ournal of Statistical Mechanics: Theory and Experiment

An IOP and SISSA journal

Special Issue on Unsolved Problems of Noise in Physics, Biology and Technology

Spectral characteristics of steady-state
Lévy flights in confinement potential
profiles

A A Kharcheva!, A A Dubkov!, B Dybiec?, B Spagnolo®*
and D Valenti*

adlop S1Ca. epartment, Lobacnevs ate niversity, agarin ave. N
! Radiophysical Department, Lobachevsky State University, Gagari 23

603950 Nizhni Novgorod, Russia

Marian Smoluchowski Institute of Physics, Jagiellonian University, St.

Lojasiewicza 11, 30-348 Krakow, Poland

Instituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy

Dipartimento di Fisica e Chimica, Group of Interdisciplinary Theoretical

Physics, Universita di Palermo and CNISM-Unita di Palermo, Viale delle

Scienze, Edificio 18, I-90128 Palermo, Italy

E-mail: kharcheva@rf.unn.ru, dubkov@rf.unn.ru, bartek@th.if.uj.edu.pl,
bernardo.spagnolo@unipa.it and davide.valenti@unipa.it

Accepted for publication 11 January 2016

Received 22 October 2015, revised 24 December 2015 @
Published 20 May 2016

CrossMark

Online at stacks.iop.org/JSTAT/2016/054039
doi:10.1088/1742-5468,/2016 /05/054039

Abstract. The steady-state correlation characteristics of superdiffusion in
the form of Lévy flights in one-dimensional confinement potential profiles are
investigated both theoretically and numerically. Specifically, for Cauchy stable
noise we calculate the steady-state probability density function for an infinitely
deep rectangular potential well and for a symmetric steep potential well of the
type U(z) oc 22™. For these potential profiles and arbitrary Lévy index «a, we
obtain the asymptotic expression of the spectral power density.
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1. Introduction

The spectral power densities of fluctuations provide an important tool to characterize
physical systems, because they can be measured directly in experiments. Investigations
of spectra are useful to observe and analyze the interplay between fluctuations, relax-
ation and nonlinearity which are inherent to real physical systems. This interplay ranks
among the most challenging problems of modern nonlinear physics.

The spectral and correlation characteristics of both overdamped and underdamped
Brownian diffusion in fixed and fluctuating one-dimensional potentials have been exten-
sively studied both experimentally and theoretically [1-9].

Anomalous diffusion in the form of Lévy flights is of permanent interest due to
wide applications in different areas of science [10-30]. To explore this phenomenon,
unlike the standard Brownian motion, one needs to apply the Markovian theory of the
fractional Fokker—Planck equation and to state non-trivial boundary conditions. As a
result, even the steady-state probability density function of the particle coordinate can
be found only for some simple potential profiles [13, 15, 31].

The analytical investigation of correlational and spectral properties of steady-state
Lévy flights in confinement potentials remains an open problem. Here we can mention
only the exact result, recently obtained in [32], for the correlation time of Lévy flights
in a symmetric quartic potential.

The paper is organized as follows. In the next section we start with the mathemati-
cal apparatus needed for the analysis of spectral and correlation characteristics of Lévy
flights in confinement potentials. In section 3 we briefly review the spectral and correla-
tion characteristics of Brownian diffusion. The probability and spectral characteristics
of Lévy flights in confinement potentials are analyzed in section 4. Finally in section 5
we draw conclusions.
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2. Mathematical apparatus

We start from the following general operator formula for the correlation function K[7]
of a stationary Markovian process z(t) [33]

K[r] = <x eﬁ*(z)7x>7 720, 1)

where E+(x) is the adjoint kinetic operator of the general Kolmogorov equation for the
probability density function.

According to the Wiener—Khinchin theorem, the spectral power density can be
found as

S(w) = f(: K[7]cos wrdr = 2 Re{ K[iw]}, (2)

where K[ p] is the Laplace transform of K[7]. According to equation (1) K[ p] reads

N 1
Kipl=(z———12).
[ p] <l“ @ fv> 3)

As seen from equation (3), we have to solve the following integro-differential equa-
tion for the auxiliary function ©,(2)

LY (@)p(2) — pp,(2) = —a @)
and then calculate the average
K[ p]l = (zp,(2)) ()

over the stationary probability density function.
In particular, using one of the definitions of correlation time (see [34]) we have
1 foo SO
= — (K[7] — (z)»)dr = —~, 6
* o Jo (@) 202 ©)
where o2 is the variance of the random process z(t).
Based on this mathematical tool, we analyze the steady-state probability and cor-
relation characteristics of Brownian motion, and the anomalous diffusion in the form of
Lévy flights in an infinitely deep rectangular potential well.

3. The spectral and correlation characteristics of Brownian diffusion

In this section, we briefly review some results concerning the overdamped Brownian
motion of a particle in the potential U(z) under the action of white Gaussian noise
&(t) with zero mean (£(¢)) = 0 and intensity 2D. This motion can be described by the
following Langevin equation
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Figure 1. Infinitely deep rectangular potential well.

@ B _dU(a:)
d¢ dz

+ &(1), (7)

where 2(t) is the particle coordinate.
The corresponding Fokker—Planck (or Smoluchowski) equation for the probability
density function reads

2
o8 _0(dU) 0

E N % dz or? ®)

From equation (8) we find the adjoint kinetic operator

I, N
L@ =D - U@~ 9)

and the steady-state probability distribution of particle position
Ry(z) = Coe~ /P, (10)

which is of the Boltzmann—Gibbs type, with the normalization constant Cy.
In particular, for an infinitely deep rectangular potential well (see figure 1)

(0, k<L
w”‘{m,m>a ()

from equation (10) we obtain a uniform probability distribution inside a potential
well

1
Ry(z) = oL |z < L. (12)

The steady-state spectral power density of the particle position in such a case was
found in [8] from equations (2) and (3) as

S(w) 2D ] 1 [ D sinhL\2w /D +sin L\/2w /D
el T TV : 13
w? LN 2w cosh L /2w /D + cos L\2w /D (13)
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From equation (13) we get

S(w) = 2D

= W — 00. (14)

Further, we show that the result (14) holds for any potential U(z). Indeed, from equa-
tions (1), (9) and (10) we find

K'[07] = (zL 7 (2)7) = —(zU'(z)) = —D. (15)

Thus, the first derivative of the stationary correlation function at 7= 0" does not
depend on the form of potential. According to the Tauberian theorems we have

K[0]= o2 = lim pK] p],

p—00
K'[0*] = =D = lim p(pK[p] - 0®).
p—o0
and, as a result
- o> D
Kipl~— - —, P —> 0. (16)
p p

Substitution of equation (16) in equation (2) gives the universal asymptotic behavior
(14) of the spectral power density. Finally, from equations (6), (12) and (13) we find the
correlation time as

_ 217

Te = —.
5D

1)

4. The probability and spectral characteristics of Lévy flights

Here, we consider anomalous diffusion in the form of Lévy flights in the potential U(x),

which is governed by the following Langevin equation for the particle coordinate x(t)
@ _ dU(z)
d¢ dz

+ &,.(D), (18)

where £ (t) is a symmetric a-stable Lévy noise and « is the Lévy index (0 < o < 2). The
corresponding Fokker—Planck equation with spatial fractional derivative for the prob-
ability density function takes the form [12]

0P 0 (dU o0“P
—=—|—P|+D,——,
ot 8$(dx ) “ o|z|* (19)
where D), is the intensity parameter of the noise £ ().

To calculate the steady-state characteristics of Lévy flights in an infinitely deep
rectangular potential well, we examine a symmetric steep potential well of the type

U(z) ox 22™. Specifically, we consider the symmetric steep confining potential

doi:10.1088/1742-5468/2016/05/054039 )
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2m
_7(z

For this potential profile, as shown in [15], the stationary probability distribution of
the particle displacement for anomalous diffusion in the form of Lévy flights with Lévy
index o = 1 has the following expressions for odd m =2n + 1

ﬁ4n+1 n—1 1
Bi(z) =
) m(z®+ 0% i ot — 26%% cos [m(4l+ 1)/(4n+ D] + B 21
and for even m = 2n
4n—1 n—1
Ry(z) = b I1 ! (22)

T g ot —2B%%cos [n(4l+ 1)/(4n — D] + B

where = L2-y/DiL/v, and D; is the intensity parameter of the noise with stable

Cauchy distribution.

In the limit of very large exponent m, the potential (20) transforms to an infinitely
deep rectangular potential well (11). To make this limit in equations (21) and (22) we
need to rearrange them into a more convenient form (see appendix)

L exp i —1 (E)Qk |$| < ﬁ
el =1 2kcos "\ B8 , S
2m—1
Ri(z) = 4 (23)
2m 00 2k
) e 2] s
B\ i—1 2k cos 2;6 S\

In the limit m — oo, the steady-state probability distribution (23) transforms to the
arcsine distribution

1 1
——— lg<L,
Ryz) =7 JI?— 2? (24)

0, |z| > L.

The validity of this transformation can be confirmed by comparing equation (24) with
the exact results given in [35] for arbitrary Lévy index «

QL)' T(a)

PS - ’
() FQ((X/Z)(L2 _ x2)1—a/2

(25)

where I'(z) is the gamma function. The formula (25) was derived by using the special
conditions for impermeable boundaries at x = + L.

The stationary probability densities of equation (25), for different values of the Lévy
index «, are shown in figure 2 (solid lines). Points in the figure have been obtained by
numerically integrating the stochastic differential equation (18), applying the Euler—
Maruyama method within the Ito scheme [36, 37]. The same procedure has been fol-
lowed to get all numerical results presented in this paper. More precisely, a large
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a=0.5
a=1.0
a=1.5
a=2.0

4reonm

Figure 2. Stationary probability densities Biy(x) for different values of the Lévy
index «. The values of the parameters are: v =1, D, = 1 and L = 1. The case a = 2
corresponds to usual Brownian motion. Solid lines represent exact solutions given
by equation (25), while points correspond to numerical estimations of stationary
distributions based on the Langevin equation (18). The numerical simulations are
obtained using the potential profile of equation (20) with m =800.

number of very long realizations of the stochastic process (%) is generated. From these
realizations the time dependent densities P(z, t) are estimated. Finally, the stationary
density Ri(z) = lim,_,  P(z,t) is approximated. The curve with a = 2 corresponds to
the usual Brownian motion. In such a case the stationary density is of the Boltzmann—
Gibbs type for the infinitely deep rectangular potential well (see equation (12)). The
infinitely deep rectangular potential well can be achieved from equation (20) in the
limit of m — oo. Practically, such a convergence is quite fast and with m = 800 we
observe a very good agreement between numerical simulations and exact formula (25),
except the points close to the boundaries (see figure 2). Alternatively, the infinitely
deep rectangular potential well can be approximated by imposing impenetrable bound-
ary conditions on trajectories z(t), see [35].

In figure 3 we show the stationary probability density functions for a = 1, obtained
with increasing exponent m (see equation (20)). Exact results, which are given by equa-
tions (21) and (22), are depicted by solid lines. Points correspond to results of Monte
Carlo simulations of the Langevin equation (18). In the limit of m — oo, the stationary
probability density function tends to the arcsine distribution of equation (24). This is
achieved for m = 50. Figure 3 demonstrates how, starting from a steep potential, we
can get the stationary probability distributions in the infinitely deep rectangular poten-
tial well, without considering the problem of the boundary conditions. The steady-state
spectral characteristics of Lévy flights, with potential profile of equation (20), cannot be
obtained analytically for arbitrary Lévy index a.

However, an asymptotic expression of the spectral power density of steady-state
Lévy flights in the potential (20) can be found. From equations (1), (19), (20) and (23)
we get the first derivative of the correlation function at zero point

2m
K'[0] = <mﬁ+(x)a:> = —(z2U'(z)) = —v<(%) > = —00 (26)

which differs from the result (15) for ordinary Brownian motion (a = 2).

doi:10.1088/1742-5468/2016/05/054039 7
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1.4 m=2

L |
m=10 e
m =20 a

1.2 - } m=100 v 7

arcsine —

Figure 3. Stationary probability distributions for a = 1 and increasing exponent
m (see equations (20)—(22)). Solid lines represent exact results, while points
correspond to numerical estimations of stationary densities based on the Langevin
equation (18). The values of the other system parameters are the same as those of
figure 2.

Figure 4 presents sample autocorrelation functions K[7] for « = 1.9 (top panel) and
a = 1.5 (bottom panel) plotted in two different scales, namely as K[7] versus 7 (left
side panels) and In|ln K[7]| versus In 7 (right side panels). Various curves correspond to
different values of the exponent m (see equation (20)).

In accordance with equation (26), we can assume a non-analytical dependence of the
correlation function on 7 near the point 7 = 0 in the following ansatz form

K[r]~ 02[1 — (l) ] ~ a2exp{—(l) }, O<rv<l, 7. (27)
0 70

Applying a Laplace transform to equation (27) we arrive at

M 1 TI'A+v)
K[p]—dz[;—w], p— 0. (28)

Substitution of equation (28) into equation (2) gives the asymptotic expression of the
spectral power density

2 .
S(w) 202 T(1 +Vy3+s;n(7w/2) 7 . 29)
ToW

The exponent v is a function of the potential exponent m, the noise intensity parameter
D,, the Lévy index «, the steepness of potential v and the size of the potential well L.

In the left side panels of figure 4 we also show the best fitting of the normalized cor-
relation function K[7], obtained by numerical simulation of the Langevin equation (18)
with the potential profile of equation (20) calculated at different values of exponent m.
From the fitting procedure we obtain the values of the parameters %, 7 and v of the
stretched exponential function of equation (27) shown in table 1.

In figure 5 we show the spectral power density obtained by numerical simulation of
the Langevin equation (18) with the potential profile of equation (20) for m =100, and
four different values of the Lévy index o, namely a = 1.3,1.5, 1.9, 2.0. In all simulations

doi:10.1088/1742-5468/2016/05/054039 8
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0.8

0.6

Ta=19
m=2 m

m=10 e

m =20 —a
m =100
fit —

In|In K (7)]

K(r)

In|In K(7)|

InT

Figure 4. Correlation function for a = 1.9 (top panels), a« = 1.5 (bottom panels)
plotted in two different scales, namely as K[7] versus 7 (left side panels) and
In|ln K[7]| versus In7 (right side panels). Various curves correspond to different
values of the exponent m (see equation (20)). The values of the other system
parameters are the same as those of figure 2.

Table 1. Values of stretched exponential parameters fitted to the normalized

correlation function.

2

«@ o 0 v
1.3 0.950 + 0.001 0.702 £0.003 0.987 £+ 0.006
1.5 0.967 + 0.001 0.622 £+ 0.002 0.980 £+ 0.004
1.9 0.999 + 0.001 0.452 £+ 0.002 0.984 +0.005

we fixed a noise intensity parameter to D, = 1. The integration step used to obtain
the curves of figure 5 was At = 107% and the obtained spectral power densities were
averaged over 300 realizations. Moreover, for a = 1.3,1.5,1.9 we also show the spectral
power densities obtained by a Fourier transform of the stretched exponential ansatz
of equation (27). The agreement between these curves and those calculated by direct
simulation of the Langevin equation (18) is very good.

5. Conclusions

We have investigated the spectral characteristics of steady-state Lévy flights in
confinement potential profiles. The main results of the paper are: (i) the analyti-
cal expression of the steady-state probability density function for an infinitely deep

doi:10.1088/1742-5468,/2016,/05/054039
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0 N
1077 a=13 —
a=15 ——
a=19 —
I a=20 —
107! b a=13 — 1
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a=19 —
3102 |
= :
1073 L
10~4 C] ‘ e ‘ e
10° 10 102
w

Figure 5. Color lines represent spectral power densities estimated from time
series of x(t), obtained solving equation (18) for four different values of the Lévy
index «. Thin black lines (solid, medium-dashed, and short-dashed) refer to
spectral power densities for « = 1.3, 1.5 and 1.9 estimated starting from the fitted
stretched exponential given in equation (27) and calculating its Fourier transform.
Trajectories have been constructed by the Langevin dynamics with the integration
step At= 1075 Every trajectory z(¢) consists of 2?* elements. Spectral power
densities has been averaged over 300 realizations. The a-stable noise intensity
parameter is [, = 1. The exponent in the steep potential (20) is m = 100.

rectangular potential well and for a symmetric steep potential well of the type
U(z) < z?™, in the case of Lévy noise with Cauchy-Lorentz distribution (a = 1); (ii)
the asymptotic expression of the spectral power density for superdiffusion in symmet-
ric steep potential profiles, for arbitrary Lévy noise index «. The theoretical results
obtained for anomalous diffusion, that is superdiffusion in the form of Lévy flights, in
confinement potential profiles are compared with those found for normal Brownian
diffusion. Numerical simulations are in a very good agreement with the analytical
results. Our study, describing confined Lévy flights, that is Lévy flights with finite
variance, could be useful to describe the distribution of flying objects in spatially lim-
ited structures, such as confined plasmas and turbulent flows [35].
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Appendix
First of all, we rearrange equation (21) for the case of odd m = 2n + 1. For convenience,

we introduce new symbol A;= (41+ 1)/(4n + 1) and start from the factorization of the
denominator in equation (21)

* — 28%% cos A, + B* = (8% — 2% e ™) (B2 — 2% ), (A.1)
Then we transform in equation (21) the product to the sum in the following way
ﬁ4n+1 n—1 1

F(x) =

7.(.(:[;2 + ﬁ?) -0 (52 - ZE2 efiﬂAl)(BQ _ ZEQ eiﬂ'A])

= i expq — ”il [In(8? — 2% e ™) + In(B% — 22 )] A4.2)
m(z? + 3%) =0 |

In accordance with the Taylor expansion of the logarithm, for |z| < 8 we have

2 —imA
In(3? — 22 e ™) — 1n 82 4+ ln(l _ %21)
o 1 (g2
— ln 52 _ Z _(_) e_iﬂ'kAl_
=1 B\ B

By analogy
1 ( 7\
1n(62 — 2 eiTl'A[) —1In 62 . Z _(_) eiﬂ'kAl.
im1 R\ G
Substituting these relations in equation (A.2) we find
_ 2k
ﬁ4n+1 n—1 1 o] 1 T A iy
Bi(x) = ———exp In— + ) —|—=| (e™" 4 e ™)
m(z® + (%) ; B kz::l K\ B
2k n—1 4l+1 4141

_ ﬂ > l 2 imk n fiﬂkT
— —7r($2+ ) exp{kg1 k(ﬂ) g(e dntl 4+ e " dnt )} (A.3)

To calculate the internal sum on index I, we use the formula for the sum of the geo-
metric series

n—1 n—1
Al 4l irk \4+1
Z(e‘”k4n+1 +e mk4n+1) = 2Re{2(e4n+1)

1=0 =0

imk ik ik b1 2irk

. 2R e4TL+1 —_— elﬂ' . R . e_4n+l —|— (—1) + e_4n+l

ARy T (T ! <in
1 —ent1 dn+1

. 7k
SI 4n+1 k+1 1 k+1
R I Ay M A
dn+1 2m—1
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Substituting (A.4) in (A.3), we arrive at

& 00 1 ZE 2k (—1)k+1(£)2k
Ri(r) = ———- — = + =
() (2% + %) P ;; 2kcos 27:;61 (ﬂ) k B
ﬁ - 2 00 1 (x)Zk
=2 eplm|i4|E| |+ ———— 2
m(x? + 3%) P n[ (5) ] 1; 2k cos QT;r’i - B
1 0 1 2\
N 3 P kz::l 2k cos —+ (5) . (A.5)

2m—1

The formula for even m = 2n can be obtained analogously from equation (22), but
we have to replace A; with B;= (414 1)/(4n — 1). As a result, we arrive at

ﬁ4n 1 - 2k
Ry(z) = exp z In — + z ( ) (e™HBi 4 g inhBr)
1=0 5 k\ B

o0 k-1, 441 4141
_ 1 expy Y l(ﬁ) Z(e‘“km@tl +e k4n+1) (A.6)
3 k=1 kE\ B 1=0

Next we calculate the internal sum on index [ in equation (A.6) by the same method as
in equation (A.4). Namely,

n—1 n—1 ik 2irk
AL+l Al ik \4+1 eIn-T — eein_1

Z ™1 4 eI k4n 1 = 2Re Z edn—1 = 2Re

=0 =0 Lirk

1 —ein—1
ik k+1
_ Re e o 1+§k1) _ 1 . (A7)
T 2 cos
Sln4n71 2m—1

Substituting equation (A.7) in equation (A.6) we again obtain the result (A.5), i.e.

s 1 A
Ry(z) = ﬁ exp Z—ﬂk(—) : (A.8)

=1 2kcos P B

Using similar calculations, it is easy to obtain the steady-state probability distribu-
tion for the case |z| > 3 for odd and even values of the parameter m. The final expres-
sion for arbitrary m is of the form

1 2m 00 1 2k
By(z) = ﬁ(g) expy Y —— (ﬁ) ) (A.9)

i—1 2kcos 5 u T

doi:10.1088/1742-5468/2016/05/054039 12
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Finally, from equations (21) and (22) we arrive at

-

Lopds— 1 (—) L ll<s,
e i—1 2kcos — B
2m—1
Ry(z) = . (A.10)
2m 0 2
i(@) P e - [ LT
B\ z i—1 2kcos 2;:6 x
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