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Abstract Riesz-like bases for a triplet of Hilbert spaces are investigated, in con-
nection with an analogous study for more general rigged Hilbert spaces performed
in a previous paper. It is shown, in particular, that every ω-independent, complete
(total) Bessel sequence is a (strict) Riesz-like basis in a convenient triplet of Hilbert
spaces. An application to non self-adjoint Schrödinger-type operators is considered.
Moreover, some of the simplest operators we can define by them and their dual bases
are studied.

1 Introduction

A Riesz basis of a Hilbert space H is a sequence {ξn} of elements of H that are
transformed into an orthonormal basis ofH by some bounded operator with bounded
inverse. Riesz bases can also be viewed as frames [1–3]; i.e., there exist positive
numbers c,C such that

c‖ξ‖2 ≤
∞∑
n=1

| 〈ξ |ξn 〉 |2 ≤ C‖ξ‖2, ∀ξ ∈ H. (1)

What distinguishes a frame from a Riesz basis is its minimality, i.e., once one of its
elements is dropped out it ceases to be a frame.

In [4] it was studied a possible extension of the notion of Riesz basis of a Hilbert
space to rigged Hilbert spaces, by introducing what we called Riesz-like bases, the
main difference relying on the fact that the operator transforming {ξn} into an ortho-
normal basis need not to be bounded. Amotivation for this generalization stems from
the following considerations.

Let us assume that {ξn} is a sequence of vectors of H for which there exists an
unbounded closed linear operator T , with dense domain D(T ) and bounded inverse
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168 G. Bellomonte

T−1, such that ξn ∈ D(T ), for every n ∈ N and the sequence {T ξn} is an orthonormal
basis for H. In this case we can endow D(T ) ⊂ H with a new inner product

〈ξ |η 〉+1 := 〈T ξ |Tη 〉 , ξ, η ∈ D(T )

which makes it into a Hilbert space denoted by H+1. Since T−1 ∈ B(H), the C*-
algebra of linear bounded operators in H, it follows that c‖ξ‖ ≤ ‖ξ‖+1, for some
c > 0 and for every ξ ∈ H, thenH can be identified with a subspace of the conjugate
dual H×

+1 of H+1. This space, in turn, is isomorphic to the completion of H with
respect to the norm induced by the inner product 〈· |· 〉−1 defined by

〈ξ |η 〉−1 := 〈
T ∗−1ξ

∣∣T ∗−1η
〉
, ξ, η ∈ H.

Thus, we put H−1 := H×
+1. Hence, the sequence {ξn} and the operator T (which is

bounded fromH+1 intoH, but unbounded inH!) automatically generate a Gelfand
triplet of Hilbert spaces H+1 ⊆ H ⊆ H−1, which is a typical example of a rigged
Hilbert space and we will call {ξn} a (strict) Riesz-like basis.

A second motivation comes from the so called Pseudo-Hermitian Quantum
Mechanics. This recent development of Quantum Mechanics deals with non self-
adjoint Hamiltonians that often can be made into self-adjoint operators by some
(generalized) similarity transformation (see, e.g., [5–8]).

Assume, in fact, that H is a closed operator in Hilbert space whose dense domain
D(H) is regarded as a Hilbert space HH with the graph norm ‖ · ‖H. As we will see
in Sect. 2.1, this automatically produces a rigged Hilbert space. Assume that Hsa

is a self-adjoint operator in H with discrete spectrum and, for simplicity, that each
eigenvalue λk ∈ R has multiplicity 1. Let ψk be an eigenvector corresponding to λk .
Then {ψk} is an orthonormal basis forH. Assume that there exists a bounded operator
T : HH → H, invertible and with bounded inverse T−1 : H → HH such that

〈
Hξ

∣∣T †η
〉 = 〈T ξ |Hsaη 〉 , ∀ξ ∈ HH, η ∈ D(Hsa) s. t. T

†η ∈ H. (2)

Put ξk = T−1ψk , for every k. Then, the set {ξk} is a Riesz-like basis for HH and an
easy computation shows that, for every η ∈ D(Hsa), such that T †η ∈ H

〈
Hξn

∣∣T †η
〉 = λn

〈
ξn

∣∣T †η
〉
.

Thus, if {η ∈ D(Hsa) : T †η ∈ H} is dense in H, we get Hξn = λnξn , for every n.
Hence H has a family of eigenvectors that are mapped by T into the elements of
an orthonormal basis of H. It should be noticed that the operator T need not be
bounded as an operator inH. This situation is of interest because of the existence of
physical models whose (non self-adjoint) Hamiltonian cannot be transformed into a
self-adjoint one by similarity operators that are bounded, with bounded inverse [9].

The paper is organized as follows. In Sect. 2 we recall basic notions as that of
rigged Hilbert space (RHS), of operators on a RHS, of Schauder basis and of (strict)
Riesz-like basis and recall some results given in [4] about (strict) Riesz-like bases.
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In Sect. 3 we prove that every ω-independent, complete (total) Bessel sequence is
a strict Riesz-like basis in a convenient triplet of Hilbert spaces. Furthermore, we
consider an example of application of this result to Schrödinger-type operators. In
Sect. 4 we study some operators defined by strict Riesz-like bases and by their dual
bases, proving their closedness, their self-adjointness and so on. We also prove that
some of them are related by a weak intertwining relation and, moreover, we give a
characterization of thosewhich are quasi-Hermitian (this kind of operators are known
also as pseudo-Hermitian operators in Pseudo-Hermitian Quantum Mechanics).

2 Preliminaries and Basic Aspects

2.1 Rigged Hilbert Spaces and Operators on Them

Let D be a dense subspace of H. A locally convex topology t on D finer than the
topology induced by the Hilbert norm defines, in standard fashion, a rigged Hilbert
space (RHS)

D[t] ↪→ H ↪→ D×[t×], (3)

where D× is the vector space of all continuous conjugate linear functionals on
D[t], i.e., the conjugate dual of D[t], endowed with the strong dual topology
t× = β(D×,D) and ↪→ denotes a continuous embedding. Since the Hilbert space
H can be identified with a subspace of D×[t×], we will systematically read (3) as
a chain of topological inclusions: D[t] ⊂ H ⊂ D×[t×]. In this paper we will con-
sider only the case where D itself is a Hilbert space, denoted byH+1, under a norm
stronger than that of H. Its conjugate dual is denoted byH−1.

As an example, let us be given a closed operator T with dense domain D(T ) in
Hilbert space H. Then, a rigged Hilbert space, more precisely a triplet of Hilbert
spaces, arises in a natural way. Indeed, the domain D(T ) with the graph norm ‖ · ‖T
defined by

‖ξ‖T = (‖ξ‖2 + ‖T ξ‖2)1/2 = ‖(I + T ∗ T )1/2ξ‖, ξ ∈ D(T )

becomes a Hilbert space, namely HT . If H×
T denotes the Hilbert space conjugate

dual of HT , then we get the triplet of Hilbert spaces

HT ⊂ H ⊂ H×
T .

IfH andK are two Hilbert spaces, we will indicate by B(H,K) the Banach space
of linear bounded operators in H into K. If H = K, then, to simplify the notation,
we will put B(H,H) = B(H).

Let H+1 ⊂ H ⊂ H−1 be a triplet of Hilbert spaces. An involution X 
→ X† can
be introduced in B(H+1,H−1) by the equality
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〈
X†η |ξ 〉 = 〈Xξ |η 〉, ∀ξ, η ∈ H+1.

Hence B(H+1,H−1) is a †-invariant vector space.

2.2 Schauder, Riesz-Like and Strict Riesz-Like Bases

Let E[tE ] be a locally convex vector space and {ξn} a sequence of vectors of E . We
adopt the following terminology:

(i) the sequence {ξn} is complete or total if the linear span of {ξn} is dense in E[tE ];
(ii) the sequence {ξn} isω-independent if

∑∞
n=1 cnξn = 0, implies cn = 0, for every

n ∈ N;
(iii) the sequence {ξn} is a topological basis for E if, for every φ ∈ E , there exists a

unique sequence {cn} of complex numbers such that

φ =
∞∑
n=1

cnξn, (4)

where the series on the right hand side converges in E[tE ].
(iv) a topological basis {ξn} forE[tE ] is a Schauder basis if the coefficient functionals

{cn = cn( f )}, appearing in (4), are tE -continuous.

If {ξn} is a topological basis for E , then {ξn} is ω-independent and therefore
it consists of linearly independent vectors. Moreover, in Banach spaces, the two
notions of topological basis and of Schauder basis do coincide.

In the remainder of the paper the Hilbert space H will always be meant as a
separable one.

Consider a riggedHilbert spaceD[t] ⊂ H ⊂ D×[t×] and aSchauder basis {ξn} for
D[t]. Every f ∈ D is the sum of a series

∑∞
n=1 cn( f )ξn , with uniquely determined,

suitable coefficients cn( f ). By the continuity of the linear functionals cn on D[t], it
follows the existence and the uniqueness of a sequence {ζn} ⊂ D× such that

cn( f ) = 〈ζn | f 〉, ∀n ∈ N, f ∈ D.

If we take f = ξk , then cn(ξk) = 〈ζn |ξk 〉 = δn,k i.e., the two sequences {ξn} and {ζn}
are biorthogonal.

The following statements on Schauder bases, given here only for triplet of Hilbert
spaces H+1 ⊂ H ⊂ H−1, was proved in [4] for general rigged Hilbert spaces by
adapting results given in [2, 10, 11].

Proposition 2.1 Let {ξn} be a Schauder basis for H+1. Then there exists a unique
sequence {ζn} of vectors of H−1 such that
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(i) the sequences {ξn} and {ζn} are biorthogonal;
(ii) for every f ∈ H+1,

f =
∞∑
n=1

〈ζn | f 〉ξn; (5)

(iii) The partial sum operator Sn, given by

Sn f =
n∑

k=1

〈ζk | f 〉ξk, f ∈ H+1,

is continuous fromH+1 intoH+1 and has an adjoint S†n everywhere defined in
H−1 given by

S†nΨ =
n∑

k=1

〈Ψ |ξk 〉ζk, Ψ ∈ H−1;

(iv) the sequence {ζn} is a basis for H−1 with respect to the weak topology; i.e., if
Ψ ∈ H−1 one has

〈Ψ | f 〉 =
〈 ∞∑
k=1

〈Ψ |ξk 〉ζk | f
〉

=
∞∑
k=1

〈Ψ |ξk 〉 〈ζk | f 〉 , ∀ f ∈ H+1. (6)

Remark 2.2 Of course, (6) provides a weak expansion for every h ∈ H; i.e., h =∑∞
k=1 〈h |ξk 〉ζk , weakly. In particular, for f ∈ H+1 ⊂ H−1, (6) gives

‖ f ‖2 =
∞∑
k=1

〈 f |ξk 〉 〈ζk | f 〉 , ∀ f ∈ H+1

so that the series on the right hand side is convergent, for every f ∈ H+1.

Now we recall the notion of Riesz-like and strict Riesz-like bases we gave in [4]
for a rigged Hilbert space D[t] ⊂ H ⊂ D×[t×].
Definition 2.3 A Schauder basis {ξn} for D[t] is called a Riesz-like basis for D[t]
if there exists a one-to-one continuous operator T : D[t] → H such that {T ξn} is an
orthonormal basis forH.

The range R(T ) of T contains the orthonormal basis {ek} with ek := T ξk , k ∈ N,
hence R(T ) is dense inH.

If {ξn} is a Riesz-like basis, we can find explicitly the sequence {ζn} ⊂ H−1 of
Proposition 2.1. The continuity of T and (5), in fact, imply

T f =
∞∑
n=1

〈ζn | f 〉T ξn =
∞∑
n=1

〈ζn | f 〉en, ∀ f ∈ H+1.
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This, in turn, implies that 〈ζn | f 〉 = 〈T f |en 〉, for every f ∈ H+1.Hence ζn = T †en ,
for every n ∈ N.

Clearly, for every n, k ∈ N,

〈ζk |ξn 〉 = 〈
T †ek |ξn

〉 = 〈ek |T ξn 〉 = 〈ek |en 〉 = δk,n

and T †T ξn = ζn , for every n ∈ N. This sequence is called the dual sequence.
Let {ξn} be a Riesz-like basis forD[t]. One can ask what happens if we strengthen

the hypotheses on T , e.g. if we suppose that T is onto too and T−1 is continuous
fromH intoD[t]. In other words, let us suppose that the operator T which makes of
{T ξn} an orthonormal basis for H has a continuous inverse T−1 : H[‖ · ‖] → D[t]
(in particular, T−1 is a bounded operator in H). We say in this case that {ξn} is a
strict Riesz-like basis for D[t]. This assumption has important consequences on the
involved topologies. Indeed, as shown in [4, Proposition 3.6]

Proposition 2.4 If the rigged Hilbert space D[t] ⊂ H ⊂ D×[t×], with D[t] com-
plete and reflexive, has a strict Riesz-like basis {ξn} then it is (equivalent to) a triplet
of Hilbert spacesH+1 ⊂ H ⊂ H−1. Moreover, {ξn} is an orthonormal basis forH+1

and the dual sequence {ζn} is an orthonormal basis forH−1.

In other words the rigged Hilbert space is forced to be a triplet of Hilbert spaces.
On the other hand, in a triplet of Hilbert spacesH+1 ⊂ H ⊂ H−1, if the operator T
which makes of {T ξn} an orthonormal basis forH is onto, then T−1 is automatically
continuous and so the basis {ξn} is strict.
Remark 2.5 It is clear that, if {ξn} is a strictRiesz-like basis, then it is anunconditional
basis of H+1.

3 Bessel Sequences as Strict-Riesz Like Bases

Now, we will give an answer to the following natural questions: given a sequence
{ξn} ⊂ H, does there exist a rigged Hilbert space such that {ξn} is a strict Riesz-like
basis for it? Given a sequence {ξn} ⊂ H, does there exist a triplet of Hilbert spaces
H+1 ⊆ H ⊆ H−1 such that {ξn} is an orthonormal basis forH+1?

Let {ξn} be a Bessel sequence in H, i.e., [11] there exists C > 0 such that for
every finite sequence of complex numbers {c1, c2, ...cn}, n ∈ N,

∥∥∥∥∥
n∑

k=1

ckξk

∥∥∥∥∥
2

≤ C
n∑

k=1

|ck |2 . (7)

Let {en} be an orthonormal basis for H and define the operator

V :
n∑

k=1

ckek →
n∑

k=1

ckξk . (8)
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It is clear that V is well-defined and bounded (by (7)) on G = span{en}, then it
extends to a bounded operator, denoted again by V , toH. Obviously, Ven = ξn , for
every n ∈ N.

We notice that {ξn} is ω-independent if and only if V , and {ξn} is complete if and
only if V ∗ is injective. Now we give our main result.

Theorem 3.1 If {ξn} is an ω-independent complete Bessel sequence inH, then, for
every orthonormal basis {en} ofH, there exists a triplet of Hilbert spaces K ⊂ H ⊂
K× which has {ξn} as a strict Riesz-like basis. This triplet is unique up to unitary
transformations.

Proof We maintain the notations of the previous discussion. Let {en} be an ortho-
normal basis ofH. If {ξn} is a ω-independent Bessel sequence inH, the operator V
defined in (8) is injective onH. Indeed, since {en} is an orthonormal basis forH, for
every f ∈ H, f = limN→∞ fN , where fN = ∑N

n=1 〈 f |en 〉 en ∈ G. It follows that

V f := lim
N→∞ V fN = lim

N→∞

N∑
n=1

〈 f |en 〉 ξn =
∞∑
n=1

〈 f |en 〉 ξn.

If V f = 0, then 〈 f |en 〉 = 0, for every n ∈ N. Hence f = 0.
Then V has an inverse V−1 defined on the range Ran(V ) of V and, since V is

bounded, V−1 is closed. Moreover, {ξn} ⊆ Ran(V ), hence, by the completeness of
{ξn}, the inverse of the operator V is densely defined. Now, we have

Ran(V ) =
{
g ∈ H : g =

∞∑
n=1

cnξn with
∞∑
n=1

|cn|2 < ∞
}

.

The ω-independence of {ξn} guarantees the uniqueness of the expansion g =∑∞
n=1 cnξn of every g ∈ Ran(V ). Finally, we have

V−1g = V−1

( ∞∑
n=1

cnξn

)
=

∞∑
n=1

cnen, ∀g =
∞∑
n=1

cnξn ∈ Ran(V ).

We put, for short, T := V−1 and D(T ) = Ran(V ). Then T is a closed densely
defined operator such that T ξn = en and has bounded inverse. Then, as we have
already seen in Sect. 2.1, a triplet of Hilbert spaces arises in a natural way. More
precisely, we get the triplet of Hilbert spaces

HT ⊂ H ⊂ H×
T

where HT = D(T )[‖ · ‖T ] with

‖ξ‖T = (‖ξ‖2 + ‖T ξ‖2)1/2 = ‖(I + T ∗T )1/2ξ‖, ξ ∈ D(T )
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and the sequence {ξn} is a strict Riesz-like basis for HT . Now, let us consider two
different orthonormal bases {en} and {e′

n} of the Hilbert spaceH. Then, as it is well-
known, there exists a unitary operator U : H → H such that Uen = e′

n , therefore
the two norms ‖ · ‖T and ‖ · ‖UT coincide and hence the two Hilbert spacesHT and
HUT do.

Remark 3.2 If {ξn} is an ω-independent complete Bessel sequence in H, then, for
every orthonormal basis {en} of H, there exists a (unique) Hilbert space which has
{ξn} as an orthonormal basis since, once the triplet of Hilbert spacesHT ⊂ H ⊂ H×

T
is at hand (Theorem 3.1), then {ξn} is an orthonormal basis forH+1 = D(T )[‖ · ‖+1]
and, as a consequence of the uniqueness of HT , the Hilbert space H+1 (and the
triplet), is unique too.

Remark 3.3 If T = V−1 is also bounded, then {ξn} is a Riesz basis for H and HT

coincides with H as a vector space but it carries a different albeit equivalent norm,
as stated by the well-known theory of Riesz bases.

Remark 3.4 If {ξn} is an ω-independent complete Bessel sequence in H, then The-
orem 3.1 gives us full information on the possibility of expanding a vector f ∈ H
in terms of {ξn}: indeed, {ξn} determines a closed densely defined operator T and
every vector f of the domain of T can be expanded uniquely as an unconditionally
convergent series f = ∑∞

n=1 cnξn , the convergence holds in the graph norm ‖ · ‖T
of D(T ), and then in the norm ‖ · ‖. Other vectors f of H, by (6), can be obtained
by a weakly convergent series f = ∑∞

k=1 〈 f |ξk 〉ζk , {ζk} being the dual sequence of
{ξn}, in the sense that 〈 f |η 〉 = ∑∞

k=1 〈 f |ξk 〉 〈ζk |η 〉 ,∀η ∈ D(T ).

If T is unbounded, then 0 ∈ σc(T−1), the continuous spectrumof T−1. Somemore
information on {ξn} can be obtained just making some assumption on the spectral
behaviour of T−1. Assume, for instance, that T−1 is compact, then the sequence {ξn}
converges to 0 in the norm of H, being the image of an orthonormal basis through
a compact operator. Of course one can go further and require that T−1 belongs to
some other well-known classes of operators, giving a more accurate description of
how fast ‖ξn‖ → 0. For a discussion on this subject see [12].

3.1 An Application

The importance of Theorem 3.1 is that, once we have at hand a non self-adjoint
operator H, with purely discrete real spectrum, it is possible to construct the Hilbert
space of the system by finding out exactly the closed operator defining an inner
product which makes the eigenvectors of H orthonormal. As expected, the inner
product of the Hilbert space can be given in terms of the metric operator Q = T †T
which is unbounded as an operator inH, whereas is bounded as an operator inH+1

intoH−1 (see Proposition 4.4 in Sect. 4). This change of domain is not a deal by the
physical point of view, because the observable of the system are in general unbounded
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linear operators defined on a dense set D of Hilbert space H. As an example of this
situation, let us consider the Hilbert space H = L2(R) and the Hamiltonian

H = − d2

dx2
+ x2

2
− 4x

1 + x2
d

dx
− 2

1 + x2
= H0 + V

where H0 is theHamiltonian operator of the harmonic oscillator andV = − 4x
1+x2

d
dx −

2
1+x2 (in spite of the notation, the operator V is not a physical potential, since
it depends explicitly on the derivative operator). The set of its eigenvectors is

{ξn = 1√
2n n!√π

Hn(x)
e− x2

2

1+x2 , n ≥ 0}, where Hn(x) is the nth Hermite polynomial. The

vectors ξn’s do not form a orthonormal basis for H. However, they constitute an
ω-independent complete Bessel sequence in H as we will see in a while. Hence,
by Theorem 3.1, there exists a triplet of Hilbert spaces which has {ξn} as a strict
Riesz-like basis and, even more important, there exists a Hilbert space H+1 such
that {ξn} is an orthonormal basis for H+1 and such that H ∈ B(H+1) (H is closed
and everywhere defined in H+1). Recall that, once we call Nn = 1√

2n n!√π
, the set

{en(x) = NnHn(x)e− x2

2 , n ≥ 0} is an orthonormal basis of H. Hence the operator
T which takes the sequence {ξn} into {en} is T = 1 + x2. This is an unbounded con-
tinuous operator defined on the dense set D(T ) = { f ∈ H : (1 + x2) f ∈ H}, with
bounded inverse: T−1 = 1

1+x2 . The Hamiltonian H is non self-adjoint and similar to
H0 by the intertwining operator T , H = T−1H0T , the eigenvectors of H are trans-
formed into those of H0 and H and H0 have the same eigenvalues αn = n + 1

2 , for
every n ≥ 0 sorted n by n; (in particular, the ground state ξ0 is transformed in that one
of H0). It remains to show that {ξn} is an ω-independent complete Bessel sequence
inH. Indeed, {ξn} is a Bessel sequence since there exists C = ‖T−1‖ > 0 such that
for every finite sequence of complex numbers {c0, c1, ...cn}, n ∈ N,

∥∥∥∥∥
n∑

k=0

ckξk

∥∥∥∥∥
2

=
∥∥∥∥∥

n∑
k=0

ckT
−1ek

∥∥∥∥∥
2

≤ C
n∑

k=0

|ck |2 . (9)

They are ω-independent because if

∞∑
n=0

cnξn = 0 =
∞∑
n=0

cnT
−1en = T−1

( ∞∑
n=0

cnen

)
,

then it implies cn = 0, for every n ≥ 0, by the continuity and the injectivity of T−1.
Furthermore, they are a complete set because if f ∈ H is such that 〈 f |ξn 〉 = 0 for
every n, then

0 = 〈 f |ξn 〉 = 〈
f
∣∣T−1en

〉 = 〈
T−1 f |en

〉 = 0
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which by the injectivity of T−1 implies f = 0. Notice that, albeit {ξn = T−1en} is an
ω-independent complete Bessel sequence inH, it is not a Riesz basis forH because
T = (1 + x2) is an unbounded operator. Now, following what we saw before, the
natural space where considering the previous operator H is H+1 = D(T )[‖ · ‖+1]
with ‖ · ‖+1 = ‖(1 + x2) · ‖.

4 Operators Defined by Strict Riesz-Like Bases

In this section some results in [13] are generalized to the case of operators defined
in triplets of Hilbert spaces. Furthermore, we will prove some result about the sim-
ilarity of operators introduced here, and a characterization of those which have real
eigenvalues.

Let {ξn} be a strict Riesz-like basis for the triplet H+1 ⊂ H ⊂ H−1 and {ζn} its
dual basis. If α = {αn} is a sequence of complex numbers we can formally define,
for f ∈ H+1,

Aα f =
∞∑
n=1

αn(ξn ⊗ ζ n) f =
∞∑
n=1

αn〈ζn | f 〉ξn (10)

Bα f =
∞∑
n=1

αn(ζn ⊗ ξ n) f =
∞∑
n=1

αn〈 f |ξn 〉ζn. (11)

Rα f =
∞∑
n=1

αn(ξn ⊗ ξ n) f =
∞∑
n=1

αn 〈 f |ξn 〉 ξn (12)

Qα f =
∞∑
n=1

αn(ζn ⊗ ζ n) f =
∞∑
n=1

αn〈ζn | f 〉ζn (13)

Of course, these are the simplest operators that can be defined via {ξn} and {ζn}.
Remark 4.1 Before going further, a comment is in order. In [14] Balazs introduced
the notion of Bessel multipliers (frame multipliers, Riesz multipliers) whose defi-
nition is apparently similar to those given above. To be more precise, if {ϕn}, {ψn}
are Bessel sequences respectively in two Hilbert spaces H1 and H2, fix m = {mn}
a bounded sequence of complex numbers, the Bessel multiplier for the Bessel
sequences above is an operator M : H2 → H1 defined by

M =
∞∑
n=1

mn(ϕn ⊗ ψn).

The main differences with the operators in (10)–(11) is that the two sequences {ϕn},
{ψn} are not necessarily biorthogonal (in particular, in [14, Corollary 7.5] a necessary
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and sufficient condition is given for {ϕn}, {ψn} to be biorthogonal), and moreover, as
we shall see in a while, we will also deal with possibly unbounded sequences. Thus,
the two notions are not directly comparable.

Let H+1 ⊂ H ⊂ H−1 be a triplet of Hilbert spaces and {ξn} a strict Riesz-like
basis for H+1.

Clearly, the operator formally defined by (10) can take values in H+1 or in H or
even inH−1, following the different topologies that make the series on the right hand
side convergent. It is clear that, if f ∈ H+1, then

∞∑
n=1

αn〈ζn | f 〉ξn converges inH−1 ⇔
∞∑
n=1

∣∣∣∣∣
∞∑
k=1

αk〈ζk | f 〉 〈ξk |ζn 〉−1

∣∣∣∣∣
2

< ∞.

Since 〈ξk |ζn 〉−1 = 〈ξk |ξn 〉 , for every k, n ∈ N, we can conclude that

Aα f ∈ H−1 ⇔
∞∑
n=1

∣∣∣∣∣
∞∑
k=1

αk〈ζk | f 〉Gk,n

∣∣∣∣∣
2

< ∞.

where (Gk,n) is the Gram matrix of the basis {ξk}; i.e., Gk,n = 〈ξk |ξn 〉, for k, n ∈ N.
Differently from the standard case, the Gram matrix of {ξk} need not be bounded.

Similarly, since {en} is an orthonormal basis inH, we have

Aα f ∈ H ⇔
∞∑
n=1

∣∣∣∣∣
∞∑
k=1

αk〈ζk | f 〉 〈ξk |en 〉
∣∣∣∣∣
2

< ∞,

where, as before, ek = T ξk , k ∈ N.
Finally, as we shall see in Proposition 4.2,

Aα f ∈ H+1 ⇔
∞∑
k=1

|αk |2| 〈ζk | f 〉 |2 < ∞.

Of course, analogous considerations can bemade for the operators defined in (11),
(12) and (13). It is worth remarking that for the operators Bα and Rα the series on
the right hand side of (11), (12) may converge also for some f ∈ H−1.

Nowwe examine more closely one of the cases listed above. In particular, we will
suppose Aα f ∈ H+1, for every f ∈ H+1. Under this assumption, let us define

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(Aα) =
{
f ∈ H+1;

∞∑
n=1

αn〈ζn | f 〉ξn exists in H+1

}

Aα f =
∞∑
n=1

αn〈ζn | f 〉ξn, f ∈ D(Aα)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(Bα) =
{
Ψ ∈ H−1;

∞∑
n=1

αn 〈Ψ |ξn 〉 ζn exists in H−1

}

BαΨ =
∞∑
n=1

αn 〈Ψ |ξn 〉 ζn, Ψ ∈ D(Bα)

.

Then we have the following

Dξ := span{ξn} ⊂ D(Aα);
Dζ := span{ζn} ⊂ D(Bα); (14)

Aαξk = αkξk, k = 1, 2, . . . ;
Bαζk = αkζk, k = 1, 2, . . . . (15)

Hence, Aα and Bα are densely defined and have the same eigenvalues. As we will
see, if αn ∈ R, ∀n ∈ N, they are one the adjoint of the other.

It worths noting that the operators (T †)−1 and (T−1)† do coincide [15, Remark
3.2].

Before continuing, we recall that if X : D(X) ⊆ H+1 → H+1 is a closedmap and
D(X) is dense inH+1, then there exists a closed densely defined map X† : D(X†) ⊆
H−1 → H−1 such that

〈Φ |Xξ 〉 = 〈
X†Φ |ξ 〉

, ∀ξ ∈ H+1, Φ ∈ H−1.

If X is also closed as an operator in H, then its Hilbert adjoint X∗ exists and X∗ =
X†

�D(X∗) where D(X∗) = {φ ∈ H : X†φ ∈ H}.
Proposition 4.2 The following statements hold.

(i) D(Aα) = {
f ∈ H+1;∑∞

n=1 |αn|2| 〈ζn | f 〉 |2 < ∞}
,

D(Bα) = {
Ψ ∈ H−1;∑∞

n=1 |αn|2| 〈Ψ |ξn 〉 |2 < ∞}
.

(ii) Aα and Bα are closed operators respectively in H+1[‖ · ‖+1] and in H−1[‖ ·
‖−1].

(iii) (Aα)† = Bα , where α = {αn}.
(iv) Aα is bounded inH+1 if, and only if, Bα is bounded inH−1 and if, and only if,

α is a bounded sequence. In particular A1 = IH+1 and B1 = IH−1 , where 1 is
the sequence constantly equals to 1.

Proof (i): Since {ξn} is an orthonormal basis forH+1, we have

∥∥∥∥∥
m∑

k=n

αk 〈ζk | f 〉 ξk

∥∥∥∥∥
2

+1

=
m∑

k=n

|αk |2| 〈ζk | f 〉 |2, f ∈ H+1 (16)
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which shows that f ∈ D(Aα) if and only if
∑∞

n=1 |αn|2| 〈ζn | f 〉 |2 < ∞.

(ii): The proof of this statement can be made by slight modifications of [13, Propo-
sition 2.1 (2)].

(iii): It is easy to show that Bα = ∑∞
n=1 αn(ζn ⊗ ξn) ⊆ (Aα)†. Conversely, let Ψ ∈

D((Aα)†); then there exists Φ ∈ H−1 such that

〈
Ψ

∣∣∣∣∣
∞∑
n=1

αn〈ζn | f 〉ξn
〉

= 〈Φ | f 〉 , ∀ f ∈ D(Aα).

By (14) and (15), Dξ ⊆ D(Aα) and Aαξk = αkξk , k = 1, 2, . . . . Thus,
〈Ψ |αkξk 〉 = 〈Φ |ξk 〉, k = 1, 2, . . . . Hence

∞∑
k=1

|αk |2| 〈Ψ |ξk 〉 |2 =
∞∑
k=1

| 〈Φ |ξk 〉 |2 =
∞∑
k=1

| 〈(T−1)†Φ |ek
〉 |2 = ‖(T−1)†Φ‖2 < ∞.

This implies that Ψ ∈ D(Bα).
(iv): Let α be a bounded sequence, then there exists M > 0 such that

‖Aα f ‖+1 =
∥∥∥∥∥

∞∑
k=1

αk〈ζk | f 〉ξk
∥∥∥∥∥

+1

≤ M

∥∥∥∥∥
∞∑
k=1

〈ζk | f 〉ξk
∥∥∥∥∥

+1

,

hence Aα is bounded inH+1.
In a very similar way one can prove (i), (ii) and (iv) for Bα . This completes the

proof.

Remark 4.3 In [15] Di Bella, Trapani and the author gave a definition of spectrum
for continuous operators acting in a rigged Hilbert space D ⊂ H ⊂ D×. We refer
to that paper for precise definitions and results. So a natural question is: what is
the spectrum (in that sense) of the operator Aα defined above? Let us assume that
the sequence α is bounded, so that Aα is a bounded operator in H+1. The analysis
is, in this case, particularly simple since, as usual, the set of eigenvalues consists
exactly of the αk’s and, if λ does not belong to the closure {αk; k ∈ N} of the set of
eigenvalues, then the inverse of Aα − λIH+1 exists as a bounded operator in H+1.
Hence, as expected, σ(Aα) = {αk; k ∈ N}. The situation for Bα is analogous.

Let us now consider the operators formally given by (12) and (13). They are, in
fact, defined as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(Rα) =
{
Ψ ∈ H−1;

∞∑
n=1

αn 〈Ψ |ξn 〉 ξn exists in H+1

}

RαΨ =
∞∑
n=1

αn 〈Ψ |ξn 〉 ξn, Ψ ∈ D(Rα)
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D(Qα) =
{
f ∈ H+1;

∞∑
n=1

αn〈ζn | f 〉ζn exists in H−1

}

Qα f =
∞∑
n=1

αn〈ζn | f 〉ζn, f ∈ D(Qα)

.

It is clear that

Dζ ⊂ D(Rα) and Rαζk = αkξk, k = 1, 2, . . . ; (17)

Dξ ⊂ D(Qα) and Qαξk = αkζk, k = 1, 2, . . . (18)

Hence, Rα and Qα are densely defined, and the following results can be established:

Proposition 4.4 The following statements hold.

(1) D(Rα) = {
Ψ ∈ H−1;∑∞

n=1 |αn|2| 〈Ψ |ξn 〉 |2 < ∞} = D(Bα),
D(Qα) = {

f ∈ H+1;∑∞
n=1 |αn|2| 〈ζn | f 〉 |2 < ∞} = D(Aα).

(2) Rα and Qα are closed.
(3) (Rα)† = Rα and (Qα)† = Qα , where α = {αn}.
(4) If {αn} ⊂ R (respectively, {αn} ⊂ R

+) then Rα and Qα are self-adjoint (respec-
tively, positive self-adjoint). Furthermore, Rα is bounded from H−1 to H+1 if
and only if Qα is bounded from H+1 to H−1 and if, and only if, α is a bounded
sequence.

(5) If α = 1, where, as before, 1 denotes the sequence constantly equals to 1, then
R := R1 and Q := Q1 are bounded positive self-adjoint operators respectively
of B(H−1,H+1) and of B(H+1,H−1) and they are inverses of each other, that
is R = (Q)−1, and R = T−1(T−1)†, Q = T †T , where T ∈ B(H+1,H) is the
operator such that T ξn = en, ∀n ∈ N and {en} is an orthonormal basis forH.

Proof The proof is similar to that of Proposition 4.2 and we omit it.

Remark 4.5 From Proposition 4.4, we see that there exists a bounded invertible,
positive self-adjoint operator Q from H+1 into H−1 that maps the strict Riesz-like
basis {ξn} into its dual basis {ζn}.

Now, recall that Q = Q1 and R = R1, then we have the following

Proposition 4.6 Let α = {αn} be a sequence of complex numbers. The following
equalities hold:

QAα = BαQ = Qα,

RBα = AαR = Rα.
(19)

Proof By Proposition 4.4 we have D(Aα) = D(Qα) and D(Bα) = D(Rα). More-
over, from Proposition 4.2 and (18), if f ∈ D(Q)
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Q f ∈ D(Bα) ⇔
∞∑
n=1

|αn|2| 〈Q f |ξn 〉 |2 < ∞

⇔
∞∑
n=1

|αn|2| 〈ζn | f 〉 |2 < ∞ ⇔ f ∈ D(Qα).

Similarly one proves the equality D(QAα) = D(Qα). It is easily seen that QAα f =
BαQ f = Qα f , for every f ∈ D(Qα). The proof of the second equality in (19) is
analogous.

Remark 4.7 Equations (19) show that the two operators Aα and Bα are similar, in the
sense that Q and R act as intertwining operators, see e.g. [5, Definition 7.3.1]. The
intertwining relations between operators have found some recent interest in Quantum
Mechanics.

A simple consequence of previous results is the following corollary which gen-
eralizes the Theorem by Mostafazadeh1 in [16] and thus gives a characterization
of operators as Aα and Bα with real eigenvalues. Before continuing we recall the
definition of (unbounded) quasi-Hermitian operator (see, e.g. [5, Definition 7.5.1]).

Definition 4.8 A closed operator A, with dense domain D(A) is called quasi-
Hermitian if there exists a metric operator G, with dense domain D(G) in Hilbert
space H such that D(A) ⊂ D(G) and

〈Aξ |Gη 〉 = 〈Gξ |Aη 〉 , ξ, η ∈ D(A). (20)

If A is a quasi-Hermitian operator onH, then by definition there exists an unbounded
metric operator G such that

A†G = AG.

Corollary 4.9 Let T be the operator which transforms the strict Riesz-like basis
{ξn} into an orthonormal basis of Hilbert space H. The following statements are
equivalent.

(i) The sequence α = {αn} consists of real numbers.
(ii) Aα is quasi-Hermitian, with G = Q = T †T .
(iii) Bα is quasi-Hermitian, with G = R = T−1

(
T †

)−1
.

Proof (i) ⇒ (i i) Suppose first that {αn} ⊂ R, then according to (i i i) of Proposi-
tion 4.2 (Aα)† = Bα . Then we can rewrite the first equality in (19) as

QAα = (
Aα

)†
Q,

hence Aα is quasi-Hermitian, with G = Q.

1The author in [16] calls the operators involved G-pseudo-Hermitian operators, however they are
in fact quasi-Hermitian operators in the original sense of Dieudonné [17], even though unbounded.
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(i i) ⇒ (i) Let Aα be quasi-Hermitian, with G = Q then

Aα = Q−1
(
Aα

)†
Q = T−1(T †)−1AαT †T . (21)

Put H0 := T AαT−1. It is an easy computation to prove that

D
(
T AαT−1

) = D
(
(T †)−1

(
Aα

)†
T †

)
=

{
f ∈ H;

∞∑
n=1

|αn|2| 〈 f |en 〉 |2 < ∞
}

,

and from (21) we have

T AαT−1 = (T †)−1
(
Aα

)†
T †. (22)

Since D
(
(T †)−1 (Aα)† T †

) ⊆ D
((
T AαT−1

)†)
we can conclude that H0 is sym-

metric and its eigenvalues are {αn} ⊂ R.

(i) ⇔ (i i i) is analogous to (i) ⇔ (i i).

Other operators defined by a strict Riesz-like basis and its dual basis, more pre-
cisely lowering and raising operators, have been considered in [18] to factorize,
under opportune hypotheses, the operators Aα and Bα .
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