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CHARACTERIZING VARIETIES OF COLENGTH ≤4

Daniela La Mattina
Department of Mathematics and Applications, University of Palermo,
Palermo, Italy

Let A be an associative algebra over a field F of characteristic zero, and let �n�A��

n = 1� 2� � � � � be the sequence of cocharacters of A� For every n ≥ 1� let ln�A� denote
the nth colength of A, counting the number of Sn-irreducibles appearing in �n�A��

In this article, we classify the algebras A such that the sequence of colengths ln�A��

n = 1� 2� � � � � is bounded by four. Moreover we construct a finite number of algebras
A1� � � � � Ad� such that ln�A� ≤ 4 if and only if A1� � � � � Ad � var�A��

Key Words: Codimensions; Colengths; Polynomial identity; Variety.

2000 Mathematics Subject Classification: 16R10.

1. INTRODUCTION

Let A be an associative algebra over a field F of characteristic zero, F�X� the
free associative algebra on a countable set X over F , and Id�A� ⊆ F�X� the T-ideal
of polynomial identities of A� An effective way of studying such an ideal is that of
determining some numerical invariants allowing to give a quantitative description.
A very useful numerical invariant that can be attached to Id�A� is given by the
sequence of codimensions of A denoted by cn�A�, n = 1� 2� � � � . In general cn�A� is
bounded from above by n!� but in case A is a PI-algebra, i.e., satisfies a nontrivial
polynomial identity, a celebrated theorem of Regev asserts that cn�A�, n = 1� 2� � � � �
is exponentially bounded (Regev, 1972). Later Kemer (1978, 1979) showed that,
given any PI-algebra A, cn�A�� n = 1� 2� � � � � cannot have intermediate growth, i.e.,
either is polynomially bounded or grows exponentially. For general PI-algebras the
exponential rate of growth was computed in Giambruno and Zaicev (1998, 1999)
and it turns out to be a non-negative integer.

In case the codimensions are polynomially bounded, Kemer (1979) gave the
following characterization. Let G be the infinite dimensional Grassmann algebra
over F , and let UT2 be the algebra of 2× 2 upper triangular matrices. Then cn�A��

n = 1� 2� � � � , is polynomially bounded if and only if G�UT2 � var�A�� where var�A�
denotes the variety of algebras generated by A�
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1794 LA MATTINA

Hence var�G� and var�UT2� are the only varieties of almost polynomial
growth, i.e., they grow exponentially but any proper subvariety grows polynomially.
Recently in La Mattina (2007) the author determined a complete list of finite
dimensional algebras generating the subvarieties of var�G� and var�UT2��

A classification of T-ideals of polynomial growth was started in Giambruno
and La Mattina (2005) and in Giambruno et al. (2007). More precisely the authors
gave a complete list of finite dimensional algebras generating varieties of at most
linear growth and, in the unitary case, of at most cubic growth.

An equivalent formulation of Kemer’s result can be given as follows. Let
Vn be the vector space of multilinear polynomials in n variables. The permutation
action of Sn on the space Vn induces a structure of Sn-module on Vn

Vn∩Id�A� , and let
�n�A� be its character. By complete reducibility, we can write �n�A� =

∑
��n m���

where �� is the irreducible Sn-character associated to the partition � of n and m� ≥ 0
is the corresponding multiplicity. Then ln�A� =

∑
��n m� is the nth colength of A�

Now Kemer’s result can be stated as follows (Mishchenko et al., 1999): cn�A� is
polynomially bounded if and only if the sequence of colengths is bounded by a
constant, i.e., ln�A� ≤ k, for some k ≥ 0 and for all n ≥ 1�

A finer classification depending on the value of the constant k was started in
Giambruno and La Mattina (2005). There the authors completely classified, up to
PI-equivalence, the algebras A such that ln�A� ≤ 2 for n large enough.

In this article, we classify the algebras A such that ln�A� ≤ 4� Moreover, we
show that if ln�A� ≤ 4� then for n large enough, ln�A� is always constant. Moreover,
we exhibit a finite number of finite dimensional algebras A1� � � � � Ad� such that
ln�A� ≤ 4 if and only if A1� � � � � Ad � var�A��

2. GENERALITIES

Throughout this article, we shall denote by F a field of characteristic zero, by
A an associative algebra over F and by var�A� the variety of algebras generated
by A�

Let F�X� be the free associative algebra on a countable set X = �x1� x2� � � � �

over F and Id�A� = �f ∈ F�X� 
 f ≡ 0 on A� the T-ideal of F�X� of polynomial
identities of A�

It is well known that in characteristic zero Id�A� is completely determined
by its multilinear polynomials. We denote by Vn the vector space of multilinear
polynomials in the variables x1� � � � � xn and by cn�A� = dimF

Vn
Vn∩Id�A� the nth

codimension of A�
In case A is an algebra with 1� Id�A� is completely determined by its

multilinear proper polynomials (Drensky, 2000). Recall that f�x1� � � � � xn� ∈ Vn is
a proper polynomial if it is a linear combination of products of (long) Lie
commutators.

Let 	n be the subspace of Vn of proper polynomials in x1� � � � � xn� Then, the
sequence of proper codimensions is defined as cpn�A� = dim 	n

	n∩Id�A� , n = 0� 1� 2� � � � �
For a unitary algebra A� the relation between ordinary codimensions and

proper codimensions (see for instance Drensky and Regev, 1996), is given by the
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CHARACTERIZING VARIETIES OF COLENGTH ≤4 1795

formula

cn�A� =
n∑

i=0

(
n
i

)
c
p
i �A�� n = 1� 2� � � � � (1)

One of the main tools in the study of the T-ideals is given by the representation
theory of the symmetric group. Recall that the symmetric group Sn acts on the
left on the space Vn by permuting the variables: if 
 ∈ Sn and f�x1� � � � � xn� ∈ Vn�

f�x1� � � � � xn� = f�x
�1�� � � � � x
�n��� This action is very useful since T-ideals are
invariant under renaming of the variables. Hence Vn

Vn∩Id�A� becomes an Sn-module. The
Sn-character of Vn�A� = Vn

Vn∩Id�A� � denoted by �n�A�� is called the nth cocharacter of A�
By complete reducibility, we can write

�n�A� =
∑
��n

m����

where �� is the irreducible Sn-character associated to the partition � and m� is the
corresponding multiplicity. Also

ln�A� =
∑
��n

m�

is called the nth colength of A� Sometimes we shall also write m� = m��A��
In the next section, we shall use also the representation theory of the general

linear group in order to study the sequences of cocharacters and colengths of some
algebras. For this reason, we introduce the space of homogeneous polynomials in a
given set of variables. Let Fm�X� = F�x1� � � � � xm� denote the free associative algebra
inm variables and letU = spanF �x1� � � � � xm��The groupGL�U� � GLm acts naturally
on the left on the space U and we can extend this action diagonally to get an action on
Fm�X�.

The space Fm�X� ∩ Id�A� is invariant under this action, hence

Fm�A� =
Fm�X�

Fm�X� ∩ Id�A�

inherits a structure of left GLm-module. If Fn
m denotes the space of homogeneous

polynomials of degree n in the variables x1� � � � � xm

Fn
m�A� =

Fn
m

Fn
m ∩ Id�A�

is a GLm-submodule of Fm�A� whose character is denoted by �n�A�. Write

�n�A� =
∑
��n

m̄����

where �� is the irreducible GLm-character associated to the partition � and m̄� is the
corresponding multiplicity.
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1796 LA MATTINA

The Sn-module structure of Vn/�Vn ∩ Id�A�� and the GLm-module structure of
Fn
m�A� are related by the following: if �n�A� =

∑
m��� is the decomposition of the nth

cocharacter ofA, thenm� = m̄�, for all � � nwhose corresponding diagram has height
at most m (see for instance Drensky, 2000).

It is also well known that any irreducible submodule of Fn
m�A� corresponding to

� is generated by a nonzero polynomial f�, called highest weight vector, of the form

f� =
�1∏
i=1

Sthi����x1� � � � � xhi����
∑

∈Sn

�

� (2)

where �
 ∈ F , the right action of Sn on Fn
m�A� is defined by place permutation,

hi��� is the height of the ith column of the diagram of � and Str�x1� � � � � xr� =∑
∈Sr �sgn �x�1� · · · x�r� is the standard polynomial of degree r.

For a Young tableau T�� denote by fT� the highest weight vector obtained
from (2) by considering the only permutation 
 ∈ Sn such that the integers

�1�� � � � � 
�h1����� in this order, fill in from top to bottom the first column of T�,

�h1���+ 1�� � � � � 
�h1���+ h2���� the second column of T�, etc.

Recall that if

�n�A� =
∑
��n

m̄���

is theGLm-character of F
n
m�A�� then m̄� = 0 if and only if there exists a tableau T� such

that the corresponding highest weight vector fT� is not a polynomial identity for A�
Moreover, m̄� is equal to the maximal number of linearly independent highest weight
vectors fT� in Fn

m�A��

3. SOME PI-ALGEBRAS

The purpose of this section is to state some results concerning the colengths, the
cocharacters, the codimensions, and the T-ideals of some PI-algebras that will play a
basic role in the next section.

Most of the algebras treated here are direct sums of subalgebras of the algebra
of n× n upper triangular matrices UTn = UTn�F�� n ≤ 4�

GivenA ⊆ UTn�we shall denote byA
∗ the subalgebra ofUTn obtained by flipping

A along its secondary diagonal.
Notice that given a polynomial f ∈ F�X� if we denote by f ∗ the polynomial

obtained by reversing the order of the variables in each monomial of f� then f is a
polynomial identity of A if and only if f ∗ is a polynomial identity of A∗�

Given polynomials f1� � � � � fn ∈ F�X�� let us denote by �f1� � � � � fn�T the T-ideal
generated by f1� � � � � fn� Also, we shall use the left-normed notation for Lie
commutators; hence we write ��· · · ��x1� x2�� x3�� � � � �� xk� = �x1� � � � � xk��

In what follows we shall use the following two lemmas from Giambruno and La
Mattina (2005) which we fix in our notation. Here the eij’s denote the usual matrix
units.
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CHARACTERIZING VARIETIES OF COLENGTH ≤4 1797

Lemma 1. LetA1 = Fe11 + Fe12� A
∗
1 = Fe12 + Fe22 ⊆ UT2, andA = A1 ⊕ A∗

1� Then for
all n > 2:

(i) Id�A1� = ��x1� x2�x3�T � Id�A∗
1� = �x3�x1� x2��T , and

Id�A� = �St3�x1� x2� x3�� x1�x2� x3�x4� �x1� x2��x3� x4��T �
(ii) �n�A1� = �n�A

∗
1� = ��n� + ��n−1�1� and �n�A� = ��n� + 2��n−1�1��

Hence

(iii) ln�A1� = ln�A
∗
1� = 2� ln�A� = 3 and

cn�A1� = cn�A
∗
1� = n� cn�A� = 2n− 1�

Lemma 2. Let A2 =F�e11 + e22 + e33�+Fe12 +Fe13 +Fe23 ⊆UT3� Then for all n> 3:

(i) Id�A2� = ��x1� x2� x3�� �x1� x2��x3� x4��T �
(ii) �n�A2� = ��n� + ��n−1�1� + ��n−2�1�1��

Hence

(iii) ln�A2� = 3 and cn�A2� = n�n−1�+2
2 �

Lemma 3. Let A = A1 ⊕ A2 and B = A∗
1 ⊕ A2� Then for all n > 3:

1. Id�A� = ��x1� x2��x3� x4�� �x1� x2� x3�x4�T , and
Id�B� = ��x1� x2��x3� x4�� x4�x1� x2� x3��T �

2. �n�A� = �n�B� = ��n� + 2��n−1�1� + ��n−2�1�1��
3. ln�A� = ln�B� = 4�
4. cn�A� = cn�B� = n�n+1�

2 �

Proof. By La Mattina (2007, Lemma 3.2), the statements 1 and 4 hold. We now
determine the decomposition of the nth cocharacter of A�A similar proof will give the
decomposition of the nth cocharacter of B� Since A1� A2 ∈ var�A�� and A = A1 ⊕ A2�
we have that

m��A1��m��A2� ≤ m��A� ≤ m��A1�+m��A2��

for any � � n with n > 3� Hence, by the previous lemmas, m�n��A� = 1� 1 ≤
m�n−1�1��A� ≤ 2� and m�n−2�1�1��A� = 1�

Since deg ��n� + 2deg ��n−1�1� + deg ��n−2�1�1� = 1+ 2�n− 1�+ �n−1��n−2�
2 = n�n+1�

2 =
cn�A�� it follows that m�n−1�1��A� = 2� Thus the nth cocharacter of A has the wished
decomposition and ln�A� = 4� �

We shall see in the next section that the above algebras allow us to classify
completely the varieties of colength ≤ 4�

Now consider the direct sum of A1� A
∗
1, and A2�

Lemma 4. Let A3 = A1 ⊕ A∗
1 ⊕ A2� Then for all n > 3 �

1. Id�A3� = ��x1� x2��x3� x4�� x1�x2� x3� x4�x5�T �
2. �n�A3� = ��n� + 3��n−1�1� + ��n−2�1�1��

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
a
 
D
e
g
l
i
 
S
t
u
d
i
 
D
i
 
P
a
l
e
r
m
o
]
 
A
t
:
 
1
0
:
0
2
 
1
5
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



1798 LA MATTINA

3. ln�A3� = 5�
4. cn�A3� = n2+3n−2

2 �

Proof. By LaMattina (2007, Lemma 3.4), Id�A3�=��x1� x2��x3� x4�� x1�x2� x3� x4�x5�T�
In order to determine the decomposition of the nth cocharacter of A3, we proceed as
in the proof of the previous lemma. Since A1� A

∗
1 ⊕ A2 ∈ var�A3�� we have that, for

any � � n� n > 3�

m��A1��m��A
∗
1 ⊕ A2� ≤ m��A3� ≤ m��A1�+m��A

∗
1 ⊕ A2��

Hence, m�n��A3� = 1� 2 ≤ m�n−1�1��A3� ≤ 3� and m�n−2�1�1��A3� = 1�
If m�n−1�1��A3� = 2� then Vn�A3� = Vn

Vn∩Id�A3�
would have the same decomposition

in irreducibles as Vn�A
∗
1 ⊕ A2� and so, since Id�A3� ⊆ Id�A∗

1 ⊕ A2�� it would follow
Id�A3� = Id�A∗

1 ⊕ A2�� This is a contradiction, because x4�x1� x2� x3� ∈ Id�A∗
1 ⊕ A2�

but x4�x1� x2� x3� � Id�A3�� This proves that

�n�A3� = ��n� + 3��n−1�1� + ��n−2�1�1��

Hence cn�A3� =
∑

��n m�deg �� = n2+3n−2
2 and ln�A3� =

∑
��n m� = 5� �

In the following two lemmas, we fix some results about some more algebras
whose colengths are equal to 5�

Lemma 5 (Giambruno and La Mattina, 2005, Lemma 6). Let A4 = Fe11 + Fe12 +
Fe13 + Fe23� A5 = Fe22 + Fe12 + Fe13 + Fe23 ⊆ UT3�

Then for all n > 3:

1. Id�A4� = ��x1� x2�x3x4�T and Id�A5� = �x1�x2� x3�x4�T �
2. �n�A4� = �n�A5� = ��n� + 2��n−1�1� + ��n−2�2� + ��n−2�1�1��
3. ln�A4� = ln�A5� = 5 and cn�A4� = cn�A5� = n�n− 1��

Hence A∗
4 = Fe33 + Fe12 + Fe13 + Fe23� Id�A

∗
4� = �x1x2�x3� x4��T , and ln�A∗

4� = 5�

Lemma 6 (Vieira and Alves Jorge, 2006, Theorem 3.1). Let A6 = F�e11 + e33�+
Fe12 + Fe13 + Fe23 ⊆ UT3� Then for all n > 3:

(i) �n�A6� = ��n� + 2��n−1�1� + ��n−2�2� + ��n−2�1�1��

Hence ln�A6� = 5 and cn�A6� = n�n− 1��

Recall that the above subalgebras of UTn were introduced in Giambruno and La
Mattina (2005) in order to classify the algebras with linear codimension growth.

Now in order to classify the algebras with colength sequence bounded from
above by 4, we have to consider some more algebras.

Lemma 7. Let A7 = F�e11 + e22 + e33 + e44�+ Fe12 + Fe13 + Fe14 + Fe23 + Fe24 +
Fe34 ⊆ UT4� Then for all n > 4:

1. Id�A7� = ��x1� x2� x3� x4�� �x1� x2��x3� x4��T �
2. �n�A7� = ��n� + 2��n−1�1� + 2��n−2�1�1� + ��n−2�2� + ��n−3�2�1��
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CHARACTERIZING VARIETIES OF COLENGTH ≤4 1799

3. ln�A7� = 7�
4. cn�A7� = 1+ (

n
2

)+ 2
(
n
3

)
�

Proof. The Properties 1 and 4 follow from Giambruno et al. (2007, Theorem 3.1).
We next determine the decomposition of the nth cocharacter of A7� Since cn�A7�

is polynomially bounded and J�A7�
4 = 0�where J�A7� denotes the Jacobson radical of

A7� by Giambruno and Zaicev (2000, Theorem 3) we have that

�n�A7� =
∑
��n


�
−�1<4

m����

Moreover, since A2 ∈ var�A7�� �n�A2� ⊆ �n�A7� and, so, m�n��A7�� m�n−1�1��A7��
m�n−2�1�1��A7� > 0�Hence

�n�A7� = ��n� + ��n−1�1� + ��n−2�1�1� + · · · �

Let � = �n− 1� 1�, and denote by T
�2�
� and T

�n�
� the standard tableaux containing the

integers 2 and n� respectively, in the only box of the second row. Then

f
T
�2�
�

= �x1� x2�x
n−2
1 and f

T
�n�
�

= xn−1
1 x2 − x2x

n−1
1

are the corresponding highest weight vectors. Bymaking the evaluation x1 = I + e12 +
e34� where I denotes the identity matrix, and x2 = e23� we get that

f
T
�2�
�

= e13 − e24 + �n− 2�e14 and f
T
�n�
�

= �n− 1��e13 − e24��

This says that f
T
�2�
�

and f
T
�n�
�

are not identities of A7, and they are linearly independent
�mod Id�A7��. Thus m�n−1�1� ≥ 2�

Now consider fT� =
∑


�∈S2�sgn 
�x
�1�x�1�x
�2�x�2�x
n−4
1 the highest weight

vector corresponding to the standard tableau

1 2 5 · · · n

3 4
�

By making the evaluation x1 = I + e12 and x2 = e23 + e34, we get that fT� = e14 and,
so, m�n−2�2� > 0�

For � = �n− 3� 2� 1� consider the following tableau

2 1 6 · · · n

3 5
4

and the corresponding highest weight vector

fT� =
∑


∈S2�∈S3
�sgn 
�x
�1�x�1�x�2�x�3�x
�2�x

n−5
1 �
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1800 LA MATTINA

Evaluating x1 = I� x2 = e12 + e23 and x3 = e34, we get fT� = −e14� i.e, fT� is not an
identity of A7 and, so, m�n−3�2�1� > 0�Hence,

cn�A7� = 1+
(
n
2

)
+

(
n
3

)
2

≥ deg ��n� + 2deg ��n−1�1� + deg ��n−2�1�1� + deg ��n−2�2� + deg ��n−3�2�1�

= 1+ 2�n− 1�+ �n− 1��n− 2�
2

+ n�n− 3�
2

+ n�n− 2��n− 4�
3

= 1+
(
n
2

)
+ 2

(
n
3

)
− �n− 1��n− 2�

2
= cn�A7�− deg ��n−2�1�1��

Hence, since themultiplicitiesm� in �n�A7� are bounded by a constant (seeMishchenko
et al., 1999), it follows that m�n−2�1�1� = 2� �n�A7� has the wished decomposition and
ln�A7� = 7� �

In the sequel, we shall also use the following notation.

Definition 8. Given two algebras A and B we say that A is PI-equivalent to B and
we write A ∼PI B if Id�A� = Id�B��

Lemma 9. Let A8 = F�e11 + e22 + e33�+ Fe12 + Fe13 + Fe14 + Fe23 + Fe24 + Fe34 ⊆
UT4. Then for all n > 4:

1. Id�A8� = ��x1� x2��x3� x4�x5� �x1� x2� x3�x4�T �
2. �n�A8� = ��n� + 2��n−1�1� + 2��n−2�1�1� + ��n−2�2� + ��n−3�2�1� + ��n−3�1�1�1��
3. ln�A8� = 8�
4. cn�A8� = n+ (

n
2

)
�n− 2� = n3−3n2+4n

2 �
5. �x1 · · · xn� xi1 · · · xin−2

�xn� xt�� xi1 · · · xin−3
�xi� xj�xk� i > j� i1 < · · · < in−2� is a basis of

Vn (mod Vn ∩ Id�A8���

Hence A∗
8 = F�e22 + e33 + e44�+ Fe12 + Fe13 + Fe14 + Fe23 + Fe24 + Fe34� Id�A∗

8� =
�x5�x1� x2��x3� x4�� x4�x1� x2� x3��� and ln�A∗

8� = 8�

Proof. Notice that A8 ∼PI

(
A2 A2
0 0

)
� Hence, by Guterman and Regev (2000),

Id�A8� = �Id�A2�x�T = ��x1� x2��x3� x4�x5� �x1� x2� x3�x4�T and cn�A8� = ncn−1�A2� =
n�n−1��n−2�+2n

2 = n3−3n2+4n
2 �

We are going to prove that the following polynomials in Vn

x1 · · · xn� xi1 · · · xin−2
�xn� xt�� xi1 · · · xin−3

�xi� xj�xk� i > j� i1 < · · · < in−2� (3)

are linearly independent module Id�A8��
Let f ∈ Id�A8� be a linear combination of the elements in (3):

f = �x1 · · · xn +
n−1∑
t=1

i1<···<in−2

�txi1 · · · xin−2
�xn� xt�+

∑
i>j

i1<···<in−3

�ijkxi1 · · · xin−3
�xi� xj�xk�
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Bymaking the evaluation x1 = · · · = xn = e11 + e22 + e33, we get � = 0�Also, for fixed
t the evaluation xt = e34� xk = e11 + e22 + e33� k = t gives �t = 0� Finally, for fixed
i� j� k the evaluation xi = e12� xj = e23 xk = e34� xl = e11 + e22 + e33� l � �i� j� k� gives
�ijk = 0� Therefore, the element in (3) is linearly independent module Vn ∩ Id�A8� and,
since their number equals the nth codimension of A8, we may conclude that they are a
basis of Vn (mod Vn ∩ Id�A8�).

Next we determine the decomposition of the nth cocharacter of A8� Since A2 ∈
var�A8�, then �n�A2� ⊆ �n�A8�� Hence

�n�A8� = ��n� + ��n−1�1� + ��n−2�1�1� + · · · �

Let � = �n− 1� 1�� Consider the following highest weight vectors

fT ′
�
= �x1� x2�x

n−2
1 and fT� = xn−2

1 �x1� x2��

By making the evaluation x1 = e11 + e22 + e33 + e12 and x2 = e23 + e34, we get that

fT ′
�
= e13 and fT� = e13 + e34�

This says that fT ′
�
and fT� are not identities of A8, and they are linearly independent

�mod Id�A8��� and so m�n−1�1� ≥ 2�
Now consider the tableau

n− 3 n− 2 1 · · · n− 4
n− 1 n

and the corresponding highest weight vector

fT� =
∑


�∈S2
�sgn 
�xn−4

1 x
�1�x�1�x
�2�x�2��

By making the evaluation x1 = e11 + e22 + e33 + e12 and x2 = e23 + e34, we get
that fT� = 2e14 and so m�n−2�2� > 0�

For � = �n− 3� 2� 1�, consider the following tableau

n− 3 n− 4 1 · · · n− 5
n− 2 n
n− 1

and the corresponding highest weight vector

fT� =
∑


∈S2�∈S3
�sgn 
�xn−5

1 x
�1�x�1�x�2�x�3�x
�2��

Evaluating x1 = e11 + e22 + e33� x2 = e12 + e34 and x3 = e23, we get fT� = e14� i.e, fT� is
not an identity of A8� and, so, m�n−3�2�1� > 0�
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For � = �n− 3� 1� 1� 1� consider the following tableau

n− 3 1 · · · n− 4
n− 2
n− 1
n

and the corresponding highest weight vector

fT� =
∑

∈S4

�sgn 
�xn−4
1 x
�1�x
�2�x
�3�x
�4��

Evaluating x1 = e11 + e22 + e33� x2 = e12� x3 = e23� and x4 = e34, we get fT� = e14�
i.e, fT� is not an identity of A8� and, so, m�n−3�1�1�1� > 0� Hence cn�A8� ≥ deg ��n�
+ 2deg ��n−1�1� + deg ��n−2�1�1� + deg ��n−2�2� + deg ��n−3�2�1� + deg ��n−3�1�1�1� = 1+ 2�n−
1�+ �n−1��n−2�

2 + n�n−3�
2 + n�n−2��n−4�

3 + �n−1��n−2��n−3�
6 = cn�A8�− deg ��n−2�1�1�� Hence

m�n−2�1�1� = 2� �n�A8� has the wished decomposition and ln�A8� = 8� �

Finally, let G2k ⊆ G denote the Grassmann algebra with 1 on a 2k-dimensional
vector space over F� Recall that G2k = �1� e1� � � � � e2k 
 eiej = −ejei��

Notice that G2 ∼PI A2�
In the following lemma, we determine the cocharacters, the codimensions and

the T-ideal of G2k in case k = 2� We refer the reader to Giambruno et al. (2007) and
La Mattina (2007) for the properties of G2k� for k ≥ 1�

Lemma 10. For the algebra G4, the following holds:

1. Id�G4� = ��x1� x2� x3�� �x1� x2��x3� x4��x5� x6��T �
2. �n�G4� = ��n� + ��n−1�1� + ��n−2�1�1� + ��n−3�1�1�1� + ��n−4�1�1�1�1��
3. ln�G4� = 5�
4. cn�G4� =

∑2
j=0

(
n
2j

)
.

Proof. The Properties 1 and 4 follow from Giambruno et al. (2007, Theorem 3.5).
Since G4 ⊆ G, the multiplicities in the cocharacter of G4 are bounded by the corres-
ponding multiplicities in the cocharacter of G. By Giambruno and Zaicev (2005),

�n�G� =
n−1∑
i=0

��n−i�1i��

Hence, since J�G4�
5 = 0, by Giambruno and Zaicev (2000, Theorem 3), we obtain that

�n�G4� = m1��n� +m2��n−1�1� +m3��n−2�1�1� +m4��n−3�1�1�1� +m5��n−4�1�1�1�1�

and mi ≤ 1. Hence

cn�G4� ≤ deg ��n� + deg ��n−1�1� + deg ��n−2�1�1� + deg ��n−3�1�1�1� + deg ��n−4�1�1�1�1�

=
2∑

j=0

(
n
2j

)
= cn�G4��
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This implies that the nth cocharacter of G4 is decomposed as in 2 and
ln�G4� = 5� �

4. CHARACTERIZING VARIETIES OF COLENGTH ≤4

In this section, we classify up to PI-equivalence the algebras A such that ln�A� ≤
4 for n large enough.

In what follows, we shall use a particular decomposition of the Jacobson radical
of a finite dimensional algebra.

Let A = F + J be a finite dimensional algebra over F� where J is the Jacobson
radical of A, then J can be decomposed into the direct sum of F -bimodules (see for
instance Giambruno and Zaicev, 2003), i.e., J = J00 + J01 + J10 + J11, where for i ∈
�0� 1�� Jik is a left faithful module or a 0-left module according as i = 1 or i = 0�
respectively. Similarly, Jik is a right faithful module or a 0-right module according as
k = 1 or k = 0� respectively. Moreover, for i� k� l�m ∈ �0� 1�� JikJlm ⊆ �klJim where �kl
is the Kronecker delta and J11 = FN for some nilpotent subalgebraN of A commuting
with F�

Lemma 11. Let A = F + J be an F -algebra. If A4� A
∗
4� A5� A6 � var�A�, then J10J00 =

J00J01 = J01J10 = J10J01 = 0�

Proof. The result follow fromGiambruno andLaMattina (2005, Lemmas 15, 20, 21).
�

In what follows, we shall use the following result from Giambruno et al. (2007),
which we state in our notation.

Theorem 12 (Giambruno et al., 2007, Theorem 3.6). Let A be an algebra with 1 over
a field F of characteristic zero. If cn�A� ≈ ank� for some a ≥ 1� k ≤ 3� then eitherA ∼PI F
or A ∼PI A2 or A ∼PI A7�

This says that either ln�A� = 1 or ln�A� = 3 or ln�A� = 7 for all n > 4�

Lemma 13. Let A = F + J� If �J11� J11� J11� = 0� then A7 ∈ var�A��

Proof. Since F + J11 is a subalgebra of A� without loss of generality, we may assume
that A = F + J and J = J11�

Hence A is a noncommutative algebra with 1 which does not satisfy the
polynomial identity �x1� x2� x3� ≡ 0� So, being cn�A� polynomially bounded, by (1) and
the previous result,

cn�A� =
k∑

i=0

(
n
i

)
c
p
i �A� ≈ qnk� q > 0

for some k ≥ 3. If k = 3, then, by the same result, A is PI-equivalent to A7,
and we are done. So we may assume that k ≥ 4� Since �x1� x2� x3� is not an
identity of A� A does not satisfy any identity of degree ≤ 3 (see for instance
Giambruno et al., 2007). Hence, being Id�A� generated by proper polynomials,
Id�A� ⊆ ��x1� x2� x3� x4�� �x1� x2��x3� x4��T = Id�A7�� i.e, A7 ∈ var�A�� �
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Lemma 14. Let A = F + J with �J11� J11� J11� = �J11� J11��J11� J11� = 0�

1. If �J11� J11�J10 = 0� then A8 ∈ var�A��
2. If J01�J11� J11� = 0� then A∗

8 ∈ var�A��

Proof. Suppose that �J11� J11�J10 = 0� Being F + J11 + J10 a subalgebra of A� we
may assume, without loss of generality, that A = F + J11 + J10� Since �J11� J11� J11� =
�J11� J11��J11� J11� = 0� we have that �A�A�A�� �A�A��A�A� ⊆ J10� Hence, it is
immediate that �x1� x2� x3�x4 ≡ 0 and �x1� x2��x3� x4�x5 ≡ 0 are polynomial identities
of A and, so, by Lemma 9, Id�A8� ⊆ Id�A��

Conversely, let f ∈ Id�A� be a multilinear polynomial of degree n� By Lemma 9,
we can write f (mod Id�A8�� as

f = �x1 · · · xn +
n−1∑
t=1

i1<···<in−2

�txi1 · · · xin−2
�xn� xt�+

∑
i>j

i1<···<in−3

�ijkxi1 · · · xin−3
�xi� xj�xk�

Choosing xi = 1F for all i = 1� � � � � n� we get � = 0. For fixed 1 ≤ t ≤ n− 1�
by evaluating xt = a ∈ J10� a = 0� and xk = 1F � k = t, we get �t = 0� Since
�J11� J11�J10 = 0� there exist a ∈ J10� b� c ∈ J11 such that bca = 0� Therefore, for fixed
i� j� k� the evaluation xi = b� xj = c xk = a� xl = 1F � l � �i� j� k� gives �ijk = 0� This
says that f ∈ Id�A8�� and, so, Id�A� = Id�A8��

The property 2 is proved similarly. �

In La Mattina (2007), it was proved that if A ∈ var�G� is a noncommutative
algebra with 1, then either A ∼PI G or A ∼PI G2k for some k ≥ 1� From this, by
recalling that Id�G� = ��x1� x2� x3��T (see Krakowski and Regev, 1973), the following
remark follows easily.

Remark 15. If A = F + J11 is an algebra satisfying the identity �x1� x2� x3� ≡ 0, then
either A ∼PI F or A ∼PI A2 or G4 ∈ var�A�.

Recall that, by Maltsev (1971), Id�UT2� = ��x1� x2��x3� x4��T �

Lemma 16. LetA = F + J be such thatG4� A7� A8� A
∗
8 � var�A� and J00 = J10J01 = 0�

Then A ∈ var�UT2��

Proof. Since A7 � var�A�� by Lemma 13, �J11� J11� J11� = 0� So, F + J11 is a
subalgebra of A satisfying the identity �x1� x2� x3� ≡ 0. Hence, since G4 � var�A��
we must have, by Remark 15, �J11� J11��J11� J11� = 0� Also, by Lemma 14, since
A8� A

∗
8 � var�A�� we have that �J11� J11�J10 = J01�J11� J11� = 0� Hence, since evaluating

f = �x1� x2��x3� x4� in F + J11� we get a zero value of f� at least one variable xi
must be evaluated in J10 or J01� But �J11� J11��F� J10� = �J11� J11�J10 = �J01� F��J11� J11� =
J01�J11� J11� = �F� J10��J01� F� = J10J01 = 0 implies that f ≡ 0 is a polynomial identity
for A and, so, A ∈ var�UT2�� �

In what follows, we shall use the following result from LaMattina (2007), which
we state in our notation.
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Theorem 17. Let A = F + J10 + J01 + J11 ∈ var�UT2��

1) If J11 is commutative A is PI-equivalent to one of the following algebras:
F�A1� A

∗
1� A1 ⊕ A∗

1�
2) If J11 is not commutative and �J11� J11� J11� = 0� A is PI-equivalent to one of the

following algebras: A2� A1 ⊕ A2� A
∗
1 ⊕ A2� A1 ⊕ A∗

1 ⊕ A2�

Now we are in a position to prove the main result of this article, which allows us
to classify all algebras whose colength sequence is bounded by 4. We remark that the
case ln�A� ≤ 2 was proved in Giambruno and La Mattina (2005).

Theorem 18. Let A be an F -algebra. Then the following conditions are equivalent:

1. ln�A� = k� k ≤ 4� for n large enough;
2. A3� A4� A

∗
4� A5� A6� A7� A8� A

∗
8�G4 � var�A��

3. A is PI-equivalent to one of the following algebras: N�C ⊕ N�A1 ⊕ N�A∗
1 ⊕ N�A1 ⊕

A∗
1 ⊕ N A2 ⊕ N�A1 ⊕ A2 ⊕ N�A∗

1 ⊕ A2 ⊕ N� where N is a nilpotent algebra and C is
a commutative non-nilpotent algebra.

Proof. 1 ⇒ 2 Since for n > 4� A3� A4� A
∗
4� A5� A6� A7� A8� A

∗
8�G4 have colength

sequence bounded from below by 5� it is clear that they do not belong to the variety
generated by A�

2 ⇒ 3 Since A7 ∈ var�UT2� and G4 ∈ var�G�� by the hypotheses, UT2�G �
var�A�� Hence, by Giambruno and Zaicev (2005, Theorem 7.2.12), we may assume
that

A = B1 ⊕ · · · ⊕ Bm�

where B1� � � � � Bm are finite dimensional algebras such that dimBi/J�Ai� ≤ 1 and J�Bi�
denotes the Jacobson radical of Bi� 1 ≤ i ≤ m� Notice that this says that either Bi �
F + J�Bi� or Bi = J�Bi� is a nilpotent algebra.

If Bi = J�Bi� is nilpotent for all i� then A is a nilpotent algebra, and we are done
in this case.

Suppose that for some i, Bi is not a nilpotent algebra, and let J = J11 + J10 +
J01 + J00 = J�Bi�� Since A4� A

∗
4� A5� A6� A7 � var�A�� by Lemmas 11 and 13,

J10J00 = J00J01 = J01J10 = J10J01 = �J11� J11� J11� = 0�

Under these conditions J00 is a two-sided nilpotent ideal of Bi and Bi = F +
J01 + J10 + J11 ⊕ J00. Let D = F + J01 + J10 + J11� By the hypotheses,G4� A7� A8� A

∗
8 �

var�D� and, so, by Lemma 16, D ∈ var�UT2� and, by Theorem 17, Bi = D⊕ N is
PI-equivalent to one of the following algebras: C ⊕ N�A1 ⊕ N�A∗

1 ⊕ N�A1 ⊕ A∗
1 ⊕ N ,

A2 ⊕ N�A1 ⊕ A2 ⊕ N�A∗
1 ⊕ A2 ⊕ N� where N = J00 is a nilpotent algebra, and C is a

commutative algebra.
Since A = B1 ⊕ · · · ⊕ Bm� and A3 � var�A�� the desired conclusion follows

easily.
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3 ⇒ 1 Since each of the algebras in 3, for n large enough, has colength sequence
constant and bounded from above by 4, then Property 3 implies Property 1, and we
are done. �

In conclusion, we have the following classification: for any algebra A and
n large enough:

1. ln�A� = 0 if and only if A ∼PI N ;
2. ln�A� = 1 if and only if A ∼PI C ⊕ N ;
3. ln�A� = 2 if and only if either A ∼PI A1 ⊕ N or A ∼PI A

∗
1 ⊕ N�

4. ln�A� = 3 if and only if either A ∼PI A1 ⊕ A∗
1 ⊕ N or A ∼PI A2 ⊕ N�

5. ln�A� = 4 if and only if either A ∼PI A1 ⊕ A2 ⊕ N or A ∼PI A
∗
1 ⊕ A2 ⊕ N�;

where N denotes a nilpotent algebra and C a commutative non-nilpotent
algebra.
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