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Preventing the ail film instability in rotor-dynamics

F Sorge
DICGIM, Polytechnic School of Palermo University, 90128 — Palermo, Italy

francesco.sorge@unipa.it

Abstract. Horizontal rotor systems on lubricated journal bagsi may incur instability risks
depending on the load and the angular speed. The instability is associated with the asymmetry
of the stiffness matrix of the bearings around the equilibrium position, in like manner as the
internal hysteretic instability somehow, where some beneficial effect is indeed obtainable by an
anisotropic configuration of the support stiffness. Hence, the idea of the present analysis is to
check if similar advantages are also obtainable towards the oil film instability. The instability
thresholds are calculated by usual methods, such as the Routh criterion or the direct search for
the system eigenvalues. The results indicate that the rotor performances may be improved in
the range of low Sommerfeld numbers by softening the support stiffness in the vertical plane,
and hardening it on the horizontal one, up to the complete locking, though this advantage has
to be paid by rather lower instability thresholds for large Sommerfeld numbers. Nevertheless, a
"two-mode" arrangement is conceivable, with some vertical flexibility of the supports for large
journal eccentricity, and complete locking for small eccentricity. As another alternative, the
support anisotropy may be associated with the use of step bearings, whose particular
characteristic is to improve the stability for small eccentricities.

1. Introduction

The oil film journal bearings are often present in rotating machinery and lead to whirl instability on
increasing the rotational speed over certain critical levels, requiring the use of limit pads or adequate
damping sources of external origin. Several wide-ranging treatises deal with these and similar
problems in the literature on rotor-dynamics (see [1-2] for example). Moreover, a great number of
papers address the dynamical characteristics of lubricated journal bearings in order to formulate the
reaction forces by proper stiffness and damping matrices, in the hypothesis of small displacement from
the equilibrium configuration. A very comprehensive survey on this matter may be found in [3].

More recent trends of the research on the dynamics of journal bearings address new aspects that
have received increasing attention in the last decades, such as the nonlinear characteristics of the
mutual forces between the journals and the bearings in those dynamical conditions where the relative
displacement between the two sliding members of the pair, though within the admissible range, has a
non-negligible order of magnitude if compared with the clearance. For example, references [4-8] try to
identify nonlinear coefficients for the functional expression of the forces being exchanged through the
oil film, using various numerical or semi-analytical methods. The effects on the journal bearings
behaviour of neighbouring seals and couplings is also considered, e. g. in references [9] and [10]. All
these attempts address more comprehensive and general descriptions of the journal bearing operation,
extending to the field of the nonlinear behaviour. Nevertheless, the "conventional” linear approach still
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retains its great validity when addressing the first onset of the rotor whirl in connection with the
influence of all the other properties that may improve or aggravate the tendency to instability.

The oil film instability is somewhat similar to the hysteretic instability arising from the internal
friction forces, which may be considered proportional to the deformation velocities relative to a frame
rotating with the shaft. As such, the rotating damping induces skew-symmetric terms in the coefficient
matrix of the motion equations, which increase on increasing the angular speed, until some system
eigenvalue takes a positive real part [11]. As it is assessed since a long time that the release of shrink
fits and spacers is predominant in generating this effect [12], other approaches consider nonlinear
models of the internal friction, which are dealt with by procedures of the Krylov-Bogoliubov type,
involving solutions in terms of elliptic integrals [13]. Overall, it is found that some beneficial effect on
the critical threshold is obtainable by differentiating the stiffness properties of the supports in two
directions orthogonal to the shaft axis, which expedient is particularly successful when the rotor is
centred at the mid-span. Owing to the resemblance of the aspects associated with the internal damping
and with the oil film instability, the present analysis aims at ascertaining if the support stiffness
anisotropy may produce beneficial effects for the oil film instability as well, though the two
phenomena are fully different from each other. Anyhow, no damping source other than the bearing oil
films will be here considered, since the main goal is just to concentrate on the combined influence of
the journal bearings and the support elasticity.

2. Mathematical model

The rotor-shaft-suspension system is schematized in figure 1 and makes reference to the list of
symbols reported at the end of the paper. Zhgis of the fixed reference fran@xyzrefers to the
non-deformed configuration of the whole system, whence the shaft axis moves away due to the rotor
weight and the whirling motion (the shaft deflection is much magnified in the figure for clarity
reasons). Numbers 1 to 6 refer to the displacement variables, straight arrows indicate translation along
x andy and curved arrows rotation arouréndy. The system is broadly assumed asymmetric with
respect to the mid span, in the sense that the geometrical and mechanical properties may be different
on the one and the other side of the central section, with the consequence that cylindrical and conical
whirling motions are mutually coupled and must be analysed together. Nevertheless, the support
elasticity is assumed symmetric but anisotropic, whence the flexibility is the same in the left and right
supports, but may be different in the vertical and horizontal planes.@addkyy, (% ko) denote the

total stiffness between the bearings and the frame in the ptaaeslyz (see figure). As the axis is
horizontal, the gravitational forces imply some equilibrium deflection of the shaft and some
eccentricity of the journals with respect to the bearings in their contactless hydrodynamic suspension.
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All possible whirl motions arise around this equilibrium configuration.

The rotor is supposed rigid and weighty, without static or dynamic unbalance, and no mass is
ascribed to the shaft and to the supports. It is assumed that the two shaft branches have the same
flexural rigidity EI, where lis the areal moment of inertia of the cross section, and the Jeffcott bending
stiffnessk; = 48EI/k? is introduced, wherk is the distance between the bearings Indicating the rotor
mass withm, the acceleration of gravity with and the journal bearing clearance withthe mean
hydrodynamic stiffnesk, = 0.5xmg/cis defined and used to scale all stiffness parameters. Here the
weight mg is equal to the sum of the static loagare F on bearings 3 and 4.

The elastic forces of the shaft are correlated through thestiffness matriXs with the vectorsis
= {u1, Uz, W, W} andvs = {1, v, vs, va} " that collect the displacements of the rotor and the bearings,
in the bending planesz and yz respectively. Here, the symbals and v, represent the rotor tilt
rotations aroundg andx, u; andv; the displacement components of the rotor centre of massand
U4, Vs the displacement components of the journals (see figure 1). Multiplying the stiffnesskyatrix
by us or vs, one obtains the vectors of the elastic forces applied to the rotor and to the bearings. The
coefficientskg(i,j) of ks are calculable as the forces (or moments) required at pdmtgroduce the
unit displacement (or rotation) at pointand such that the displacements (or rotations) of all points
other thanj are zero. The bending flexibility of the two shaft branches is characterized by the
parameters:*/(3El) andl.%(3El), and the shear flexibility big/(YGA) andlJ/(¥GA), whereA is the
area of the cross section apdis the shear coefficienty(= 0.9 for the circular cross-section).
Introducing the length ratios E l3/ls, Ly = l4/ls, and putting

_ ko 3E1 \ 71 Ky 361 \ 71
53 = Te13 (1 + xGAlg) 54 = Tei3 (1 + xGAlﬁ) (1a,b)
the general form of the stiffness matrixdf the shaft is
S3 + Sy (l4 + t4)S4 - (l3 + t3)s3 —S3 —S4
k. = (l4 + t4)S4 - (lg + t3)S3 (lg + t3)254 + (l4 + t4)254 (l3 + t3)53 _(l4 + t4)54 (2)
s —Sg (I3 + t3)s3 S3 0
—54 —(ly +t4)sy 0 S4

The displacements of the journal centres are different from the bearing centres, due to the
eccentricity fluctuations during the time. In condition of equilibrium with no whirl, the displacements
are constant and such to produce the hydrodynamic mutual forces that balance the rotor weight on the
one hand and the elastic reaction forces of the supports on the other hand. Adding a whirl motion of
small amplitude, the changes of the hydrodynamic forces may be regarded as linear functions of the
relative displacements and velocities from the equilibrium configuration and these changes balance the
corresponding changes of the elastic forces exerted by the shaft and the supports. Moreover, the
changes of the elastic forces acting on the rotor balance the corresponding changes of the inertia force
system of the rotor itself. Due to the system linearity, we will simply use the symbasl v to
indicate the displacements (or rotations) of the rotor, of the journals and of the bearings from the
equilibrium position and will leave out the gravitational field and the static deflection. Including the
supports 5 and 6 too, the two complete displacement vectors on the bendingpkamdgz areu =
{1, W, Us, W, Us, Us} " @andv = {Vvi, \, V3, Vi, Vs, Ve} |, Whereu, = Ay, v = =A@, A andAg being the
rotation aroundy andx, and the minus sign in the definition wf permits using the same stiffness
matrix ks of the shaft for both bending planesaxalyz Hence, the total 12-dimensional displacement
Vector isw = {Us, t, Us, Ws, Us, Us, Vi, Vo, Vs, Va, V&, Vo) .

It is known that any relative displacement or velocity between the journal and the bearing along
either single directiorx ory, produces changes of the hydrodynamic forces in both directiandy.
Therefore, it is necessary to define on® 3tiffness matriXj,i and one 28 damping matrixcj, for
each journal bearing pair, wherestands for 3 or 4. The coefficients of these matrices are usually
obtained by applying small perturbations to the steady solutions of the complete Reynolds equation,
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where the time-variant terms are taken into consideration as well. This process is quite complex in
general and nearly always requires numerical integration throughout the lubricated region, for example
by the FEM method. Moreover, the results depend on the journal bearing type, on the bearing length,
on the shape of the feeding grooves and on all other characteristics.

Closed-form solutions may be obtained only for very special cases, for example the infinitely short
bearing, but they may also be used for other actual arrangements with a fair approximation. Here, the
coefficients for short bearings will be used as they are reported in reference [2]. They are valid for
journal and bearing parallel to each other, but are acceptable as well when there is some relative slope.

Each stiffness coefficient ofikis given by the product of the reference stiffriess 0.5xmg/c and
a dimensionless function of the equilibrium eccentrigityand each damping coefficient gfi is
given by the product dfn/w and a dimensionless function &f These eccentricities may be different
in the one and the other bearing due to the asymmetry of the loads. Minding the expression of the
modified Sommerfeld number of the single bearing [1]

pwDL (L 2

(e
Smodifiedi = g (7
l

C) ei\/16si2 +m2(1—¢?)

(i = 3or 4) (3)

whereu is the oil viscosityD andL are the bearing diameter and length, Bnid the static load, one
observes that, even for equal bearings, the static equilibrium impliessamg(ls + ts)/ls andFs =
mg(lz + t3)/ls, whence Snodified, s/ Smodified.s = (3 + t3)/(la + ts4). Fixing this ratio, one of the two
eccentricities, e. g&, may be calculated by trial and error as a function of the ethasing equation
(3). Then, putting, for = 3 and 4H; = [16&2 + 72(1 — £)]*?, the matricek, andcpi may be written
in the form

Kb =
| 2 67 + 122 - )] — —_[16s} — (1 — £2)?] |
(25)] ae L N L |
= ky (—
m -1
I [—g 1= e? [3262(1 + €?) + m2(1 — e2)(1 + 2¢2)] mmam +e?) +m2(1— e+ zsg)]J
ity & i i
(4a,b)
[2my1—e? 5 ) 8 . , 1
_kh(ZFi)|—SiHi3 [7%(1 + 2¢) — 16¢7] H_f[16gi —m2(1+ 2&e7)] |
Cpi =7 mg/ | 8 2 5 5 2w 5 ) al
I m[16si —?(1 + 2¢f)] —sH3 - 82[488i+7r (1—si)]J
L i1 —_

Multiplying the matrixkjps by the relative displacement vectduz — us, vs — vs} T, multiplying the
matrix Gps by the relative velocity vectofii; — s, 73 — ¥s }', and summing, one obtains the vector
of the hydrodynamic forces applied to the bearing 5. Likewise, kgin@j4 and the vector§us — us,

Va — Vg} ' and {1, — 1, U4 — U6 }', ONe gets the forces on the bearing 6. These fdi@esce the
elastic reactions of the massless supports on the bearing 5 and 6 respectively.

The motion equations are made dimensionless defining the dimensionless coukitendaitie
displacement vectaw where, using the clearances reference deflection, the coefficientd/dfare
indicated with capital letters and are givenUyy= ui/c, Vi = v/c for i Z 2 (displacement), and by =
uldc, Vi = vldc for i = 2 (tilt). Capital letters are used for all other dimensionless coefficients, putting
Tz =talls, Ta = tdlls, S = s/kn (i = 3,4), Kox = Ko/Kn, Kbty = Koty/kn, Kipi(r,S) = Kipi(r,S)/Kn, Cini(r,s) =
Ciwi(r,S) aukn, while the dimensionless moments of inertia of the rotor are indicatdd (oyametral)
and J, (axial), scaling the physical inertia moments rhl?>. The angular time variabl@ = «t is
introduced and the differentiation with respecttis indicated with primes, so thdf...)/dt = «X...)",

etc. Moreover, the reference circular frequeasy 4/ k;,/m and the dimensionless angular spéed
w/ay are also defined.
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After introducing the above dimensionless quantities, dividing the physical force equations and the
physical moment equations kc and kicls, respectively, the twelve dimensionless equations of
motion can be collected into the matrix form:

KW + CW' + 22MW" + 02GW’ = {0} (5)

Here,M andG are the massive and the gyroscopic matrices, the first of which is diagonal with the
coefficients (1Jq, O, O, 0, 0, 1J4, O, O, O, 0) in the diagonal, while the second has its only non-zero
coefficients Ja and — Ja in the positions (2,8) and (8,2) respectively. Moreover, notice that the
denominator w appearing in the expression ofi cancels with the factor arising from the
differentiation with respect to time. The total X2 dimensionless matricd§ and C may be
partitioned as follows into @<matrices

K K C C
K — [ XX Xy C — [ XX Xy

Kyx Ky C
Actually, let us associate the values (1,1), (2,2), (1,2), (2,1) to the indigg®f(the coefficients

Kipa(r,s) and Kjua(r,s) in correspondence of the pairs of subscriptsyy, xy, yx respectively of
Equations (6). Then, introducing the dummy subscripts maedher indicating or y, we can write

o Cyy (6a,b)

Kpp=
St+S (Lat+T2)Si—(La+T3)Ss -S - 0 0
(La+Ta)S—(Ls+To)Ss (La+Ta)2Se+(LatTa)2S:  (Ls+To)Ss  —(La+Ta)S: 0 0
_ -3 (Ls+T3)Ss S 0 0.%Kbp 0
- -s, (LTRSS 0 S 0 0.5
0 0 Kip3(r,s) 0 —Kijb3(r,s)— 0.5Kbip 0
0 0 0 Kiba(r,s) 0 —Kiba(r,s)— 0.5Kbfp
(7a,b)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
pa= 0 0 0 0 0 0
0 0 Kipa(r,s) 0 —Kio3(r,s) 0
0 0 0 Kiba(r,s) 0 —Kipa(r,s)

Moreover,Cpp and Cpq have null coefficients in the first four rows and their fifth and sixth rows are
similar to Ky, andK pq, save that all coefficientsjysora are replaced b€inzora andKey does no longer
appear.

If the rotor-shaft-bearing system is symmetric with respect to the mid-span, ohethés= L4+
Ts=05S% =S =5 Kpa(r,9) = Kipa(r,s) = Kip(r,s), Cipa(r,s) = Cipa(r,s) = Cip(r,s), and the differential
system (5) splits into two subsystems of 6 equations in 6 unknowns. One system refers to the
cylindrical motions and the other to the conical motions, which are indeed uncoupled in the symmetric
case. Actually, considering the twelve equations contained in the matrix equation (5), summing the
third and fourth equations, summing the fifth and sixth equations, summing the ninth and tenth
equations, summing the eleventh and twelfth equations, associating these sums to the first and seventh
equations and introducing the translational displaceménts(Us + U4)/2, Vi = (V3 + Va)/2, Uy = (Us
+ Us)/2, Vib = (V5 + V6)/2 of the journals and the bearings, the sixth order differential system for the six
cylindrical unknowns, W Uy, Uw, Vi, V4, Vi, IS
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020" +28S(U; —Uy) =0

Ko Uy — 2S(Uy — Uy) = 0

Kip(LD(Uy — Uyy) + Cp(LD(U'y — U'wy) + Kip (1,2) (Vg — Vi) + Cp(L2)(V'g — V') — -
02" +2S(Va —Vy) =0

KoiyVip — 2S(V4 = V) =0

K
Kip(2,1)(Ug — Uy,) + Cp2D(U'y — U'wy) + Kip (2,2) (Vg — Vi) + Cp(2.2) (V!4 = V') — %th =0

Then, subtracting the third from the fourth equation, subtracting the fifth from the sixth equation,
subtracting the ninth from the tenth equation, subtracting the eleventh from the twelfth equation,
associating these difference to the second and eighth equations and introducing the tstatituhs

= U3)/2, Vi = (Va = V3)/2, U, = (Us — Us)/2, Vi, = (V6 — V5)/2 of the lines connecting the journal and
bearing, the sixth order system for the six conical unknowasUk) Ur, Va, Vij, Vib, is

S
Ja22U", + J.0%V', + EU2 —SU;=0

Ko Urp — SUs + 28U = 0

K
Kip(1L,D)(Uyj — Upp) + Cp(LD(U'5 — U'y) + Kip (1L2)(Vij — Vin) + Cip (L) (V' = V') — %Urb

=0
s 9)
Ja2?V", — JL0?U', + EV2 -SVj=0
Koy Vb — SV + 25V = 0
K
Kip(2,)(Uyj — Upp) + Cip(2,1D)(U'y5 — U'yp) + Kip(2,2)(Vij — Vin) + Cip(2,2) (V' = V') — %Vrb
=0

If the shaft is perfectly rigid (i. e. Ky — ), the coefficient§ = s/k, of the stiffness matrix (7a)
diverge by equations (1), but should we divide the differential system (%), ltige first, second,
seventh and eight equations would reduce to the only terms containing the coeffidikentd the
stiffness matrixK pp (7a) and would permit solving fag: andU. as two functions obls andUs, and
for V1 andVz as two functions o¥/; andV.. Proceeding like that, we get in practice the result that the
displacements of the centres of the rotor and the bearings conform to the laws of rigid motion and may
eliminate the four state variablek, U,, Vi andV.. Actually, minding that.s+ Tz + La+ Ta = 1, we
have

Up = (Ly + TUz + (L3 + T3)U, U, =Uy—Us
Vi =Ly +TOVs + (L3 + T3V, Vo=Vy—V3

and replacing these expressions into equations (3-7), it is observable that, though the dimensionless
stiffness coefficient& and$S, of the shaft diverge, the sums of the corresponding terms appear in the
indeterminate form & oo in the differential system (5). Nevertheless, summing the first, third and
fourth of equations (5), and then summing the seventh, ninth and tenth equations, the indeterminate
terms cancel each other and one obtains the translational equilibrium equations of the whole rotor-
bearing system. Likewise, subtracting the third equation multiplieg-bks from the second one, then
summing the fourth one multiplied by+T4, and proceeding like that with the seventh, ninth and tenth

(10a,b,c,d)
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equations, one obtains the rotational equilibrium equations. The fifth, sixth, eleventh and twelfth
equations of the system (5) remain unchanged. Summing up, we have now arrive at a reduced
differential system of 8 equations in the 8 state varialiles{a, Us, Us, V5, Vs, Vs, Ve}:

0N2[(Ly + THU"3 + (L3 + T3)U",] + 0.5Kp¢, (Us + Ug) = 0
D2Jq(U"y = U"3) + 0%],(V'y = V'3) + 0.5Kpge[(Ly + T)Us — (Ls + T5)Us] = 0
Kjp3(1,1)(Us — Us) + Cip3(1,1)(U'3 — U's) + Kjp3(1,2) (V53 — V5) + Cip3 (1,2) (V'3 = V'5)

— 0.5Kp Us = 0
Kipa (1,1 (U4 — Ug) + Cipa(1L,D)(U'y — U'g) + Kjpa(1,2) (Vg — Vi) + Cjpa(1,2)(V'y = V'¢)
— 0.5KpUg = 0
(11)

.(22[(L4 + T4)V"3 + (L3 + Tg)V"4] + OSbey(VS + V6) =0
D q(V"y = V"3) = 022];(U'y — U'3) + 0.5Kpgy [(Ly + TV — (L3 + T3)Vs] = 0
Kip3(2,1)(Uz — Us) + Cjp3(2,1)(U’'3 — U's) + Kjp3(2,2) (V5 — V5) + Cjp3(2,2) (V'3 = V's)

- O.SbeyV5 =0
Kipa(2,1)(Us — Ug) + Cjpa(2,1)(U's — U'6) + Kjpa(2,2) (Vg — V) + Cipa(2,2) (V4 — V')
- O.SbeyV6 =0

In the further hypothesis that the rotor-shaft-bearing system is symmetric with respect to the mid-
span, the differential system (11) splits into two subsystems of 4 equations in 4 unknowns, which
describe the cylindrical and conical motions. Summing the third and fourth of equations (11),
summing the seventh and eighth equations, associating these sums to the first and fifth equations
respectively, minding equations (10a) and (10c) and putlirg (Us + Ug)/2, Vi = (V5 + Ve)/2, the
sixth order cylindrical system is
020" + Kpe Uy = 0
K, (1,1 (U = Up) + Gp(L, DU’y = U') + K (1,2) (V; = Vo) + Cp(1,2)(V'y = V') — 0.5Kp, Uy = 0
22V") + KpgyVe = 0

Kjp(2,1)(U; = Up) + CpR,1DU'y = U'Y) + K (2,2)(V;, = V) + Cjp(2,2)(V'y = V') — 0.5Kp,¢V; = 0

(12)

Subtracting the third from the fourth of equations (11), subtracting the seventh from the eighth
equation, associating these difference to the second and sixth equations respectively, minding
equations (10b) and (10d) and puttingsUJs — Us, Vi = Vs — V5, the sixth order conical system is

024U, + 02],V'5 + 0.25Kp5 Uy = 0
K, (LU, — Up) + G (L DU, = U'Y) + Kjp (1,2)(V, = V) + G (1L,2) (V' = V') — 0.5Kpe Uy = 0
024V, — 02],U", + 0.25Kpg, Vi = 0
Kip (2,1 (U — Up) + Cip U, — U') + Kip 2,2) (Vs = Vo) + Cp(2.2) (V' = V'y) — 0.5Kpg Vi = 0

(13)

Notice that in the case of uncoupling, the cylindrical modes are symmetric and the conical ones are
anti symmetric, because the characteristic roots of each motion type are not such for the other type,
involving the trivial solution for the latter.

3. Reaults

The dynamical behaviour of a rigid and symmetric rotor-shaft set is described by the differential
systems (12) and (13), for the cylindrical and conical motions respectively. The latter ones are more
stable in general, as they mostly grow up above higher threshold speeds of the rotor, so that the
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cylindrical motions define the limits of the stable running range for most bearing eccentricities and our

focus will be here on these motions mainly. The order of the differential system (12) is just six and the

stability analysis is simple for this case, where closed-form solutions are attainable for the eigenvalue

problem. Yet, these simple results elucidate quite well the effects of the support anisotropy on the

stability of the machine and provide realistic clues about the conduct of more complex systems.
Assume solutions of the type ex{#/) where /1 is a dimensionless characteristic number,

obtained by scaling the actual eigenvaluef the time domain byw, so that16/ Q2 = At. Replacing

these solutions into system (12), a sixth-degree characteristic equatiomay be extracted, whose

roots must have negative real parts for stability. Therefore, the instability thresholds correspond to

pairs of pure imaginary rootgl = + i/, which may be calculated, as functions of the angular s@eed

by separately cancelling the real and imaginary parts of the characteristic equation. KRutting

Kib(1,1)Cib(2,2) + Kn(2,2)Cib(1,1) - Kin(1,2)Cip(2,1) —Kin(2,1)Cin(1,2) for brevity, we get

bebefyF4 - 2[beijb (2:2) (bey - Fz) + beijb(l'l) (bex - FZ)]FZ
I"Z

4oty — ) Koy — 1) |det(iy) - det(Cib)] —0 (real)

(14a,b)

{(2Kue + Kot Cp(2.2) + Koy Cp(1,1)) I'*

, 2ir
— (25 (Kot + Koty) + Kooy (6 (11) + 62| 12 + 2Kckoekioy } (£

=0 (imaginary)

Varying the journal bearing eccentricigyfrom 0O to 1, the coefficients of the matridég andCj
may be calculated, e. g. using equations (4) for the short bearing case, otherwise by numerical
integration of the perturbed Reynolds equation, and then, omitting the non-zero facfdi(32i
equation (14b) yields two solution&;? and /2%, which are acceptable if positive. Replacing the one
and the other solution into Equation (14a), it is possible to solv&fothus obtaining two values of
the angular speed, the lowest of which gives the actual instability threshold. Hence, it is possible to
trace a stability map on the plang, (€) and report on this map also the frequencies the incipient
whirling motions.

As may be expected, the shapes of the instability curves change continuously on varying the
stiffness parameters of the supports, &d K. Yet, one of these parameters may be held fixed, e. g.
the stiffnesKpi in the horizontal plane, for which a rather large value is advisable in order that the
supports are not too much loose, whereas the oitagr,may be varied. In practice, it is possible to
bring into focus only two extreme casé&y = Ko (tight isotropic stiffness) anBuy = Kofy,minimum
(flexible supports in the vertical plane). The shapes of the diagrams for the intermediate configurations
may be guessed somehow by supposing to deform either of the two extreme plots continuously
towards the other, as described below.

Figure 2 a,b shows the stability maps for a rigid and symmetric rotor-shaft system held up by more
or less flexible supports. The critical curves are traced in this and in the following figures as functions
of the common journal eccentricityfor symmetric systems, or else &fin the case of asymmetry,
whose ranges are between 0 and 1. This choice permits giving a general description of the system
behaviour, released from the values of the other bearing parameters, such as the viscosity, the length,
etc., which would be specifically involved expressing the results as functions e. g. of the load.
Realistic values were ascribed to the geometrical and physical parameters, as reported in the captions.
The ratiosr/ls and ¢ + t4)/ls were assigned to specify the main sizes of the rotor and calculate the
dimensionless moments of inertia, making the assumption of an ideal cylindrical shape,Js& that
(19?2 andJq = (r/l)%4 + (3 + t2)?(12l2). The diagrams refer to two distinct values of the vertical
stiffness Kyy and contain also the threshold curve of the isotropic stiff case for a comparison purpose.
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Figure 2 a,b. Dimensionless critical spee@. and frequency «i, VS. bearing eccentricity for €
rigid symmetric rotor-shaft system. Datag H10.125, (3+t4)/Is= 0.5, | = t, Kok = 10, &0 = &3=¢

a) Comparison between different vertical stiffness of supposig=K and Ky = 10 (= Ki)

b) Comparison between different vertical stiffness of supposig=KL.04 and Ky = 10 (= K)
Signs + and- in the brackets refer to the two roots of equation (14b) (+ square root of discriminant).

For Koty = Kot = Kot (iSotropic stiff case) equation (14b) reduces to
(Kpe—T'?) [ZKkC(be —I'?) — Kpl? (C]-b(l,l) +Cjp (2,2))] =0 whose roots are

15a,b,c
2Ky cKpf md PP =K, ( )

rz=
2Kiee + Kor (€ (1) + Cp(2.2))
These two roots may be found to correspond to the minus sign (15b) and plus sign (15c) in front of the
square root of the discriminant in the solution formula of the quadratic equation (14b).
On the other hand, equation (14a) reduces to
K I'? Ky
4(Kps — 2% 2(Kps—T'?)

r__t.
2%~ det(cy)

and replacing the second root (15c¢), one sees that the'va@idiverges. Replacing the first root (15b)
on the contrary// s finite and one may calculate the critical angular sg2ed

Letting Kus — o0, the second root (15c) diverges, whereas the first one (15b) tendaAcCi2i,1)
+ Cip(2,2)], whence equation (16) leads to

det(k;,) + (K1) + Ky, (2,2))] (16)
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0? 2det(Cy,)
(C. (1,1) + ¢ (2,2)) det(K;,) (17)
jb jb jb K
K + ke ) - (Kjb(1,1) + K]-b(Z,Z))

(Cib(l,l) +C(22)

Figures 2 a and b show the results by equations (14-17) depending on the common eceasftricity
the journals and point out that, f8ky = Kok = Kor and large values dfw: (= 10 in Figure 2), the
critical speed diverges where is close to 0.75. Actually, a vertical asymptote appears for each
critical curve of all other cases, either with isotropic or anisotropic support stiffness, and its position
may be located equating to zero the rafié/2 ? in equation (14a), eliminating thef? between
equations (14a) and (14b) and solving the resulting equatianifgisome trial and error procedure.

Imagining to decrease the vertical stiffn&sg from the maximum value, which is assumed equal
to Kur, towards the value of maximum flexibilit§usy,minimum, the two curves of the critical angular
speed corresponding to the roots with the plus and minus signs of the quadratic equation (14b) might
be seen changing their shape gradually and while the former might be seen descending and moving
towards the higher eccentricities (plus sign), the latter might be seen moving towards the lower
eccentricities (minus sign). In practice, the optimal vertical flexibility of the supports, ls@ymhimum,
could be chosen when their vertical asymptotes nearly come to coincide. This trend is visible
comparing figure 2a (intermediate flexibility) with 2b (maximum flexibility). The former does not
offer benefits in comparison with the stiff supports (compare the igigts 10 ) andKypy= 2 (=) for
Qir), Whereas the latter appears convenient when operating in the range of the largest eccentricities,
that is for large loads and low rotational speeds (compare theKphpts10 ) andKpy = 1.04 ) for
Quit). This behaviour may be conveniently exploited by loosening the support vertical stiffness a little
for large loads and low speeds, and tightening it in the complementary range of the low loads and
large speeds. The critical speeds associated with the conical motions show up only for very high
eccentricities, which are undesirable however due to the danger of possible contacts between the
journal and the bearing.

The typical trend of the critical curves of the rigid-symmetric rotor-shaft system recurs in practice
without conceptual differences for all other more complex cases, where for example the shaft is
flexible and the rotor is not centred. Yet, the full differential system (5) of the twelfth order must now
be used, inserting the matrices (6) and (7), and the solution must be searched by numerical procedures.

Putting the solution of equation (5) in the fovkh = Weexp(18/ ©), the characteristic determinant
yields a 12 degree algebraic equatidf(/) = b2 + b1 A + ... + b1/l + b = 0. The constant term
is given bybi, = detK), while the other coefficients may be calculated by a sort of "collocation”
method, choosing six distinct numberseng. n =1, 2, 3, 4, 5, 6, and writing

bon'2+ byn't + ... + bon? + biun =— de(K) + E(n)
bon2—bin't+ ... + bon? - bin = —detK) + E(-n)

Summing and subtracting the 6 equations (18a) and the 6 equations (18b), one gets 6vo 6
algebraic systems, for the even and odd coefficients separately, and the computational time for
calculating the as thus much reduced comparing with the complete 12 system:

(18a,b)

_ E(m)+E(=n)
boni2+ bpnt®+ .. + hon? = ~ det(K) +=—"———"

Anl+ kyn? + ... +bun :w (19a,b)
where the right hands are to be considered as known quantities because the deteEmnants
E(—n) are easily calculable by common numerical routines.

For each value of, the stability may be checked starting from a tentative critical sgged
increasing it by steps, calculating the coefficients of the characteristic polynomial by means of the
described procedure and applying the Routh method until an eigenvalue with positive real part is
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Figure 3 a,b. Dimensionless critical spee@.. and frequency . vS. bearing eccentricitg. Cast
of flexible shaft and symmetry or asymmetry of the syst€wlindrical and conical motionare
detected together. Data:stH 0.125, (s+t4)/ls = 0.5, | = t, ki/kn = 1, Koix = 10, 3EI(YGAI?) = 0.005

a) Symmetric systemif+ts)/ls = 0.5, (4+t4)/ls=0.5,&4=&3=¢€

b) Asymmetric systemi{+ts)/ls = 0.3, (at+ts)/ls = 0.7,&4 = £4(&3) # £3 by equation (3).
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Figure4 a,b. Step journal bearing: a) cross-section, b) top and bottom pads (from [14]). Case study:

L/D =1 h/c=3 la/L = 0.75 L/L = 0.25 & =125° Re parc/u =210

found. Then, after fixing the paig,(©Q), the variableA is replaced by i/ in E(A) and/ is varied as

well by trial and error until the real and imaginary partsEGf i/) approach zero together with
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sufficient accuracy. Thus, also the critical frequencies are obtained.

The general approach permits studying the stability conduct of asymmetric system, where the
Sommerfeld numbers of the two bearings are proportional to their distances from the mass centre of
the rotor, as previously said, and the matri€¢gsare different. Yet, the results appear similar to the
symmetric rigid rotor analysed before, with the same favourable effect of the vertical compliance of
the supports in the range of large eccentricities and of the stiff supports for low eccentricity.

Figures 3 a and b report the threshold curves for the general case of a flexible shaft, in the
symmetric and asymmetric configurations, where the said properties are clearly shown, though the
differences may appear softened due to logarithmic scale. It is interesting that the influence of the
anisotropy is negligibly affected by the increase of the asymmetry, differently from the stabilization of
the hysteretic shafts, where it decays remarkably on increasing the asymmetry [13]. The results of
figure 3 a for the symmetric case agree exactly with those obtainable by applying the same procedure
separately to the'6degree characteristic equations of the uncoupled differential systems (8) and (9).
Moreover, imposing a very large value to the r&ii&,, to simulate a rigid shaft, critical curves are
obtainable that are identical to figure 2.

Apart from the two-mode operation, realized by tightening and loosening the vertical stiffness for
the low and high eccentricities respectively, another strategy could consist in using soft vertical

100 -
o A Key=1C Kbty = 100 €)
@ cylindrical Koy =10 (+) — e
A conical "1.,- = -.‘
o Kby = 10
10 'z‘l-_L" e )
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Figure 5 a,b. Dimensionless critical speed vs. bearing eccentricity for a rigid and symmetrie rotor
shaft system. Data: g 0.125, s+t4)/ls= 0.5, =, Kok = 100,24 = &= ¢

a) Comparison between different vertical stiffness of suppoiig=KL0 and Iy, = 100 (= K)

b) Comparison between different vertical stiffness of supporig=KL and Ky = 100 (= Kr)

Signs + and- inside brackets refer to the two roots of equation (14b) (+ square root of discriminant).
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stiffness and journal bearing arrangements exhibiting a better response than the plain bearings for low
eccentricities, in order to combine the advantages of the two solutions. For example figure 4, taken
from reference [14], shows the scheme of a step journal bearing, also called pressure-dam bearing,
where the step of the top pad produces a stabilizing load increase when the bearing speed increases.

Here, this bearing type is combined with the differential stiffness of the supports. The advantages
achievable can be observed in the figures 5 a and b, which were obtained similarly to the plain bearing
case, but replacing the matrices of equations (4a,b) with the stiffness and damping coefficients taken
from the numerical results of figures 5, 8 and 9 of [14]. Fixing a large stiffness level of the supports in
the horizontal plane and supposing to decrease the vertical stiffness gradually from that level, the trend
of the threshold curves is similar to the plain bearing case, but a remarkable growth of the anisotropic
critical speed is observable on decreasing the eccentricity.

4. Conclusions

1) Lubricated journal bearings are widely used in rotating machine, but the carrying capacity of the
oil film joins up with possible instability conditions on increasing the rotational speed. From the
mathematical point of view, this trend is associated with the asymmetry of the stiffness matrix of
the journal bearings.

Some advantages may be obtained by differentiating the support stiffness in the horizontal and
vertical planes. The results indicate appreciable benefits in the range of large eccentricities (low
speeds and large loads), whereas the instability thresholds worsen a little for large speeds and low
loads.

The drawback mentioned in the previous point 2 may be remedied by conceiving a two-mode
operation, where the supports are tight in both the horizontal and vertical directions for low
bearing eccentricities, and somewhat loosened in the vertical direction for high eccentricities.
Otherwise, it is possible to combine the favourable properties of step journal bearings for low
eccentricities with the differential stiffness of the support and avoid the two-mode working.

2)

3)

4)

List of symbols
bi dimensionless coefficients of characteristic equatigh)E0 (=0, 1, 2, ..., 12)
c journal bearing clearance [

Cibi \ Cjp physical damping matrix of journal bearing=(3 or 4) \ symmetric case [Ns/m]
C total dimensionless damping matrix

Civi = aCpilkn \ Cjp dimensionless damping matrix of journal bearirigs § or 4) \ symmetric case
Fi static load on bearing € 3 or 4) [N]

G dimensionless gyroscopic matrix

Ja. andJqy axial and diametral moment of inertia of rotor, scaled ky ml

Kofi total stiffness between bearings and framex ory on planes xz or ygiN/m]

kn = 0.5xmg/c hydrodynamic reference stiffness [N/m]

k; = 48EI/¢3 stiffness of Jeffcott rotor [N/m]

Kibi \ Kib physical stiffness matrix of journals bearinig=(3 or4) \ symmetric case [N/m]
Ks shaft stiffness matrix [N/m, N, Nm], [force, moments]/[displacements, rotations]
K total dimensionless stiffness matrix

Kofi = Kori /kn total dimensionless stiffness between bearings and friamedr y)

Kini = Kibi/kn\ Kjp  dimensionless stiffness matrix of journal bearing 8 or 4) \ symmetric case
Kie dimensionless parametef{parag. of Sect. 3)

Is, I3, I \ Li=1li/ls lengths of shaft and shaft branches [m] \ dimensionless lengths

m rotor mass [kq]

M dimensionless mass matrix

Shodified modified Sommerfeld number, defined by equation (3)

s \ S=s/kn stiffness parameters of shaft branches [N/m] \ dimensionless parameters
t3, 4 \ Ti=tills distances of rotor mass centre from rotor ends [m] \ dimensionless distances
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u,v,w displacement vectors of rotor, journals and bearin§péBag. of Sect. 2) [m, rad)]

Us, Vs displacement vectors of rotor and journalé farag. of Sect. 2) [m, rad]

uVv,w dimensionless displacement vectorsf{p@rag. of Sect. 2)

Uro, Vib, Usj, Vy dimensionless displacements of bearings and journals for conical motions

Utb, Vib, Uy, Vi dimensionless displacements of bearings and journals for cylindrical motions

r dimensionless characteristic number for pure imaginary root69)f-£0

& dimensionless eccentricity of journal bearinigs 8, 4)

6=t dimensionless time variable

ANAN=Aa characteristic number [1/s] \ dimensionless characteristic number

A9, Ay tilt angles of rotor aroundand y

w rotor angular speed [1/s]

ab = [ky/m reference circular frequency [1/s]

Q= wlw dimensionless angular speed
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