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We report that a recently developed combined immunotherapy (CIT) has the capacity to prevent
a spontaneous relapse of replicating Mycobacterium tuberculosis bacilli in the lungs of BALB/c, C57Bl/6 or
C3H/HeJ strains of mice, following 4 weeks of non-sterilising treatment with isoniazid and rifampicin.
The CIT regimen, represented by recombinant IFNg, anti-a crystalline monoclonal IgA antibody and IL-4
neutralizing polyclonal antibody, reduced the 8-week relapse of viable bacterial counts in the lungs most
significantly, when CIT was inoculated during the 5th week post infection, i.e. during the 3rd week of
chemotherapy. Although CIT enhanced lung granuloma area, nitric oxide, cytokine and chemokine levels
in lung washings significantly, these could not be directly associated with the beneficial effect of CIT on
the degree of relapse in the lungs. These results represent a proof-of-principle, that the described CIT,
when combined with chemotherapy, could have potential for future development of a shorter regimen of
tuberculosis treatment.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Chemotherapy of tuberculosis (TB) can have a very high cure
rate; however, poor patient compliance with the protracted
regimen in areas with limited resources can be a significant
problem, leading to relapse of active disease, transmission of
infection and development of drug resistant strains. Attempts to
eliminate latent persisters by non-specific (e.g. cytokine) or
antigen-specific (e.g. vaccination) immunological agents,1,2 i.e.
‘immunotherapy as an adjunct to chemotherapy’ have been made
in a number of experimental models. Using a short regimen of
incomplete (non-sterilizing) chemotherapy, muramyl dipeptide
was reported to reduce the relapse partially in the lungs, but not in
the spleens of mice.3 Treatment of TB patients with recombinant IL-
24 or Mycobacterium vaccae5 failed to improve chemotherapy.
Vaccination of mice reduced the post-chemotherapy relapse of
Mycobacterium tuberculosis (Mtb) infection when using hsp656,7 or
Ag85A8 DNA plasmids, or a detoxified Mtb extract in liposomes
(RUTI),9 although negative results were reported by others.10,11

Passive inoculation of a polyclonal antiserum against an Mtb
: þ39 091 6555901.

All rights reserved.
extract reduced the post-chemotherapy relapse in SCID mice.12

Considering the advances made and the importance of the poten-
tial clinical aims, further research on the concept of immuno-
therapy, as an adjunct to chemotherapy of TB, has been
recommended.13,14

This study has been initiated under the direct influence of our
preceding experiments which showed, that (i) passive vaccination
with a mouse IgA monoclonal antibody (mAb) against the a-crys-
tallin (Acr) antigen of Mtb together with IFNg reduced the lung
infection and pathology in BALB/c mice15 and (ii) combining this
regimen with the inoculation of IL-4 neutralizing antibody was
even more protective.16 The combined immunotherapy regimen
composed of IFNg þ IgA þ anti-IL-4 was evaluated in this study for
its capacity to reduce the spontaneous relapse of active tuberculous
infection following short-term (incomplete) chemotherapy.
2. Methods

2.1. Mice and infection

BALB/c and C57Bl/6 mice (OLAC Ltd. through Nossan, Correz-
zana, Italy) and C3H/HeJ mice (Jackson Laboratories USA) were kept
under specific pathogen-free conditions. Six mice per group
(matched for sex and age between 8 and 10 weeks) were infected
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(under light anaesthesia) i.n. with 2.5 � 105 colony-forming units
(CFUs) of mid-log-phase Mtb H37Rv in 0.02 ml of saline.

2.2. Chemotherapy

The ‘short duration’ chemotherapy entailed the delivery of
25 mg of isoniazid (INH) and 10 mg of rifampicin (R) (Sigma) per
100 ml of drinking water from day 14 post infection, for a period of
4 weeks (i.e. 2nd to 6th week). This regimen is known to abrogate
almost completely CFU counts in the lungs and spleen, followed by
a rapid spontaneous relapse (‘regrowth’) of tubercle bacilli within
a period of 2–4 weeks.3

2.3. Combined immunotherapy (CIT) agents and regimen

Mouse IFNg (Serotech, Oxford, UK) 1 mg (100,000 U)/mouse,
intranasally (i.n.) goat polyclonal anti-mouse IL-4 antibody (R&D
Systems, cat. no. AF-404-NA), 500 mg per mouse intravenously
(i.v.); TBA61, affinity purified mouse anti-Acr IgA mAb (1.5 mg/ml,
antigen-binding titre 100,000), 37 mg in 25 ml per mouse i.n.17 The
time schedule of the CIT is shown schematically in Figure 1. Inoc-
ulations during the 3rd, 5th or 7th week and re-inoculation on the
9th week post-infection were given on the following days of the
respective weeks: day 1, IFNg i.n.; day 2, anti-IL4 i.v.; days 3 and 7,
IFNg and TBA61 i.n.

2.4. CFU assay

Lungs and spleens harvested at different time intervals post
infection were homogenised in 5 ml of sterile water and 10 ml
aliquots of the serially diluted homogenates were plated on
duplicate Middlebrook 7H11 (Difco, cat. no. 283810) agar plates.
CFUs were counted after 2–4 weeks of incubation at 37 �C.

2.5. Nitrite, cytokine and chemokine assays

Bronchoalveolar lavage obtained by flushing 2 ml of PBS into the
lungs of killed mice was used to determine the concentration of nitrite,
using the Griess reagent (Sigma). ELISA kits (R & D Systems) were used
to test cytokine (TNF-a, IL-1b) and chemokine (CCL3/MIP-1a, CCL4/
MIP-1b) levels according to the manufacturer’s recommendations.

2.6. Histology and morphometry

Lungs were fixed in 10% buffered formalin and embedded in
paraffin. Haematoxylin–eosin stained sections (5–6 mm) were
photographed (�6) using a Stereoscopic Zoom SMZ800 microscope
(Nikon, Tokyo, Japan) and a Coolpix 990 digital camera (Nikon).
Software programs Scion Image (Scion Corporation, Frederick, MD,
USA) and Photoshop 5.0 (Adobe Systems Incorporated, San José, CA,
USA) were used to determine the area with granuloma lesions.18
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Figure 1. Schematic representation of the experimental design for analysing the
effects of the combined immunotherapy (CIT) on the relapse of Mtb infection following
INH/R chemotherapy.
The relative granuloma involving areas were calculated from two
independents measurements.

2.7. Statistical analysis

The significance of differences in CFU counts between groups
was determined by one-way analysis of variance (ANOVA) on the
log10 values with Scheffe tests for the post-ANOVA individual
comparisons. When calculating group mean values, samples
without detectable colonies were assigned a value of 50 CFU, rep-
resenting the threshold of detection sensitivity. Student’s t test was
used for the analysis of granuloma, NO, cytokine and chemokine
values in the lungs.

3. Results

3.1. The effect of CIT timing

The results (Figure 2A, Table 1) showed that mean CFU counts in
the lungs at the end of 4 weeks of INH/R treatment were below
detection in 4 out of 6 mice (85 CFUs). A pronounced spontaneous
relapse of infection was demonstrable on the 8th week post
infection (11,220 CFUs) in all 6 mice in the group. We investigated
the efficacy of the CIT, when given during the 3rd, 5th or 7th week
post infection to prevent this relapse. The results showed that CIT
given during the 5th week, reduced the mean CFU values of lung
infection more effectively (78 CFUs, p ¼ 0.001; CFUs undetectable
in 5/6 mice) than CIT given either during the 3rd week (562 CFUs,
p ¼ 0.006) or the 7th week (1995 CFUs, p ¼ 0.393). Nevertheless,
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Figure 2. Influence of CIT on the post-chemotherapy relapse in the lungs of Mtb
infected mice. (A) The influence of CIT timing. Isoniazid and rifampicin (INH/R arrow)
were in the drinking water from the 2nd to 6th week after i.n. H37Rv infection and CIT
was given at different weeks (wk) indicated in the figure (dosage: see Methods
section). Symbols: mean log10 CFU values, vertical bars ¼ SD; * indicates statistically
significant difference when compared with the INH/R only treated group (p < 0.05). (B)
The effect of CIT in three different strains of mice. BALB/c, C57BL/6 and C3H/HeJ mice
received INH/R on weeks 2–6 and CIT during week 5 after i.n. H37Rv infection. Mean
log10 CFU and SD (vertical bars) values from lungs harvested 10 weeks after infection.
*Significant (p < 0.005) difference, when comparing CIT treated with INH/R only
treated groups.



Table 1
Levels of organ infection in individual mice.

Mouse strain INH/R at 2–6 weeks CIT at the week: Number of mice with <50/50–500/>500 CFUs per lung at following weeks after H37Rv infection:

6 weeks 8 weeks 10 weeks 12 weeks

BALB/c � � 0/0/6 0/0/6 0/0/6
þ � 4/2/0 0/0/6 0/0/6
þ 3 1/2/3
þ 5 5/1/0
þ 7 0/2/4
þ 7 þ 9 0/0/6

BALB/c � � 0/0/6
þ � 5/1/0 0/0/6
þ 5 4/0/2

C57Bl/6 � � 0/0/6
þ � 6/0/0 0/0/6
þ 5 4/0/1

C3H/HeJ � � 0/0/6
þ � 2/0/4 0/0/6
þ 5 2/0/4

See Figure 2 for mean CFU counts and experimental details.
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CIT given on both the 7th and 9th week reduced the mean lung
CFUs (3020, p ¼ 0.003) significantly at 12 weeks after infection.
These results showed that the timing of CIT application plays
a crucial role for its capacity to reduce the relapse of replicating
tubercle bacilli in the lungs, following chemotherapy.

3.2. The effect of CIT in different strains of mice

At the end of INH/R treatment (i.e. at 6 weeks), on the C57Bl/6
and BALB/c mice (both strains genetically resistant to pulmonary
disease19), lung CFUs were undetectable in 5 or 6 mice out of the 6
per group (Table 1). A pronounced spontaneous relapse in all mice
followed at 10 weeks (Table 1, Figure 2B). The CIT regimen was
inoculated during the 5th week after infection, because that was
found to be the most effective timing in the preceding experiment.
This CIT regimen prevented any relapse at 10 weeks in the lungs of
4 mice out of the 6 or 5 per group. In the genetically susceptible
C3H/HeJ strain19 however, at the end of the INH/R treatment, 4 out
of 6 mice retained a moderate levels of lung infection (Table 1;
mean 617 CFUs). Nevertheless, the strongly relapsed lung infection
at 10 weeks was reduced by CIT significantly (from 331,131 to 1513
CFUs; p ¼ 0.001).

3.3. Analysis of lung mediator levels and granuloma areas

The lungs harvested at 8 weeks after Mtb infection of BALB/c
mice (see their CFU counts in Figure 2A) were tested for the size of
the granuloma area and for NO, TNFa, IL-1b, RANTES, CCL3 and
CCL4 levels in lung lavage fluids. The levels of these mediators were
found to be significantly lower in Mtb infected, INH/R treated mice,
than in the untreated Mtb-infected control mice (Table 2). CIT given
Table 2
Influence of CIT on lung granuloma area, NO, cytokine and chemokine levels in lung lava

Assay Group mean values � SE

No treatment INH/R without CIT

Granuloma (mm2) 10 � 3 4 � 1@

NO (mM/ml) 25 � 8 12 � 5
TNFa (pg/ml) 310 � 80 90 � 10@

IL-1b pg/ml 830 � 145 150 � 50@

IL-10 (pg/ml) 190 � 40 220 � 40
TGF-b (pg/ml) 80 � 25 310 � 90@@

RANTES (pg/ml) 1050 � 340 170 � 35@

CCL3 (pg/ml) 920 � 320 120 � 30@

CCL4 (pg/ml) 840 � 210 160 � 40@

See Figure 1A for experimental details. Significance of the differences (Student’s t test) bet
treated groups (*). Two symbols, p < 0.0001; one symbol ¼ p < 0.01.
in the 5th or 7th week post infection resulted in a significant
(p < 0.01–0.001) increase of granuloma, NO, TNFa, IL1b, RANTES,
CCL3 and CCL4 levels when compared with INH/R only treated
mice. In contrast, the levels of IL10 and TGFb were decreased at the
same time. However, CIT given on the 3rd week failed to influence
significantly the values of most of these assays.

4. Discussion

The CIT employed substantially alleviated the spontaneous
relapse, following short-term INH/R chemotherapy in the lungs of
Mtb infected mice. The selected time schedule of CIT inoculations
significantly influenced its efficacy: the best effect, almost
completely preventing the relapse in lung CFUs was obtained,
when CIT was administered during the 5th week after Mtb infec-
tion, i.e. during the 3rd week of INH/R chemotherapy. The effect of
CIT on the relapse of splenic CFUs was also tested, but the results
varied between experiments (results not shown). The extent by
which the spontaneous post-chemotherapy relapse was prevented
has been more profound than the previously reported CIT inhibi-
tion of fresh Mtb infection.16 This could be due to differences
between the persister or replicating target organisms. Furthermore,
persisters arising rapidly following chemotherapy are apparently
resilient to host T cell immunity, unlike the dormant organisms
generated following acquired host T cell immunity.20,21

INH/R treatment alone decreased the extent of granuloma
infiltration of the lungs and the levels of most of the tested cytokine
and chemokine mediators in the lung lavage. This decrease seems
to reflect the bactericidal effect which reduced the CFU counts
below the level of detection at 6 weeks. Administration of CIT to
INH/R-treated mice paradoxically increased the lung granuloma
ge fluids 8 weeks after H37Rv infection.

CIT at 3 weeks CIT at 5 weeks CIT at 7 weeks

7 � 2 13 � 5* 16 � 4*
45 � 15 60 � 20** 55 � 18*

210 � 60 280 � 70 320 � 40*
320 � 75 520 � 210 710 � 150*
120 � 10 85 � 15 140 � 35

70 � 20* 80 � 15* 120 � 30
650 � 160* 840 � 90** 880 � 50**
440 � 120 620 � 180** 850 � 130**
420 � 110 660 � 70* 710 � 120*

ween INH/R only and untreated groups (@) and between INH/R þ CIT and INH/R only
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area and the lung lavage levels of NO and of several of the proin-
flammatory cytokines and chemokines to values close to those
observed in the high CFUs bearing control-infected mice. CIT may
have influenced the nature and composition of these granulomas,
with a greater influx of inflammatory cells,22,23 enabling them to
exhibit greater bactericidal action. Alternatively, CIT may have
acted by loosening the granuloma shelter,24 which in turn may lead
to increased drug accessibility. Nevertheless, these aspects seem
complex and we cannot draw direct conclusions from our results,
when considering that the levels of the pro-inflammatory media-
tors were increased by CIT which imparted either high (week 5 CIT)
or low (week 7 CIT) protection.

The relative contribution of the three constituents of CIT needs
further analysis. Antibody action could rest on its binding speci-
ficity for the Acr antigen, which is elevated in stationary phase
organisms,25 in the lungs of mice26 and in response to NO or
hypoxic stress27,28 and notably in the highly virulent Beijing family
of Mtb.29,30 IFNg may act by amplifying the protection by IgA17 or by
stimulating Va14þ/NK1.1 T cells.31 The anti- IL-4 element of the CIT
probably reduced the lung lavage levels of the TGFb and IL-10
deactivating Th2 cytokines which can aggravate active infection.32

The use of the rapid post-chemotherapy relapse model seemed
suitable to obtain the proof-of-potency of the combined antibody
and cytokine based immunotherapy. While having the advantage of
the 3 month test period, rapid re-growth of lung CFUs may be due
to mechanisms, possibly different from those involved in the long
duration models of relapse.
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