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Aggressive B-cell lymphomas share high proliferative and invasive attitudes and dismal prognosis despite heterogeneous biological
features. In the interchained sequence of events leading to cancer progression, neoplastic clone-intrinsic molecular events play
a major role. Nevertheless, microenvironment-related cues have progressively come into focus as true determinants for this
process. The cancer-associated microenvironment is a complex network of nonneoplastic immune and stromal cells embedded in
extracellular components, giving rise to a multifarious crosstalk with neoplastic cells towards the induction of a supportive milieu.
The immunological and stromal microenvironments have been classically regarded as essential partners of indolent lymphomas,
while considered mainly negligible in the setting of aggressive B-cell lymphomas that, by their nature, are less reliant on external
stimuli. By this paper we try to delineate the cardinal microenvironment-centred dynamics exerting an influence over lymphoid
clone progression in aggressive B-cell lymphomas.

1. Introduction

B-cell malignancies represent a heterogeneous group of
diseases characterized by different biological features and
clinical behaviour, the latter ranging from indolent to highly
aggressive. As for most neoplasms, the natural course of B-
cell malignancies is characterized by tumour progression,
featured by a flow of events leading to the enhancement
of proliferative and invasive capabilities, towards the estab-
lishment of a more aggressive phenotype. Even if most of
the processes involved in cancer progression are inherent
to the neoplastic clone, this event is, actually, the result
of an articulated mechanism, which seems to require the
constant crosstalk between neoplastic cells and the faulty
surrounding microenvironment. An ever-increasing amount
of evidences suggest that this bijective relationship is a prime
determinant of cancer natural history and evolution. Much

has been so far discovered about the role of tumour intrinsic
mechanisms of neoplastic progression, and the focus of
research has been progressively shifting toward the study
of microenvironment-centred dynamics. Cancer-associated
microenvironment represents a multifaceted entity, which
not only provides structural support to neoplastic cells
(proper stroma) but also acts as a “fertile soil” that, through
humoral factors (bioactive molecules such as cytokines,
chemokines, and adhesion molecules), nonmalignant cel-
lular elements of the stroma (fibroblasts and endothelial
cells) and the immune system (macrophages, mast cells,
B and T lymphocytes) fosters tumour clone survival and
expansion, local invasion/spreading, and escape from the
immunological response.

The relative contribution of these branches of the tumour
microenvironment may vary in the diverse tissues and organs
in which lymphomas arise as well as in different lymphoma
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histotypes, yet, their relevance is proved by their influence
over the disease clinical outcome.

The contribution of microenvironment to lymphoma
progression has been deeply investigated in indolent lym-
phomas (ILs), comprising chronic lymphocytic leukaemi-
a/small lymphocytic lymphoma (CLL/SLL), lymphoplasma-
cytic lymphoma (LPL), Marginal zone lymphoma (MZL),
and follicular lymphoma (FL), all sharing common features
such as low proliferative rate of neoplastic cells and long time
to disease progression and/or treatment.

ILs are indeed characterized by a constant crosstalk with
the surrounding microenvironment, which plays a role in
their pathogenesis and that eventually affects several aspects
of their natural history.

A prototypical example of the influence of tumour
microenvironment over lymphoma progression is provided
by CLL. It has been shown that CLL clones characterized
by CD38 and CD49d expression, harbouring an unfa-
vourable prognosis, are able to attract CD68+ monocytes
(macrophages) at site of infiltration, by CCL3 and CCL4 che-
mokines synthesis.

Macrophages (Ms), recruited by the neoplastic cells,
in turn, release proinflammatory mediators such as TNF,
inducing upregulation of the vascular cell adhesion molecule
VCAM-1 on the surrounding stroma; the following VCAM-
1/CD49d binding significantly increases neoplastic cell pro-
liferation and survival [1]. Such an interchained sequence
of events involving the CLL stroma thus represents a direct
link with the acquisition of a clinically appreciable aggressive
pace of the disease, providing a precious insight into the
potential influence of microenvironment-centred dynamics
over disease course.

The pressure of immune-cell-engendered stromal
changes over lymphoid clone progression can be identified
in ILs other than CLL and also involving, besides Ms, other
cells of the innate and adaptive immune system. Indeed,
bone marrow (BM) mast cells (MCs) are commonly found
in association with neoplastic BM infiltrates in patients
with LPL, supporting tumour expansion through vigorous
CD154-CD40 stimulation [2].

In FL, neoplastic cells benefit of the association with fol-
licular helper T cells (Th), follicular dendritic cells (FDCs),
Ms and FOXP3-expressing T regulatory cells (Tregs), for the
shaping of an aberrant stromal microenvironment permis-
sive for germinal centre (GC), neoplastic B cells [3, 4], also T
helper 17 (Th17) and other IL-17-producing cells are likely
to play a role in this setting.

In line with their strong reliance from lymphoma-
tous/leukemic microenvironment, ILs show a diversified
degree of tropism for stromal niches, which they colonize
and subdue. Relevant examples are provided by FL cells
tropism for osteoblastic/paratrabecular BM niches, rich in
cellular and extracellular components (Jagged-1 Notch lig-
and, β-1integrins, type I collagen, osteopontin, and SPARC
matricellular proteins) shared by the GC environment itself
[5], and by splenic MZL cell homing to sinusoidal vascular
niches of the BM and spleen sharing chemoattractive and
adhesive signals (CXCL-12, hyaluronan, and ICAM-1) [6, 7].

The tight relation and mutual influence between neo-
plastic cells and their stromal microenvironment, which
we have outlined for ILs, may appear less germane to
aggressive lymphomas that, by their nature, show a stronger
proliferative attitude and a high invasive behaviour. In
these malignancies, the microenvironment role has been
marginally considered in tumour progression and, therefore,
poorly studied.

The aim of this paper is to highlight the actual relevance
of the stromal microenvironment in the natural history of
B-cell aggressive lymphomas, trying to provide a detailed
perspective of the relevant interactions involving bystander
immune and mesenchymal cells and extracellular compo-
nents of the stroma.

2. Bystander Immune Cells

The tumour microenvironment is populated by cells of the
adaptive and innate immune system that, interacting with
cancer cells, may contravene to their primary “guardian”
function by actively contributing to tumour onset and
progression (Figure 1).

The amount, composition, and location of both adaptive
and innate immune system components vary greatly between
the different types of malignant lymphoma and exert a
diverse influence on the prognosis [8].

T-cell-/histiocyte-rich large B-cell lymphoma (THRL-
BCL) represents a paradigmatic variant in which the neo-
plastic large B cells constitute a minority of the tumour
burden in the context of a dense microenvironment rich
in T cells, with or without histiocytes [9]. Such a pic-
ture displays a high degree of homology with that of
classical Hodgkin’s lymphoma, in which neoplastic cells
induce the recruitment of a constellation of immune cells
(lymphocytes, granulocytes, Ms, DCs) from the periph-
eral circulation that, in turn, induce a favourable envi-
ronment to the neoplasm maintenance and progression
[10–12].

Tumour associated macrophages (TAMs) of THRLBCL
are recruited within neoplastic infiltrates mainly by clone-
derived macrophage chemotactic proteins (MCPs) and
represent a major component of the infiltrate. Within
the cancer-associated microenvironment, TAMs display a
peculiar dual-faceted attitude; they can kill tumour cells
but at the same time favour their growth by inducing
immunosuppression and producing angiogenic factors and
metalloproteases [13]. In most aggressive B-cell lymphomas,
TAM protumoral function neatly prevails over their partic-
ipation to antitumour immunity. Specifically, in THRLBCL
IFN-γ-induced TAM activation determines the synthesis of
the chemoattractant protein CCL-8 (MCP-2) and of the
immunomodulatory molecule indoleamine 2,3-dioxygenase
(IDO), that give rise to a self-feeding immunosuppressive
loop [14].

A significant M infiltration is observed in other aggressive
B-cell lymphomas such as in Burkitt’s lymphoma (BL), in
which Ms are functionally involved in neoplastic apoptotic
cell engulfment and are stimulated by IL-10 to the synthesis
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Figure 1: Immune system cells, both adaptive and innate, engender a fertile microenvironment through direct interaction and release of
factors in the milieu. (M: monocyte/macrophage; MC: mast cell; DC: dendritic cell; IDC: immature dentritic cell; MDSC: myeloid derived
suppressor cell; T reg: T regulatory lymphocyte. Black arrows indicate activation pathways. Red lines indicate inhibitory pathways).

and release of B-cell trophic factors such as BAFF/BLyS [15].
In addition to directly stimulate neoplastic B cells, CD68-
expressing Ms induce activation of the neighbouring mes-
enchymal cells as demonstrated by VCAM-1 upmodulation
in areas of prominent M infiltration (Figures 2(a) and 2(b)).

Similarly, in diffuse large B-cell lymphoma (DLBCL),
neoplastic cells recruit T cells and CD14+ monocytes by
CCL-5 release, also engendering a histiocyte-enriched mi-
croenvironment [16]. Besides local synthesis of soluble
mediators active on neoplastic B cells, infiltrating Ms
and other professional antigen-presenting cells (APCs) can
support neoplastic B-cell proliferation and rescue from
apoptosis by sustained B-cell-receptor (BCR) stimulation
[17].

BCR signalling pathway can be triggered in neoplastic
cells by canonical antigen ligation or by antigen-independent
adhesive signals modifying the actin cytoskeleton and in
both cases involves the activation of the Syk kinase [18].
BCR stimulation by environment-generated signals can be
relevant for the fitness of neoplastic B cells, yet, in several
aggressive B-cell lymphomas, as in DLBCL, constitutive
activation of the BCR pathway (i.e., tonic signalling) can be
observed, which is not dependent on external stimuli [19,
20]. On these bases, inhibition by Syk targeting, irrespectively
of the neoplastic cell-intrinsic or cell-extrinsic source of BCR
stimulation, could be envisaged as an appealing therapeutic
prospect [21].

Among monocytic/macrophagic CD14-expressing cells
recruited by DLBCL clones, intratumoral precursors of
dendritic cells (DCs) have been identified basing on their
expression of the DC marker DC-SIGN and on the acquisi-
tion of DC morphology. DCs found within tumour infiltrates
are commonly “frozen” in an immature status (iDCs) by
soluble factors of the tumour milieu such as IL-4, IL-6,
GM-, and M-CSF. iDCs are also recruited from the BM
myeloid cell reservoir through CCL-3 and CCL-4 chemokine
interaction with CCR-1/-2/-5 receptors and on their turn
participate to the recruitment of other myeloid cells at sites
of infiltration (e.g., by IL-8, RANTES, TARC, and MDC) [22,
23]. Among BM-derived myeloid cells that might be coopted
by neoplastic B cells or bystander cells in the lymphoma-
associated microenvironment, a relevant population is rep-
resented by myeloid-derived suppressor cells (MDSCs). With
iDCs, MDSCs share an immature myeloid phenotype and
are characterized by the expression of the CD11b, CD33,
and IL4r. Both iDCs and MDSCs empower the regulatory
milieu associated with the expanding clone by the inhibition
of T-cell responses through nitric oxide (NO) and reactive
oxigen species (ROS) release and induction of Treg skewing.
It is conceivable that the restoration of the physiologic
crosstalk between DCs (or other APCs) and T cells, or
the functional inactivation of such myeloid regulatory cells
[24, 25], might induce effective Th-1-oriented cytotoxic
responses against the B-lymphoid clone. Indeed, a dense



4 Advances in Hematology

BL VCAM-1/CD68

(a)

BL VCAM-1/CD68

(b)

Figure 2: Adhesion molecule VCAM1-expressing mesenchymal cells (green arrows) form a denser meshwork in BL cases rich in CD68-
expressing macrophages (black arrows) as compared with cases showing scattered CD68-expressing macrophages. (VCAM and CD68
immunohistochemical stain performed with streptavidin-biotin peroxidase complex system, original magnification 400x).

cytotoxic T-cell infiltrate spatially associated with CD21-
expressing FDC meshwork has been correlated with better
survival and a higher complete remission rate in high-
risk DLBCL [26], thus suggesting a favourable influence
of effector T cells populating the lymphoma environment.
However, other studies have shown that dense infiltrates of
activated cytotoxic T cells in nodal DLBCL correlate with
poor survival [27] indicating that the actual outcome of T-
cell infiltration is indeed puzzling and variable.

If the interpretation of the contribution of infiltrating T
cells to the composition of the lymphoma microenvironment
appears rather problematic, this is particularly true for
Tregs [4, 28, 29]. In DLBCL, the prognostic significance of
infiltrating Tregs has proved quite controversial, since the
amount of Tregs associated with lymphoma infiltrates has
been found to independently correlate with a good [30, 31]
or dismal prognosis (or found unrelated with prognosis)
[28, 31] by different Authors. The controversial results of
Treg prognostic influence in DLBCL has been interpreted in
light of the heterogeneity of settings and methods adopted
for Treg assessment [28], yet they probably have a true
biological explanation.

Tregs modulate the activity of both CD4+ and CD8+
effector populations through the release of IL-10 and TGF-
β1. Therefore, they can contribute to the immune escape of
the neoplastic clone producing a detrimental influence on
outcome while, at the same time, depriving neoplastic cells
from beneficial proinflammatory stimuli induced by other
lymphoma-infiltrating cells. Moreover, the above-mentioned
analyses of Treg influence in the lymphoma-associated envi-
ronment are intrinsically flawed by the assumption that Tregs
are “functionally stable” which means not considering their
plasticity. In their activity of quenching immune responses
by interfering with the activation status of innate (e.g.,
MCs) and adaptive (e.g., T cells) immune effectors, Tregs
are exposed to the pressure of the inflammatory milieu, by
which they can be skewed towards other functional fates. We
have recently demonstrated that activated MCs can induce
contrasuppression of Tregs through the OX40/OX40L axis
and IL-6 release in a TGF-β1-rich environment towards

the generation of proinflammatory Th17 cells [32, 33]. In
this light, the different prognostic value of FOXP3+ Tregs
in GC-type DLBCL where their presence is related with a
positive prognostic influence and non-GC DLBCL where,
by contrast, an increase of FOXP3+ Tregs directly correlates
with an adverse outcome, could be at least partially explained
by the marked inflammatory environment engendered in the
latter by the abundancy of IL-6- and TNF-producing Ms
and MCs [34–36]; this could inhibit the function of Tregs
which, in turn, could even boost inflammation favouring
Th17 generation [28].

Overall, it is hard to identify a leitmotiv in the functional
interactions between neoplastic cells and immune bystander
cells of aggressive B-cell lymphomas as the final outcome of
such interplay can profoundly vary at discrete stages of the
disease course and can be significantly affected by therapy.
Nonetheless, aggressive B-cell lymphoid clones, despite their
striking proliferative and invasive capabilities, are not disen-
gaged by the influence of the immune microenvironment,
which actually represents a reasonable focus for chasing the
improvement of treatment efficacy.

3. The Matter of Vasculogenesis

Among the different aspects functional to tumour pro-
gression characterizing the cross talk between neoplasms
and stroma, a remarkable role is played by vasculogenesis.
Neo-angiogenesis has been the focus of extensive scientific
investigation in the field of cancer research. The generation
of new blood vessels not only provides a dedicated blood
supply to the tumour, but also represents the hinge of
its dissemination, being the most direct route for the
colonization of secondary organs.

In aggressive B-cell lymphomas, as in several other can-
cers, Neo-angiogenesis is the result of a play of forces between
neoplastic and stromal elements involving the axis of vascu-
lar endothelial growth factors (VEGFs) and their receptors,
known to play a central role in this process (Figure 3).
The synthesis of VEGFs along with the expression of their
receptors has been extensively described in DLBCL [37],
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Figure 3: Vasculogenesis plays a key role in clone dissemination and represent a the route for organ colonization. (M: monocyte/macrophage;
MC: mast cell; SC: stromal cell; BM-EPC: bone marrow derived endothelial progenitor cell. Black arrows indicate activation pathways).

Mantle cell lymphoma (MCL) [38], BL [39], and grade-3 FL
[40], being reported as variably associated with the disease
aggressiveness.

In such B-cell lymphomas, neoangiogenesis is regulated
by an intricated and redundant network of interactions based
on the production of growth factors deriving from malignant
cells and from accessory cells of the microenvironment.
Production of VEGFs (VEGF-A, VEGF-C, VEGF-D) and
other angiogenic factors such as the basic fibroblasts growth
factor (bFGF), placental growth factor (PlGF), platelet-
derived growth factors (PDGF-a and PDGF-b) and stromal-
derived factor-1 (SDF-1) by cancer and stromal cells initiates
neoangiogenesis through the contemporary involvement and
recruitment of different cytotypes [41]: mature resident
endothelial cells receiving direct mitogenic signals stemming
from Raf-1-MEK-MAP kinase cascade after interaction with
VEGFs [42]; CD68+ monocyte-macrophages and other
accessory cells such MCs [43, 44], further enriching the
microenvironment by the release of bFGF, PDGF, members
of the VEGF family, proteases (e.g., MC-tryptase, matrix
metalloproteases), and proinflammatory mediators (IL-1,
IL-6, IL-8, and TNF) [45–47]; BM-derived endothelial
progenitor cells and BM mesenchymal stem cells recruited
by VEGF and SDF-1 gradients, amplifying the synthesis
of proangiogenic mediators and eventually incorporating
into the growing tumour neovasculature [5, 48–50]. Fur-
thermore, neoplastic B lymphocytes directly perceive pro-
angiogenic stimuli through the expression of VEGF receptors
(VEGFR-1 and VEGFR-2), which enables them to receive,
in an autocrine fashion, proliferation and/or survival signals

[50]. A high expression of VEGF therefore directly links
the remodelling of the stromal vascular microenvironment
to clone-intrinsic B-cell lymphoma progression. Several
studies have been so far focused on the relationship between
microvascular density (MVD) of lymphomatous infiltrates,
prognosis, and clinical outcome in B-cell lymphomas; in
general, MVD scores trend higher in aggressive histotypes
including BL and DLBCL, compared with indolent ones [51].

The correlation between MVD and the clinical course
of different lymphoma subtypes, however, is not straight-
forward. In DLBCL, for instance, multiple studies have
demonstrated that there are no significant differences in the
MVD counts between the long- and short-surviving patients
and that MVD score does not correlate with overall survival
[52, 53]. Conversely, other experimental evidences have
suggested a negative impact of vasculogenesis on DLBCL
clinical outcome by demonstrating that MVD increases
paralleling tumour progression [46, 54].

Differently from DLBCL, in BL the degree of neoan-
giogenesis is more homogeneously related to the disease
progression. BL aggressive behaviour depends on the over-
expression of the oncogene MYC, which also acts as an
essential promoter of early and persistent growth of blood
and lymphatic vessels during tumour progression [55].
Moreover, as demonstrated in a murine model of BL, c-
MYC-expressing B cells are the major source of the vascular
endothelial growth factor [56].

The mechanism through which c-MYC regulates the
VEGF axis has not yet been clearly elucidated. c-MYC may
conceivably act as a VEGF transcriptional factor [57], and



6 Advances in Hematology

recent data suggest that it could control the expression of
several mRNAs (such as the one encoding for VEGF) by
regulating a broad range of microRNAs [58].

Along with BL, also MCL is characterized by a strong
and active neoangiogenetic process. In MCL, neoplastic B
cells give rise to an autocrine positive feedback mediated by
the VEGF-A/VEGFR-1 axis, which is also sensed by stromal
cells of blood and lymphatic vessels expressing VEGFR-2 and
VEGFR-3 [59].

The established leading role played by neoangiogenesis in
aggressive B-cell lymphomas paved the way to several clinical
trials targeting the formation of new blood and lymphatic
vessels. Both consolidated and ongoing approaches are based
on the administration of different combinations of drugs
capable to interfere with the VEGF axis either in a direct or
an indirect manner. Examples of these strategies are the use
of anti-VEGF-A antibodies (e.g., bevacizumab) in associa-
tion with chemoimmunotherapy, and the administration of
endostatin and anti-CXCR-4 monoclonal antibodies in the
prospect of blocking circulating endothelial cell progenitors
[60, 61].

Neoangiogenesis is intimately involved in the arousal
and progression of B-cell neoplastic clones but dissecting its
relative contribution to these processes is problematic owing
to the strong correlations it displays with almost every other
microenvironment-centred process. This apparent limit to
the understanding of the true influence of angiogenesis in
the setting of aggressive B-cell lymphomas actually repre-
sents a precious advantage for antiangiogenic treatments,
which are able to interfere with multiple vicious dynamics
of the lymphoma-associated microenvironment, including
recruitment of accessory cells, recruitment, and integration
of mesenchymal and endothelial progenitors as well as with
neoplastic B-cell dissemination.

4. The Extracellular Matrix: More
Than Scaffolding

Extracellular matrix (ECM) has been considered, for many
years, an inert scaffold composed by a complex mixture of
proteins, proteoglycans, and in some cases of bone mineral
deposits, aimed at providing support and anchorage to cells
and regulating intercellular communication.

Synthesized by stromal cells, the ECM represents a
reservoir for many growth factors and can be digested by
enzymes like serine and threonine proteases and matrix
metalloproteases to favour homeostatic processes like tissue
remodelling and repair [62].

Similarly, the tumour-associated microenvironment
undergoes continuous remodelling, and the ECM compo-
nents, produced and released by tumour and nonneoplastic
stromal cells, represent a major vehicle for the tumour-
stroma crosstalk. Accordingly, ECM components have been
implicated in tumor growth, progression, and metastasis
both in solid and lymphoid malignancies [63–66].

One notable attempt to investigate the influence of
the ECM on aggressive lymphoma behaviour has been

performed in the DLBCL setting [65] following the iden-
tification of different DLBCL prognostic categories based
on the expression of tumour-related genes [67]. The study
performed by Lenz et al. [65] explored DLBCL from
a stromal perspective and highlighted a group of cases
showing a “stromal signature” enriched in ECM genes coding
for collagens, laminin, metalloproteases, and matricellular
proteins. This signature was related with a more favourable
prognosis as compared with that of another group of DLBCL
cases that was enriched in genes promoting the “angiogenic
switch.”

Matricellular proteins are a class of nonstructural ECM
proteins endowed of regulatory function during tissue
remodelling [68] and cancerogenesis [69]. Among them,
SPARC (secreted protein acidic rich in cysteine), throm-
bospondins, and osteopontin (OPN) have been reported to
play a pivotal role in providing proliferative and antiapop-
totic signals to cancer cells, influencing their binding to
structural matrix components or directly triggering tumour
cell surface receptors [70]. Through the engagement of spe-
cific integrin receptors or CD44, OPN exerts its pleiotropic
function in cancer cell survival, ECM remodelling, cell
migration, and metastasis in solid cancers as well as in
aggressive B-cell lymphomas [71–75]. One of the mech-
anisms hypothesized as responsible for the promotion of
neoplastic cell survival by OPN relies on its binding to CD44.
OPN-mediated CD44 engagement can prevent cell death by
activation of the phosphatidylinositol 3-kinase/Akt signaling
axis and by inhibition of Fas-induced signals [76, 77]. In
breast cancer, OPN is also able to modulate the expression
of specific CD44 isoforms [78] such as the CD44v6 and v9
variants, which endorse a negative prognostic significance.
Tissue microarray analyses performed in DLBCL cases,
demonstrated that the expression of CD44v6 variant was
predominant in the activated type of DLBCL and, in CD44
negative cases, correlated with a worse prognosis [79].

Besides interacting with CD44 and integrins expressed
on neoplastic cell surface, OPN contributes to moulding
the cancer-associated immunological microenvironment by
directly inducing Ms recruitment and activation towards
amplification of the inflammatory milieu rich in TNF, IL-
1b, and IL-6 [80, 81]. These dynamics, which have been
extensively investigated in many solid tumours like soft tissue
sarcomas [82] and breast cancer [83], could also take place in
haematological malignancies owing to the critical role played
by OPN in regulating normal and aberrant hematopoiesis
[84].

Another matricellular protein, whose multifaceted influ-
ence in cancer microenvironment has been progressively
delineating, is SPARC. SPARC, also known as osteonectin
or BM-40, is a secreted, matricellular glycoprotein exerting
an homeostatic function in tissue remodelling, being capable
of regulating biological processes like angiogenesis, cell pro-
liferation, collagen deposition, and inflammation [85]. The
tissue-normalizing function of SPARC could be extended
to cancer with implications for tumour growth, invasion,
and metastasis. However, SPARC expression and functions
are greatly tissue and context dependent, and their inves-
tigation often ingenerates ambiguous results. For example,
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Figure 4: SPARC immunohistochemical analysis of BL cases reveals rather homogeneous expression in neoplastic cells (black arrows) in spite
of a variable stroma SPARC reactivity (green arrows). (SPARC immunohistochemical stain performed with streptavidin-biotin peroxidase
complex system, original magnification 400x).

in some solid cancers, conspicuous SPARC expression by
neoplastic and stromal cells can either promote epithelial-to-
mesenchymal transition (EMT), and favour tissue invasion
and metastasis, or exercise an antiproliferative effect on
neoplastic cells, thus limiting cancer progression [86, 87].
Actually, SPARC function in the tumour microenvironment
is deeply influenced by its cellular source. SPARC produced
by stromal and immune cells may exert diversified influ-
ences over the neoplastic clone, the former contributing to
cancer stromatogenesis and stromal remodelling while the
latter normalizing the inflammatory milieu by negatively
regulating immune cell infiltration and activation (e.g.,
through suppression of the NF-kB pathway) [75, 88].
SPARC has a paramount importance in the regulation of
structural ECM composition [85], in which it participates
as a collagen chaperon. The valency of SPARC in regulating
the stromatogenesis triggered by neoplastic clones has also a
considerable degree of ambiguity. Indeed, SPARC is required
for the correct assembly of the collagen meshwork that
provides adhesive substrate to cancer cells, yet, it might also
inhibit integrin-mediated adhesion and the generation of
signals stemming from the integrin-linked kinase activation
[89]. Recently, some of us have reported that SPARC gene
is highly expressed as part of the GC-related signature of
BLs, where it specifically characterizes the endemic BL (eBL)
subgroup [90]. Notably, SPARC-, TGF-β-, and other EMT-
inducer-derived signals, including those stemming from
Notch receptors, converge at the Ras-MAPK pathway, which
was found upregulated in BLs in spite of a biased BCR signal
initiation [90]. This picture is in line with the cellular pro-
gram of BL oriented towards proliferation, migration, and
ECM invasion, and poorly reliant on extracellular signals.
SPARC protein expression in BL samples consistently marked
neoplastic cells but also variably characterized stromal cells
of the microenvironment (Figure 4) suggesting a potential
involvement of this molecule in stroma-centred dynamics
of BL and other GC-associated neoplasms, which haven’t
been so far explored [90]. In this regard, a role for SPARC
produced by FDCs in orchestrating GC T-cell trafficking

towards the establishment of Th-17-mediated responses has
been recently demonstrated [91].

Besides Osteonectin and SPARC, many other molecules
take part to the complex network created by neoplastic
cells and ECM components. In BL cell lines, it has been
demonstrated that the ECM protein fibronectin, following
binding of alphavbeta3-integrin expressed on neoplastic
cell surface, activates signal transduction pathways leading
to BL cell proliferation by phosphorylation of the MAP
kinase ERK-2 [92]. Similar interactions between integrins
and multiple ECM binding partners, namely, vitronectin,
laminin, type I and type IV collagen, have been reported
to occur in different solid cancer settings and can be also
predicted in aggressive lymphomas [93–96].

Matrix metalloproteases (MMPs) were at first identified
as mere ECM-regulating components but their involvement
in the interplay with factors other than ECM derived,
such as growth factors and their receptors, cytokines and
chemokines, adhesion receptors, cell surface proteoglycans,
and a variety of enzymes has progressively come into
evidence [97, 98]. The expression and production of different
MMP subtypes in aggressive B-cell lymphomas may depend
not only on the different biology of the neoplastic clone, but
could be also determined by the surrounding environment
[99]. IL-6 produced by reactive lymphocytes, Ms, endothelial
cells, and fibroblasts induces MMP-9 and MMP-2 produc-
tion that, in aggressive B-cell lymphomas, may lead to a more
aggressive clinical behaviour [100].

IL-6 produced in the lymphoma microenvironment also
acts as a positive regulator of tissue inhibitor of metal-
loproteinase (TIMP) expression by neoplastic and stromal
cells. TIMPs are capable of inhibiting the activity of MMPs
thus keeping the balance between ECM deposition and
degradation processes; however, multifaceted and apparently
paradoxical actions of TIMPs (i.e., TIMP-1 and TIPM-
2) have been recently reported, suggesting their direct
contribution to lymphoma progression [101].

In fact, TIMP-1 produced by neoplastic B lymphocytes,
fibroblasts, and endothelial cells [102] has been shown to
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inhibit germinal centre B-cell apoptosis and promote cancer
cell survival in aggressive B-cell lymphomas. The antiapop-
totic effect of TIMP-1, which could be considered one of the
causes contributing to the poor survival evidenced in some
of these cases, is not to ascribe merely to MMP inhibition
and/or cell-matrix interactions, but also to the binding of
TIMP-1 to other cell-surface receptors, independent of MMP
inhibitory function [103].

In BL cells in which TIMP-1 promotes postgerminal
centre B-cell differentiation by upregulating MUM-1 and
CD138 and downregulating BCL6, its overexpression leads
to the activation and expression of STAT3, and to the
upregulated expression of cyclin D2, CD44 and BCL-XL, the
latter being a target protein of STAT3 with prominent anti-
apoptotic function [104].

ECM thus emerges as much more than inert scaffolding
for lymphomatous cells, representing a major source of
direct “rescue” signals and also critically influencing several
aspects of the lymphoma-associated environment, such as
the trafficking and activation of immune cells (Figure 5).
Although strategies aiming at inducing modifications in
the ECM components are hardly plausible, owing to the
elevated redundancy of the cellular dynamics leading to ECM
regulation, ECM should be considered as a precious source
of information regarding the biology of the underlying
neoplasm, and ECM-related cues (such as miRNAs) should
be taken into account as potential cancer-related markers for
risk stratification and prognostication [105].

5. Conclusions

By delineating the main microenvironmental dynamics that
take place in aggressive B-cell lymphomas, we aimed to con-
vey the message of a leading role played by the nonneoplastic
lymphoma-associated immunological and stromal elements
in influencing the natural history of these highly malignant
neoplasms, so far classically considered poorly reliant on
the environment. The mutual influence between neoplastic
B lymphocytes and their microenvironment results in the
enhancement of the proliferative and invasive capabilities of
the neoplastic clone and in the concurrent reshaping of the
infiltrated tissues.

A deeper understanding of such relationship, through the
dissection of its complex dynamics, could prove a successful
enterprise for the establishment of multitargeted therapeutic
approaches and for the identification of new prognostic
factors reflective of the clone-extrinsic biology of these B-cell
lymphomas.
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