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HSPH1 inhibition downregulates Bcl-6 and c-Myc and hampers the
growth of human aggressive B-cell non-Hodgkin lymphoma
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Key Points

• In human aggressive B-NHLs,
HSPH1 favors c-Myc and
Bcl-6 expression, and its
inhibition provides significant
antilymphoma activity.

• HSPH1 is expressed in
function of Bcl-6 and c-Myc
and constitutes a valuable
alternative lymphoma
therapeutic target of
aggressive B-NHLs.

Wehaveshown that humanB-cell non-Hodgkin lymphomas (B-NHLs) expressheat shock

protein (HSP)H1/105 in function of their aggressiveness. Here, we now clarify its role as

a functional B-NHL target by testing the hypothesis that it promotes the stabilization of

key lymphoma oncoproteins. HSPH1 silencing in 4 models of aggressive B-NHLs was

paralleled by Bcl-6 and c-Myc downregulation. In vitro and in vivo analysis of HSPH1-

silenced Namalwa cells showed that this effect was associated with a significant growth

delay and the loss of tumorigenicity when 104 cells were injected intomice. Interestingly,

we found that HSPH1physically interactswith c-Myc andBcl-6 in bothNamalwa cells and

primary aggressive B-NHLs. Accordingly, expression of HSPH1 and either c-Myc or Bcl-6

positively correlated in these diseases. Our study indicates that HSPH1 concurrently

favors the expression of 2 key lymphoma oncoproteins, thus confirming its candidacy as

a valuable therapeutic target of aggressive B-NHLs. (Blood. 2015;125(11):1768-1771)

Introduction

We have recently demonstrated that heat shock protein (HSP)H1/
105 is a novel antigen and potential therapeutic target of B-cell non-
Hodgkin lymphomas (B-NHLs). We showed that it is expressed in
function of B-NHL aggressiveness, and its targeting by a specific
antibody (Ab) provides significant therapeutic activity against hu-
man aggressive B-NHLs in vivo.1 We have now set out to clarify its
role as a potential molecular target in these diseases.

High-gradeB-NHLs—including diffuse large B-cell lymphoma
(DLBCL) with its numerous subtypes, and Burkitt lymphoma (BL)—
account for;60% of NHL cases.2 Despite their high response rate to
anti-CD20 rituximab-based chemoimmunotherapy, alternative strate-
gies are required to manage relapse and resistance, which still pose a
very high risk of death in approximately one-third of cases.3 Sustained
expression ofBcl-6 or c-Myc oncoprotein is the best-recognized trait of
DLBCL4orBL,5 respectively,whereas their concurrent overexpression
defines a subset of aggressive B-NHLs with an extremely unfavorable
prognosis.6 Although these transcription factors (TFs) have long been
regarded as reliable lymphoma targets,7,8 their selective inhibition has
proven challenging. To ensure constitutive high expression of key

oncoproteins, NHLs have shown to upregulate HSP90 and HSP70,9,10

whichassistprotein foldingandpreventproteindegradation.11 Investiga-
tionofHSP90 inhibitors has thusbeenextended to lymphomapatients.12

Here we provide evidence that HSPH1 constitutes a viable alter-
native therapeutic target of aggressiveB-NHLs insofar as the invitro and
in vivo antilymphoma activity determined by its knockdown is strongly
associated with both Bcl-6 and c-Myc downmodulation. The physical
interaction of HSPH1 with Bcl-6 and c-Myc indicates that it may act as
a crucial facilitator of lymphoma growth by favoring the expression of
key oncoproteins. Our study thus provides the rationale for developing
HSPH1 inhibitors as a new therapy for aggressive B-NHLs.

Study design

HSPH1 silencing

HSPH1 was silenced by lentiviral transduction of a human HSPH1-
microRNA–encoding pcDNA™6.2-GW/EmGFP-miR vector (BLOCK-iT
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Lentiviral Pol II miR RNA expression kit, Invitrogen). Namalwa and Raji BL,
and SU-DHL-4 and Karpas422 DLBCL cell lines (DMSZ) were trans-
duced with HSPH1-microRNA or MOCK vector at a MOI of 5 and selected
with 10 mg/mL blasticidin (Sigma-Aldrich). GFP1 cells were sorted on a
FACSAria II (BD Biosciences).

Western blot and immunoprecipitation

These were performed as described1 with the following anti-human Abs:
anti-HSPH1/105 (Santa Cruz), anti-HSP90, and anti-HSP70 (Stressgen);
anti-BiP/Grp78, anti-c-Myc, anti-phospho(Ser392)-p53, anti-STAT3, and
anti-phospho-STAT3 (Cell Signaling); anti-Bcl-6, anti-p53, and anti-
phospho(Ser15)-p53 (Dako, Denmark); and anti-actin and anti-vinculin
(Sigma-Aldrich).

In vivo experiments

Six-to-eight-week-old severe combined immunodeficiencymice (SCID,Charles
River) were injected subcutaneously with 106 or 104 Namalwa cells and moni-
tored for tumor growth. Experimental protocols were approved by the Ethical
Committee forAnimalExperimentationofFondazione IRCCSIstitutoNazionale
per lo Studio e la Cura dei Tumori (Milan, Italy) according to the Italian leg-
islation (LegislativeOrderNo. 116of1992, as amended),which implements the
EU 86/109 Directive.

Immunohistochemistry and immunofluorescence

Tissue sections from formalin-fixed, paraffin-embedded tumor xenografts
and primary human B-NHLs obtained from our Institutional Tissue Bank

Figure 1. Antilymphoma effects of HSPH1 silenc-

ing in human aggressive B-NHL models. (A) West-

ern blot analyses of HSPH1, Bcl-6, c-Myc, and actin as

internal protein-loading control in the indicated wild-

type (WT), MOCK, and siHSPH1 (siHSP) human ag-

gressive B-NHL cell lines. Western blot images were

acquired using Microtek ArtixScan F1 and cropped to

retain the relevant bands with Adobe Photoshop CS

version 4 for Macintosh computer. (B) Tumor growth

curve (top) and tumor-free survival (middle, bottom) of

SCID mice injected subcutaneously with 106 or 104

MOCK, siHSP_1, and siHSP_2 cells (6/group) (i). Tu-

mor volume was calculated as 0.5 3 d12 3 d2 (d1,

smaller diameter; d2, larger diameter). Statistically sig-

nificant differences were calculated by using the 2-way

ANOVA with Bonferroni posttest or the log-rank

(Mantel-Cox) test, respectively (*P , .05, **P , .01,

***P , .001). (ii) Quantitative software analyses of

HSPH1, Bcl-6, and c-Myc expression evaluated by im-

munohistochemistry in MOCK, siHSP_1, and siHSP_2

xenografts 16 days after injection of 106 cells. Data are

shown as mean 6 standard of the mean of the ratio

between the immunostained area and the total nuclear

area, measured by ImageJ software analysis v.146 in

3 to 5 high-power microscopic fields for each case.

Significant differences were calculated with the un-

paired 2-tailed Student t test (**P , .01, ***P , .001,

****P , .0001).
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were treated as described1 and incubated overnight with anti-human HSPH1,
Bcl-6 (Dako), CD31 (Novocastra), or c-Myc (Epitomics) Abs. Expression of
HSPH1, c-Myc, and Bcl-6 was quantified by a combining score as reported.1

The Independent Ethics Committee of our institutions approved molecular
characterizations of patients’ material. Two-step double-marker immunoflu-
orescence analysis was performed as described.13

Results and discussion

To clarify HSPH1’s functional role in aggressive B-NHLs, we first
analyzed the molecular consequences of its silencing in 2 BL and 2
DLBCL cell lines. HSPH1 knockdown was consistently associated
with the downregulation of c-Myc and Bcl-6 (Figure 1A). Further
characterization of 2HSPH1-silenced (siHSPH1_1 and siHSPH1_2)
Namalwa cultures vs the MOCK counterpart revealed a significant
proliferation delay and increased doubling time (supplemental
Figure 1A), but not enhanced cell death (not shown) nor any re-
duction in expression or activation status of the previously reported
HSPH1 client proteins STAT314 and p53,15,16 or other HSP-family–
related members17 (supplemental Figure 1B). This supported the
specific relationship between downregulation of HSPH1, c-Myc,
Bcl-6, and antilymphoma effects. Accordingly, SCID mice xeno-
grafted with 106 siHSPH1 Namalwa cells displayed a significantly
prolonged tumor-free survival and developed significantly smaller
tumors (Figure 1Bi), in which Bcl-6, c-Myc, and HSPH1 were
still consistently downmodulated (Figure 1Bii and supplemental
Figure 2). Intriguingly, when 104 cells were injected, 0 of 6 and 1 of
6 lesions appeared over 131-day observation in siHSPH1_1 or
siHSPH1_2 implanted mice, respectively, whereas palpable tumors
were always present 33 days after injection of the MOCK cells

(Figure 1Bi, bottom). In the presence of a very few lymphoma cells
where HSPH1 is inhibited and Bcl-6 and c-Myc downregulated, the
amount of growth factors required to sustain lymphoma engraft-
ment may not be efficiently produced. Because HSPs,18,19 including
HSPH1,20 sustain tumor neovascularization, and the role c-Myc in
promoting this process is well-established,21,22 we hypothesized that
HSPH1 silencing counteracts tumor angiogenesis by multiple sides,
thus hampering in vivo engraftment. Quantification of the CD311

endothelial area in siHSPH1andMOCKNamalwa xenografts showed
that it was significantly affected by HSPH1 silencing (supple-
mental Figure 2), thus explaining the differential antilymphoma
effects observed in vitro and in vivo.

To understand how HSPH1 inhibition could lead to c-Myc
and Bcl-6 downregulation, we tested whether they interacted with
HSPH1 and thus might constitute HSPH1 client proteins, as
was already described for Bcl-6 and HSP90.9 According to our hy-
pothesis, both Bcl-6 and c-Myc coimmunoprecipitated with HSPH1
from Namalwa-cell lysate (Figure 2A). This was confirmed in pri-
mary human aggressive B-NHLs by the in situ demonstration of
HSPH1 paralleling Bcl-6 and c-Myc distribution (supplemental
Figure 3A). On the basis of similar Bcl-6 contents in these speci-
mens, a higher c-Myc expression was associated with even higher
HSPH1 levels (supplemental Figure 3A), further supporting the re-
quirement of HSPH1 to maintain high expression levels of these
TFs. Double-marker immunofluorescence highlighted nuclear colo-
calization between HSPH1 and either c-Myc or Bcl-6 in primary
human DLBCLs and BLs (Figure 2B). This indicates that HSPH1
may chaperone both Bcl-6 and c-Myc in B-NHLs, and that their
reduced expression in siHSPH1 cells may be a direct consequence of
HSPH1 downregulation. Accordingly, in 32 primary human aggres-
sive B-NHL cases (11 BLs; 10 DLBCLs; 8 grade 3 follicular lym-
phomas; 3 mantle cell lymphomas), in which HSPH1, Bcl-6, and

Figure 2. HSPH1 interaction with c-Myc and Bcl-6

in human aggressive B-NHLs. (A) Western blot ana-

lyses of HSPH1 and Bcl-6 (left) or HSPH1 and c-Myc

(right) in Namalwa whole-protein extract immunopre-

cipitated (IP) with Abs against the indicated molecules

or control isotype IgG. Whole lysate was included as an

internal control. For c-Myc immunoprecipitation, pro-

teins were eluted in nonreducing condition to avoid

the detection of Ab heavy chains in the region in which

c-Myc protein migrates. Western blot images were ac-

quired using Microtek ArtixScan F1 and cropped to re-

tain the relevant bands with Adobe Photoshop CS version

4 for Macintosh computer. (B) Representative micro-

photographs of double-marker immunofluorescence for

HSPH1 (green signal) and either Bcl-6 or c-Myc (red

signal) in 2 cases of germinal center–type DLBCLs with

(middle) or without (left) c-Myc amplification, and 1 case

of BL (right). Bindings of primary rabbit anti-human HSPH1

Ab and mouse anti-human Bcl-6 (clone PG-B6p) or anti-

human c-Myc (clone 9E10) were revealed, respectively,

by an Alexa-488– and an Alexa-568–conjugated second-

ary Abs. Sections were analyzed under a Leica DMRBE

microscope and microphotographs were collected with

a Leica MC120HD digital camera.
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c-Myc were all evaluable by immunohistochemistry (of 45 analyzed),
HSPH1 levels directly correlated with those of Bcl-6 and c-Myc
(P, .0001 andP5 .0002, respectively; Pearson correlation analysis),
pointing to a new characteristic of aggressiveB-NHLs to express these
molecules at proportional levels (supplemental Figure 3B). Further-
more, DLBCLs expressing c-Myc also expressed significantly higher
levels of HSPH1 compared with c-Myc low/negative DLBCLs
(supplemental Figure 3C).

Our results indicate that HSPH1 constitutes a functional target of
aggressive B-NHLs, including those DLBCLs with the most unfavor-
able prognosis, as a result of its facilitation of the expression of Bcl-6
and c-Myc, 2 of their most commonly deregulated oncoproteins.

Involvement of HSPH1 nuclear b isoform24 in TF activation17

indicates that it may similarly favor Bcl-6 and c-Myc activity by sta-
bilizing their expression on their target genes, as was already described
for HSP90 and Bcl-6.9

The lack of effective strategy to directly inhibit either Bcl-6 or
c-Myc further highlights the significance of our findings. In view of
the relatively higher HSPH1 expression in B-NHLs and their de-
pendency on c-Myc and/or Bcl-6 to grow, inhibition of HSPH1
may selectively target lymphoma cells and favors their response to
standard treatments, hence leading the way to more effective ther-
apeutic combinations.
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