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Abstract.  We numerically investigate the generation of solitons in current-
biased long Josephson junctions in relation to the superconducting lifetime and 
the voltage drop across the device. The dynamics of the junction is modelled 
with a sine-Gordon equation driven by an oscillating field and subject to an 
external non-Gaussian noise. A wide range of α-stable Lévy distributions is 
considered as a noise source, with varying stability index α and asymmetry 
parameter β. In junctions longer than a critical length, the mean switching 
time (MST) from the superconductive to the resistive state assumes a value 
independent of the device length. Here, we demonstrate that this value is 
directly related to the mean density of solitons which move into or from the 
washboard potential minimum corresponding to the initial superconductive 
state. Moreover, we observe: (i) a connection between the total mean soliton 
density and the mean potential dierence across the junction; (ii) an inverse 
behaviour of the mean voltage in comparison with the MST, with varying the 
junction length; (iii) evidence of non-monotonic behaviours, such as stochastic 
resonant activation and noise-enhanced stability, of the MST versus the driving 
frequency and noise intensity for dierent values of α and β; (iv) finally, these 
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non-monotonic behaviours are found to be related to the mean density of the 
solitons formed along the junction.

Keywords: mesoscopic systems (theory), stochastic processes (theory), 
metastable states, large deviations in non-equilibrium systems

1.  Introduction

The problem of detecting a sinusoidal signal corrupted by a Gaussian noise source has 
already been, at least in principle, completely solved [1]. However, when the amount of 
data to process is huge or the signal-to-noise ratio is too small, the choice of detection 
strategy becomes crucial. As an example, we can remember the all-sky all-frequency 
search for gravitational waves emitted by a pulsar [2], the search for a continuous mono-
chromatic signal in radio astronomy [3] and the detection of terahertz radiation [4]. 
The use of bistable systems as non-linear devices for signal detection has been recently 
proposed [5, 6] as a way of tackling these problems. Nonlinear elements inserted in 
place of linear-matched filters may not enhance the overall detection performance [7], 
although they can greatly improve the detection strategy and/or reduce the computa-
tional and memory overheads.

On account of their peculiar properties, Josephson junctions (JJs) stand out among 
other nonlinear elements as well-suited candidates for signal detection [5, 8]. Notably, 
they are very fast elements, which can operate at frequencies as high as terahertz [9]. 
Moreover, the thermal noise eect on JJs can be greatly reduced, cooling them down 
quite close to absolute zero, up to the quantum noise limit [10]. Various proposals for the 
use of JJs as detectors of weak signals in the presence of noise have been put forward so 
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far. Some of them make use of superconducting quantum interference devices (SQUIDs) 
[11, 12], while others focus instead on the switching from the metastable superconduct-
ing state to the resistive running state of the JJs. In the latter case, various approaches 
have been exploited. The statistical analysis of the switching can be used to reveal weak 
periodic signals embedded in a noisy environment [13–17]. The rate of switching, on the 
other hand, can provide information about the noise present in an input signal [18–22]. 
Proposals to use the statistics of the escape times for signal detection have also been put 
forward [13, 14, 18–22].

Experimentally, many systems exhibit non-Gaussian noise signals [23–28]. For exam-
ple, an out-of-equilibrium heat reservoir can be regarded as a source of non-Gaussian 
noise [25–27]. An example, which can be well modelled by an α-stable distribution, can 
be found in a wireless ad hoc network with a Poisson field of co-channel users [28]. In 
current base JJs, coupled with non-equilibrium current fluctuations, the eects of non-
Gaussian noise on the average escape time from the superconducting metastable state 
have been experimentally investigated [23, 24]. Moreover, the role of Gaussian [29–38] 
and non-Gaussian [18–21, 39–43] noise sources on both long and short JJs have been 
theoretically analysed.

In this paper, we study the escape time from a metastable state of a long JJ driven 
by an external oscillating force and subject to a noise signal. The main quantity of inter-
est is the mean switching time (MST), i.e. the average time the junction needs to switch 
from the superconducting state to the resistive regime, calculated on a suciently large 
number of numerical realisations. The analysis is performed by varying the junction 
length, the frequency of the driving current and the amplitude of the noise signal. The 
noise is modelled by an α-stable Lévy distribution. These statistics aim at describing 
real situations [44] in which the variables show abrupt jumps and very rapid variations 
called Lévy flights.

Lévy-type statistics were observed in various research fields, characterised by the 
presence of scale-invariance [45–49]. The results on the Lévy flights were recently 
reviewed in [50]. Moreover, the Lévy statistics allowed the good reproduction of several 
observed evolutions in dierent scientific areas [51–53], ranging from zoology [54, 55], 
biology [56–58], population dynamics [59–61], to atmospheric [62] and geological data 
[63], financial markets [64], networks [65], social systems [66], signal detection [67] 
and solid-state physics [68–72]. An extensive bibliography on α-stable distributions/
processes and their applications is maintained by Nolan [73].

The dynamics of the phase dierence across a long JJ is well described by the sine-
Gordon equation, which admits very peculiar wave packet solutions called solitons 
[74, 75]. They can be pictured as a π2  twist of the order parameter ϕ, developing and 
propagating along the junction. These twists carry magnetic flux quanta, i.e. fluxons, 
[76, 77], which can be observed during the switching towards the resistive state.

This paper is organised as follows. In the next section the sine-Gordon model is 
presented. In section 3 the statistical properties of the Lévy noise are briefly reviewed, 
showing some peculiarities of dierent α-stable distributions. Section 4 gives the com-
putational details. In section  5 the theoretical results as a function of the junction 
length, the driving frequency and the noise intensity are shown and analysed. Finally, 
in section 6 the conclusions are drawn.

http://dx.doi.org/10.1088/1742-5468/2016/05/054012
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2. The model

The behaviour of a long overlap JJ is described by a nonlinear partial dierential equa-
tion for the order parameter ϕ, the sine-Gordon (SG) equation [78, 79]
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Here ϕ is the phase dierence between the wave functions describing the superconduct-
ing condensate in the two electrodes. Hereafter, small (capital) letters are used to indicate 
normalised (non-normalised) coordinates and current terms (with respect to the critical 
value Ic). In our JJ model, the junction is extended along only one direction, defined as x, 
and can be considered ‘short’ along the other directions, so that a magnetic field through 
the junction points orthogonally to the x direction. In equation (1) Jc is the critical current 
density, � is the Planck constant, e is the value of the electron charge, c is the speed of 
light, RN and C are the eective normal resistance and capacitance of the junction, respec-
tively. The magnetic penetration λ λ= + +d tiL R  is the sum of the London depths in the 
left and right superconductors λL and λR, respectively, and the interlayer thickness ti. The 
current density J includes both the bias and the fluctuating current.

The SG equation  can be recast [78] in terms of the dimensionless λ=x / JX  and 
ω=t JT  variables, that are the space and time coordinates normalised to the Josephson 

penetration depth ( )λ π= �c edJ/ 8 cJ
2  and to the inverse of the characteristic frequency 

( )ω = �e I R2 / NJ c  of the junction, respectively. Using dimensionless variables, the SG 
reads

( ) ( ) ( ) ( ) ( ( )) ( )β ϕ ϕ ϕ ϕ+ − = − +x t x t x t i x t x t i x t, , , , sin , , .c tt t xx b f� (2)

Here a simplified notation has been used, with the subscript of ϕ indicating the 
partial derivative in that variable. This notation will be used throughout this paper.

In equation (2), the fluctuating current density ( )i x t,f  is the sum of two contrib
utions, a Gaussian thermal noise ( )i x t,T  and an external non-Gaussian noise source 

( )i x t,nG

( ) ( ) ( )= +i x t i x t i x t, , , .f T nG� (3)
The coecient

β ω= R Cc NJ� (4)
is the Stewart–McCumber parameter. The junctions with β � 1c  have small capacitance 
and/or small resistance, and are highly damped (overdamped JJ). In contrast, the 
junctions with β � 1c  have large capacitance and/or large resistance, and are weakly 
damped (underdamped JJ). The dimensionless terms ib(x, t) and ( )ϕsin  of equation (2) 
are, respectively, the bias current and supercurrent, both normalised to the JJ critical 
current Ic. Equation (2) is solved imposing the following boundary conditions

( ) ( )ϕ ϕ= = Γt L t0, , ,x x� (5)
where Γ is the normalised external magnetic field. Hereinafter we impose Γ = 0.

The two-dimensional time-dependent tilted potential named the washboard poten-
tial is given by

http://dx.doi.org/10.1088/1742-5468/2016/05/054012
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( ) ( ) ( )ϕ ϕ ϕ= − −U x t i x t, , 1 cos , ,b� (6)
and is shown in panel (a) of figure 1. In the same figure is shown a phase string along 
the potential profile given in equation  (6). Specifically, the washboard potential is 
composed of a periodical sequence of peaks and valleys, with the minima and maxima 
satisfying the following conditions

( ( )) ( ( ( )))ϕ π ϕ π π= + = − +i x t n i x t narcsin , 2 arcsin , 2b bmin max� (7)

with = ± ± …n 0, 1, 2, .
The bias current is given by

( ) ( )ω= +i x t i i t, sin ,b 0 ac� (8)
where iac and ω are amplitude and frequency (normalised to ωJ) of the dimensionless 
driving current. The term i0 is a dimensionless current that, in the phase string picture, 
represents the initial slope of the potential profile. On increasing the slope of the wash-
board the height of the right potential barrier reduces. Specifically, the expression for 
the right potential barrier height ∆U  is

( )⎡
⎣

⎤
⎦∆ = − − −U i i i2 1 cos .b b b

2 1
� (9)

The unperturbed SG equation, in the absence of damping, bias, and noise, is given 
by

( ) ( ) ( ( ))ϕ ϕ ϕ− =x t x t x t, , sin , .xx tt� (10)
This equation admits solutions in the travelling wave form ( )ϕ= −f x ut  [78]

( ) ( )
⎪ ⎪
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⎥
⎫
⎬
⎭

ϕ − = ±
−

−
x ut

x ut

u
4 arctan exp

1
,

2
� (11)

Figure 1.  (a) Washboard potential in a fixed instant of its dynamics with a soliton 
located between two adjacent valleys. (b) Cross section of a washboard potential 
with slope i0  =  0.5. Also shown is the initial position (the bottom of the potential 
well) of a cell. The blue dotted lines indicate the left and right thresholds. The 
picture also shows the distances along the potential profile ∆1 and ∆2 between the 
initial minimum and, respectively, the two successive maxima on the right.
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where u is the propagation velocity normalised to the Swihart velocity c. The Swihart 
velocity is the characteristic propagation speed of the electromagnetic waves along the 
junction and is usually more than one order of magnitude smaller than the velocity of 
light in vacuum. Equation (11) represents a single kink, or soliton, that is a π2  variation 
in the phase values. A soliton can be depicted as a string located in two neighbouring 
minima crossing the intermediate maximum once (see the red solid line in panel (a) of 
figure 1).

The signs  +  and  −  in equation (11) indicate a π2 -kink (soliton) and a π2 -antikink 
(antisoliton), respectively. In this framework, according to the equation [78]

ϕ =
�

e

c
dH

2
,x� (12)

ϕ gives a normalised measure of the magnetic flux through the junction, so that equa-
tion (10) can also represent the motion of a single fluxon (or antifluxon) Φ = h e/20 . If 
the phase evolution shows a single π2 -kink, a single fluxon will propagate along the 
junction.

The normalised thermal current ( )i x t,T  is characterised by the well-known statisti-
cal properties of a Gaussian random process

( ) ( ) ( ) ( ) ( )γ δ δ= = − −′ ′ ′ ′i x t i x t i x t x x t t, 0, , , 2 ,T T T T� (13)
where δ is the Dirac delta function and

γ
ω

= = =
kT

R I

e kT

I

kT

E

2
.

N

c

c
T 2

c J�� (14)

It is worth noting that the noise intensity γT can also be expressed as the ratio 
between the thermal energy and the Josephson coupling energy E J (see equation (15)). 
This equation can be rewritten as

   γ = =
�

I

I
I

e
kTwhere

2
.T

Th

c
Th� (15)

Here, ITh is the equivalent thermal noise current. Inserting the numerical values, we 
see that µ�I A0.15Th  at liquid helium temperature (T  =  4.2 K).

To analyse in more detail the eect of the non-Gaussian noise on the phase dynam-
ics, we will fix the white thermal noise current at a very low intensity. Specifically, the 
non-Gaussian noise current ( )i x t,nG  is described by α-stable Lévy distributions.

3. The Lévy statistics

Here we briefly review the concept of α-stable Lévy distributions [80–86]. A random 
non-degenerate variable X is stable if

( ) ∑∀ ∈ ∃ ∈ × + =+

=

N R Rn a b X b a X, , : ,n n n n

j

n

j

1
� (16)
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where the Xj terms are independent copies of X. Moreover, X is strictly stable if 
and only if = ∀b n0n . The well-known Gaussian distribution stays in this class. This 
definition does not provide a parametric handling form of the stable distributions. The 
characteristic function, however, allows us to deal with them. The general definition of 
a characteristic function for a random variable X with an associated distribution func-
tion F(x) is

( ) ( )∫φ = =
−∞

+∞
u F xe e d .uX uXi i

� (17)

Following this statement, a random variable X is said to be stable if and only if

α σ β µ σ µ∃ ∈ × × − × = ++ X Z, , , 0, 2 1, 1 : ,dR R( ) ( ] [ ]� (18)

where Z is a random variable with the characteristic function

( )
( )

( )

⎧
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⎪⎪
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⎡
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⎬
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φ
β

πα
α

β
π

α
=

− − ≠

− + =

α

u

u u

u u u

exp 1 i tan
2

sign 1

exp 1 i
2

sign log 1
� (19)

in which

≷{= ±
=

u
u

u
sign

1 0

0 0
� (20)

represents the sign function. These distributions are symmetric around zero when 
β = 0 and µ = 0. In equation (19) for the α = 1 case, ⋅0 log 0 is always interpreted as 

→ =x xlim log 0x 0 , giving rise to ( )φ =0 1.
Definition (18) of X requires four parameters: a stability index (or characteristic 

exponent) ( ]α∈ 0, 2 , an asymmetry parameter [ ]β∈ −1, 1 , a scale parameter σ> 0 and a 
location parameter μ. The names of these parameters indicate their physical meaning. 
In most of the recent literature, the notation ( )σ β µαS , ,  is used for the class of stable 
distributions. The stable distributions obtained setting σ = 1 and µ = 0 are called stan-
dard. The case β = 0 gives a symmetric distribution, while α determines how the tails 
of the distribution go to zero. The stability index yields the asymptotic long-tail power 

law for the x-distribution, which for α< 2 is of the ( )α− +x 1  type, while α = 2 and β = 0 
gives a Gaussian distribution.

Figure 2(a) shows the bell-shaped probability density functions for the symmetric 
stable distributions ( )αS 1, 0, 0  with α∈ 0, 2( ]. As α decreases, the peaks get higher, the 
regions around the peak become narrower (the so-called limited space displacement [39, 
41]), and the tails get heavier.

Figure 2(b) shows the probability density functions for the stable distributions 
( )βS 1, , 00.5  for ⩾β 0. These skewed distributions are characterised by the right tails 

being heavier than the left ones. When β = 1, we say that the distribution is totally 
skewed to the right. The behaviour of the β< 0 cases are reflections of the β> 0 ones, 
with the left tail being heavier. When β = −1 the distribution is totally skewed to the 
left.

http://dx.doi.org/10.1088/1742-5468/2016/05/054012


Effects of Lévy noise on the dynamics of SG solitons in long JJs

8doi:10.1088/1742-5468/2016/05/054012

J. S
tat. M

ech. (2016) 054012

We note that in equation (18), ( ) =πα
tan 0

2
 for α = 2 , so that the characteristic 

function is real and the distribution is always symmetric, apart from the value of β. As 

α decreases the eect of β becomes more pronounced, and the left tail gets lighter and 
lighter for →β 1. All stable distributions are unimodal, but there is no known formula 
for the location of the mode.

The heavy tails cause the occurrence of events with large values of x, whose prob-
ability densities are not negligible. The use of heavy-tailed statistics allows the consid-
eration of rare events corresponding to large values of x because of the fat tails of these 
distributions. These events correspond to the Lévy flights previously discussed. The 
algorithm used in this work to simulate Lévy noise sources is that proposed by Weron 
[87] for the implementation of the Chambers method [88].

4. Computational details

We study the phase dynamics of a long JJ within the SG overdamped regime, setting 
β = 0.01c . The time and spatial steps are ∆ = ∆ =t x 0.05. Due to the stochastic nature 
of the dynamics of the system, we calculate the mean values of the variables analysed 

performing a suitable number (= ×N 5 103–105) of numerical realisations (experiments). 
Throughout this paper we use the words string to refer to the entire junction and cell 
to indicate each of the elements with dimension ∆x forming the junction. The string 
at rest within the washboard potential valley labelled with n  =  0 (see equation  (7) 
and panel (b) of figure 1) is chosen as an initial condition for solving equation (2), i.e. 

( ( )) ( )ϕ = =i iarcsin 0 arcsinb0 0 . We calculate the mean switching time (MST) towards 
the resistive state, starting from the metastable state (the bottom of a potential mini-
mum) corresponding to the superconducting regime. The MST τ is a nonlinear relax-
ation time (NLRT) [89] and represents the mean value of the permanence times of 

the phase ϕ within the first valley, that is [ ]ϕ ϕ ϕ∈ ,Max
L

Max
R . The thresholds ϕMax

L  and 

ϕMax
R  are, respectively, the positions of the left and right maxima, which surround the 

minimum chosen as an initial condition (see the dotted lines in panel (b) of figure 1). 

Figure 2.  (a) Symmetric stable densities of ( )αS 1, 0, 0  and ( ]α∈ 0, 2 . (b) Skewed 
stable densities of ( ⩾ )βS 1, 0, 00.5  and [ ]β∈ 0, 1 .

http://dx.doi.org/10.1088/1742-5468/2016/05/054012
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No absorbing barriers are set, so that during the entire observation time, tmax, all the 
temporary trapping events are taken into account to calculate τ. The probability Pij 

that [ ]ϕ ϕ ϕ∈ ,Max
L

Max
R , in the ith realisation for the jth cell, is

⎧
⎨
⎪

⎩⎪

ϕ ϕ ϕ

ϕ ϕ ϕ
=

∈

∉
P t

1 ,

0 , .
ij

Max
L

Max
R

Max
L

Max
R

( )
⟺ [ ]

⟺ [ ]
� (21)

Summing Pij(t) over the total number = ∆N L x/c  (L is the junction length) of cells and 
over the number N of realisations, the average probability that the entire string is in 
the superconducting state at time t can be computed as

( ) ( )∑∑=
= =

P t
N N

P t
1

.
c i

N

j

N

ij

1 1

c

� (22)

The MST τ is therefore calculated as

( )∫τ = P t td .
t

0

max

� (23)

The whole procedure is repeated varying the value of α and β, and obtaining the 
behaviours of the MST τ in the presence of dierent sources of Lévy noise.

5. Results

In this section, we investigate the dependence of the MST τ, the mean potential 
dierence (MPD) ζ, and the mean soliton densities, n and n tot, on the junction length 
L, the driving frequency ω, and the noise amplitude γ as the Lévy parameters α and β 
are varied.

The mean soliton density n is obtained considering only solitons partially lying in 
the potential well chosen as the initial condition (see figure 1(a)). Instead, the total 
mean soliton density n tot is obtained considering all solitons formed along the junction. 
These densities are calculated taking into account both kinks and antikinks.

The noise intensity γ refers to the non-Gaussian component of the noisy current, 

while hereinafter the intensity of the thermal contribution is set to γ = −10T
4.

The amplitude of the oscillating component of the driving current is set to =i 0.7ac  
to allow, within a driving period, values of ib(t) greater than 1, corresponding to the 
absence of metastable states.

5.1. Results as a function of L

In this section we study the behaviour of a long junction varying its length L. The 
analysis can be split in two parts: (i) a comparison between the MST τ and the mean 
soliton density n; (ii) the study of the mean potential dierence (MPD) ζ across the 
junction related to the total mean soliton density n tot. The MPD is in units of Φ0 and 
is normalised to the junction length L.

http://dx.doi.org/10.1088/1742-5468/2016/05/054012
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The MSTs as a function of the length L, varying the stability index ( ]α∈ 0, 2 , are 
shown in panel (a) of figure 3. The values of the other variables, used to compute all 
the curves of figure 3, are β = 0, γ = 0.2, ω = 0.7 and i0  =  0.5. The values of the MST 
decrease by reducing α, because the eect of the Lévy flights become more relevant 
reducing α. All the curves of panel (a) of figure 3 are characterised by the presence of 
two dierent ‘dynamical regimes’, in correspondence with the values of lengths below 
and above a threshold, namely the critical, or nucleation, length Lc (the dotted red lines 
in figure 3). An initial monotonic behaviour is followed by a constant plateau in the 
MST curves. Specifically, for i0  =  0.5, ∼L 5c  [35, 41].

For values of L  <  Lc, the soliton formation is hampered by the strength of interac-
tion between neighbouring cells. Strings shorter than the nucleation length are indeed 
too small/too sti to form ripples ample enough to overcome the potential barriers. 
As a consequence, below this threshold, the cells forming a string can only cross a bar-
rier altogether, thereby reducing the chances of soliton formation. For L  <  Lc, curves 
in figure 1(a) show a monotonic behaviour of the MSTs as a function of L. However, 
this dependence changes qualitatively with α. The MSTs either increase or decrease 
depending on whether α is below or above 1. When ( ]α∈ 1, 2 , moving rigidly a string 

Figure 3.  MST τ (panel (a)) and mean soliton density n (panel (b)) as a function 
of the junction length L for ( )αS 1 0 0  and ( ]α∈ 0, 2 . The normalised mean potential 
dierence (MPD) ζ (see equation (27)) (panel (c)) and the mean total soliton density 
n tot (panel (d)), as a function of the junction length L for ( )αS 1, 0, 0  and [ ]α∈ 1, 2 . 
The values of the other parameters, γ = 0.2, ω = 0.7 and i0  =  0.5, are shown in 
panel (b) and refer to all the panels. The dotted vertical lines mark the nucleation 
length �L 5c . The legend refers to all the panels.

http://dx.doi.org/10.1088/1742-5468/2016/05/054012
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across a barrier requires a bigger eort as its length increases. Hence, the MST grows 
with L, up to its maximum in �L Lc. For ( ]α∈ 0, 1  a higher number of cells implies a 
higher probability of generating Lévy flights strong enough to push the string out to 
the metastable state. Consequently, the MSTs tend to decrease as L increases.

Conversely, long strings move from a potential well by the formation of kinks, anti-
kinks and/or kink–antikink pairs. For L  >  Lc a saturation eect is evident [35, 41, 75, 
90, 91]. The MST reaches an almost constant value, indicating that the dynamics of 
the switching events is independent of the JJ length and these events are guided by the 
solitons. To explain this behaviour, Valenti et al [41] proposed a subdomain structure 
of the string, in which each subdomain is composed of a number of cells of total size 
approximately equal to the critical length [75]. The entire string can be thought as the 
sum of these subdomains and the overall escape event results in being the superimposi-
tion of the escape events of each single subdomain. Consequently, increasing the junc-
tion length, the total MST is constant because it is equal to the time evolution of the 
individual subdomain. This means that the number of generated solitons grows linearly 
with the number of subdomains, that is, with the length of the junction. Inspired by 
this picture, we calculate the mean soliton density n. First, the soliton density is calcu-
lated considering, in each experiment, all the kinks and anti-kinks partially lying in the 
initial metastable state, which is the same well used to calculate the MSTs. Then, the 
mean soliton density n is obtained by averaging over the total number of experiments 
N. According to [41], we observe a saturation eect in the behaviour of n as a function 
of L. These curves are shown in panel (b) of figure 3 varying ( ]α∈ 0, 2 . For L  <  Lc, n 
rapidly rises to reach a plateau for L  >  Lc. The saturation in the MSTs can be therefore 
read through the constant value assumed by the mean soliton density n for a long JJ.

Depending on the junction parameters, the experimentalists can choose what to 
measure, either the voltage or the MST. For example, measurements of the mean ‘noise-
induced’ voltage may be performed easily for strong to moderate damping (β < 1c ). In 
fact, on increasing βc (underdamped regime) the maximal value of current <I Imax c, 
above which the switching to the running state occurs, decreases, and the measured 
voltages also become smaller (see figure 8 of [35]). Moreover, for large βc the measure-
ments of MSTs to the resistive running state may be performed more easily as the time 
between sequential single flux quantum pulses.

According to the a.c. Josephson relation [92, 93], when the string rolls down along 
the potential, a non-zero mean voltage across the junction appears.
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The potential dierence across the JJ (normalised to Φ0), in the ith realisation at 
the time t, is
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Therefore, the mean voltage for the ith realisation is
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Averaging over the total number of experiments N and dividing for the JJ length 
L, we obtain the MPD ζ

⎛
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⎟∑ζ = =

=

V

L L N
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1 1
.

i

N

i
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The curves of the MPD ζ as a function of L, varying [ ]α∈ 1, 2 , are presented in 
panel (c) of figure 3. The curves for α< 1 strongly fluctuate and are not included here. 
The results in figure 3(c) highlight an ‘inverse’ behaviour of the MPDs in comparison 
with the MSTs [35]. On decreasing α, the time derivative ϕt grows because of the Lévy 
flights and the MPD values increase (see equation (24)). Moreover, every MPD curve 
decreases for small lengths ( �L Lc) up to a minimum, above which it tends to a roughly 
constant value. In fact, for �L Lc as the length of the junction increases, the stiness 
of the string grows and then the time derivative ϕt reduces, giving rise to a decrease in 
the MPD (see equation (24)).

The constant value of ζ for L  >  Lc is related to the saturation eect in the values of 
the mean soliton density. This is calculated by ensemble average of the number of kinks 
and anti-kinks formed along the string, without focusing only on the initial metastable 
state. We call this quantity the total mean soliton density n tot. The values of n tot as a 
function of L, varying [ ]α∈ 1, 2 , are shown in panel (d) of figure 3. We observe that 
n tot rapidly grows for L  <  Lc, but above this threshold length, i.e. L  >  Lc, the n tot value 
tends to a constant value. Comparing the curves of panels (c) and (d) for L  >  Lc, we 
observe that n tot closely maps the behaviour of the MPD ζ. We note that the satur
ation eect in both n and n tot is proportional to the number of subdomains giving rise 
to solitons along the string.

The curves in panel (b) of figure 3 hide a non-monotonic behaviour as a function 
of α. The values of n versus α for L  =  20, ω = 0.7 and i0  =  0.5 are shown in panel (a) 
of figure 4, for three dierent noise intensities, namely γ = 0.08, 0.2, 1.0. The data for 
γ = 0.2 (red triangles) are selected from figure 3(b) for L  =  20, and have a maximum for 
α = 0.9. The position of this maximum changes with the noise amplitude. Specifically, 
it is centered in α = 0.8 for γ = 0.08, and in α = 1.2 for γ = 1.0. The mean soliton den-
sity n takes into account the solitons formed with respect to the first washboard valley. 
We can rightly assume that these solitons are most likely generated by direct flights 
from the first to the second washboard valley. We define the probability of ‘jumping’ 
from the initial minimum to the second one as

{ } { }= ∆ < <∆ = Λ < <Λα γ α γ α γ α γP D x xProb Prob .,
1

,
2 1

,
2
,

� (28)
Here ∆1 and ∆2 are, respectively, the distances along the potential profile between 

the initial minimum and the two successive maxima on the right (see panel (b) of 
figure 1), Λ = ∆α γ α γD/1

,
1

, , Λ = ∆α γ α γD/2
,

2
,  and ( )γ=α γ αD 2, 1/  is the Lévy noise ampl

itude [39]. In panels (b) and (c) of figure 3, the values of α γP ,  as a function of α for 

γ = 0.08, 0.2 (panel (b)) and γ = 1.0 (panel (c)) are shown. The probabilities α γP ,  show 
non-monotonic behaviours as a function of α, with maxima in α = 0.6 for γ = 0.08, 
α = 0.8 for γ = 0.2, and α = 1.3 for γ = 1.0. The presence of these maxima in the jump 
probability α γP , , which is a proxy of the probability to generate solitons, accounts for 
the non-monotonic behaviours of n as a function of α, as shown in figure 4(a).
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5.2. Results as a function of ω

In this section we analyse the behaviour of the MSTs as a function of the driving fre-
quency ω. The results for dierent values of α∈ 0, 2( ] are shown in panel (a) of figure 5 
setting β = 0.0, L  =  10, γ = 0.1 and i0  =  0.9. The junction is long enough for solitons 
to be observed.

All curves of figure  5(a) clearly show the presence of resonant activation (RA)  
[41, 89, 94–102], specifically stochastic resonance activation, a noise-induced phenom
enon, whose signature is the appearance of a minimum in the curve of the MST versus 

ω. When the noise intensities are greater than ∆U i0 (see equation (9)), that is, the time 

average over a driving period of the potential barrier height, the minimum tends to 
vanish reducing α (see figure 6(c) of [41]). Accordingly, using i0  =  0.9 the time average 

of the potential barrier height is ∆ = �U 0.4i 0.90
, and we set γ = 0.1.

The RA phenomenon is robust enough to be observed also in the presence of Lévy 
noise sources [39–42]. The particle escape from a potential well is driven when the 
potential barrier oscillates on a time-scale characteristic of the particle escape itself. 
Since the resonant frequency is close to the inverse of the average escape time at the 
minimum, which is the mean escape time over the potential barrier in the lowest 
configuration, stochastic resonant activation occurs [14, 38, 41, 103]. This phenomenon 
is dierent from the dynamic resonant activation, which is observed when the driving 
frequency matches the natural frequency of the system, i.e. the plasma frequency [38, 
104–106].

Considering the curves in figure 5(a), we note that the RA minima shift towards 
higher frequencies, reducing α. Moreover, all these curves are characterised by a 

Figure 4.  (a) Mean soliton density n as a function of the stability index α for 
S 1, 0, 0( )α  and α∈ 0, 2( ] varying the noise intensity γ = 0.08, 0.2, 1.0. The values 
of the other parameters are L  =  20, ω = 0.7 and i0  =  0.5 (b, c). Probability α γP ,  
of obtaining values of the random variable x within the range ( )Λ Λα γ α γ,1

,
2
,  (see 

equation (28)) as a function of α, for γ = 0.08, 0.2 (panel (b)) and γ = 1.0 (panel 
(c)). Here Λ = ∆α γ α γD/1

,
1

,  and Λ = ∆α γ α γD/2
,

2
, , where ∆1 and ∆2 are, respectively, 

the distances between the initial minimum and the two successive maxima on the 

right (see panel (b) of figure 1) and ( )γ=α γ αD 2, 1/  is the Lévy noise amplitude.
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non-monotonic behaviour as a function of α, for frequencies within the range (0.04, 
1.3). This behaviour is highlighted in the inset of figure 5(a), which shows the values of 
the MSTs as a function of α for low and high frequencies, ω = 0.01 and ω = 10, and for 
the frequency in the RA minima ω ω= RA. The curve for ω ω= RA has a maximum for 
α = 0.7. A similar behaviour is observed looking at the mean soliton densities n versus 
α presented in panel (b) of figure 5. This graph shows the results for ω ω= 0.01, , 10RA . 
All these curves have a maximum located in α = 0.7max . We observe that changes in the 
value of the driving frequency slightly aect both the position and the height of the n 
maxima, as well as the values of n for ⩽α αmax. Conversely, for α α> max, the curves in 
figure 5(b) do not show the same behaviour. This can be explained by observing that, 
for ⩽α αmax, the behaviour of the string is closely related to the heavy tail character-
istics of the Lévy noise, and the density of solitons rises with α reaching a maximum 
when the probability α γP ,  is the highest. Further increasing α, the eect of the Lévy 
jumps reduces, but solitons can be still be created as a result of escape events after 
oscillations of the cells within the minimum. This explains the frequency-dependence 
of the mean soliton density n for α α> max (see figure 5(b)). For ω ω= RA, the resonant 
escape events are so rapid that the soliton formation is hindered, and the mean soliton 
density tends to low values. For o-resonance frequencies, temporary trapping of the 
phase occurs. As a consequence, the mean soliton density n increases, and this eect is 
greater for high frequencies.

The MSTs versus ω for dierent values of [ ]β∈ −1, 1  are shown in panel (a) of 
figure 6 setting α = 0.5, L  =  10, γ = 0.1 and i0  =  0.9. The RA phenomenon is still pres-
ent for all values of β, but the frequency in correspondence with the minimum grows 
on increasing β.

We note that a general lowering of τ occurs with increasing β. This behaviour is 
related to the asymmetric fluctuations that these noise sources induce for β≠ 0. For 
β< 0, the Lévy jumps push the string in the negative ϕ direction, that is, in the opposite 

Figure 5.  (a) MST τ as a function of the driving frequency ω for S 1, 0, 0( )α  and 
( ]α∈ 0, 2 . The inset shows the values of the MSTs as a function of α for a low 

frequency ω = 0.01, for the frequencies of the RA minima ω ω= RA, and for a high 
frequency ω = 10. (b) Mean soliton density n as a function of α, for ( )αS 1 0 0  and 
α∈ 0, 2( ] and for ω ω= 0.01, , 10RA . The values of the other parameters, L  =  10, 
γ = 0.1 and i0  =  0.9, are shown in panel (a) and refer to both panels.
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direction with respect to the tilting imposed by the positive bias current. Therefore, the 
confinement of the string within the initial metastable state is the longest for β = −1. 
Conversely, a positive value of β gives fluctuations supporting the slipping of the string 
along the potential, resulting in very low values of τ.

Panel (b) of figure  6 shows the mean soliton densities n as a function of β for 
ω ω= 0.01, , 10RA . These curves are slightly aected by the value of the driving fre-
quency, but have a maximum for β = −0.2max , which is in correspondence with a Lévy 
distribution only slightly skewed to the left. The nonmonotonic behaviour of n versus 
β is due to asymmetry properties of the Lévy noise for β≠ 0. For highly skewed dis-
tributions, that is, β −� 1 and β� 1, the escape processes occur preferentially towards 
the left or the right, respectively, along the washboard potential. This gives rise to low 
values of the mean soliton density n. For more symmetrical distributions, that is, β∼ 0, 
the escape events decrease and, as a consequence, n increases. This behaviour is related 
to the nonmonotonic behaviour of the MST as a function of β at low and high frequen-
cies, as shown in the inset of figure 6(b). At ω ω≈ RA, the resonant escape process drives 
the transient dynamics. Moreover, by varying the asymmetry parameter β from  −1 to 
1 the string is pushed towards the same direction as the tilted potential, enhancing the 
escape process. This gives rise to a monotonic behaviour of τ as a function of β at the 
resonance, see figure 6(a).

5.3. Results as a function of γ

In this section  we analyse the MST versus the non-Gaussian noise amplitude 

10 , 5 104 2[ ]γ∈ ×− , for dierent values of α. The results for α∈ 0, 2( ], β = 0.0, L  =  10, 

ω = 0.9, and i0  =  0.9 are shown in panel (a) of figure 7.
Regardless of the value of α, for →γ 0, all the curves converge to the same value, i.e. 

the deterministic lifetime in the superconducting state, which strongly depends on the 

Figure 6.  (a) MST τ as a function of the driving frequency ω for ( )βS 1, , 00.5  
and [ ]β∈ −1, 1 . (b) Mean soliton density n as a function of β for ( )βS 1, , 00.5  and 

[ ]β∈ −1, 1 , and for ω ω= 0.01, , 10RA . The inset shows the values of the MSTs as a 
function of β for low and high frequencies, ω = 0.01 and ω = 10. The values of the 
other parameters, L  =  10, γ = 0.1, and i0  =  0.9 are shown in panel (a) and refer to 
both panels.
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bias current. Increasing the intensity of the noise, the MST curves exhibit an eect of 
noise-enhanced stability (NES) [41, 89, 107–120]. This is a noise-induced phenomenon 
consisting of a nonmonotonic behaviour as a function of the noise intensity with the 
appearance of a maximum. This implies that the stability of metastable states can be 
enhanced and the average lifetime of the metastable state increases nonmonotonically 
with the noise intensity. The observed nonmonotonic resonance-like behaviour dis-
agrees with the monotonic behaviour of Kramers theory and its extensions [121–123]. 
This enhancement of stability, first noted by Hirsch et al [124], has been observed in 
dierent physical and biological systems, and belongs to a highly topical interdisciplin-
ary research field, ranging from condensed matter physics to molecular biology and to 
cancer growth dynamics [113, 125].

We observe that in the curve for α = 2 two maxima are present in γ� 0.1 and 
γ� 100. Reducing the value of α the higher maximum shifts towards smaller γ main-
taining its height, up to merge with the first maximum. In particular, the position 

( )γ τmax  of the second NES peak grows exponentially towards higher noise intensities as 
the value of α increases (see the inset of figure 7(a)).

The double maxima NES for short and long JJs in the presence of a Gaussian noise 
source, i.e. α = 2 and β = 0.0, was previously observed by Valenti et al [41]. In view 
of understanding the physical motivations of these NES eects, they calculated the 
time evolution of the probability ( )P t , as defined in equation (22), during the switch-
ing dynamics of the junction (see panel (b) of figure 8 in [41]). In correspondence with 
the first maximum, the contemporaneous presence of the oscillating potential and the 
noise source hinders the phase switching and therefore the passage of the junction to 
the resistive regime. The exit from the first well is not sharp and ( )P t  assumes an oscil-
latory behaviour, almost in resonance with the periodical motion of the washboard 
potential. This oscillating behaviour of ( )P t  tends to disappear as the noise intensity 
increases. In correspondence with the second NES peak for higher noise intensities no 
oscillations in ( )P t  are present. The JJ dynamics is totally driven by the noise, and the 

Figure 7.  (a) MST τ as a function of the noise amplitude γ for ( )αS 1, 0, 0  and 
( ]α∈ 0, 2 . The inset shows the position ( )γ τmax  of the NES maxima as a function of 

α. (b) MST τ as a function of the noise amplitude γ for ( )βS 1, , 00.5  and [ ]β∈ −1, 1 . 
The inset shows the height τmax of the NES maxima as a function of β. The values 
of the other parameters are L  =  10, ω = 0.9, and i0  =  0.9.
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NES eect is due to the possibility that the phase string comes back into the first val-
ley after a first escape event, as indicated by the fat tail of ( )P t  (see figure 8(b) of [41]).

Reducing α, the probability of obtaining intense noise fluctuations grows, so that 
temporary confinements within the initial metastable state after a first escape can still 
occur but in correspondence with lower intensities of noise. The second NES maximum 
is therefore present also for α< 2, as shown in figure 7(a).

Panel (b) of figure 7 shows the MSTs as a function of γ, for dierent values of 
[ ]β∈ −1, 1 , for α = 0.5, L  =  10, ω = 0.9 and i0  =  0.9. The NES eect is still evident, 

although it is strongly aected by the β value. In fact, the time of confinement of the 
string in the initial metastable state is longer for a Lévy noise strongly skewed in the 
opposite direction with respect to the positive ϕ direction, that is, with respect to the 
tilting imposed by the positive bias current. We observe that only the height of the 
NES peak if aected by the β value, whereas its position is unchanged varying β. In 
particular, the inset of figure 7(b) shows that the height of the NES peak exponentially 
decreases by increasing β.

Both panels of figure 7 show that, for high noise intensities, the MSTs have a power-

law dependence on the noise intensity according to the expression ( ) ( )τ α γµ α�C / , where 
both the prefactor C and the exponent μ depend on the Lévy index α [50].

From figure 7, we obtain ( ) ( )µ α ∈ 0.7, 1.1  for α in (0, 2] and β = 0.0 (see the curves 
in panel (a)) and ( )µ α ∼ 1.1 for α = 0.5 and [ ]β∈ −1, 1  (see the curves in panel (b)). 
These values of ( )µ α  are in agreement with the exponent ( )µ α ≈ 1 for α< <0 2, calcu-
lated for barrier crossing in bistable and metastable potential profiles [126, 127].

Moreover, we calculate the total mean soliton density for the zero bias force, that 
is, = =i i 00 ac . In this condition, the solitons are exclusively generated by noise-induced 
fluctuations along the string. The observation time is increased to =t 10max

3 and the 
junction length is L  =  40. The results are presented in figure 8, where the inverse of the 
mean soliton density n1/ tot is plotted as a function of the inverse noise intensities γ1/  

Figure 8.  Inverse mean density of solitons n1/ tot as a function of inverse noise 
intensity γ1/  in the absence of bias force ib  =  0, for ( )αS 1, 0, 0  and [ ]α∈ 1.9, 2.0 , and 
for L  =  40. The red dashed line is the inverse of the equilibrium soliton density 
n2 eq calculated according to equation (29) [37, 75, 128, 129] and the black solid 

line is obtained from equation (29) by replacing γ with the Lévy noise amplitude 

( )γ= αD 2 1/  with α = 1.96.
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for [ ]α∈ 1.9, 2.0  and β = 0.0. We can compare the curve for α = 2 with the formula for 
the kink density [37, 75, 128, 129]

⎛
⎝
⎜

⎞
⎠
⎟

π γ γ
= −n

E E2
exp .k k

eq� (29)

The total soliton density (kinks and antikinks) in a string is twice the kink density 

given in equation (29) (see ( )n1/ 2 eq  curve, red dashed line, in figure 8). In equation (29), 
the energy =E E8k J is the rest energy of a kink (or an antikink). The total soliton 
density n tot calculated for α = 2 perfectly matches the prediction of equation (29) for 
γ�1/ 0.5.
When the noise intensity is greater than the mean potential barrier height 

∆ ==U 2i 0.00
, i.e. γ�1/ 0.5, the curves in figure 8 overlap. For smaller noise intensi-

ties, i.e. γ>1/ 0.5, the mean soliton density n tot definitively increases as the value of 

α slightly reduces. We observe that the behaviour of the curves for [ )α∈ 1.9, 2.0  can 
be approximately estimated by replacing in equation (29) the noise intensity with the 

Lévy noise amplitude ( )γ=α γ αD 2, 1/  (see the black solid line in figure 8 for α = 1.96).

6. Conclusions

We studied how both non-Gaussian random fluctuations and an oscillating driving con-
tribute to the generation of solitons in a long Josephson junction (also called a string), 
which is a system governed by the sine-Gordon model. The non-Gaussian noise sources 
are modelled by using α-stable Lévy statistics. In detail, we analysed the behaviour of 
the superconducting lifetime and the voltage drop across the junction as the values of 
the characteristic Lévy parameters α and β change. The superconducting lifetime of 
the junction is calculated as the mean switching time (MST) from the initial metastable 
state, i.e. a minimum of the tilted washboard potential.

Studying the MST as a function of the junction length L, two dierent behaviours 
are observed, in correspondence with regimes of length below and above a critical 
value Lc. One, occurring for short junctions, characterised by the movement of the 
phase string as a whole. The other one, occurring for junctions whose size exceeds Lc, 
in which the soliton creation is allowed. We found a connection between the behaviour 
of the MST for L  >  Lc and the mean density n of the solitons partially lying in the 
initial metastable state. Moreover, we observed that, for a fixed length of the junction, 
n varies nonmonotonically as a function of α, showing a clear maximum. A similar 
nonmonotonic behaviour characterises the probability α γP ,  of a direct ‘noise-induced’ 
jump from the initial washboard minimum to the next one.

We also investigated the mean potential dierence (MPD) as a function of the junc-
tion length. For L  >  Lc the MPD behaves just like the mean density n tot of the solitons 
formed along the string.

Studying the behaviour of the MST as a function of the driving frequency ω, we 
observed the presence of stochastic resonance activation, that is, a noise-induced 
phenomenon whose signature is the appearance of a minimum in the curve of the MST 
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versus ω. For frequencies near the RA minima, the behaviour of the MST as a func-
tion of α is characterised by the presence of a maximum. We understood this result 
studying the jump probability α γP , , which shows the same nonmonotonic behaviour as 
a function of α.

We found evidence of a nonmonotonic behaviour also by studying the MSTs as a 
function of the noise intensity γ, observing the phenomenon of noise-enhanced stabil-
ity, whose characteristics strongly depend on the values of the Lévy parameters α 
and β.

Our findings are important to understand the role of non-Gaussian noise sources 
on the transient dynamics of out of equilibrium long JJ devices. This is important not 
only in the general context of nonequilibrium statistical mechanics, but also to improve 
the performance of these devices. Moreover, the statistics of the escape times from 
the superconductive metastable state of a JJ carries information on the non-Gaussian 
background noise [41].
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