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Abstract. The steady-state correlation characteristics of superdiusion in 
the form of Lévy flights in one-dimensional confinement potential profiles are 
investigated both theoretically and numerically. Specifically, for Cauchy stable 
noise we calculate the steady-state probability density function for an infinitely 
deep rectangular potential well and for a symmetric steep potential well of the 

type ( )∝U x x m2 . For these potential profiles and arbitrary Lévy index α, we 
obtain the asymptotic expression of the spectral power density.

Keywords: rigorous results in statistical mechanics, stochastic particle 
dynamics, stochastic processes (theory)

A A Kharcheva et al

Spectral characteristics of Lévy flights in confinement potentials

Printed in the UK

054039

JSMTC6

© 2016 IOP Publishing Ltd and SISSA Medialab srl

2016

2016

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/2016/05/054039

Special Issue on Unsolved Problems of Noise in Physics, Biology and Technology

05

Journal of Statistical Mechanics: Theory and Experiment

© 2016 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/16/054039+13$33.00

mailto:kharcheva@rf.unn.ru
mailto:dubkov@rf.unn.ru
mailto:bartek@th.if.uj.edu.pl
mailto:bernardo.spagnolo@unipa.it
mailto:davide.valenti@unipa.it
http://stacks.iop.org/JSTAT/2016/054039
http://dx.doi.org/10.1088/1742-5468/2016/05/054039
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/2016/05/054039&domain=pdf&date_stamp=2016-05-20
publisher-id
doi


Spectral characteristics of Lévy flights in confinement potentials

2doi:10.1088/1742-5468/2016/05/054039

J. S
tat. M

ech. (2016) 054039

1. Introduction

The spectral power densities of fluctuations provide an important tool to characterize 
physical systems, because they can be measured directly in experiments. Investigations 
of spectra are useful to observe and analyze the interplay between fluctuations, relax-
ation and nonlinearity which are inherent to real physical systems. This interplay ranks 
among the most challenging problems of modern nonlinear physics.

The spectral and correlation characteristics of both overdamped and underdamped 
Brownian diusion in fixed and fluctuating one-dimensional potentials have been exten-
sively studied both experimentally and theoretically [1–9].

Anomalous diusion in the form of Lévy flights is of permanent interest due to 
wide applications in dierent areas of science [10–30]. To explore this phenomenon, 
unlike the standard Brownian motion, one needs to apply the Markovian theory of the 
fractional Fokker–Planck equation and to state non-trivial boundary conditions. As a 
result, even the steady-state probability density function of the particle coordinate can 
be found only for some simple potential profiles [13, 15, 31].

The analytical investigation of correlational and spectral properties of steady-state 
Lévy flights in confinement potentials remains an open problem. Here we can mention 
only the exact result, recently obtained in [32], for the correlation time of Lévy flights 
in a symmetric quartic potential.

The paper is organized as follows. In the next section we start with the mathemati-
cal apparatus needed for the analysis of spectral and correlation characteristics of Lévy 
flights in confinement potentials. In section 3 we briefly review the spectral and correla-
tion characteristics of Brownian diusion. The probability and spectral characteristics 
of Lévy flights in confinement potentials are analyzed in section 4. Finally in section 5 
we draw conclusions.
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2. Mathematical apparatus

We start from the following general operator formula for the correlation function [ ]τK  
of a stationary Markovian process x (t ) [33]

[ ] ⩾ˆ ( )τ τ= τ+

K x xe , 0,L x
 (1)

where ˆ ( )+
L x  is the adjoint kinetic operator of the general Kolmogorov equation for the 

probability density function.
According to the Wiener–Khinchin theorem, the spectral power density can be 

found as

( ) [ ] { ˜ [ ]}∫ω τ ωτ τ ω= =
−∞

∞
S K Kcos d 2 Re i , (2)

where ˜ [ ]K p  is the Laplace transform of [ ]τK . According to equation (1) ˜ [ ]K p  reads

˜ [ ]
ˆ ( )

=
− +K p x

p L x
x

1
. (3)

As seen from equation (3), we have to solve the following integro-dierential equa-

tion for the auxiliary function ( )ϕ xp

ˆ ( ) ( ) ( )ϕ ϕ− = −+
L x x p x xp p (4)

and then calculate the average

˜ [ ] ⟨ ( )⟩ϕ=K p x xp (5)

over the stationary probability density function.
In particular, using one of the definitions of correlation time (see [34]) we have

( [ ] ) ( )
∫τ

σ
τ τ

σ
= − =

∞ +
K x

S1
d

0

2
,k 2 0

2
2 (6)

where σ2 is the variance of the random process x (t ).
Based on this mathematical tool, we analyze the steady-state probability and cor-

relation characteristics of Brownian motion, and the anomalous diusion in the form of 
Lévy flights in an infinitely deep rectangular potential well.

3. The spectral and correlation characteristics of Brownian diusion

In this section, we briefly review some results concerning the overdamped Brownian 
motion of a particle in the potential U(x) under the action of white Gaussian noise  
( )ξ t  with zero mean ⟨ ( )⟩ξ =t 0 and intensity 2D. This motion can be described by the 

following Langevin equation

http://dx.doi.org/10.1088/1742-5468/2016/05/054039
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( ) ( )ξ= − +
x

t

U x

x
t

d

d

d

d
, (7)

where x(t) is the particle coordinate.
The corresponding Fokker–Planck (or Smoluchowski) equation for the probability 

density function reads

⎜ ⎟
⎛
⎝

⎞
⎠

∂
∂
=
∂
∂

+
∂
∂

P

t x

U

x
P D

P

x

d

d
.

2

2 (8)

From equation (8) we find the adjoint kinetic operator

ˆ ( ) ( )=
∂
∂
−

∂
∂

′
+

L x D
x

U x
x

2

2 (9)

and the steady-state probability distribution of particle position

( ) ( )= −P x C e ,U x D
st 0

/ (10)

which is of the Boltzmann–Gibbs type, with the normalization constant C0.
In particular, for an infinitely deep rectangular potential well (see figure 1)

( )
⩽⎧

⎨
⎩

=
∞ >

U x
x L

x L

0, ,

, ,
 (11)

from equation (10) we obtain a uniform probability distribution inside a potential 
well

( ) = | | <P x
L

x L
1

2
, .st (12)

The steady-state spectral power density of the particle position in such a case was 
found in [8] from equations (2) and (3) as

( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ω

ω ω

ω ω

ω ω
= −

+

+
S

D

L

D L D L D

L D L D

2
1

1

2

sinh 2 sin 2

cosh 2 cos 2
.

2 (13)

Figure 1. Infinitely deep rectangular potential well.
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From equation (13) we get

( ) →ω
ω

ω≅ ∞S
D2

, .
2 (14)

Further, we show that the result (14) holds for any potential U(x). Indeed, from equa-
tions (1), (9) and (10) we find

[ ] ⟨ ˆ ( ) ⟩ ⟨ ( )⟩= = − = −′ ′+ +
K xL x x xU x D0 . (15)

Thus, the first derivative of the stationary correlation function at τ = +0  does not 
depend on the form of potential. According to the Tauberian theorems we have

[ ] ˜ [ ]

[ ] ( ˜ [ ] )
→

→

σ

σ

= =

= − = −′
∞

+

∞

K pK p

K D p pK p

0 lim ,

0 lim .

p

p

2

2

and, as a result

˜ [ ] →σ
− ∞�K p

p

D

p
p, .

2

2 (16)

Substitution of equation (16) in equation (2) gives the universal asymptotic behavior 
(14) of the spectral power density. Finally, from equations (6), (12) and (13) we find the 
correlation time as

τ =
L

D

2

5
.c

2

 (17)

4. The probability and spectral characteristics of Lévy flights

Here, we consider anomalous diusion in the form of Lévy flights in the potential U (x ), 
which is governed by the following Langevin equation for the particle coordinate x (t )

( ) ( )ξ= − + α
x

t

U x

x
t

d

d

d

d
, (18)

where ( )ξα t  is a symmetric α-stable Lévy noise and α is the Lévy index ( α< <0 2). The 
corresponding Fokker–Planck equation with spatial fractional derivative for the prob-
ability density function takes the form [12]

⎜ ⎟
⎛
⎝

⎞
⎠

∂
∂
=
∂
∂

+
∂
∂| |

α

α

α
P

t x

U

x
P D

P

x

d

d
, (19)

where αD  is the intensity parameter of the noise ( )ξα t .
To calculate the steady-state characteristics of Lévy flights in an infinitely deep 

rectangular potential well, we examine a symmetric steep potential well of the type 
( )∝U x x m2 . Specifically, we consider the symmetric steep confining potential

http://dx.doi.org/10.1088/1742-5468/2016/05/054039
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( ) ⎜ ⎟
⎛
⎝

⎞
⎠

γ
=U x

m

x

L2
.

m2

 (20)

For this potential profile, as shown in [15], the stationary probability distribution of 
the particle displacement for anomalous diusion in the form of Lévy flights with Lévy 
index α = 1 has the following expressions for odd m  =  2n  +  1

( )
( ) [ ( ) ( )]∏
β

π β β π β
=

+ − + + +

+

=

−

P x
x x x l n

1

2 cos 4 1 / 4 1

n

l

n

st

4 1

2 2
0

1

4 2 2 4 (21)

and for even m  =  2n

( )
[ ( ) ( )]∏

β
π β π β

=
− + − +

−

=

−

P x
x x l n

1

2 cos 4 1 / 4 1
,

n

l

n

st

4 1

0

1

4 2 2 4 (22)

where β γ= −L D L/1
m2 1 , and D1 is the intensity parameter of the noise with stable 

Cauchy distribution.
In the limit of very large exponent m, the potential (20) transforms to an infinitely 

deep rectangular potential well (11). To make this limit in equations (21) and (22) we 
need to rearrange them into a more convenient form (see appendix)

( )

⩽

⎜ ⎟ ⎜ ⎟

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎪ ⎪

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎧
⎨
⎩

⎛
⎝
⎜

⎞
⎠
⎟

⎫
⎬
⎭

⎛
⎝

⎞
⎠

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

∑

∑

πβ β
β

πβ
β β

β

=

>

π

π

=

∞

−

=

∞

−

P x
k

x
x

x k x
x

1
exp

1

2 cos
, ,

1
exp

1

2 cos
, .

k
k

m

k

m

k
k

m

k
st

1 2 1

2

2

1 2 1

2
 (23)

In the limit →∞m , the steady-state probability distribution (23) transforms to the 
arcsine distribution

( )
⩽

⎧
⎨
⎪

⎩⎪
π= −

>
P x L x

x L

x L

1 1
, ,

0, .
st

2 2 (24)

The validity of this transformation can be confirmed by comparing equation (24) with 
the exact results given in [35] for arbitrary Lévy index α

( ) ( ) ( )
( )( )

α
α

=
Γ

Γ −

α

α

−

−
P x

L

L x

2

/2
,st

1

2 2 2 1 /2 (25)

where ( )Γ x  is the gamma function. The formula (25) was derived by using the special 
conditions for impermeable boundaries at =±x L.

The stationary probability densities of equation (25), for dierent values of the Lévy 
index α, are shown in figure 2 (solid lines). Points in the figure have been obtained by 
numerically integrating the stochastic dierential equation (18), applying the Euler–
Maruyama method within the Ito scheme [36, 37]. The same procedure has been fol-
lowed to get all numerical results presented in this paper. More precisely, a large 

http://dx.doi.org/10.1088/1742-5468/2016/05/054039
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number of very long realizations of the stochastic process x(t) is generated. From these 
realizations the time dependent densities P(x, t) are estimated. Finally, the stationary 
density ( ) ( )→= ∞P x P x tlim ,tst  is approximated. The curve with α = 2 corresponds to 
the usual Brownian motion. In such a case the stationary density is of the Boltzmann–
Gibbs type for the infinitely deep rectangular potential well (see equation (12)). The 
infinitely deep rectangular potential well can be achieved from equation (20) in the 
limit of →∞m . Practically, such a convergence is quite fast and with m  =  800 we 
observe a very good agreement between numerical simulations and exact formula (25), 
except the points close to the boundaries (see figure 2). Alternatively, the infinitely 
deep rectangular potential well can be approximated by imposing impenetrable bound-
ary conditions on trajectories x (t ), see [35].

In figure 3 we show the stationary probability density functions for α = 1, obtained 
with increasing exponent m (see equation (20)). Exact results, which are given by equa-
tions (21) and (22), are depicted by solid lines. Points correspond to results of Monte 
Carlo simulations of the Langevin equation (18). In the limit of →∞m , the stationary 
probability density function tends to the arcsine distribution of equation (24). This is 
achieved for m  =  50. Figure 3 demonstrates how, starting from a steep potential, we 
can get the stationary probability distributions in the infinitely deep rectangular poten-
tial well, without considering the problem of the boundary conditions. The steady-state 
spectral characteristics of Lévy flights, with potential profile of equation (20), cannot be 
obtained analytically for arbitrary Lévy index α.

However, an asymptotic expression of the spectral power density of steady-state 
Lévy flights in the potential (20) can be found. From equations (1), (19), (20) and (23) 
we get the first derivative of the correlation function at zero point

[ ] ˆ ( ) ( ) ⎜ ⎟
⎛
⎝

⎞
⎠γ= = − = − = −∞′ ′+ +

K xL x x xU x
x

L
0

m2

 (26)

which diers from the result (15) for ordinary Brownian motion (α = 2).

Figure 2. Stationary probability densities ( )P xst  for dierent values of the Lévy 
index α. The values of the parameters are: γ = 1, =αD 1 and L  =  1. The case α = 2 
corresponds to usual Brownian motion. Solid lines represent exact solutions given 
by equation (25), while points correspond to numerical estimations of stationary 
distributions based on the Langevin equation (18). The numerical simulations are 
obtained using the potential profile of equation (20) with m  =800.

P
st

(x
)

x

α = 0.5
2.5

2

1.5

0.5

0
-1 -0.5 0 0.5 1

1
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Figure 4 presents sample autocorrelation functions [ ]τK  for α = 1.9 (top panel) and 
α = 1.5 (bottom panel) plotted in two dierent scales, namely as [ ]τK  versus τ (left 
side panels) and [ ]τKln ln  versus τln  (right side panels). Various curves correspond to 
dierent values of the exponent m (see equation (20)).

In accordance with equation (26), we can assume a non-analytical dependence of the 
correlation function on τ near the point τ = 0 in the following ansatz form

[ ]
⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟

⎤

⎦
⎥

⎧
⎨
⎩

⎛
⎝
⎜

⎞
⎠
⎟

⎫
⎬
⎭

τ σ
τ
τ

σ
τ
τ

ν τ τ− − < <
ν ν

� � �K 1 exp , 0 1, .2

0

2

0
0 (27)

Applying a Laplace transform to equation (27) we arrive at

˜ [ ] ( ) →
⎡
⎣
⎢

⎤
⎦
⎥σ

ν
τ

−
Γ +

∞ν ν+�K p
p p

p
1 1

, .2

0
1 (28)

Substitution of equation (28) into equation (2) gives the asymptotic expression of the 
spectral power density

( )
( ) ( )

→ω
σ ν πν

τ ω
ω

Γ +
∞ν ν+�S

2 1 sin /2
, .

2

0
1 (29)

The exponent ν is a function of the potential exponent m, the noise intensity parameter 

αD , the Lévy index α, the steepness of potential γ and the size of the potential well L.
In the left side panels of figure 4 we also show the best fitting of the normalized cor-

relation function [ ]τK , obtained by numerical simulation of the Langevin equation (18) 
with the potential profile of equation (20) calculated at dierent values of exponent m. 
From the fitting procedure we obtain the values of the parameters σ2, τ0 and ν of the 
stretched exponential function of equation (27) shown in table 1.

In figure 5 we show the spectral power density obtained by numerical simulation of 
the Langevin equation (18) with the potential profile of equation (20) for m  =100, and 
four dierent values of the Lévy index α, namely α = 1.3, 1.5, 1.9, 2.0. In all simulations 

Figure 3. Stationary probability distributions for α = 1 and increasing exponent 
m (see equations (20)–(22)). Solid lines represent exact results, while points 
correspond to numerical estimations of stationary densities based on the Langevin 
equation (18). The values of the other system parameters are the same as those of 
figure 2.

P
st

(x
)

x
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1
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0.2
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the curves of figure 5 was ∆ = −t 10 6, and the obtained spectral power densities were 
averaged over 300 realizations. Moreover, for α = 1.3, 1.5, 1.9 we also show the spectral 
power densities obtained by a Fourier transform of the stretched exponential ansatz 
of equation (27). The agreement between these curves and those calculated by direct 
simulation of the Langevin equation (18) is very good.

5. Conclusions

We have investigated the spectral characteristics of steady-state Lévy flights in 
confinement potential profiles. The main results of the paper are: (i) the analyti-
cal expression of the steady-state probability density function for an infinitely deep 

Figure 4. Correlation function for α = 1.9 (top panels), α = 1.5 (bottom panels) 
plotted in two dierent scales, namely as [ ]τK  versus τ (left side panels) and 

[ ]τKln ln  versus τln  (right side panels). Various curves correspond to dierent 
values of the exponent m (see equation (20)). The values of the other system 
parameters are the same as those of figure 2.

Table 1. Values of stretched exponential parameters fitted to the normalized 
correlation function.

α σ2 τ0 ν

1.3 ±0.950 0.001 ±0.702 0.003 ±0.987 0.006
1.5 ±0.967 0.001 ±0.622 0.002 ±0.980 0.004
1.9 ±0.999 0.001 ±0.452 0.002 ±0.984 0.005

http://dx.doi.org/10.1088/1742-5468/2016/05/054039
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rectangular potential well and for a symmetric steep potential well of the type 
( )∝U x x m2 , in the case of Lévy noise with Cauchy–Lorentz distribution (α = 1); (ii) 

the asymptotic expression of the spectral power density for superdiusion in symmet-
ric steep potential profiles, for arbitrary Lévy noise index α. The theoretical results 
obtained for anomalous diusion, that is superdiusion in the form of Lévy flights, in 
confinement potential profiles are compared with those found for normal Brownian 
diusion. Numerical simulations are in a very good agreement with the analytical 
results. Our study, describing confined Lévy flights, that is Lévy flights with finite 
variance, could be useful to describe the distribution of flying objects in spatially lim-
ited structures, such as confined plasmas and turbulent flows [35].
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densities has been averaged over 300 realizations. The α-stable noise intensity 
parameter is =αD 1. The exponent in the steep potential (20) is m  =  100.
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Appendix

First of all, we rearrange equation (21) for the case of odd m  =  2n  +  1. For convenience, 
we introduce new symbol Al  =  (4l  +  1)/(4n  +  1) and start from the factorization of the 
denominator in equation (21)

( )( )β π β β β− + = − −π π−x x A x x2 cos e e .l
A A4 2 2 4 2 2 i 2 2 il l (A.1)

Then we transform in equation (21) the product to the sum in the following way

⎧
⎨
⎩

⎫
⎬
⎭

∏

∑

β
π β β β

β
π β

β β

=
+ − −

=
+

− − + −

π π

π π

+

=

−

−

+

=

−
−

P x
x x x

x
x x

1

e e

exp ln e ln e .

n

l

n

A A

n

l

n

A A

st

4 1

2 2
0

1

2 2 i 2 2 i

4 1

2 2
0

1

2 2 i 2 2 i

l l

l l

( )
( ) ( )( )

( )
[ ( ) ( )]

 
(A.2)

In accordance with the Taylor expansion of the logarithm, for β| | <x  we have

( )
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟∑

β β
β

β
β

− = + −

= −

π
π

π

−
−

=

∞
−

x
x

k

x

ln e ln ln 1
e

ln
1

e .

A
A

k

k
kA

2 2 i 2
2 i

2

2

1

2
i

l

l

l

By analogy

( )
⎛
⎝
⎜

⎞
⎠
⎟∑β β
β

− = −π π

=

∞

x
k

x
ln e ln

1
e .A

k

k
kA2 2 i 2

1

2
il l

Substituting these relations in equation (A.2) we find
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To calculate the internal sum on index l, we use the formula for the sum of the geo-
metric series
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Substituting (A.4) in (A.3), we arrive at
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The formula for even m  =  2n can be obtained analogously from equation (22), but 
we have to replace Al with Bl  =  (4l  +  1)/(4n  −  1). As a result, we arrive at
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Next we calculate the internal sum on index l in equation (A.6) by the same method as 
in equation (A.4). Namely,
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Substituting equation (A.7) in equation (A.6) we again obtain the result (A.5), i.e.
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Using similar calculations, it is easy to obtain the steady-state probability distribu-
tion for the case β| | >x  for odd and even values of the parameter m. The final expres-
sion for arbitrary m is of the form
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Finally, from equations (21) and (22) we arrive at
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