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Objective. Complement activation products contribute to a large number of inflammatory diseases, including RA. We have investigated
whether osteoprotegerin (OPG) may concur with the soluble terminal complement complex (SC5b-9) to the inflammatory cascade

characterizing RA.

Methods. Levels of SC5b-9 and OPG in the plasma and SF of patients with active RA were determined by ELISA. The presence of SC5b-9
and OPG in RA synovial lesions was analysed by immunohistochemistry. Cultured endothelial cells were used for in vitro leucocyte/

endothelial cell adhesion assays. In addition, endothelial cells were exposed to SC5b-9 in order to evaluate the effects on the production of
OPG protein, as well as the activation of the OPG promoter.

Results. Patients affected by active RA are characterized by elevated levels of both SC5b-9 and OPG in plasma and/or SF. Of note, we have
observed a co-localization of SC5b-9 and OPG in endothelial cells of post-capillary venules of RA synovial lesions. Data on endothelial cell

cultures showed that exposure to SC5b-9 induced the up-regulation of OPG expression/release, stimulating the transcriptional activity of the
OPG promoter, and synergized with TNF-� in up-regulating OPG production.

Conclusions. Our findings demonstrate that SC5b-9 induces OPG production by endothelial cells and we propose that the SC5b-9-mediated
up-regulation of OPG may be an important mechanism whereby complement contributes in promoting and/or enhancing the inflammation

in RA.
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Introduction

The importance of complement system in the development and
amplification of the inflammatory process at the tissue level in
various pathological conditions, including RA, has been previ-
ously demonstrated [1–3]. The pathogenesis of RA is a multi-step
event and, besides the contribution of both cell-mediated and
antibody-dependent tissue damage, complement has been recog-
nized as one of the key initial events occurring in the acute phase
of RA and it may also be responsible for amplification of the
inflammatory process occurring during progression of RA [1–3].
Complement activation products are detected both in the circu-
lation [4–6] and in the SF of patients with RA, and their contri-
bution to damage of the synovial membrane is supported by
detection of complement deposits in synovial tissue during the
chronic phase of RA [7–10]. Moreover, the beneficial effect of
anti-complement therapy has been demonstrated in animal models
of arthritis [11–13], which share with human RA the features of
an inflammatory synovitis characterized by synovial hyperplasia
and leucocyte infiltration and, as in the chronic phase of RA,
pannus formation and cartilage/bone erosion. In particular,
increasing evidence from our group show that the cytolytically
inactive soluble terminal complement complex (SC5b-9) exerts

several pro-inflammatory responses acting directly on endothe-
lium, such as the induction of adhesion molecules [14] and the
increase of vascular leakage [15].

Osteoprotegerin (OPG) is a soluble member of the TNF
receptor super-family that has been originally characterized for its
ability to suppress osteoclast formation [16] by binding to RANK
ligand (RANKL), and preventing the interaction of RANKL with
its high-affinity transmembrane receptor, namely RANK [17].
OPG also interacts with TNF-related apoptosis inducing ligand
(TRAIL) [18], a death-inducing ligand whose extracellular domain
shares �30% homology with RANKL and shows the ability to
interfere with the osteoclast formation induced by RANKL [19].
Several reports have previously shown increased serum levels of
OPG, as well as of RANKL, in patients affected by RA [20–26],
but the physiopathological significance of the up-regulation of
OPG in RA patients is not well understood. Interestingly, a pos-
sible pathogenetic link between elevated levels of OPG and
inflammation has been suggested by recent in vitro studies of our
group [27] and Mangan et al. [28] demonstrating that recombinant
OPG promotes leucocyte adhesion to endothelial cells.

On this basis, the aim of our study was to investigate potential
link between SC5b-9 and OPG in the promotion of the inflam-
matory cascade characterizing RA, by evaluating the possibility
that SC5b-9 might modulate the expression and/or release of OPG
in endothelial cells.

Materials and methods

Patients’ samples

Plasma and SF were obtained from 10 patients with active RA
(44–72 years, three males/seven females) fulfilling the ACR classi-
fication criteria [29]. The mean disease activity score was 3.2 and
the mean disease duration was 4.5 years. All patients were treated
with systemic corticosteroids and, in addition, with leflunomide,
or HCQ, or rituximab, or MTX. From each patient, plasma was
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obtained from venous blood, while SF was obtained during joint
aspiration from knee joints, and collected in heparinized syringes.
Venous blood and SF samples were centrifuged at 370 and 250 g,
respectively, for 10min and the resulting supernatant was stored
at �808C, in multiple aliquots, until analysis. As control, plasma
was collected from 20 age- and sex-matched healthy donors.
Written consent for all procedures was obtained from all subjects
in accordance with the Declaration of Helsinki and the institu-
tional review board of the University Hospital of Ferrara gave
ethical approval for the study.

ELISA

OPG levels were measured in plasma and SF samples as well as in
endothelial cell culture supernatants using a sandwich-type
ELISA kit purchased from Alexis Biochemicals (Lausen,
Switzerland), as previously described [30]. The presence and the
levels of SC5b-9 into the plasma and SF were evaluated by ELISA
as previously described [14], while the levels of TNF-� were
analysed by using an ELISA kit purchased from R&D Systems
(Minneapolis, MN, USA). All measurements were done in
duplicate and the results were read at an optical density of
450 nm using an Anthos 2010 ELISA reader (Anthos Labtec
Instruments Ges.m.b.H, Salzburg, Austria).

Immunohistochemistry detection of SC5b-9 and OPG

Samples of synovial membranes (n¼ 5) were gathered from the
archives of the Department of Human Pathology of the University
of Palermo, as approved by the local institutional review board.
All specimens were fixed for 24 h with 10% buffered formalin,
paraffin-embedded and cut in serial sections of 5�m. Tissue
morphology was evaluated by haematoxylin and eosin staining.
Immunohistochemical detection of SC5b-9 and OPG was per-
formed on serial sections by using the neoepitope-specific anti-C9
antibody (clone WU 13-15; kind gift of Prof. R. Wuerzner,
Austria), and the anti-human OPG monoclonal antibody (clone
69 146; R&D Systems), respectively. After dewaxing and endo-
genous peroxidase inhibition, slides were microwave-oven heated
three times for 5min in TRIS/EDTA pH 9.0 buffer (heat-induced
epitope retrieval) and then washed with phosphate-buffered saline
(PBS). After 30min incubation with the primary antibodies
(diluted in PBS) at 378C, followed by at least two PBS washings,
the Novolink Polymer HRP IHC detection kit (Novocastra, UK)
was used for 30min at room temperature, according to the
manufacturer’s instructions. Romulin-aminoethylcarbazole was
used as a chromogen for 5min at room temperature with subse-
quent nuclear counterstaining with haematoxylin. Negative con-
trols (omission of the primary antibody, and use of an irrelevant
antibody of the same isotype as the primary antibody) were
included in each immunohistochemical labelling run.

Cell cultures and treatments

Human umbilical vein endothelial cells (HUVECs) were pur-
chased from BioWhittaker (Walkersville, MD, USA) and grown
on 0.2% gelatin-coated tissue culture plates in M199 endothelial
growth medium supplemented with 20% fetal bovine serum,
10 mg/ml heparin and 50mg/ml ECGF (all from BioWhittaker). In
all experiments, cells were used between the 3rd and 5th passage
in vitro, as previously described [31]. EDTA-blood samples for the
isolation of primary polymorphonuclear neutrophils (PMNs) were
drawn from healthy volunteers after obtaining informed consent.
Blood samples were diluted 1:2 with PBS and a first separation
step was performed by Histopaque ficoll gradient centrifugation
(Lymphoprep; Nycomed, Oslo, Norway). PMNs in the pellet of
the gradient were separated from erythrocytes by further
steps consisting of dextran sedimentation and hypotonic lysis,
resulting in purity >90% CD15/CD11bþ cells, as assessed by flow
cytometry using specific FITC- or phicoeritrin (PE)-conjugated

monoclonal antibodies (Immunotech, Marseille, France; Miltenyi
Biotech GmbH, Bergish Gladbach, Germany).

For cell treatments, the following reagents have been used:
recombinant human OPG and TNF-� (both purchased from
R&D Systems), and SC5b-9, prepared and purified as previously
described [15].

Endothelial–leucocyte adhesion assay

Vascular endothelial cells were grown to confluence in 24- or
96-well tissue culture plates and stimulated for 16 h at 378C with
SC5b-9 or recombinant OPG. After three washings with serum-
free medium, untreated 1–3.5� 105 PMN cell suspensions were
added to each well and were further incubated at 378C for 30min.
After endothelial–leucocyte co-culture, non-adherent PMNs
were removed by washing the wells at least twice. Endothelial–
leucocyte co-cultures were photographed under a light microscope
(10� magnification). The number of adhered PMNs was eval-
uated by a colorimetric assay using tetramethyl benzidine (Sigma
Chemicals, St Louis, CA, USA) as a substrate for myeloperox-
idase, as previously described [32], and/or by scoring at least six
random fields for each treatment. In the assays, the viability of
both endothelial cells and adherent PMNs was routinely moni-
tored at light microscopy by Trypan blue dye exclusion or by flow
cytometry after propidium iodide (PI) staining, performed as
previously described [33, 34].

Transfection experiments

To generate the OPG-promoter reporter plasmid (pOPG-Luc) a
1172-bp fragment of the OPG gene 5 flanking region was
amplified from HUVEC genomic DNA by PCR using the fol-
lowing primers 50-AGATCTCTGGAGACATATAACTTGAAC
ACTTGGCCC-30 and 50-GAATTCTGTGGTCCCCGGAAACC
TCAGG-30 (restriction sites are underlined). This fragment was
cloned into BglII/EcoRI sites in the pMetLucReporter Vector
(Clontech, Mountain View, CA, USA). Subconfluent HUVECs
were detached and resuspended in the specified electroporation
buffer to a final concentration of 7� 105 cells/ml. Two micro-
grams of luciferase-reporter plasmids (either pOPG-Luc or con-
trol vector pMetLuc-Reporter, Clontech) were mixed with 0.1ml
of cell suspension, transferred to electroporation cuvettes and
nucleofected with the human HUVEC nucleofector kit (Amaxa,
Cologne, Germany) using the program A-034 of the nucleofector
device (Amaxa NucleofectorII apparatus). In parallel, cells were
transfected using the control EGFP-plasmid (Amaxa) and trans-
fection efficiency was monitored in each experiment by scoring
the percentage of fluorescent EGFP-positive cells. After electro-
poration, cells were immediately transferred to complete M199
medium, cultured in 24-well plates and allowed to recover before
treatment with SC5b-9. The secreted luciferase was measured with
the ready-to-glow secreted luciferase reporter system (Clontech)
according to the manufacturer’s instructions at 405 nm in a lumi-
nometer, and as previously described [35]. Results were normal-
ized for transfection efficiency, determined in each experiment by
co-transfection of a �-galactosidase-control plasmid under the
control of a constitutive promoter (SV40) (�-gal Reporter System,
Clontech).

Assay for NF-�B DNA binding

NF-�B induction was measured using the Trans-AM NF-�B
p65 kit (Active Motif, Rixensart, Belgium), which measures the
level of active form of NF-�B contained in cell extracts, able to
specifically bind to an oligonucleotide containing the NF-�B con-
sensus site (50-GGGACTTTCC-30), attached to a 96-well plate.
Assays were performed in duplicate, according to the manu-
facturer’s instructions. NF-�B DNA binding activity was deter-
mined as absorbance values measured by using an Anthos 2010
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ELISA reader. Increase in fluorescence was linear over extract
concentration.

Statistical analysis

The media, median, minimum and maximum values were
calculated for each group of data. For each set of experiments,
values are reported as means� S.D. For selected experiments,
results are reported as box plots showing the median, minimum
and maximum values and 25th to 75th percentiles. Data were
analysed by ANOVA and with the Mann–Whitney rank-sum test.
Comparison of group means was performed by Bonferroni
method. Statistical significance was defined as P< 0.05.

Results

SC5b-9 and OPG are elevated in the plasma of patients
affected by active RA and co-localize in the endothelium
of synovial tissue

In the first set of experiments, we measured the levels of SC5b-9
and OPG in the plasma and SF of patients with active RA.
As shown in Fig. 1A, SC5b-9 and OPG plasma levels were
significantly (P< 0.05) increased in RA patients compared with
the healthy controls. Interestingly, however, while the levels of
SC5b-9 were only slightly increased in the SF of RA patients with

respect to the plasma of the same patients, OPG levels were
further increased (P< 0.01) in SF with respect to the plasma of
RA patients (Fig. 1B). Of note, TNF-� was also significantly
(P< 0.05) higher in SF with respect to the plasma of RA patients
(Fig. 1B).

Immunohistochemical analysis of serial sections of synovial
membrane samples obtained from RA patients revealed the pres-
ence of SC5b-9 deposits and OPG expression in the endothelium
of vessels traversing the synovium, with a clear co-localization of
SC5b-9 deposition and OPG-reactivity in the endothelium of
small venulae capillaries (Fig. 2).

Clinically relevant concentrations of SC5b-9 and OPG
promote PMN adhesion to endothelial cells

It is well known that neutrophilic infiltration is a key step in the
onset and maintenance of inflammatory joint diseases [36]. Since
the first event in the extravasation of leucocytes is represented
by the firm adhesion to the endothelial layer, experiments were
then designed to investigate whether SC5b-9 and OPG, used at the
concentrations detected in the plasma and/or SF were able to
promote PMN/endothelial cell interactions. HUVECs were grown
to confluence and exposed to either SC5b-9 or OPG. As shown in
Fig. 3, treatment with SC5b-9 as well as with recombinant OPG
significantly increase the adhesion of PMNs to endothelial cells,
suggesting that the concentrations of SC5b-9 and OPG found

FIG. 1. High levels of SC5b-9 and OPG in RA patients. (A) Levels of SC5b-9 and OPG were determined by ELISA in plasma of RA patients and healthy control subjects.
(B) Comparison between the plasma and SF levels of SC5b-9, OPG and TNF-� determined by ELISA in RA patients. Horizontal bars are median, upper and lower edges
of box are 75th and 25th percentiles, lines extending from box are 10th and 90th percentiles.
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in plasma and in SF (Fig. 1A and B) may efficiently promote
leucocyte extravasation in the synovia of RA patients.

SC5b-9 up-regulates the expression and release of OPG by
endothelial cells

To investigate the potential link between SC5b-9 and OPG, we
next examined the ability of SC5b-9 to modulate the release of
OPG by endothelial cells. As expected [35], untreated HUVECs
released low levels of OPG in the culture supernatants,

while exposure to SC5b-9, used at concentrations in the range
of those detected in vivo, time- and dose-dependently up-regulated
OPG release (Fig. 4A and B). Of note, the simultaneous treatment
of HUVECs with SC5b-9 plus the pro-inflammatory cytokine
TNF-�, showed synergistic effects with respect to the production
and release of OPG induced in response to SC5b-9 alone
(Fig. 4C).

To ascertain whether SC5b-9 up-regulated OPG at the
transcriptional level, we have generated a promoter–reporter
construct containing the OPG promoter upstream of a luciferase
reporter gene (pOPG-Luc). HUVECs were transfected with this
construct, or with the empty control vector, and then were
exposed to SC5b-9 for 18 h before assessing reporter gene activity.
As shown in Fig. 5A, pOPG-Luc expression was significantly
(P< 0.05) induced upon exposure of endothelial cells to SC5b-9.
Taking into account that OPG is an NF-�B-dependent gene [37],
we next evaluated the involvement of the NF-�B pathway in the
up-regulation of OPG expression/release induced by SC5b-9.

FIG. 4. SC5b-9 up-modulates OPG release in endothelial cells. HUVECs were left
untreated or treated with the indicated concentrations of SC5b-9. OPG levels in
culture supernatants were assessed by ELISA after 8 h (A) and 24 h (B) of
treatment with SC5b-9 (0.1–5 mg/ml). �P< 0.05, compared with untreated.
(C) OPG levels in culture supernatants were assessed by ELISA after 24 h of
treatment with the indicated concentrations of SC5b-9 used either alone (black
bars) or in combination with TNF-� (1 ng/ml; white bars). �P<0.05, compared
with SC5b-9. (A–C) Data are expressed as means� S.D. of results from four
independent experiments, each performed in duplicate.

FIG. 3. Effect of SC5b-9 and OPG on PMN adhesion. HUVECs were either left
untreated or exposed for 16 h to the indicated concentrations of SC5b-9 and OPG.
After washing, PMNs were added to the endothelial monolayer, and the number of
adhered cells was determined as described in Materials and methods section. Cell
adherence on HUVECs is reported as fold of increase respect to cell adhesion in
the absence of the indicated pre-treatment. Results are expressed as means� S.D.
of five experiments, each performed in triplicate. �P<0.05.

FIG. 2. SC5b-9 and OPG are co-localized on vascular endothelial cells in RA
synovial membranes. Immunohistochemical evaluation of SC5b-9 and OPG
staining on serial sections from synovial membrane samples. In the top panels,
synovial membrane showed the presence of SC5b-9 deposition and intense OPG
staining in the endothelium of vessels. In the bottom panels, negative controls of
each immunohistochemical staining are shown. Original magnification, 200�;
insets, 400�. Representative results of five separate experiments that gave similar
results are shown.
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By using an oligonucleotide containing the kB consensus site
(TransAM), a significant induction of p65/RelA NF-�B-DNA
binding over untreated cultures was observed after 30min of
SC5b-9-treatment (Fig. 5B).

Discussion

Although the data concerning the levels of OPG in the sera of
patients affected by RA are heterogeneous [20–26], a couple of
studies have clearly shown that OPG concentrations were higher
in patients with long-standing RA with respect to early RA, which
in turn showed OPG levels more elevated than in controls [21, 26].
Consistently, we have observed significantly higher levels of OPG
in plasma of active RA patients with respect to healthy controls.
The same RA patients were also characterized by a significant
increase of the plasmatic soluble terminal complement complex
SC5b-9, compared with the healthy controls. Starting from these
observations, we have demonstrated, by a series of in vitro exper-
iments, that concentrations of SC5b-9 compatible with those
measured in the plasma and/or SF of RA patients, significantly
up-regulated the release of OPG in endothelial cultures. More-
over, we have demonstrated that SC5b-9 induced OPG expres-
sion in endothelial cells acting at the transcriptional level, likely
through the NF-�B pathway. Although it has been shown that
OPG is an NF-�B-dependent gene [37], and we have previously
demonstrated that its expression and release in endothelial cells is

induced by the pro-inflammatory cytokine TNF-� [35], this is the
first study demonstrating that also the complement cascade, and
in particular SC5b-9, significantly induce OPG expression and
release by endothelial cells. Furthermore, we have observed that
TNF-� synergized with SC5b-9 in further promoting OPG release
by endothelial cells, suggesting that different inflammatory stimuli
cooperate in promoting the expression and release of OPG by
endothelial cells. In this respect, it is noteworthy that while the
concentrations of SC5b-9 were only slightly higher in SF than in
plasma of RA patients, OPG concentrations were significantly
(P< 0.01) greater in SF with respect to the plasma of the same RA
patients. Of note, TNF-� was also significantly (P< 0.05) higher
in SF with respect to the plasma of RA patients. Thus, it is pos-
sible to suppose a cooperation between SC5b-9 and TNF-� in SF,
which results in the induction of the higher levels of OPG detected
in SF vs plasma of RA patients. The relevance of our in vitro
data was underscored by in situ immunohistochemical analysis of
synovial lesions, which clearly showed a co-localization of SC5b-9
deposition and strong OPG expression in the endothelium, sug-
gesting a potential link between these two molecules also in vivo.
Moreover, the ability of both SC5b-9 and OPG to promote
neutrophil–endothelial cell adhesion indicates that both molecules
are actively involved in the tissue inflammation [36].

In conclusion, our data clearly indicate that OPG is a target
gene of the complement-cascade and might contribute to the
pro-inflammatory cascade characteristic of RA. Although differ-
ent studies have originally focused the attention on beneficial
effects of elevated OPG levels in counteracting the RANKL-
mediated induction of osteoclastogenesis and thus preventing
bone erosion in RA patients [22–25], our data point to the pos-
sibility that elevated OPG levels both in the plasma and in the SF
might rather contribute to pathogenetic aspects of RA, such as
increased adhesiveness of PMNs to endothelial cells. Moreover,
beside RANKL, OPG is able to interact with a comparable affin-
ity with TRAIL, and accumulating data indicate that the interplay
among RANKL, OPG and TRAIL is more complex than origi-
nally thought [38–42]. In this respect, it is noteworthy that cul-
tured rheumatoid fibroblast-like synovial cells are susceptible to
TRAIL-mediated apoptosis, but recombinant OPG inhibits the
pro-apoptotic activity of TRAIL [43]. Thus, it has been proposed
that inflammatory cytokines might promote the growth of rheu-
matoid synovial tissues indirectly, through stimulation of OPG
production and its interference with TRAIL-death signal [43].
It should also be mentioned that the pro-adhesive and pro-
inflammatory activities of OPG [27, 28] might be totally unrelated
to its ability to neutralize the activity of RANKL and TRAIL.
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2007 grant).

Disclosure statement: The authors have declared no conflicts of
interest.

References

1 Morgan BP. The complement system: an overview. Methods Mol Biol 2000;
150:1–13.

2 Neumann E, Barnum SR, Tarner IH et al. Local production of complement proteins in
rheumatoid arthritis synovium. Arthritis Rheum 2002;46:934–45.

3 Hietala MA, Nandakumar KS, Persson L, Fahlén S, Holmdahl R, Pekna M.
Complement activation by both classical and alternative pathways is critical for the
effector phase of arthritis. Eur J Immunol 2004;34:1208–16.

Rheumatology key messages

� SC5b-9 induces OPG expression and release by endothelial cells.
� SC5b-9-mediated up-regulation of OPG may be an important

mechanism whereby complement contributes in promoting and/or
enhancing the inflammation in RA.

FIG. 5. SC5b-9 up-regulates OPG-promoter through activation of NF-�B.
(A) HUVECs were transfected with pOPG-Luc or empty pMetLuc-Reporter
vector. After recovery, transfected cells were stimulated as indicated and luciferase
activity was assessed. pMetLuc was set as unit and results were calculated as
fold of activation. Data are expressed as means� S.D. of three independent
experiments. �P<0.05. (B) HUVECs were either left untreated or stimulated with
SC5b-9 (5mg/ml) for 30 min. NF-�B-p65 DNA binding activity was determined as
absorbance values (OD) per microgram of cell lysate protein. NF-�B activation by
TNF-� (10 ng/ml) is also shown for comparison. Results are expressed as
means� S.D. of three independent experiments, each performed in duplicate.
�P<0.05, compared with untreated cultures.

Up-regulation of OPG by SC5b-9 297

 at Sistem
a B

ibliotecario - U
niversitÃ

  degli Studi di Palerm
o on O

ctober 13, 2016
http://rheum

atology.oxfordjournals.org/
D

ow
nloaded from

 

http://rheumatology.oxfordjournals.org/


4 Petersen NE, Elmgreen J, Teisner B, Svehag SE. Activation of classical pathway

complement in chronic inflammation. Elevated levels of circulating c3d and c4d split

products in rheumatoid arthritis and Crohn’s disease. Acta Med Scand 1988;223:

557–60.
5 Molenaar ET, Voskuyl AE, Familian A, van Mierlo GJ, Dijkmans BA, Hack CE.

Complement activation in patients with rheumatoid arthritis mediated in part by

C-reactive protein. Arthritis Rheum 2001;44:997–1002.
6 Wouters D, Voskuyl AE, Molenaar ET, Dijkmans BA, Hack CE. Evaluation of

classical complement pathway activation in rheumatoid arthritis: measurement of

C1q-C4 complexes as novel activation products. Arthritis Rheum 2006;54:1143–50.
7 Swaak AJ, Van Rooyen A, Planten O, Han H, Hattink O, Hack E. An analysis of the

levels of complement components in the synovial fluid in rheumatic diseases. Clin

Rheumatol 1987;6:350–7.
8 Brodeur JP, Ruddy S, Schwartz LB, Moxley G. Synovial fluid levels of complement

SC5b-9 and fragment Bb are elevated in patients with rheumatoid arthritis. Arthritis

Rheum 1991;34:1531–7.
9 Corvetta A, Pomponio G, Rinaldi N, Luchetti MM, Di Loreto C, Stramazzotti D.

Terminal complement complex in synovial tissue from patients affected by

rheumatoid arthritis, osteoarthritis and acute joint trauma. Clin Exp Rheumatol

1992;10:433–8.
10 Hogasen K, Mollnes TE, Harboe M, Gotze O, Hammer HB, Oppermann M. Terminal

complement pathway activation and low lysis inhibitors in rheumatoid arthritis

synovial fluid. J Rheumatol 1995;22:24–8.
11 Linton SM, Morgan BP. Complement activation and inhibition in experimental models

of arthritis. Mol Immunol 1999;36:905–14.
12 Andersson SE, Lexmuller K, Ekstrom GM. Physiological characterization of mBSA

antigen induced arthritis in the rat. I. Vascular leakiness and pannus growth.

J Rheumatol 1998;25:1772–7.
13 Fischetti F, Durigutto P, Macor P, Marzari R, Carretta R, Tedesco F. Selective

therapeutic control of C5a and the terminal complement complex by anti-C5 single-

chain Fv in an experimental model of antigen-induced arthritis in rats. Arthritis Rheum

2007;56:1187–97.
14 Tedesco F, Pausa M, Nardon E et al. The cytolytically inactive terminal complement

complex activates endothelial cells to express adhesion molecules and tissue factor

procoagulant activity. J Exp Med 1997;185:1619–27.
15 Bossi F, Fischetti F, Pellis V et al. Platelet-activating factor and kinin-dependent

vascular leakage as a novel functional activity of the soluble terminal complement

complex. J Immunol 2004;173:6921–7.
16 Simonet WS, Lacey DL, Dunstan CR et al. Osteoprotegerin: a novel secreted protein

involved in the regulation of bone density. Cell 1997;89:309–19.
17 Boyle WJ, Simonet WS, Lacely DL. Osteoclast differentiation and activation. Nature

2003;423:337–42.
18 Zauli G, Secchiero P. The role of the TRAIL/TRAIL-receptors system in hematopoi-

esis and endothelial cell biology. Cytok Growth Fact Rev 2006;17:245–57.
19 Zauli G, Rimondi E, Nicolin V, Melloni E, Celeghini C, Secchiero P. TNF-related

apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by

RANKL plus M-CSF. Blood 2004;104:2044–50.
20 Ziolkowska M, Kurowska M, Radzikowska A et al. High levels of osteoprotegerin and

soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid

arthritis patients and their normalization after anti-tumor necrosis factor alpha

treatment. Arthritis Rheum 2002;46:1744–53.
21 Asanuma Y, Chung CP, Oeser A et al. Serum osteoprotegerin is increased and

independently associated with coronary-artery atherosclerosis in patients with

rheumatoid arthritis. Atherosclerosis 2007;195:e135–41.
22 Vandooren B, Cantaert T, Noordenbos T, Tak PP, Baeten D. The abundant synovial

expression of the RANK/RANKL/Osteoprotegerin system in peripheral spondylar-

thritis is partially disconnected from inflammation. Arthritis Rheum 2008;58:718–29.
23 Sennels HP, Sørensen S, Ostergaard M et al. Circulating levels of osteopontin,

osteoprotegerin, total soluble receptor activator of nuclear factor-kappa B ligand, and

high-sensitivity C-reactive protein in patients with active rheumatoid arthritis

randomized to etanercept alone or in combination with methotrexate. Scand J
Rheumatol 2008;37:241–7.

24 Haynes D, Crotti T, Weedon H et al. Modulation of RANKL and osteoprotegerin
expression in synovial tissue from patients with rheumatoid arthritis in response to
disease-modifying antirheumatic drug treatment and correlation with radiologic
outcome. Arthritis Rheum 2008;59:911–20.

25 Hein GE, Meister M, Oelzner P, Franke S. sRANKL and OPG in serum and synovial
fluid of patients with rheumatoid arthritis in comparison to non-destructive chronic
arthritis. Rheumatol Int 2008;28:765–9.

26 Skoumal M, Haberhauer G, Kolarz G et al. The imbalance between osteoprotegerin
and cathepsin K in the serum of patients with longstanding rheumatoid arthritis.
Rheumatol Int 2008;28:637–41.

27 Zauli G, Corallini F, Bossi F et al. Osteoprotegerin increases leukocyte adhesion to
endothelial cells both in vitro and in vivo. Blood 2007;110:536–43.

28 Mangan SH, Campenhout AV, Rush C, Golledge J. Osteoprotegerin upregulates
endothelial cell adhesion molecule response to tumor necrosis factor-alpha
associated with induction of angiopoietin-2. Cardiovascular Res 2007;76:494–505.

29 Arnett FC, Edworthy SM, Bloch DA et al. The American Rheumatism Association
1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum
1988;31:315–24.

30 Secchiero P, Corallini F, Pandolfi A et al. An increased osteoprotegerin (OPG) serum
release characterizes the early onset of diabetes mellitus and may contribute to
endothelial cell dysfunction. Am J Pathol 2006;169:2236–44.

31 Zauli G, Pandolfi A, Gonelli A et al. TNF-related apoptosis-inducing ligand (TRAIL)
sequentially up-regulates nitric oxide and prostanoid production in primary human
endothelial cells. Circ Res 2003;92:732–40.

32 Dobrina A, Pausa M, Fischetti F et al. Cytolytically inactive terminal complement
complex causes transendothelial migration of polymorphonuclear leukocytes in vitro
and in vivo. Blood 2002;99:185–92.

33 Milani D, Zauli G, Rimondi E et al. Tumour necrosis factor-related apoptosis-inducing
ligand sequentially activates pro-survival and pro-apoptotic pathways in SK-N-MC
neuronal cells. J Neurochem 2003;86:126–35.

34 Secchiero P, Lamberti G, Corallini F et al. Conjunctival sac fluid contains elevated
levels of soluble TRAIL: implications for the anti-tumoral surveillance of the anterior
surface of the eye. J Cell Physiol 2009;218:199–204.

35 Secchiero P, Corallini F, Rimondi E et al. Activation of the p53 pathway down-
regulates the osteoprotegerin (OPG) expression and release by vascular endothelial
cells. Blood 2008;111:1287–94.
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