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Abstract 

Pollutant emissions reduction and energy saving policies increased the production of Spark Ignition (SI) engines 
operated with gaseous fuels. Natural Gas (NG) and Liquefied Petroleum Gas (LPG), thanks to their low cost and low 
environmental impact represent the best alternative. Bi-fuel engines, which may run either with gasoline or with gas 
(NG or LPG), widely spread in many countries thanks to their versatility, high efficiency and low pollutant 
emissions: gas fueled vehicles, as example, are allowed to run in many limited traffic zones. In the last years, 
supercharged SI engines fueled with either gasoline or gaseous fuel, spread in the market. Thermodynamic 
simulations, widely used to reduce costs during engine development and optimization process, require proper 
combustion and knock onset prediction models. In particular the fuel knocking resistance is a crucial issue in 
supercharged engines development. Starting from these considerations the authors developed and calibrated an 
original knock onset prediction model for knock-safe performances optimization of engines fueled by gasoline and 
gaseous fuels. The proposed model, despite its very simple formulation, takes into account the Negative Temperature 
Coefficient (NTC) behavior exhibited by many hydrocarbons fuels such as gasoline, propane and methane. The 
knock prediction model has been calibrated by a great number of light-knocking pressure cycles sampled using a 
Cooperative Fuel Research (CFR) engine. The engine Compression Ratio (CR), inlet mixture temperature and spark 
advance have been varied to obtain very different operative conditions for model calibration; as a result the model 
can be used in the development of different kind of engines, i.e. naturally aspirated or supercharged. Five fuels have 
been tested: gasoline, LPG, NG, propane and methane. The calibrated model showed a very high reliability with a 
maximum knock onset prediction error of only 4 crank angle degrees (CAD) and an overall mean absolute error 
lower than 1 CAD, that are negligible quantities from an engine control point of view. 
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1. Introduction 

Natural Gas (NG) and Liquefied Petroleum Gas (LPG) are a valid alternative to gasoline for SI engines 
thanks to a lower cost, lower pollutant emissions and higher engine efficiency. These results are obtained 
through better mixing capabilities and higher knocking resistance that in turn allow the engine to run with 
stoichiometric fuel mixture also at full load. On the contrary gasoline operated engines need rich mixture 
at full load thus producing higher hydrocarbon and particulate emissions and high specific fuel 
consumption. Bi-fuel engines fed by gasoline or gaseous fuel spread in many countries in the last decades 
and some car makers put in production engines fueled only with NG. Moreover the engine downsize 
process led to an increasing production of supercharged SI engines (also in Bi-fuel version).Numerical 
simulations are a fundamental tool during engine development process as they allow a strong reduction of 
times and costs. Combustion is the most important phase of engine operation and a reliable combustion 
simulation is essential to correctly predict engine performances. As far as SI engines are regarded, and in 
particular supercharged engines, knocking phenomena must be taken into consideration by using proper 
knock onset prediction sub-models. In this paper the authors propose an innovative knock onset prediction 
model, based on the classical knock integral approach[1], which takes into account the Negative 
Temperature Coefficient (NTC) behavior exhibited by many fuels such as gasoline, methane and propane. 
Five fuels has been tested: commercial gasoline, NG, LPG, methane and propane. The first three were 
chosen because they are commonly available commercial fuels; however both NG and LPG are gas 
mixtures whose composition influences knocking resistance. Engine development and optimization 
process usually involves numerical simulations and experimental tests performed using reference fuels, 
whose fixed properties allow to draw repeatable and comparable results; for these reasons methane and 
propane, often used as reference fuels, have been tested. The model has been calibrated using light 
knocking pressure cycles obtained with a CFR engine[2] in different operative conditions. 

Nomenclature 
A, n, B calibration parameters of the model 
CAD Crank Angle Degrees 
CFR Cooperative Fuel Research 
CR Compression Ratio 
IVC Inlet Valve Closure 
KI Knock Integral 
KOCA Knock Onset Crank Angle 
LPG Liquefied Petroleum Gas 
m the polytropic coefficient 

NG Natural Gas 
NTC Negative Temperature Coefficient 
p unburned gas pressure 
pIGN unburned gas pressure at ignition 
pIVC unburned gas pressure at IVC 
SA Spark Advance 
SI Spark Ignition 
t time 
T unburned gas temperature 

TIGN unburned gas temperature at ignition 
TIN inlet mixture temperature 
TIVC unburned gas temperature at IVC 
tIVC inlet valve closure time 
tKO knock onset time 
TNTC lower temperature of the NTC zone 
V in-cylinder volume 
VIVC unburned gas volume at IVC 

IVC crank angle at IVC 

KO,exp. experimental KOCA 

KO,model model evaluated KOCA 
 difference between estimated 

andexperimental KOCA 

i ith KOCA error 

MA mean absolute KOCA error 

max maximum absolute KOCA error 
 equivalence ratio 
 auto-ignition time 
 engine angular velocity 
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1.1. Knock onset prediction model 

Two main types of knock onset prediction models can be found in literature: auto ignition delay and 
detailed chemical kinetic models. The first is based on the unburned gas pressure and temperature 
histories and needs experimental data for its calibration[1][3][4][5][6][7]; the second takes in to account 
the elementary reactions that occurs between the species involved in the combustion process [8][9] and 
requires greater computational cost. Thanks to the lower computational effort and satisfactory results, the 
first type is often preferred. A fuel-air mixture, subjected to constant thermodynamic conditions, auto-
ignites after a certain time which can be related to the pressure p and temperature T by the use of an 
Arrhenius type equation[1]: 

          (1) 

where A, n and B are fuel dependent constants determined by statistical regression of the measured auto-
ignition times [4][5][6][7].During combustion in a SI engine the unburned gas pressure and temperature 
are far from being constant so equation (1) cannot be directly employed and a Knock Integral (KI) must 
be evaluated as function of time t: 

          (2) 

being tIVC the Inlet Valve Closure (IVC) time. According to this method[1], the knock onset time tKO is 
obtained when the integral reaches the value of 1: 

         (3) 

This condition corresponds to the critical concentration of the radical species needed for auto-ignition. 
Equation (1) states that a pressure and temperature increase induces a reduction of auto-ignition time. 
This relation between temperature and auto-ignition time has a general validity in the lower and higher 
temperature range while, as stated by many authors [8][10][11][12], at intermediate temperatures 
(approximately between 650 and 900 K) many hydrocarbon fuels exhibit a reverse dependence, showing 
an increase of auto-ignition time for increasing temperature. This phenomenon, shown in Figure 1, is 
known as NTC behavior and its temperature range of existence depends on the fuel. For higher 
temperatures, the auto-ignition time shows again a decreasing trend (Figure 1). Equation (1) cannot model 
the NTC behavior of fuels: its representation in Figure 1would be a straight line. For gasoline, the NTC 
behavior has been found to exist for temperatures between 700K and 850K, as shown in Figure 1, 
regardless of pressure or equivalence ratio  of the mixture [10].During combustion in SI engines the 
unburned gas temperature usually exceeds 700 K, in the present study the peak unburned gas temperature 
ranged from 600 K to 870 K depending on the fuel tested. A knock onset prediction model should take 
into account the fuel NTC behavior to give reliable and accurate results. From 720 to 800K the auto-
ignition time of gasoline can be considered constant, as pointed out by the experimental data in Figure 1; 
a similar behavior has been observed with propane [11] and methane [12] whose auto-ignition times 
remain almost constant in the range 740-870 K and 850-1050 K respectively. With the aim to take into 
account the NTC behavior, the authors proposed a modified version of the Arrhenius type equation (1); 
the auto-ignition time is given by equation (1) until NTC behavior occurs (i.e. when T≤ TNTC), while for 
higher temperatures the auto-ignition time is independent of temperature: 
 

        (4) 
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where TNTC is the lower temperature of the NTC behaviour zone; it depends on the fuel considered and the 
following values can be assumed[10][11][12]:720 K (gasoline), 740 K (propane) and 850 K (methane). 
Since methane and propane are the main components of the tested NG and LPG respectively, the TNTC 

value used for each pure gas has been assumed valid also for the corresponding gas mixture. 
 

 

Figure 1 – NTC zone of gasoline (three equivalence ratio )[10] 
Figure 2 - Comparison between measured auto-ignition time 
[10] and model adopted in the present paper 

Figure 2 graphically displays the adopted model compared with experimental data of reference [10]; 
the end of the NTC zone has not been taken in to account because, for all the tested fuels, the unburned 
gas peak temperature always remained below the higher temperature limit of NTC zone. In the present 
work equation (4) has been implemented in the KI of equation (3) and, after an accurate calibration 
procedure the model constants A, n and B have been determined for gasoline, propane, methane, NG and 
LPG. 

2. Experimental setup and test method 

Being the Knock Integral method based on the unburned gas pressure and temperature history, the 
authors aimed to determine the model’s constants by means of experimental data in which these two 
parameters varied significantly. In this way, once calibrated with an heterogeneous set of pressure and 
temperature histories, the model can be used to predict knock occurrence in SI engines of different kind, 
naturally aspirated as well as supercharged. The experimental tests were performed using a CFR engine 
which, thanks to its particular arrangement[2], allows a great variation of CR and inlet mixture 
temperature thus producing a very differentiated collection of pressure and temperature histories. Figure 
3shows the experimental setup: the CFR engine is endowed of two independent injection systems, one for 
gasoline and one for gaseous fuel; both fuel and air flows were measured with proper flow meters, while a 
personal computer has been employed both for ignition and injection systems control and for data 
acquisition(combustion chamber pressure, mass flows, inlet air temperature, intake duct pressure, etc.). 
Both data acquisition and engine control were performed by means of National Instruments DAQ Cards 
programmed in LabVIEW environment .Knock occurrence was monitored using a Kistler piezoelectric 
pressure sensor flush mounted in the combustion chamber, whose signal has been acquired at 160 kHz 
sample rate. 

As already mentioned, five fuels were used in this study, and for each fuel, four different inlet mixture 
temperatures and three Spark Advances (SA) where tested; for each operative condition, 50 light 
knocking pressure cycles were acquired. Table 1 resumes the operative conditions used in the test 
together with the composition of the LPG and the NG employed. 
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Figure 4 reports the power spectrum of a raw pressure signal, showing the main frequency of the 
knocking pressure oscillations to be around 6 kHz. Hence, with the aim to remove unwanted noise and 
highlight knocking pressure oscillations, each pressure trace has been filtered by means of a second order, 
zero-phase shift, 3-20 kHz band-pass Butterworth filter. The result is reported in Figure 5 which shows 
the raw and filtered pressure signals; a pressure cycle has been identified as “light knocking”, and then 
saved for subsequent analysis, when the peak to peak value of the filtered signal resulted higher than 0.2 
bar; this threshold is based on previous experimental experience [6][7].For each recorded pressure trace, 
the experimental Knock Onset Crank Angle (KOCA) KO,exp. (showed in Figure 5) has been identified as 
the location of the first oscillation with peak to peak value higher than 0.2 bar. The use of light knocking 
cycles for model calibration allows to define the boundaries of the knock safe zone for a given fuel 
mixture; these boundaries will help engine designers and testers to safely optimize engine performance, 
since a slight reduction of spark advance with respect to light knocking condition completely suppress 
any knocking phenomena. 

The three spark advances adopted have been fixed to avoid combustion ignition onset too different 
from that of practical interest in actual engines, while the four inlet mixture temperatures have been 
selected with the aim to include typical conditions of both naturally aspirated and supercharged SI 

Table 1 – operative conditions tested 

Engine speed 900 [RPM] 
Inlet temperature (TIN) 50, 80, 110, 140 [°C] 
Engine load condition full load 

Compression ratio 
(CR) 

determined to cause light 
knocking 

Overall air/fuel ratio stoichiometric 
Spark advance (SA) 15, 25, 35  [CAD BTDC] 

Fuel tested 

gasoline; methane; 
propane; LPG (80% 

propane, 20% propylene); 
NG (86% methane, 8% 

ethane, 1.6% propane, 1% 
CO2, 3% N2, 0.4% others) 

 

Figure 3 – experimental layout 

Figure 4 – Power spectrum of the raw pressure signal (NG, 
SA=25 CAD BTDC, TIN=80 °C). 

Figure 5 – Raw and filtered pressure with KO,exp. evaluation, (NG, 
SA=25 CAD BTDC, TIN =80 °C) 

KOexp. 
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engines. As a result 12 test conditions have been explored for each fuel which means a total of 60 
operative conditions. 

From IVC to spark ignition time the unburned gas temperature T has been calculated by means of the 
perfect gas law, being both the in-cylinder volume V and gas pressure p known: 

         (5) 

where pIVC, VIVC and TIVC denote pressure, volume and temperature of the gas at IVC. TIVC has been 
considered equal to the inlet temperature TIN thus neglecting heat transfer during the intake stroke. Since 
combustion starts, the burned and unburned gas temperatures differ each other and their masses and 
volumes changes continuously during flame front propagation: this makes equation (5) no more valid. 
Hence, after spark ignition, the unburned gas temperature T has been evaluated on the basis of a 
polytropic law, as usually done in zero dimensional modelling of SI engines: 

         (6) 

where pIGN is the unburned gas pressure measured at spark ignition time, TIGN its temperature, evaluated 
by equation (5), while m is the polytropic coefficient. Once known the experimental location of knock 
onset ( KO,exp.), for each of the pressure cycle sampled, the KOCA KO,model estimated by the model has 
been determined by solving the knock integral of equation (3) in the crank angle domain: 

         (7) 

where IVC is the crank position at IVC and  is the engine angular velocity [rad/s]. The KOCA error  
can be then evaluated, for each single pressure trace, according to the set of model constants A, n, and B: 

         (8) 

3. Results and discussion 

The model was calibrated using the pressure cycles obtained with the different fuels tested. The 
optimal set of model constants A, n and B has been determined minimizing the mean absolute error MA 
evaluated over the total number of pressure cycles N available for each fuel: 

          (9) 

where i is the KOCA error determined for the ith knocking pressure cycle using equation (8).For a fixed 
set of n and B, the parameter A has been determined minimizing the objective function MA (A, B, n) by 
the use of the Downhill Simplex searching algorithm [13]; this procedure has been repeated for B and n 
ranging inside predetermined intervals, obtaining, as a result, the surface and the contour plot of 
minimum MA as function of B and n. As example, Figure 6 and Figure 7 show the surface and the 
contour plot obtained for methane: the cross in Figure 7 indicates the absolute minimum of MA and 
allows to determine the best values of the three model parameters A, B and n. 

Table 2resumes the optimum values of A, B and n obtained for all the fuels tested, together with the 
mean and maximum absolute error | max|; it can be noted that the model parameters are quite different 
from each other due to the different knock resistance of the different fuels. As shown in Table 2 the mean 
absolute error of the model is always lower than 1 CAD and the maximum error always lower than 4 
CAD: these are very satisfactory results considering the wide variety of pressure and temperature 
histories used for model calibration. For each of the fuel tested, the knock onset position evaluated by the 
model has been compared with the experimentally measured value; the results of these comparison are 
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shown in Figure 8: a very good correlation is found with a R2 value of 0.986 and maximum error of ±3.5 
CAD. 
 

4. Conclusions 

The purpose of this work was to provide an NTC compliant knock onset prediction model to be used 
in engine thermodynamic simulations for a knock-safe performance optimization of SI engines fueled by 
gasoline or gaseous fuels (LPG and NG). The classical knock integral approach has been modified to take 
in to account for the NTC behavior featured by many hydrocarbon fuels. The model has been calibrated 
by using light knocking pressure cycles sampled on a CFR engine obtained with a large variation of initial 
temperature and compression ratio; this gives the model a general validity, allowing to predict knocking 
occurrence both in naturally aspirated and supercharged engines. The calibrated model showed very good 

  

Figure 6 – Surface of the minimum MA as a function of the 
model constants B and n (methane, TNTC=850 K). 

Figure 7 – Contour plot of the minimum MA as a function of 
the model constants B and n (methane, TNTC=850 K). 

Table 2 – Model parameters 

Fuel A n B 
εMA 

[CAD] 
|εMAX| 

[CAD] 

Gasoline 0.122 4.2 5700 0.574 1.90 

LPG 0.170 6.0 10500 0.523 1.86 
Propane 0.0220 5.3 10500 0.540 2.98 

NG 5.10 7.5 13800 0.640 2.52 
Methane 90.0 6.2 9100 0.663 3.36 

 

Figure 8 – Comparison between estimated and experimental 
knock onset. 
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knock onset prediction abilities with mean absolute error always lower than 1 CAD and maximum error 
always lower than 4 CAD that are negligible quantities from an engine control point of view. 
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