models results in a higher number of active candidates 

than only using the PDB pharmacophore. 

 

4.3.4 Conclusions  

!

In conclusion, MD simulations can reveal otherwise hidden pharmacophore features 

that are not present in the pharmacophore model derived from the experimental 

crystal structure. Using additional information obtained from MD simulation, i.e. 

time resolved frequency information and interaction plots, it is possible to construct 

pharmacophore models that integrate the dynamic of the ligand inside of the binding 

pocket. Furthermore, this approach provides an objective way to add MD derived 

pharmacophore features to PDB derived pharmacophore models or, on the other side, 

remove PDB features that are less important based on the observed frequencies. 

!
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4.4 A dynamic–shared Pharmacophore approach to 

improve early enrichment in virtual screening.  

A case study on PPAR alpha 
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4.4.1 Introduction  

!

Analysing the interaction pattern of ligands with a specific protein target has a strong 

bias towards the molecular structure of the ligand. Proteins can interact with active 

ligands of diverse shape, size and composition – which is not surprising since 

binding is a dynamic equilibrium process and the conformation of the binding site 

can be strongly influenced by the shape of the molecular binder [49]. But these 

findings raise doubts about the usefulness of the interaction pattern of one particular 

active binder as sole starting point for further drug discovery approaches. This issue 

can be avoided if the interaction patterns of multiple ligands are regarded for model 

development and refinement. In two recent papers [142, 143] we have shown how 

the information gained in the course of MD simulation can be combined with 

pharmacophore modelling. However, in this chapter we followed a different 

approach: to develop a workflow that addresses the arising issues of molecular 

docking and pharmacophore modelling when using (1) a single set of coordinates 

and (2) a single active ligand. 

The starting point of this new approach are the crystal structures of three different 

ligands co-crystallised with the same protein (PDB CODE: 2P54, 4CI4, 3VI8) [93]. 

MD simulations are carried out for each of the structures, ligand-target interactions 

are analysed and finally modelled as pharmacophore features. A pharmacophore 

model is constructed using only the common pharmacophoric feature patterns that all 

three ligands exhibit during MD simulations. This ‘Molecular dYnamics SHAred 

PharmacophorE’ (MYSHAPE) is subsequently used for virtual screening using 

active and inactive molecules. The virtual screening performance of molecular 

docking is improved by adding constraints to the docking grid. These constraints 

reflect the pharmacophore feature interaction pattern obtained from the analysis of 

the MD simulation data. A consensus score based on the docking score and the 

pharmacophore alignment score is adopted at the end to maximize the virtual 

screening performance. In order to validate the approach, the virtual screening results 

of the different pharmacophore models and molecular docking runs are analysed. In 

other words, the screening results of the MYSHAPE model and the pharmacophore 

models obtained using the crystal structures are compared as well as the docking 

results using the crystal coordinate set with or without constraints. For the validation 

of the screening results Receiver-Operator Characteristics (ROC) graphs were 
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generated and then the Area Under the ROC Curve (ROC-AUC) is calculated. In 

particular, the focus is on the early enrichment of the resulting hit-list. The screening 

database contained molecules obtained from the DUD-E database for this target and 

was further enriched with ligands from the ChEMBL [168] and ZINC [169] 

databases. 

 

4.4.2 Materials and Methods !

 

System quality assessment and protein preparation 

The selection of the investigated systems was based on the following criteria: high 

resolution of the crystal structure (below 2.5 Å), no metal ions in the binding pocket 

and only one bound ligand in the PDB structure. The electron density (ED) was 

evaluated using VHELIBS [33]. The protein preparation wizard [170] provided in 

MAESTRO 10.2 was used to add bond orders and hydrogens to the crystal structure. 

Subsequently Prime 4.0 [171, 172] was  used to fix missing residues or atoms in the 

protein and to remove co-crystallised water. The protonation state of the protein and 

the ligand were evaluated using PropKa 3.1 [156, 157].  

Molecular Dynamics 

For every protein-ligand complex three 20 ns molecular dynamics simulations were 

performed. For each of the three simulations the same coordinate sets but different 

initial velocities were used. The MD simulations were performed with DESMOND 

4.2 using the OPLS3 force field [173–175]. The complexes were solvated in 

orthorhombic boxes using the TIP3P water model. Ions were added to neutralize 

charges. The systems were minimised and equilibrated at a temperature of 303.15 K 

and at 1.013 bar pressure. The system was simulated as NPT ensemble, using a 

Nose-Hover thermostat and a Martyna-Tobia-Klein barostat. The integration time 

step was chosen to be 2 fs. In order to keep the hydrogen - heavy atom bonds rigid, 

the SHAKE algorithm was utilized. A 9 Å cut-off radius was set for the short range 

Coulomb interactions and smooth particle mesh Ewald was used for the long range 

interactions. The stability of systems was evaluated using the root mean square 

deviation (RMSD) of the aligned protein and ligand coordinate set calculated from 

the initial frame. 
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Shared features evaluation 

The presence of pharmacophore features and their frequency during the MD 

simulation was investigated using the Interaction diagram tool provided by Maestro 

10.2. A pharmacophore model based on the MD derived common features was then 

created considering only the common interactions that were found for the ligands in 

all MD simulations. In the following, the term MYSHAPE will be used to 

distinguish this type of model from the ‘default’ pharmacophore models generated 

using the crystal structure of the ligand-protein complex. 

MYSHAPE model pharmacophore generation 

In order to construct the MYSHAPE, the following workflow was applied: the 

different PDB protein-ligand structures were imported into LigandScout [20, 176] 

and for each complex a structure-based pharmacophore model was generated. 

Subsequently a shared pharmacophore model was generated using the structure-

based pharmacophore models. Pharmacophore features, occurring during the MD 

simulation but not present in the original shared pharmacophore model, were added 

to the shared model. For the newly added pharmacophore features the tolerance 

radius was increased by 0.15 Å in order to compensate for small deviations in the 3D 

coordinates. 

Docking Grid generation 

Using the pharmacophore interaction pattern obtained from the MD simulations 

constraints were set on the docking grid. Specifically, positional constraints were 

imposed considering aromatic interactions, hydrogen bonds and hydrophobic 

interactions with the ligand according to the GLIDE grid constraints panel workflow. 

For each analysed protein-ligand system a docking grid with and without constraints 

was generated. 

Ligand selection and preparation 

In order to validate the virtual screening performance of the pharmacophore models 

and the docking grids, databases with known active and inactive compounds were 

generated. Using compounds with known activity makes it possible to test the 

capability of pharmacophore models and docking approaches to differentiate 

between active compounds and inactive molecules - which is the ultimate goal of 

both methods. To generate the screening library, active and decoy compounds were 

retrieved from the DUD-E database [151] and filtered to remove duplicates. The 

final data set contained 373 active and 5810 decoy molecules. The active and decoy 
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molecules were then optimised utilizing the Ligprep plugin provided by the 

MAESTRO software. The OPLS3 [175] force field was chosen and the protonation 

state of ligand set in accordance to a pH value equal to 7. 

Pharmacophore screening 

LigandScout [176] was used to perform the virtual screening analysis for the 

generated pharmacophore models. Standard settings were used as described in the 

user manual [176]. Receiver Operating Characteristics (ROC) graphs were generated 

and the Area Under the Curve (AUC) as well as the enrichment factor (EF) was 

calculated to validate the virtual screening performance of the pharmacophore 

models. For the 3VI8 PDB system we interpolated the four pyrene hydrophobic 

features into two and increase the tolerance of 0.30 Å, to avoid screening results with 

0 hits. This resulted in a more sensitive model that also presented the same number 

of features than the others, allowing an easier comparison. 

Molecular Docking Screening 

Standard Precision (SP) and Extra Precision (XP) molecular docking with and 

without constraints was performed using GLIDE [94–96]. Ligands were considered 

flexible and EpiK state penalties were added to the docking score. ROC graphs and 

Robust Initial Enrichment (RIE) [177–179] were used to evaluate the virtual 

screening capability of the docking runs. In contrast to pharmacophore modelling the 

AUC was not calculated for different fractions of the screening database but a 

numeric representation of the Receiver Operator Characteristic area underneath the 

curve was obtained. This ROC value can be interpreted as the probability that an 

active will appear before an inactive compound and is calculated as follows (eq. 4.2): 

 

         eq.4.2 

where AUAC is the area under the accumulation curve, 
Ri is the ratio of inactive molecules s to the total number of compounds 

in the screening library 
Ra is the ratio of active compounds to the total number of entries in the 

screening library. 
 

The RIE and the ROC value were generated using the “enrichment calculator” 

python script provided by Schrodinger. The EF was not calculated because the 

different docking runs produce ranked lists with different lengths and the EF is 

affected by the length of the datasets. 
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Pharmacophore alignment and ranking of docked conformations of ligands 

For the protein-ligand system that performed best in molecular docking the resulting 

molecule list was imported into LigandScout [20, 176] and pharmacophore scores 

were calculated for each compound. This was done in order to compare the ranking 

of molecular docking with the one of pharmacophore modelling. The different 

rankings were evaluated using the EF at different percentages of the screening 

dataset with particular attention to the early enrichment [177, 178]. 

Post-processing Consensus Score 

Furthermore, for the best performing system a consensus score was calculated that 

combined the pharmacophore and docking score as shown in Equation (4.3). 

 

     eq.4.3  

 

Evaluation of the chemotype enrichment 

For checking the similarity of the compounds in the hit-lists of the pharmacophore 

models a KNIME workflow [180] was created that used the Morgan fingerprinting 

functionality of RDkit [86]. The chemotype similarity was evaluated using a 2D 

fingerprints (Morgan/Circular) [181]. Tanimoto distances of the fingerprints were 

calculated and K-medoids clustering was performed [182] (setting K =5) in order to 

analyze the distribution of chemotypes in the actives library. For the K-medoids 

search and clustering, no constraints were applied to the iterations. This means that 

the search for medoids and then the population of the clusters was stopped only when 

the best result was reached or no better solution was available. The protocol was 

applied on the whole active set and on the first 100 actives retrieved by the screening 

runs, to check if the model was capable to discriminate only one type of molecules or 

if the heterogeneity of the actives molecules was maintained in the early recognised 

ones.  

 

4.4.3 Results and Discussion 

!

Molecular dynamics 

For the MD simulations the RMSD of the protein and ligand was calculated as 

described in the Methods Section. The protein and ligand showed normal RMSD 



! 82!

values over the course of the 20 ns of simulation and no large scale movement could 

be observed.  

Shared features evaluation 

As described in the Methods section, the interactions between the ligand and protein 

were investigated and a common interaction pattern was compiled. Figure 4.9 shows 

the protein-ligand interactions of the three different ligands. In such figure, the 

interactions that were used to construct the MYSHAPE model are highlighted. 

(shown in Figure 4.9). 

One of the most interesting interaction event is the aromatic feature that only appears 

during the MD simulation. Remarkably, no pharmacophore model constructed from 

the crystal structure presents such pharmacophore feature. Moreover, without MD 

simulations this feature would have remained hidden. The common interaction 

pattern derived from the MD simulation of the different protein-ligand complexes 

consists of two hydrogen-bond acceptors, three hydrophobic interactions and one 

aromatic interaction (as shown in Figure 1). Four of these pharmacophore features 

are in all ligands associated with the same chemical group - the two hydrogen-bond 

acceptors are always located at a carboxyl group and the aromatic and one 

hydrophobic feature are always located at a central phenyl ring. The remaining two 

hydrophobic features are located at similar chemical groups but not at the same in all 

three ligands.  
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Fig.4.9 The three different ligands of 2P54, 3VI8 and 4CI4 are shown. The common 
features retrieved from the MD simulations are depicted on the ligands as coloured 
spheres. Red spheres indicate hydrogen-bond acceptor features, yellow spheres 
represent hydrophobic interactions and the blue ring represents an aromatic 
interaction. This common interaction pattern was used to generate a shared 
interaction. 
 

Pharmacophore screening and Pharmacophore alignment score 

The virtual screening performance of the four different pharmacophore models was 

investigated using a screening library composed of molecules with known activity as 

described above. Figure4.10 shows the three pharmacophore models that were 

created using the crystal structure, the generated MD derived common feature 

pharmacophore model and their virtual screening performance.  
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Fig.4.10 Pharmacophore models with ligands and related ROC curve derived 
metrics for the pharmacophore screening of the three PDB structures and the MD-
MRC derived one. For the MD-MRC model, best ranked molecule has been used. 
AUC is refers to the entire screened dataset; the EF is calculated for the hit-list with 
retrieved molecules. Red spheres = hydrogen-bond acceptor, Green spheres = 
hydrogen-bond donor, Yellow spheres = hydrophobic feature, Blue ring = aromatic 
feature. 
 

In Figure 4.11, the ROC graphs are reported for each system. Virtual screening 

results were evaluated using the ROC-AUC values for 1%, 5%,10% and 100% of the 

screening database and calculating the enrichment factors for 1%, 5%, 10% and 

100%. A closer look at the ROC-AUC values for the four models (MYSHAPE 

model, 2P54 pharmacophore model, 3VI8 pharmacophore model and 4CI4 

pharmacophore model) shows that all models perform well for 1% and 5%. The three 
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pharmacophore models retrieve hit lists with a relatively low number of hits (5, 14 

and 26) compared to the results of the MYSHAPE model (61 hits).  

The number of hits heavily influences the EF calculation. For this reason, the ROC-

AUC value is a better metric to judge the performance of virtual screening runs that 

return hit-lists with different number of compounds. 

 
Fig.4.11 The ROC graphs for each model –pharmacophore screening 

 

The calculated ROC-AUC values from the hit-list of the MYSHAPE model are 1 

(1%), 0.99 (5%), 0.93 (10%) and 0.54 (100%). Comparing these values with the 

screening performance of the default pharmacophore models obtained from the 

crystal structure show that the MD derived common feature pharmacophore model 

has a better enrichment with active compounds than all other models. 4CI4 is the 

only model that retrieves for 1% of the screening database the same number of active 

compounds, but for 5% the ROC-AUC value is lower than the ROC-AUC calculated 

from the hit-list obtained with the MYSHAPE model. 

Docking Process 

As described in the Methods section docking grids were constructed for the three 

different investigated protein-ligand systems - either with constraints derived from 
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the MD simulations or without constraints. As a first approach SP docking was used 

to analyze the change in virtual screening capability of using grids with constraints. 

As a metric ROC graph values and RIE were used. The results are shown in Figure 

4.12. 

 
Fig.4.12 ROC curves and metrics for the SP docking on the three analysed system 

 

The SP docking performs well for all investigated systems. As can be seen from the 

ROC graphs for all three systems the SP docking favours active molecules over 

inactive compounds. The ROC graph for 2P54 shows the best virtual screening 

performance of the systems. For all the studied systems one can conclude that the 

usage of constraints in the docking grid improves the virtual screening capability. 

After the SP docking analysis we decided to proceed only with the 2P54 and submit 

it to the XP docking process trying to further improve the screening capability of our 

protocol. 

In Figure 4.13 the results obtained from the XP docking runs with and without grid 

constraints are reported. As demonstrated by both XP curves and metrics, the 

application of grid constraints has not a high impact on the XP docking protocol. 

Moreover, comparing the ROC curve of the XP docking run with the one of the SP 

run with constraints, it seems that there is only a small increase in the capability of 
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the model. On the other hand, the application of constraints seems to reduce a little 

bit the sensitivity of the model, possibly because the combination of the XP 

algorithm with the constraints is too strict for the retrieval of molecules. 

 
Fig.4.13 ROC curves and metrics for the 2P54 system after XP docking 

 

Pharmacophore alignment and score of the docked conformations 

We wanted then to test the capability of the MD derived common feature 

pharmacophore model to correctly rank actives and decoys. In the following tables 

we compare the EF of the hit-list molecules ranked by XP docking score (with and 

without constraints) with the EF of the hit-list ranked by the pharmacophore 

alignment score of the docked conformations. 

 

Tab.4.3. EF for the two XP docking processes compared with the Pharmacophore 

score applied to docked conformations. 

 
 

As the table 4.3 shows, it seems that the ranking of the molecules is better using the 

docking score than the pharmacophore score, showing a slight decrease of the 

screening capability in early enrichment. 
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However, it was interesting to see that the ranking produced by the two methods is 

quite different. The early enrichment produced by the two scoring models thus leads 

to different sets of molecules. For this reason, we decided to merge the two scoring 

functions into a consensus score. 

Consensus Score 

Starting from docking and pharmacophore alignment scores, we ranked the dataset 

with the consensus score described earlier in the Materials and Methods section (Eq. 

2). We observed an interesting increase in early enrichment, with and without 

constraints. The consensus score was able to maintain the maximum EF at the 1% of 

the ranked list, and improved the general trend of the screening process until the 2% 

for the docked conformations without constraints and to the 5% for the ones docked 

with constraints. (table 4.4). 

 
Tab.4.4. EF for the two XP docking processes compared with the consensus score 

applied to docked conformations. 

 
 

Evaluation of the chemotype enrichment 

Finally, we checked the presence of possible biases in the whole protocol towards a 

unique chemotype of active molecules. As described in the Methods section, the 

calculation of distance matrix and k-medoids clustering based on Morgan 

fingerprints was used to check the chemotype distribution of active compounds. In 

Table 4.5 we report the medoid molecules of each cluster formed by the K-medoids 

algorithm, whereas in the table 4.6 are reported the distribution of active molecules 

for each cluster found. Values are expressed as percentage. 

As shown by the results in table 4.5, the model adopted is able to rank all the 

different chemotypes found in the actives set. 
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Tab.4.5. Medoid molecules for each cluster formed 

 
 

Tab.4.6. Distribution of active molecules in the 5 cluster created 
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4.4.4 Conclusions!

 

We have presented a new virtual screening workflow that addresses the arising issues 

of molecular docking and pharmacophore modelling when using a single set of 

coordinates and a single active ligand. The starting point of our study were three 

crystal structures of the PPARα receptor containing different ligands co-crystallised 

with the same protein (PDB CODE: 2P54, 4CI4, 3VI8) [30]. For each structure, MD 

simulations were carried out and ligand-protein interactions were analysed and 

collected together with their appearance frequency. A pharmacophore model was 

then created using only the common feature patterns that all three ligands exhibited 

during MD simulations. This ‘Molecular dYnamics SHAred PharmacophorE’ 

(MYSHAPE) was then used for virtual screening on active and inactive molecules 

library. SHAPE was also used as constraints for the creation of the docking grid. 

This approach contributed to a rise in the molecular docking virtual screening 

performance. Finally, a consensus score based on the docking score and the 

pharmacophore alignment score was adopted to maximise the virtual screening 

performance. In order to validate the approach, we compared the virtual screening 

results of the different pharmacophore models and molecular docking runs. The aim 

of the work was the comparison between the screening performance of the shared 

feature pharmacophore and the pharmacophore models obtained using the crystal 

structures as well as the docking results using the crystal coordinate set with or 

without constraints. 

The application of the MYSHAPE model showed an interesting increase of the 

screening capability both in terms of sensitivity of the model and specificity when 

compared to the three PDB models. The use of these interaction patterns to create the 

docking grid showed an improvement in the early recognition of actives compounds, 

especially for one of the three systems (4CI4) where the Robust Initial Enrichment 

(RIE) passed from 3.45 to 6.1. At first sight, the application of constraints at the XP 

docking protocol does not seem to strongly influence the docking protocol capability, 

probably because of the high precision of the XP docking algorithm itself that avoids 

high false positives rate. Nevertheless, when MYSHAPE pharmacophore model was 

used for the alignment of molecules in the docked conformation, the screening 

capability did not increase in both cases (with and without constraints). Anyway, 

adopting only the docking score or the pharmacophore score, the Enrichment Factor 
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(EF) of the protocol was good, but improvable especially for the early enrichment. 

When the two scoring methods were then combined in a consensus score there was 

an interesting boost of the virtual screening capability rising the value of the EF to be 

maximised in both docking methods. The early recognition was however improved 

until the 2% of the ranked list for the docked conformation without constraints 

whereas it was boosted until the 5% of the screening list for the docked conformation 

of molecules with constraints. The results obtained using the consensus score on the 

XP without constraints is to consider as the best compromise of speediness and 

accuracy in the virtual screening process.  

This work is a first assay for a workflow that should be applied to different proteins. 

The strength behind the protocol is the ease of use related to the improvement of 

results. It also could represent a valid alternative to the use of very time consuming 

techniques such as XP docking with constraints. The increase of prediction reliability 

could be in fact reached through the use of pharmacophores, a fast and effective tool 

combined with no-constraints docking. This approach also represents a possible 

guide to consider or to discard some of the pharmacophore features retrieved from 

the static PDB crystal structures. Moreover, the MD simulations using more crystal 

structures of the same protein but with different ligands, is an interesting approach to 

retrieve some crucial interaction features that could be missed by the use of a single 

crystal structure. In the next months this approach will be applied to other receptors 

(ER, FXR, RXR, MapKinase and others) in order to test the application of the 

approach to other proteins.  

 



! 93!

!
5! COMPUTATIONAL CHEMISTRY IN 

POLYPHARMACOLOGY AND DRUG REPURPOSING  
!

During my PhD, I had the opportunity to deeply study the possible applications of 

computational methods to drug repurposing and polypharmacology. From this 

applied study, two reviews have been published in the last year: Here I just report the 

abstract of the two published reviews [183, 184].  

 

5.1 The repurposing of old drugs or unsuccessful lead compounds by in silico 

approaches: new advances and perspectives. 

 

Abstract 

Have you a compound in your lab, which was not successful against the designed 

target, or a drug that is no more attractive? The drug repurposing represents the right 

way to reconsider them. It can be defined as the modern and rationale approach of 

the traditional methods adopted in drug discovery, based on the knowledge, insight 

and luck, alias known as serendipity. This repurposing approach can be applied both 

in silico and in wet. In this review we report the molecular modeling facilities that 

can be of huge support in the repurposing of drugs and/or unsuccessful lead 

compounds. In the last decades, different methods were proposed to help the 

scientists in drug design and in drug repurposing. The steps strongly depend on the 

approach applied. It could be a ligand or a structure based method, correlated to the 

use of specific means. These processes, starting from a compound with potential 

therapeutic properties and a sizeable number of toxicity passed tests, can successfully 

speed up the very slow development of a molecule from bench to market. Herein, we 

discuss the facilities available to date, classifying them by methods and types. We 

have reported a series of databases, ligand and structure stand-alone software, and of 

web-based tools, which are free accessible to scientific community. This review does 

not claim to be exhaustive, but can be of interest to help in drug repurposing through 

in silico methods, as a valuable tool for the medicinal chemistry community.  
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5.2 Drugs polypharmacology by in silico methods: new opportunities in drug 

discovery.  

 

Abstract 

Polypharmacology, defined as the modulation of multiple proteins rather than a 

single target to achieve a desired therapeutic effect, has been gaining increasing 

attention since 1990s, when industries had to withdraw several drugs due to their 

adverse effects, leading to permanent injuries or death, with multi-billiondollar legal 

damages. Therefore, if up to then the "one drug one target" paradigm had seen many 

researchers interest focused on the identification of selective drugs, with the strong 

expectation to avoid adverse drug reactions (ADRs), very recently new research 

strategies resulted more appealing even as attempts to overcome the decline in 

productivity of the drug discovery industry. 

Polypharmacology consists of two different approaches: the former, concerning a 

single drug interacting with multiple targets related to only one disease pathway; the 

latter, foresees a single drug's action on multiple targets involved in multiple disease 

pathways. Both new approaches are strictly connected to the discovery of new 

feasible off targets for approved drugs. 

In this review, we describe how the in silico facilities can be a crucial support in the 

design of polypharmacological drug. The traditional computational protocols (ligand 

based and structure based) can be used in the search and optimization of drugs, by 

using specific filters to address them against the polypharmacology (fingerprints, 

similarity, etc.). Moreover, we dedicated a paragraph to biological and chemical 

databases, due to their crucial role in polypharmacology. Multitarget activities 

provide the basis for drug repurposing, a slightly different issue of high interest as 

well, which is mostly applied on a single target involved in more than one diseases. 

In this contest, computational methods have raised high interest due to the reached 

power of hardware and software in the manipulation of data. 

 

!
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Assessment of the quality of the PhD Thesis “Development and optimisation of 
computational tools for drug discovery” presented by the candidate Ugo Perricone 

 
The main focus of the current thesis was the development and application of novel methods 
for computer assisted ligand design. A couple of novel methods were developed and were 
tested using data sets from literature. Good screening results could be obtained by the 
developed tools. Especially the testing of pharmacophore models derived from trajectories 
of molecular dynamics simulations (Chapter 4) represents a highly interesting part of the 
thesis. The dynamic pharmacophore models outperformed traditional pharmacophore 
models for the selected training sets. Further evaluations tests will show the general 
applicability and performance of dynamic pharmacophore models. 
 
The thesis starts with a short introduction to the field of computer assisted design 
apporoaches and pharmacophore modeling. The introduction is clearly written and shows 
the deep scientific knowledge of Ugo Perricone. The references included contain all relevant 
publications in the field.  
 
The thesis is of very good presentation and style, and shows evidence of the student’s ability 
to investigate critically a specific field of study, demonstrating an adequate knowledge and 
discussion of the literature in that field. 
 
The thesis of Ugo Perricone generated significant new knowledge in the development and 
application of dynamic pharmacophore models. Several approaches have been applied to 
different targets and novel hypothesis were obtained. A minor criticism is the not always 
clearly defined own contribution of the candidate. As it is clear that all application work has 
been done by him, this is not always clear in the other disciplines, such as programming. A 
clear statement at the beginning of the individual chapters would have been helpful. 
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It must also be stated that some parts of Ugo Perricone’s work is published in very good 
journals and I am confident that other parts of this PhD work will result in high impact 
papers. 
 
The scientific value of her work is further demonstrated by the number of already published 
manuscripts and the novel molecules optimized by chemical synthesis and structure-based 
design. Based on the overall scientific value of the material, I can confirm the high scientific 
quality of the work. In summary, I can confirm that the candidate’s contribution to the 
research and publications is sufficiently large to award him with PhD (Doctor Europaeus). 
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To Whom It May Concern 

 

 

Report on the Thesis document by Mr Ugo Perricone  

 

Mr Ugo Perricone has submitted a thesis dissertation entitled "Development and optimisation of 

computational tools for drug discovery" to Università di Palermo, as an application to obtain the academic 

degree "PhD" from their appropriate PhD program. The study was performed under the supervision of Prof. 

Anna Maria Almerico.  

 

The thesis manuscript is divided into three major chapters, together with an excellent preface provided as a sort 

of introduction to the field. All the results presented in these chapters are published in top tier, high quality 

international scientific journals with strict peer review and high impact.     

 

In the preface, Mr Perricone provides the aim of the thesis and gives an overview on the state of the art of 

computational methods in modern drug design. Tools for virtual screening (VS), such as docking, and 

pharmacophore based approaches are one focus, as well as refinement of structures using molecular dynamics 

(MD) simulations in order to be able to rank compounds based on correctly predicted binding affinities. In this 

preface, Mr Perricone gives the rational for the approaches used later during his studies, and also for the targets 

chosen as proof of principle, in order to identify new bio-active compounds interacting with proteins of 

therapeutic potential. 

 

In particular, the first chapter of the thesis, CHEMOMETRIC PROTOCOLS IN DRUG DISCOVERY, Mr 

Perricone reports on the development and enhancement of a VS protocol calculating 3D molecular descriptors 

on the docked conformation of ligands. The so-called VLKA method was used and then further enhanced to the 

Conf-VLKA approach to predict the possible biological target for new molecules starting from the structural 

information contained in molecular descriptors calculated on a set of known inhibitors. Results of this part are 

published in the article Conf-VLKA: A structure-based revisitation of the Virtual Lock-and-key Approach in J. Mol 

Graph. Model. 2017, 71, 50-57.  

 

In the second chapter, THE APPLICATION OF MOLECULAR DYNAMICS TO VIRTUAL SCREENING   Mr 

Perricone describes the efforts towards integration of pharmacophore approaches for the analysis of molecular 

dynamics trajectories. The first paper in this context, Evaluating the stability of pharmacophore features using  

 

 



 

 

 

molecular dynamics simulations, published in Biochem. Biophys. Res. Comm. 2016, 470, 

685-689, indicates that the frequency information obtained from the MD simulations can be used to refine the 

pharmacophore model by adding or removing features and weighting their importance. In the paper Comparing 

pharmacophore models derived from crystal structures and from molecular dynamics simulations published in 

Monatsh. Chem. 2016, 147, 553-563, Perricone and co-authors suggest that even very simple structure 

refinement approaches, like the ones reported in their study, can lead to pharmacophore models that perform 

significantly better in virtual screening. In this chapter, two more application case studies are described in the 

target areas of PPAR alpha and the IGF-1R kinase domain. Also here, Mr. Perricone can demonstrate the 

advantage of combining molecular dynamics with pharmacophore methods for optimizing the performance of 

the experiments.  

 

Finally, in the third chapter, COMPUTATIONAL CHEMISTRY IN POLYPHARMACOLOGY AND DRUG 

REPURPOSING, Mr. Perricone investigates one of the most interesting method for finding new drug 

candidates.  Here, he studies virtual screening protocols for identifying drug polypharmacology. Finally, he 

summarizes the results published in two reviews dealing with the above mentioned topics (Curr. Pharm. Des. 

2016, 22, 3073–3081 and Curr. Top. Med. Chem. 2016, 16, 2088–2106).  

 

Overall, Mr Perricone has produced an impressive amount of data using a selection of the most advanced 

methods used in virtual screening. The results of his studies further contribute to the knowledge of compounds 

interacting with different targets since he has identified potential compounds that were shown to be active. He 

has undoubtly shown his ability to derive scientifically correct conclusions. In view of these facts, this reviewer 

suggests the grade ‘Excellent’ for the present thesis. Clearly, he is in addition eligible for the international Doctor 

Europaeus title. 
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