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Abstract: Knowledge of soil water content plays a key role in water management efforts  

to improve irrigation efficiency. Among the indirect estimation methods of soil water  

content via Earth Observation data is the triangle method, used to analyze optical and  

thermal features because these are primarily controlled by water content within the  

near-surface evaporation layer and root zone in bare and vegetated soils. Although the  

soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical 

models reveal limits for operational use. When applying simplified empirical formulations, 

meteorological forcing could be replaced with alternative variables when the above-canopy 

temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for 

the temporal admittance of the soil. However, if applied over a limited area, a characterization 

of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis 

can be exploited to include outer extremes in soil water content. A diachronic empirical 

approach introduces the need to assume a constancy of other meteorological forcing 

variables that control thermal features. Airborne images were acquired on a Sicilian 

vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), 

during which in situ soil water content was measured to set up the triangle method. Within 

this framework, we tested the triangle method by employing alternative thermal forcing.  

The results were inaccurate when air temperature at airborne acquisition was employed. 

Sonic and aerodynamic air temperatures confirmed and partially explained the limits of 
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simultaneous meteorological forcing, and the use of proxy variables improved model 

accuracy. The analysis indicates that high spatial resolution does not necessarily imply 

higher accuracies. 

Keywords: soil moisture; airborne remote sensing; triangle method 

 

1. Introduction 

Detailed knowledge of the surface soil water content of the soil-vegetation system is crucial to  

the operational modeling of drought monitoring [1] and irrigation management [2]. During water 

shortages in semi-arid regions, the first response is to reduce the agricultural water allotments. To 

avoid reduction in crop productivity, accurate estimates of plant water requirements and plant water 

availability are needed to avoid wasting resources. In addition, in vineyard management, grape yield 

and quality depend on the soil water content in the root zone. Water stress is necessary to regulate 

vegetative and berry growth and quality; however, excessive stress can result in severe damage to fruit 

development, thus affecting metabolism and production. 

At the basin scale, long-term rainfall reduction observed in several regions, including the  

Mediterranean [3], concurrent with extreme rainfall events can causes increased flash flooding.  

Even in this framework, a precise estimate of the antecedent surface soil water content, θ, improves 

flood prediction and the reliability of warning systems because soil water content controls the 

precipitation partition between infiltration and runoff [4]. In addition, the runoff has a significant impact 

on soil loss [5]. 

Many methodologies have been developed using remotely sensed data acquired in distinct regions 

of the electromagnetic spectrum, including passive and active microwave methods and the triangle and 

thermal inertia methods used with shortwave and longwave data. Each method has its own advantages 

and disadvantages. Chaouch et al. [6] inverted a microwave transfer model to retrieve θ from passive 

microwave data at low spatial resolution (≈50 km), which is unsuitable for small areas. Active remote 

sensing methods are based on backscattered signals in microwaves (RADAR). Their sensitivity 

depends on two main groups: sensor parameters, including frequency, incidence angle, and 

polarization; and soil parameters, which depend on geometric (soil roughness and vegetation biomass, 

height, fractional cover, structure) and dielectric (texture, organic content, salinity and water content) 

properties. To estimate θ from radar backscattering, empirical, semi-empirical, and theoretical models 

have been implemented. Empirical models (e.g., [7]) obtain accurate results under the setup conditions; 

theoretical models (e.g., [8]) are implemented under a theoretical basis to predict backscattering in 

response to sensor and soil parameters. Among the semi-empirical models, Capodici et al. [9] recently 

set up a coupled algorithm for θ estimation using co- and cross-polarized imagery, obtaining 

satisfactory assessments. 

Within the field of passive remote sensing, many studies report the use of thermal and visible/near 

infrared (VIS/NIR) bands to determine soil surface water content. Because such images do not directly 

measure soil water, a number of methods have been developed to exploit relationships among θ and 

surface radiometric properties that can be more readily quantified. 



Sensors 2015, 15 6701 

 

 

Two such methods are the “thermal inertia” and “triangle” methods. The thermal inertia method  

(e.g., [10–12]) determines θ using a combination of thermal and visible images. Because the ability of 

a material to accumulate heat and release it within a defined time interval strongly depends on the 

water content of the material itself, θ can be indirectly inferred by measuring the variation of the body 

temperature over time. In particular, the short wave albedo, compared to the day-night temperature 

difference, can be used to estimate the soil surface water content because the amplitude of the 

temperature variation is a direct consequence of the amount of energy reaching the soil in the 

shortwave and of the soil properties, including bulk density, thermal conductivity, and heat capacity. 

For bare ground, soil thermal properties strongly depend on water content and soil density. Thermal 

inertia is therefore higher for wetter soils because water in the soil pores absorbs heat, and thus soil 

temperature changes more slowly than in dry soils. 

Because the variation in surface temperature depends on the surface water content, the triangle method 

exploits this relationship [13] through evaporation over bare soil and transpiration over dense 

vegetation. Vegetation cover determines applicability of these methods: (i) the triangle method 

depends on the temperature difference between canopy and air, a relationship based on canopy 

resistance that varies with soil water availability; thus, the method is more suitable for vegetated than 

bare soils; (ii) in contrast, operational thermal inertia is based on the hypothesis that some fluxes are 

linearly related to surface temperature; thus, the method is more suitable for bare soil than vegetated areas. 

Our research focuses on a method based on the feature space defined by optical and thermal data.  

In particular we discuss advantages and limitations of the triangle method and a simplified version of 

the thermal inertia method. According to Petropoulos et al. [14], the wide base of the triangular 

envelope depicts the relatively higher sensitivity of the bare soil temperature to its water content changes 

compared to the much lower sensitivity of progressively denser vegetation, which is highlighted by the 

triangle’s much narrower vertex. 

We implemented a model based on the empirical approach of the triangle method [15,16], named for 

the triangle enveloping the typical trapezoidal shape of the scatterplot of the land surface temperature 

(LST) vs. a vegetation index (VI), such as the Normalized Difference Vegetation Index (NDVI). The 

minor trapezoid base corresponds to densely vegetated areas and highlights the low temperature 

variability caused by the thermoregulation mechanism of the plants, which are able to take water  

(if available) from soil layers not directly linked to soil surface evaporation. In contrast, the major base 

of the trapezoid corresponds to low or absent vegetation coverage and confirms the strong relationship 

between surface θ and surface temperature of bare soils. 

Each interval of vegetation coverage can be classified by the direct correspondence between the 

“warm edge” characterized by dry conditions and thus also referred to as “dry edge”, and the “cold edge” 

characterized by wet conditions and alternatively named “wet edge”. The soil water content index can 

then be defined as a function of the relative position to the triangle edges of a generic point of the 

scatterplot. One assumption is that the time series extent be sufficient to include all possible soil water 

content conditions (from residual to saturation) and soil vegetation coverage to assess θ based on the 

hypotheses of linear variation of isopleths from the wet to the dry edge. 
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2. Theoretical Background 

The soil water content is evaluated using both VIs and surface temperatures via the triangle method. 

A fundamental assumption is that, given a large number of pixels describing a full range of soil surface 

water content and fractional vegetation cover, sharp boundaries in the data describe real physical 

limits: bare soil, pixels fully covered by vegetation, and lower and upper limits of the surface θ 

(completely dry and at field capacity) [15]. 

Under these hypotheses, Jackson et al. [17] showed that air temperature minus canopy temperature 

can be used as an index of crop water stress. Their results are based on the surface energy balance 

equation for a crop canopy, taking into account the net radiation and soil heat flux (Rn and G0, 

respectively) and the sensible and latent heat fluxes (H and λE, respectively). Under atmospheric  
neutral conditions, sensible and latent heat fluxes can be expressed as  p c a aH c T T r   and 

   *
p c a a cE c e e r r     , where ρ is the air density, cp is the air heat capacity, Tc and Ta are the 

canopy and air temperatures, ec
* and ea are the saturated and vapor pressures of the air, γ is the 

psychrometric constant, and ra and rc are the aerodynamic and canopy resistances to water transport. 
The temperature difference between canopy and above air can be written as [17]:  
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where Δ is the slope of the saturated vapor pressure vs. temperature relationship (ec
* − ea

*)/(Tc − Ta),  

and ea
* − ea is the vapor pressure deficit. Theoretically, Equation (1) can be used to define two boundary 

limits for well-watered and dry crops. 

For well-watered crops and full cover, the canopy resistance reaches potential value, rc = rcp, 

whereas in bare soil, rc is approximated as zero. The potential value of canopy resistance is obtained 

per unit of Leaf Area Index (LAI) from minimum stomata resistance: rcp = rSmin/LAI [18].  

These resistances determine the theoretical lower limit (wet edge). 

For no water availability and full vegetation cover, the canopy resistance rises to the stomata  

closure value rc = rcx = rSmax/LAI as a function of the leaf stomata closure value [18], whereas for dry 

bare soil rc is set to infinity, rc = ∞. These resistances determine the theoretical upper limit (dry edge). 

Following Ortega-Farias et al. [19], rcp over vineyards could be set to 25 s·m−1 (cultivar Savignon), 

although values ranged between 10 and 100 s·m−1 [20]. By following Giordani et al. [21], rcx over 

vineyards associated with nearly complete stomata closure could be set to 2000 s·m−1. Thus, defining 

the value that describes the actual behavior of the vegetation is difficult. Regarding LAI influence, if 

none of the controlling variables is limiting, rs could be roughly assumed to be 40 s·m−1 [22]. 

Net radiation is obtained by summing shortwave and longwave net radiations: 
RN  1SW RSW  acTa

4 cTc
4 . The equation is implicit for surface temperature and thus must 

be solved iteratively. 
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Canopy resistance (rc) can be expressed as a function of the bulk stomata resistance (rs) per unit of 

active (or green) LAI that actively contributes to the surface heat and vapor transfer:  

LAI

r
r s

c   (2)

The bulk stomata resistance is crop-specific and differs among crop varieties (and crop management). 

Because it usually increases as the crop matures and ripens, it is difficult to accurately evaluate in 

operational applications. 

Stomata resistance depends on several environmental variables, including photosyntetically active 

radiation (PAR); atmospheric water vapor deficit (AMD); atmospheric carbon dioxide concentration 

(CO2), air temperature (Ta); and θ. Conventionally, stomata resistance (rs, defined as the inverse of 

conductance, G = rs
−1), is parameterized as a function of reduction coefficients accounting for these 

actual environmental variables, based on their minimum values observed under optimal conditions: 
 FFFFFrr COTss a 2AMDPARmin . 

Within the diachronic empirical approach, the mutually compensating effect of meteorological 

forcing (PAR, AMD, Ta and CO2) on rs must be verified. This evaluation must occur at least at 

acquisition time, and preferably carried out with the same sun elevation angle (airborne platform) or at 

the same time of day (sun-synchronous satellites). 

The empirical method bypasses efforts in assessing rc by adjusting dry and wet edges to the 

experimental scatterplot. This means that improvements can be achieved by considering a VI time 

series and the difference (ΔT) between LST and a reference temperature T*. We tested different T* and 

propose a procedure to select the best model parameters. 

3. Methods 

The triangular shape [23] characterizing the scatterplot, relies on the assumption that the 

temperature of an elementary heterogeneous surface is given by the linear combination of the soil and 

vegetation radiative temperatures, and these are in linear relationship with the evaporation and 

transpiration processes, respectively. 

Given the VI, the soil water content of a pixel is often assumed to be proportional to the ratio 

between its thermal difference with the dry edge compared to the total thermal excursion between dry 

and wet edges. Two straight lines identify dry and wet edges. Within this research, a θ index for the 

generic k element (NDVIk, ΔTk) is given by the ratio of two angles [24], βk and α. Angle βk is given by 

the wet edge and the straight line joining the generic pixel of the scatterplot and the triangle vertex. 

Angle α is between the dry and wet edges and is thus proportional to the whole variability (Figure 1). 

This index is then converted into absolute values using the residual (θres) and saturation (θsat) outer 

values. This index strongly depends on the positioning of the dry and wet edges, which are determined 

by means of linear regression of minima and maxima percentiles for a given NDVI class. 
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Figure 1. Scatterplot of NDVI vs. ΔT with superimposed dry and wet edges. Blue dots 

characterize maximum evaporation and transpiration, and minima are represented by red 

dots. The generic NDVI-ΔT pair is indicated by a K subscript; V subscript represents the 

triangle vertex. 

The residual and saturated θ values, θres and θsat, were determined by laboratory analyses on 

samples collected within the study area. 

3.1. Edge Determination through a Diachronic High Spatial Resolution Dataset Acquired on a Small Area 

This analysis aimed to determine how an operational triangle method approach can be developed to 

assess θ over a small, vegetated area using a diachronic Earth Observation (EO) dataset of thermal and 

VIS/NIR images characterized by high spatial resolution. Once the method is applied on an empirical 

basis, wet and dry edges can be determined directly from the optical-thermal feature space by setting 

up few parameters (Figure 2, tuning parameters). Over small areas, a diachronic approach is valuable 

because time-series describe, for given vegetation cover, a wider range of variability of θ; thus, 

including all the NDVI-ΔT pairs within the scatterplot could be opportune (and in some cases needed). 

 

Figure 2. Flow diagram of the best fitting parameters procedure; dashed connectors 

indicate a fine-tuning procedure. 
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The use of high spatial resolution does not necessarily imply best accuracies in θ retrieval, and thus 

the appropriate resolution of θ maps requires a further discussion. Wet and dry edges must be assessed 

at the finest spatial resolution (usually the resolution of thermal images). Spatial aggregation reduces 

both the range of variability and total number of pairs, threatening the characterization of θ minima 

and maxima values. 

3.2. Parameter Tuning 

Parameters were defined to optimize the match between remote sensing θ (θRs) and θ measured  

in situ (Figure 2). Parameters included minima and maxima percentiles (Pmin and Pmax) and minimum 

NDVI of the wet and dry edges (NDVImin,D and NDVImin,W); whereas the cluster shape allows fixing 

maximum NDVI (NDVImax,D and NDVImax,W) with confidence. 

The wet and dry edges were determined by applying a linear regression to the minimum and 

maximum percentiles of NDVI classes; this choice gives a certain degree of freedom to the operator 

because it directly influences the final result. The experiment shows that percentiles cannot be set  

a priori, and thus, the percentiles that best fit the in situ data must be determined. 

Increasing Pmin and decreasing Pmax bring the edges closer to the cluster. The choice of different 

percentiles determines the value of α (Figure 1), representing the range of variability of θ (Δθ). The 

more Pmin increases, the more βk decreases (Figure 1); consequently, θ rises. As a first attempt (rough 

tuning) the following percentiles were tested: Pmin = [2, 5, 10, 20, 30] and Pmax = [98, 95, 90, 80, 70]. 

Resulting maps represent θ driving evaporation and transpiration of the soil vegetation system; 

however, pixels characterizing other elements of the study area could still remain within the 

scatterplot. Those pixels could distort the expected trapezoidal shape of the cluster. Hence, it is 

possible, sometime necessary, to remove them. Although input images can be masked, both  

NDVImin,D and NDVImin,W have to be set to this aim. During the rough tuning, minimum NDVI arrays of 

NDVImin,W = NDVImin,D = [0.1, 0.2, 0.3, 0.4] were tested, and NDVImax,W and NDVImax,D were fixed to 

0.90 and 0.99, respectively. Parameters led to 450 model runs for each T*. 

3.3. Reference Temperature Tests 

Although in principle Ta, measured simultaneously with LST should be employed, a weak 

agreement with in situ θ suggests testing alternative T* (Table 1). In particular, two tests were 

conducted to analyze (a) whether Ta does or does not work ( ∗  test); (b) if operational T* directly 

retrieved from thermal images could be used ( ∗  test); and (c) if including thermal admittance 

could lead to more accurate results ( ∗  test). 

Table 1. T* used within ∗  ∗  and ∗  tests. 

∗  Test ∗  Test ∗  Test 

Ta Tlake Tsoil_min 
Tsonic Tveg Ta_min 
Taero - - 

  



Sensors 2015, 15 6706 

 

 

The ∗  test includes:  

(i) Ta measured by a thermoigrometer installed 2.75 m above ground level (a.g.l.), ≈1 m above 

vegetation top; 

(ii) the sonic air temperature (Tsonic), retrieved by sound velocity measured by a 3D sonic 

anemometer installed ≈3 m a.g.l.; its value closely approximates Ta. This test verifies if the 

weak results obtaining using Ta are eventually due to thermoigrometer malfunctioning; 

(iii) the aerodynamic temperature (Taero) retrieved by Two-Source Energy Balance model based on 

intercalibration (TSEB-IC [25]). Although Taero is not suitable for an operational use, it 

determines turbulent fluxes that underlie the theoretical basis of the method, thus identifying 

the limits of Ta in describing the fluxes. 

The ∗  test assesses the operational use of temperatures of particular targets, eventually 

included within the scene:  

(i) the water surface temperature of irrigation ponds (Tlake);  

(ii) the temperature of dense-well watered vegetation (Tveg). 

The ∗  test verifies if accuracy is improved when thermal admittance is accounted for;  

to this aim, two temperatures were tested:  

(i) the minimum soil surface radiometric temperature (Tsoil_min); 

(ii) the minimum air temperature (Ta_min), which is easier to obtain because it is usually measured 

by standard meteorological stations. 

3.4. Parameter Configuration and Reference Temperature Selection 

The choice of the reference temperature and parameter configuration characterizes θRs coherently to 

the measured θ. The choice is based on the determination coefficient (r2), Student test value (T), 

Fischer test value (F), and the difference between maximum and minimum percentiles used to define 

the dry and wet edges (ΔP). Parameters must be configured to maximize r2, T, F, and ΔP; thus,  

a synthetic parameter configuration maximizing the product, I = r2·T·F·ΔP, was chosen. The mean 

absolute error (MAE) is qualitatively verified to assume a low value. The slope and intercept (m and q, 

respectively) between estimated and measured data are qualitatively verified to approach the unity (m), 

and the null value (q). After the first approximation of the parameters, fine-tuning yields the  

optimal configuration. 

3.5. Optimal Spatial Aggregation 

Parameters are configured at the spatial resolution of the thermal acquisition using the whole 

diachronic dataset; the whole dataset eventually accounts for a sample size large enough to 

characterize dry and wet edges for the whole range of the vegetation index (outer θ conditions). Thus, 

the output RS of θ is originally the one of thermal acquisition. Nevertheless, not necessarily the better 

RS (more detailed) implies the better accuracy of θ; this is could be due to several factors including the 

spatial variability of the soil vegetation system, the bidirectional reflectance distribution function 

(BRDF) of both thermal and optical (VIS/NIR) bands, and the row orientation. Thus, the spatial 
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aggregation of θ maps could increase their accuracy. Different aggregation scales were tested (2, 3, 4, 

5 and 6 times RS), and the aggregation RS representing the best agreement with the in situ data was selected 

by maximizing r2, minimizing q and MAE, and approximating m to unity (Figure 3). 

 

Figure 3. Flow diagram for the optimal spatial resolution determination. 

4. Study Area 

The study area includes the experimental fields of the “Tenute Rapitalà” farm within the 

Camporeale district (Sicily), a specific zone that grants the Alcamo Denomination of Controlled Origin 

(DOC) status. The fields are characterized by an average slope of 10%, mainly S–SW aspect (<100°), 

and elevations ranging from 290 to 320 m a.s.l. 

 

Figure 4. The study area included: vine cultivars (reported on the right side legend);  

the flux tower position (red dot), in situ measurements plots (highlighted in yellow);  

airborne image footprint (dashed black rectangle); canopy management (vertical trellis 

system) (lower-left box). 
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The soil texture (USDA) was classified as loam (20% clay, 29% silt) to silty clay loam (37% clay, 

45% silt). The organic content ranged between 1.4% and 1.7%. The residual and saturation volumetric 

water contents (θR and θS) were 0.040 and 0.453 m3·m−3, respectively, whereas volumetric water 

content at field capacity (θFC) was 0.239 m3·m−3. According to Centeno et al. [26], permanent wilting 

point (θWP) was assumed to be 0.096 m3·m−3 (cultivar “Tempranillo”, sandy loam soil). 

The experimental field included four vineyards separated by cross-shaped section-breakers. The 

vineyards were cultivated adopting a vertical trellis system (Figure 4, lower-left box), with the cultivar  

“Nero d’Avola” at NW and NE; the SE field was partly cultivated with “Cabernet Franc” cultivar and 

partly with “Nero d’Avola”, and finally the SW field was partly cultivated with “Syrah” cultivar and 

partly with “Nero d’Avola” (Figure 4). Other cultivars included “Insolia”, “Cabernet Sauvignon”, 

“Sauvignon Blanc”, “Merlot”, “Grillo”, “Catarratto Lucido” and “Viogner”. Plant spacing was 240 cm 

between rows and 95 cm between the plants within the rows. Plant density was 4386 plants per ha; 

rows were oriented N–NE to S–SW. 

5. Data 

Remote sensing images in the short and long waves were acquired by an airborne platform,  

SKY ARROW 650 TC/TCNS, at a height of ≈1000 m a.g.l. The VIS and NIR images (three bands)  

were acquired by means of a multispectral MS4100 camera (Duncantech, Auburn, CA, USA, 767–832, 

650–690, and 530–570 nm), and the thermal infrared band (TIR) images were acquired by means of a 

SC500/A40M camera (Flir, Wilsonville, OR, USA, 7.5–13 μm). The nominal pixel resolution was 

approximately 0.6 m for the VIS/NIR bands and 1.7 m for the TIR channel. The VIS/NIR images were 

aggregated at a coarser spatial resolution. Details about the field campaign and remote sensing data can 

be found in Maltese et al. [24]. The installed micro-meteorological station is described in [27]. 

Volumetric water content was measured with a CS616 Water Content Reflectometer (Campbell 

Scientific, Inc., Logan, UT, USA). The probe consisted of two 30 cm long stainless steel rods 

introduced vertically in the soil between 10 and 40 cm below ground level. An ARG100 Tipping 

Bucket Raingauge (Campbell Scientific, Inc.) installed 1 m above the vegetation top measured rainfall, 

tipping once for each 0.2 mm of rain. LAI was measured using an optoelectronics instrument  

(LAI-2000 Plant Canopy Analyzer, by LI-COR®, Lincoln, NE, USA). Radiometric temperature of  

the bare soil was measured by an IRTS-P Precision InfraRed Temperature Sensor pyranometer 

(Campbell Scientific, Inc.). 

Vineyards were characterized by low active LAI in the first ten days of June (≈1.2 m2·m−2, the 

average value at pixel scale during the first two acquisitions). LAI increased up to ≈1.7 m2·m−2 in the 

last ten days of July (third image acquisition) and decreased again to a minimum of ≈0.95 m2·m−2 at 

the beginning of September (last acquisition). 

Simultaneous to the image acquisitions, in situ measurements were carried out, including θ, 

measured using both the traditional thermo-gravimetric method and a handheld TDR (FieldScout 

TDR300, Spectrum Technologies Inc., Aurora, IL, USA). During each airborne acquisition date  

(11 June, 3 and 22 July, and 3 September 2008 corresponding to 163, 185, 204, 247 days of year, 

DOYs, respectively) 36 TDR measurements of bulk dielectric dielectric permittivity (ε) of the soil 

matrix were performed for each of the 6 selected plots (Figure 4): three (A, D and F) within the  
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Nero D’Avola cultivar; two within a Cabernet Franc (C and D), and the last (E) in the Syrah plot. Half 

of these measurements were acquired in the upper soil layer (0–20 cm) and the remaining half in the 

upper part of the root zone (~25–35 cm), totaling about 1100 observations. Soil water content 

measured in the upper part of the root zone was compared with the remote sensing assessment. 

Additionally, soil samples were collected to apply the thermo-gravimetric method and to assess the 

bulk density, needed to convert reflectometric measurements into θ. The Soil Hydrology Laboratory of 

the Department of Engineering and Agro-Forest Technology (ITAF) of the University of Palermo 

performed the soil characterization (including grain size curve, residual and saturation θ, organic 

content, etc.). 

The short wave images were calibrated to spectral reflectance and corrected for atmospheric 

influence, applying the empirical line method [28] requiring for ground reflectance measurements over 

targets taken simultaneously with the images. The thermal images were converted into surface 

radiometric temperatures by means of a linear regression with in situ temperature measurements using 

the emissivity maps retrieved as a function of the NDVI, as proposed by Sobrino et al. [29]. To do this, 

a number of spectroradiometric and radiometric measurements were performed on artificial surfaces 

(black and white panels) and on natural surfaces with homogeneous radiometric characteristics at the 

spatial acquisition scale (bare soils, roads, small irrigation reservoirs). 

The vineyards were irrigated using a controlled water deficit technique, a drop irrigation system 

able to supply 4 L·h−1 to each plant. The farm irrigation strategy included nine drop irrigations ranging 

between 4 and 7 h in duration each from 28 May to 18 August. Watering was provided twice between 

the end of May and June and 4 times in the first twenty days of July during flowering, fruit setting, and 

veraison. Water management during this period has a direct effect on the subsequent berry average 

weight, and irrigation between the end of July and August aims to optimize growth as well as berry 

sugar and acidity contents. 

Rainfall events during the study period were few and characterized by low accumulations. Values 

ranged between 6 and 8 mm in the first 4 events during 10–28 May, and the subsequent 3 months were 

dry until 14 September, when a significant rainfall occurred (196 mm). 

During this research, the θ extremes chosen to characterize the dry and wet edges were  

0.040 m3·m−3 (θR) and 0.453 m3·m−3 (θS), determined by in situ soil sampling and laboratory measurements. 

A micro-meteorological station measured several variables, including PAR, Tair, CO2, and θair, 

during the whole period. Recorded data were used to evaluate the product of the stomata conductance 

reduction factors (FPAR FTa FCO2 Fθair); their product was almost constant with time (variation 

coefficient ≈ 14%). 

6. Results and Discussion 

6.1. Parameter Tuning 

As reported in the Methods section, the positioning of wet and dry edges was determined by 

applying a linear regression to the minimum and maximum ΔT percentiles of NDVI classes; thus, their 

positions depend on the choice of percentiles Pmin and Pmax. Statistics of r2, T-test, F-test, ΔP, and 

MAE (the case of T* = Ta_min, was chosen as an example) for varying Pmin m, and q (Figure 5) show 
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clear uncertainties in the choice of a suitable Pmin. High ranges of variability of these indices confirm 

how the parameter settings affect the result. Thus, the use of a synthetic index (see index I, Section 3) 

could be valuable for the parameter selection. No noticeable behavior of these statistics has been found 

with Pmax. 

 

Figure 5. Variability with Pmin of some statistical parameters used to characterize in situ  

vs. remote sensing θ: (a) determination coefficient r2, top left panel; (b) slope m,  

upper central panel; (c) intercept q, upper right panel; (d) Student test T-test, lower left 

panel; (e) Fisher test F-test, lower central panel; (f) mean absolute error MAE, lower right 

panel; An interpolation line is reported in black. 

For each T*, statistics characterizing in situ vs. remote sensing θ of the 450 model runs were 

analyzed. The process for selecting the best parameter set was explained in Methods. Both the best set 

of parameters and statistical indices characterizing in situ θ vs. θRs were synthesized (Table 2). 

Table 2. Best-fit parameters for given temperature. 

 Pmax Pmin 
Dry Edge Wet Edge 

r2 m q T-test F-test MAE ΔP I 
NDVImin NDVImax NDVImin NDVImax

Ta 70 2 0.2 0.9 0.2 0.99 0.08 0.25 6.41 0.86 0.69 3.32 0.68 0.03 

Tsonic 70 5 0.2 0.9 0.2 0.99 0.29 0.52 5.00 0.54 0.91 2.76 0.65 0.09 

Taereo 98 10 0.1 0.9 0.3 0.99 0.86 1.07 −1.41 0.58 0.57 1.39 0.88 0.25 

Tlake 98 10 0.1 0.9 0.2 0.99 0.88 1.10 −1.65 0.58 0.55 1.35 0.88 0.24 

Tveg 70 10 0.3 0.9 0.3 0.99 0.64 0.76 2.72 0.65 0.82 1.76 0.60 0.21 

Tsoil_min 90 5 0.1 0.9 0.2 0.99 0.85 0.87 1.65 0.68 0.82 1.07 0.85 0.41 

Ta_min 95 5 0.1 0.9 0.3 0.99 0.87 0.90 1.58 0.58 0.89 1.09 0.90 0.40 

Results of the ∗  test revealed that the best parameter setup using Ta as reference temperature 

produces low accuracy maps (I ≈ 0.03), and Tsonic revealed that these weak performances are not 

related to measurement inaccuracies or failures (providing a small increment of I, ΔI ≈ +0.06). Taero 

should drive actual H and, subsequently, λET; thus, better results are expected if Taero is used instead of 

Ta because it determines turbulent fluxes. Results (Table 2) confirm these hypotheses (ΔI ≈ +0.22);  

thus, we conclude that Ta is not suitable as reference temperature. 
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Results of the ∗  test showed that some reference temperatures directly retrievable on thermal 

images provided an accurate assessment of θ. In particular, the temperature of a small irrigation pond, 

Tlake, achieved a similar level of agreement with in situ θ (ΔI ≈ +0.21) if compared to that obtained 

using Taereo (lower accuracy is obtained using Tveg, ΔI ≈ +0.18). The ∗  test revealed that accurate 

results can be achieved without the use of ancillary meteorological data. 

The ∗  test confirmed that accuracy could be improved by accounting for thermal 

admittance. Indeed, agreement with in situ θ notably increased (ΔI ≈ +0.38). However, measures of 

surface soil temperature are not commonly available; thus, employing Tsoil_min has limited operational 

utility. From an operational standpoint we tested Ta_min (easily available) as a surrogate of Tsoil_min.  

Ta_min lead to results (ΔI ≈ +0.37) comparable to those achieved by Tsoil_min. The level of agreement  

with in situ θ was even higher if compared to that obtained using Taereo. 

Because the best setup configuration using Ta_min provided the higher ΔI during the rough tuning 

procedure, T* = Ta_min was chosen for a subsequent fine-tuning of parameters to optimize the parameter 

setup (Table 3). Results revealed that all statistical indices are improved, in particular ΔI remarkably 

increased up to ≈+0.70. 

Table 3. Ta_min parameters fine-tuning. 

 Pmax Pmin 
Dry Edge Wet Edge 

r2 m q T-test F-test MAE ΔP I 
NDVImin NDVImax NDVImin NDVImax

Ta_min 97 7 0.1 0.9 0.3 0.99 0.89 0.96 0.46 0.95 0.96 0.83 0.90 0.73 

A scatterplot of NDVI vs. ΔT pairs for the whole diachronic dataset is plotted in Figure 6 (red,  

orange, cyan and blue color ramp indicates increasing θ). Individual clusters highlight that an EO 

acquired on a small area during a single DOY was not able to characterize both dry and wet edges, and 

a diachronic dataset is required.  

 

Figure 6. Scatterplot of NDVI vs. ΔT. Over imposed dry (Pmax = 97) and wet edges  

(Pmin = 7). Pixels from different images are represented with colours ranging from red to 

blue, to indicate increasing average θ. 

Minima θ were reached on DOY 163 (pairs drawn in red) and determined the dry edge, whereas 

maxima θ were reached on DOY 204 (pairs represented in blue) and determined the wet edge. 
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6.2. Spatial Resolution Analysis 

As reported in Methods, higher RS do not necessarily lead to higher accuracy of θ maps; thus, 

different aggregation scales were tested (Figure 7). 

 

Figure 7. Variability of some statistical parameters used to characterize in situ vs. remote 

sensing θ at increasing θRs aggregation scale: (a) r2, upper left; (b) m, upper right panel;  

(c) intercept q, lower left panel; (d) MAE, lower right panel. 

Six times RS, 6.8 m (approximately four times the distance between rows, 7.2 m), improved the 

retrieval accuracy; r2 increased from ≈0.89 to ≈0.91; m approached the unity, from ≈0.96 to ≈0.97;  

and q and MAE were minimized, from ≈0.43 and ≈0.83 to ≈0.35 and ≈0.79, respectively. Results are 

significant mainly because comparable or even better accuracy can be achieved by acquiring images at 

lower RS, thus reducing the imaging cost. 

6.3. Soil Water Content Spatial Distribution 

The θ map characterizing DOY 204 (Figure 8, left panel; lakes and buildings are masked out) was 

chosen because it exhibits the higher spatial variability. The temporal variability (Figure 8, right panel) 

shows that θ approaches the dry edge on the whole area at the beginning of irrigation period  

(DOY 163); on DOY 185, average θ increases, and its distribution shows a statistical tendency toward 

wet pixels; the skewness is confirmed on DOY 204 when θ values are maximized. Finally, at the end 

of the irrigation period (DOY 247), soil dries and θ average value and distribution are similar to the 

beginning of the irrigation period. 

In irrigation practices, only a percentage of available water capacity (AWC) is depleted because  

plants start to experience water stress even before soil water reaches θwp. Therefore, a maximum  

allowed depletion (MAD, %) of the AWC must be specified. For example, MAD values of 50%–55% 

were used by Ortega-Farias and Acevedo [30] to schedule the irrigation of a Cabernet Sauvignon 

vineyard located in Chile. The actual percentage of available water (CAW) to the plant roots  
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(CAW = θ − θWP/θFC − θWP) at the acquisition time at RS = 6.8 m is plotted in Figure 8 (upper right 

panel). The isopleths allow identifying areas above a chosen MAD. 

 

Figure 8. Spatial distribution of θ for the DOY exhibiting the higher spatial variability  

(DOY 204, left panel) and current percentage of available water to the plant roots  

(upper-right panel); θ statistics (2nd, 10th, 90th, 98th percentiles and average spatial 

values) for the whole time series (lower-right panel). 

7. Conclusions and Outlook 

This research highlights the limits of the triangle method if applied to small areas with high spatial 

resolution images on a strict theoretical basis. Additional efforts are required to parameterize the 

theoretical method. The empirical method bypasses these efforts by setting up some parameters and 

adjusting the outer edges bounding the feature space defined by optical and thermal images.  

An operational procedure was proposed that exploited a diachronic approach to reduce operator 

influence on setting up model parameters. Results confirmed that the use of a diachronic approach 

includes a wider range of variability of soil water content (θ) given the vegetation cover, thus making 

the method applicable on small areas using high spatial resolution data. 

Different alternative reference temperatures were tested, and some achieved high θ accuracy.  

Results revealed that if measures of simultaneous air temperature (Ta) are used as reference 

temperature, weak agreement with in situ θ is achieved (r2 ~ 0.1, MAE ~ 3.3). The unsuitability of Ta 

was confirmed by the weak results achieved also using the sonic temperature (Tsonic) (r2 ~ 0.3,  

MAE ~ 2.7) and by the accurate results obtained using the aerodynamic temperature (Taero) (r2 ~ 0.9, 

MAE ~ 1.4). The retrieval of reference temperatures directly from thermal images (if suitable targets 

are available) promises advantages. The water surface temperature of an irrigation pond (Tlake) and the 

temperature of a well-watered dense vegetation (Tveg) were tested. According to the in situ θ, Tlake was 

better suited as a reference temperature (r2 ~ 0.9, MAE ~ 1.3) than Tveg (r2 ~ 0.6, MAE ~ 1.8). 

The ∗  test closely agreed with in situ θ, confirming that minima temperatures of soil 

(Tsoil_min) allows accounting for the soil admittance (r2 ~ 0.85, MAE ~ 1.1); if the Tsoil_min is unknown, 
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the use of minimum air temperature (Ta_min) as surrogate also yields accurate assessments (r2 ~ 0.9,  

MAE ~ 1.1). In addition, these data are available by standard meteorological stations. 

A final test was employed to verify if the higher spatial resolution implies more accurate results 

compared with in situ observations. This test, performed by aggregating the remotely assessed θ on the 

best T* and model parameter set, confirmed that the optimum spatial resolution (r2 ~ 0.9, MAE ~ 0.8  

at RS ~ 7m) is a multiple of the spatial land fragmentation of the observed soil-vegetation system  

(~three times the distance between rows, in this case). 

There are concerns about the assumption of linear behavior of the isopleths within the  

temperature-vegetation index space. Stisen et al. [31] suggested a nonlinear interpretation of the 

surface temperature-vegetation index domain. Krapez et al. [32] simulated the isopleths of the  

root zone between residual and saturation values within a T-NDVI space using the SEtHyS  

model [33]. Simulated isopleths were nonlinear, showing curvatures for low and high vegetation 

covers. Curvature for low vegetation cover may originate from aerodynamic parameterization for bare 

or scarcely vegetated soils; nonlinear behavior for dense vegetation is reduced for high root zone  

water content. 

Future research must take into account the nonlinear behavior of the isopleths within the  

temperature-vegetation index space and the different sensitivities of bare soil temperature to θ changes 

if compared with the vegetated surfaces. 
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Abbreviations 

Symbol Meaning 

cp Air heat capacity 

ec
* and ea Saturated and vapor pressures of the air, respectively (resp.) 

k Generic element of the scatterplot 

m and q Slope and intercept between estimated and measured data, resp. 

r2 determination coefficient 

ra and rc Aerodynamic and canopy resistances to water transport 

rc and rs Canopy and stomata resistances, resp. 
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rcx and rcp Stomata and potential closure resistances, resp. 

rSmin and rSmax Minimum and maximum stomata resistances, resp. 

F Fischer test value 

FAMD, FCO2, FPAR, FTa, Fθ Reduction coefficients for AMD, CO2, PAR, Ta and θ, resp. 

G Stomata conductance 

G0 Soil heat flux 

I 
Synthetic parameter configuration maximizing the product 

between r2, T, F and ΔP 

H Sensible heat flux 

NDVIk NDVI of the k element 

NDVImin and NDVImax Minimum and maximum NDVI, resp. 

NDVImin,D and NDVImin,W Minimum NDVI of the wet and dry edges, resp. 

NDVImax,D and NDVImax,W Maximum NDVI of the wet and dry edges, resp. 

Pmin and Pmax Minima and maxima percentiles, resp. 

Rn Net radiation 

T Student test value 

Tc and Ta Canopy and air temperatures, resp. 

Ta_min Minimum air temperature 

Taero Aerodynamic temperature 

Tlake Water surface temperature of irrigation ponds 

Tveg Well watered dense vegetation temperature 

Tsoil_min Minimum surface soil radiometric temperature 

Tsonic Sonic temperature 

T* Reference temperature 

V Subscript representing the triangle vertex 

 Angle between dry and wet edges 

SW Shortwave albedo 

βk Angle individuated by the generic pixel 

λE Latent heat flux 

γ Psychrometric constant 

θ Soil water content available in the root zone 

θcr and θw Critical θ and θ at the permanent wilting point, resp. 

θres and θsat Residual and saturation θ, resp. 

θRs Remote sensing derived θ 

ρ Air density 

ΔP 
Difference between maximum and minimum percentiles defining 

dry and wet edges 

Δ Slope of the saturated vapor pressure 

ΔI Variation of I resulting from using T* compared to Ta. 

Δθ Range of variability of θ 

ΔT Thermal difference between LST and T* 

ΔTk ΔT characterizing the k-element 
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Acronyms 

AMD Atmospheric water vapor deficit 
AWC Available water capacity 
BRDF Bidirectional reflectance distribution functions 
DOC Denomination of Controlled Origin 
DOY Day of the year 
CAW Percentage of current available water 
CO2 Atmospheric carbon dioxide concentration 
EO Earth Observation 
ITAF Department of Eng. and Agro-Forest Technology 
LAI Leaf Area Index 
LST Land surface temperature 
MAD Maximum allowed depletion 
MAE Mean Absolute Error 
NDVI Normalized Difference Vegetation Index 
PAR Photosyntetically active radiation 
RS Spatial resolution 
S, SW, N, NW, NE South, South West, North, North West, North East 

TDR 
Time-domain reflectometry (method) or Time-domain 
reflectometer (instrument) 

∗  Test employing minimum soil and air temperatures 
∗  Test employing air, sonic and aerodynamic temperatures 

∗  
Test employing water lake and well watered dense  
vegetation temperatures 

TIR Thermal Infrared 
TSEB-IC Two-Source Energy Balance model based on intercalibration 
USDA United States Department of Agriculture 
VI Vegetation index 
VIS Visible spectral bands 
NIR Near Infrared spectral bands 
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