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Abstract. Metastability is a generic feature of many nonlinear systems, and the problem
of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical
mechanics. The investigation of noise-induced phenomena in far from equilibrium systems is
one of the approaches used to understand the behaviour of physical and biological complex
systems. The enhancement of the lifetime of metastable states through the noise enhanced
stability effect and the role played by the resonant activation phenomenon will be discussed in
models of interdisciplinary physics: (i) polymer translocation dynamics; (ii) transient regime of
FitzHugh-Nagumo model; (iii) market stability in a nonlinear Heston model; (iv) dynamics of
Josephson junctions; (v) metastability in a quantum bistable system.

1. Introduction

Relaxation in many natural systems proceeds through metastable states, often observed in
condensed matter physics, in cosmology, biology and high-energy physics. In spite of such
ubiquity, the microscopic understanding of metastability still raises fundamental questions. This
is because we are dealing with a typical out of equilibrium statistical dynamical phenomenon.
A physical quantity which characterize the stability of a metastable state is the mean first
passage time, which gives a measure of the lifetime of the metastable state. The dependence
of the lifetime on the noise intensity for metastable and unstable systems was revealed to have
resonance character. Typical examples are the resonant activation (RA) phenomenon [1]-[3] and
the noise enhanced stability (NES) [4]. This resonance-like phenomenon shows that the noise
can modify the stability of the system in a counterintuitive way: the system remains in the
metastable state for a longer time than in the deterministic case [4]-[12]. In this paper we will
shortly review the enhancement of the lifetime of metastable states and the role played by the
resonant activation phenomenon in models of interdisciplinary physics: (i) polymer translocation
dynamics; (ii) transient regime of FitzHugh-Nagumo model; (iii) market stability in a nonlinear
Heston model; (iv) dynamics of Josephson junctions; (v) metastability in a quantum bistable
system.
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2. Polymer translocation dynamics

The study of the dynamics of translocation of individual polymers across nanometer-scale pores
is essential to help the understanding of how biological systems work. In a fundamental work on
polymer translocation [13], it was demonstrated that the crossing time of single-stranded DNA
molecules, forced by an applied electric field to move through a 2.6 — nm diameter ion channel,
linearly increases with the polymer length. By using a similar experimental setup, Meller et
al. [14] have also shown that the time-length relationship depends on specific interactions between
the DNA and the nanopore walls. Very interesting experimental results by Han et al. [15] show
longer crossing times for shorter DN A molecules, suggesting the existence of a quasi-equilibrium
state of the polymer after being trapped for a time. This work suggests that, in same cases,
a special condition for the polymer travelling across a nanometer-scale channel can be realized
to make it temporarily trapped into a metastable state. In this framework, our investigations
on the dynamics of polymers under the influence of a noisy environment show the presence of
the noise enhanced stability (NES) effect [4]-[12] for short polymers escaping from a potential
barrier. We also show how thermal fluctuations influence the motion of short chain molecules,
by inducing two different regimes of translocation in the transport dynamics, depending on the
length of the polymer.

2.1. Model and dynamics simulations

The polymer is modeled by a semi-flexible chain of N beads connected by harmonic springs
according the Rouse model [16]. The van der Waals interactions between all beads are kept
into account by introducing a Lennard-Jones potential. We neglect any hydrodynamic effect
and volume effect. In order to confer a suitable stiffness to the chain, a bending recoil torque is
included in the model, with a rest angle 6y = 0 between two consecutive bonds. The potential
energy of the modeled chain molecule is

U = Unar + UBend + ULy, (1)

where Ug,r = Zf\;—ll K. (rii+1 — d)? represents the energy required to extend the bond between
two consecutive beads, Ugeng = sz-\gl Ko(0;i—141 — 6o)? the work required to bend the chain,

12 6
and ULy = 4er; Ei’j(#j) (%) — (%) ] the Lennard-Jones potential. Here K; is the elastic
constant, r;; the distance between particles ¢ and j, Ky the bending modulus, €15 the LJ energy
depth and ¢ the monomer diameter. The polymer motion is modeled in a two-dimensional

domain as a stochastic process of diffusion in the presence of a potential barrier having the form
Unxi(z) = az® — bz, (2)

with parameters a = 3-1073 and b = 2-10~%. The drift of the i*® monomer of the chain molecule
is described by the following overdamped Langevin equations

dz oU  OUgxi(zx

Y _87_%7;()_{_ VD& (1), (3)
d ou

i = gyt VDG, (4)

where U is the interaction potential, defined by Eq. (1), ,(t) and &,(t) are white Gaussian noise
modeling the temperature fluctuations, with the usual statistical properties, namely (£x(¢)) = 0
and (§x(t)&i(t+7)) = Dd)6(7) for (k,1 = z,y) and v is the friction coefficient. In this work we
set the v parameter equal to one. Our simulation time % is scaled with the friction parameter
as ts = t/7, therefore we use arbitrary units for all computed translocation times. We set both
K, and Ky equal to 10, €15 equal to 0.1 and o equal to 3, in arbitrary units. The inter-beads
rest length d is chosen equal to 5, while the number of monomers N ranges from 2 to 40 units.
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2.2. Results and conclusions

First results concern the case of harmonic potential forces Upy,, the cubic potential of Eq. (2)
and initial unstable conditions. We find the noise enhanced stability (NES) effect for a short
polymer escaping from a potential barrier [16]. In Fig. 1a we show how the MFPT changes with
the noise intensity at different polymer lengths. Assuming identical unstable initial conditions,
we find that the NES effect is more relevant for shorter chains (lower number of monomers). The
maximum of the MFPT rapidly decreases at increasing polymer length and its position shifts
towards higher levels of noise. The dynamics of shorter chains is much more similar to that of
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Figure 1. (a) Mean first passage time vs. noise intensity for five different numbers N of monomers in
the polymer. The initial unstable condition zy = 1.3 is the same for all the monomers. The dashed line
indicate the shift of the maximum of the MFPT. (b) Mean first passage time (blue line), median of the
crossing time distribution (red line) and most probable translocation time (green line) vs. polymer length
(number of beads) for noise intensity D = 0.3.

a single particle escaping from the potential well. As a consequence shorter chains show more
pronounced NES effect, with higher maximum values of the MFPT. On the other hand, longer
polymers need higher noise intensity values to move the center of mass back into the metastable
state, starting from initial unstable states.

Now we consider all the potential energies reported in Eq. (1) and the polymer initially placed
in the metastable state [17]. The different dynamics of translocation of short and long polymers
is investigated as a function of the noise intensity. The results are reported in Fig. 1b. We report
the MFPT, the median and the mode (7;,) of the polymer translocation time distribution as a
function of the chain length, for a noise intensity D = 0.3. Two different regimes of translocation
are clearly present: for NV < 15 all characteristic times show a maximum at N ~ 7, while for
N > 15 a common plateau is observed. This maximum is more evident in the MFPT than in
Tp, but the height of both peaks is rapidly reduced when the noise intensity increases. This
maximum occurs at a polymer length corresponding to the persistence length of the chain Ly,
which represents the length over which the correlations in the direction of the tangent to the
polymer are lost. Experimental and theoretical studies on the translocation time, taken by a
chain molecule to cross a membrane, show a strong dependence of this time with the length of
the polymer. In this work we propose a possible reason of this dependence. After been trapped
for a while, the molecule leaves the top of the barrier exhibiting an enhancement of the mean
crossing time as a function of the temperature fluctuations. This is a typical signature of the
presence of a metastable state in the system investigated. Our simulations demonstrate that
longer polymers can travel the same channel distance faster than shorter chains. This result is in
agreement with the experimental measurements of DNA mobility carried out by Han et al. [15],
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but a deeper analysis on the role of initial conditions on the translocation time is necessary.

3. FitzHugh-Nagumo model with external noise

In this section we study the dynamics of a neuron considered as an open system perturbed
by periodic deterministic forcing and random fluctuations of environmental parameters. We
analyze the stochastic dynamics of a neuron described by the FitzHugh-Nagumo (FHN) model

3

Tz = x—%—y—l—Asin(wt—i—wo)—i—Cz, (5)
gy = elz+1), (6)

where z is the membrane potential, characterized by a fast dynamics, and y is the recovery
variable, which exhibits a slow dynamics responsible for the refractory behaviour of the neuron.
In Eq. (5), A and w are respectively amplitude and frequency of the external forcing, (;(t) is a
self-correlated noise described by the Ornstein-Uhlenbeck process [18]

ds(t)
dt

= _%Cm(t) + %éz(t), (7)

with 7 correlation time of the colored noise, £,(t) Gaussian white noise with zero mean and
correlation function < &;(t)¢,(t') >= 0, d(t —t'), and o, noise intensity. A self-correlated noise
is more suitable than white noise to represent the random fluctuations in real systems, where
the noise spectrum is characterized by the presence of a cut-off. The correlation function of the
noise source is ((;(t)(z(t)) = g—ie*“*t"ﬁ.
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Figure 2. (a) Nonmonotonic behaviour (with a maximum) of MRT as a function of the noise
intensity o, for w = 1.0: in the presence of colored noise this effect disappears as correlation
time increases. (b) Nonmonotonic behaviour of the MRT as a function of the correlation time 7,
for w = 1.0 and o, = 0.5. The values of the parameters are: I = 1.1, € = 0.05, g = 0, A = 0.5.
The initial state is (zq,vo), with 2o = —I, yo = —I + I3/3.

In a previous work the system response has been studied, under the influence of a periodic
driving signal, as a function of the white noise intensity [19]. The authors showed the occurrence
of resonant activation (RA) and noise enhanced stability (NES). The presence of random
fluctuations produces modifications in the resonant activation (RA) phenomenon observed in
deterministic regime and causes noise enhanced stability to appear in the minimum of RA. NES
effect and modifications in RA are connected with the appearance of neuron excitability even
if A and w take values in the deterministic no-firing region. This indicates that noise, because
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of its cooperative action with the periodic force, can induce neuron excitability, also when, in
deterministic regime, the firing is prohibited due to the parameter values.

In order to study the dynamics of the FHN system we introduce the mean response time
defined as < T' >= 1/N ny:l T;, with T; the first response time, that is, the time for which
the first spike occurs. We analyze the behaviour of the mean response time (MRT) of the
neuron, in the presence of periodical stimulus, as a function of the noise intensity. The results,
shown in Fig. 2a, evidence the presence of a noise enhanced stability (NES) phenomenon. In
particular, MRT shows a nonmonotonic behavior as a function of o, (see panel a): starting from
oz = 0.005, for intermediate levels of noise intensity an increase of MRT appears. For higher
noise intensities a decrease of MRT is observed. We note that the strong dependence of MRT
on the noise intensity is suppressed as correlation time increases. Finally, we study MRT as
a function of the correlation time 7. The results, shown in Fig. 2b, indicate the presence of a
nonmonotonic behaviour of MRT as a function of 7 for a fixed value of noise intensity (o, = 0.5),
confirming that high values of the correlation time cause the suppression of the noise effects on
MRT.

4. A market model with stochastic volatility

Econophysics is a new interdisciplinary research field appeared and developed during last years.
Theories and methods, originally developed by physicists in statistical physics to study complex
systems, are applied to analyse financial market data [20, 21]. A big amount of work has been
addressed to the empirical investigation of different phenomena to find universal laws underlying
the dynamics of financial market. During last decades, a considerable effort has been devoted
to the construction of models to reproduce and predict the behavior of real market, where the
stock option evolution is determined by many traders interacting with each other and using
different strategy to increase their own profit. Arbitrariness and nonlinearity present in the
system lead to regard the financial market as a complex system where the randomness of the
human behavior can be modelled by using stochastic processes. A common approach, used to
describe the evolution of stock prices, is based on the Heston model. In this context, empirical
verification with stocks and options showed good agreement with real data [22]. A further
investigation on the Heston model has been recently performed [23]-[27]. This model consists of
two coupled stochastic differential equations which represent the log-normal geometric Brownian
motion stock process and the Cox-Ingersoll-Ross (CIR) mean-reverting stochastic process [24].
By using the log of the price, z(t) = In p(t), a generalization of the Heston model has been
proposed to take into account feedback effects responsible for price fluctuations. Here, a cubic
nonlinearity is introduced to consider the different dynamical regimes by the motion of a fictitious
”Brownian particle” moving in an effective potential with a metastable state. This nonlinear
Heston (NLH) model is defined by the following equations

do(t) = - (‘;—Z + @) dt -+ \folt)aW (¢) (8)

dv(t) = a(b—v(t))dt + c\/v(t)dWa(t), (9)
where U(z) = 222 + 322 is the effective cubic potential with a metastable state at z,,, = 0,
a maximum at x, = —1, and a cross point between the potential and the z axes at
z. = —1.5. Wi(t) and Wy(t) are uncorrelated Wiener processes with the usual statistical

properties < dW; >= 0, < dW;(t)dW;(t') >= dt 6(t —t') 6;5 (i,5 = 1,2). Here, v is the
CIR process, which is defined by three parameters, b, a and c¢. They represent respectively the
long term variance, the rate of mean reversion to the long term variance, and the volatility of
variance, often called the volatility of volatility. The stochastic volatility v(t) is characterized by
exponential autocorrelation and volatility clustering [21, 26], that is alternating calm with burst
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Figure 3. Mean escape time (MET) for 3 different unstable starting positions, when only the
reverting term is present: a = 1072, ¢ = 0. The curves are averaged over 10° escape events.

periods of volatility. The average exit time of the system from the stable to the unstable domain
of the metastable potential U(z) may be prolonged by imposing external noise: this phenomenon
is named noise enhanced stability (NES). The NES effect and its different dynamical regimes
can be explained considering the barrier ”seen” by the Brownian particle starting at the initial
position zg, that is AU, = U(Zmaez) — U(zo), and by comparing it with the height of the
barrier AU characterizing the metastable state [6, 9]. By investigating the mean escape time
(MET), as a function of the model parameters a, b and ¢, we find the parameter region where
a nonmonotonic behavior of MET is observable in our NLH model with stochastic volatility
v(t) [26, 27]. This behaviour is similar to that observed for MET wersus v in the NES effect
with constant volatility v. We investigated the dynamics of the system for ¢ = 0. In this
case, after an exponential transient, the volatility reaches the asymptotic value b, and the NES
effect is observable as a function of b. This case corresponds to the usual parametric constant
volatility regime. The results are reported in Fig. 3, where MET wversus b is plotted for three
different starting unstable initial positions. The simulations were performed considering the
initial positions of the process z(t) in the unstable region [z, z,,] and using an absorbing barrier
at £ = —6.0. When the ”Brownian particle” z(¢) hits the barrier, the escape time is registered
and another simulation is started, placing z(¢) at the same starting position zy and using for
the volatility the value taken on at the hitting time. The nonmonotonic behavior, which is
more evident for starting positions near the maximum of the potential, is always present. After
the maximum, when the values of b are much greater than the potential barrier height, the
exponential behavior is recovered. The results of our simulations show that the NES effect can
be observed as a function of the volatility reverting level b, the effect being modulated by the
parameter (ab)/c. The phenomenon disappears if the noise term is predominant in comparison
with the reverting term: the effect is no more observable because the parameter ¢ pushes the
system towards a too noisy region. When the noise term is coupled to the reverting term,
we observe the NES effect as a function of the parameter ¢. Finally we note that the effect
disappears if b is so high as to saturate the system [27].

5. Transient dynamics of Josephson junctions

Josephson junctions (JJs) are the basis components of a great variety of supeconducting
devices. They are employed in High Temperature Superconductors (HTSs), such as nanoscale
Superconducting Quantum Interference Devices (SQUIDs) for the detection of very weak
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magnetic fields, and in low temperatures solid state superconducting quantum bits (qubits), such
as charge, flux and phase qubits [28]-[31]. In JJs, working both at high and low temperatures, the
environment strongly affects the behavior of the system. In the low temperature superconductive
devices it is very difficult to avoid the influence of environment that constitutes mainly a
decoherence source for the system. Therefore, the study of transient dynamics of JJs in the
presence of noise sources is very interesting for the understanding of the interaction between
these systems and environment. The dynamics of a JJ is studied considering a fictitious
Brownian particle moving in a washboard potential [32] and the behavior of the current-
voltage characteristic of a JJ is strictly related to the lifetime of the superconductive metastable
state of the particle. The decay of the particle from the metastable state, in fact, depends
on the fluctuations of the voltage across the junction. Recently noise induced effects were
experimentally observed in underdamped Josephson junctions [3, 12], and the switching to
resistive state of an annular Josephson junction due to thermal activation was analyzed [33].

We present the study of the transient dynamics of short overdamped and long JJs under
the influence of fluctuating bias current and oscillating potential. We numerically calculate the
lifetime of the superconductive metastable state also called the mean switching time (MST) to
the resistive state for short JJ (SJJ) and long JJ (LJJ). We demonstrate the presence of noise
induced effects such as resonant activation (RA) [1, 2, 3, 7, 8] and noise enhanced stability
(NES) [4]-[12]. We analyze both the effects of thermal and correlated noise sources. In SJJ and
LJJ we consider white noise, accounting for the thermal fluctuations, and correlated (colored)
noise separately. Moreover, in LLJJ we present an analysis considering together the effects of
white and colored noise. For given values of frequency of the driving signal and suitable noise
intensity, we find maxima of the lifetime of the superconductive state. This is an interesting
feature for the study of the coherence time of these devices. Our results hold for low temperature
superconducting devices when we consider only the effects of the colored noise, and they can be
extended to high temperatures, when both colored and white noise come into play.

5.1. Short overdamped Josephson junctions

White Noise

MST

Figure 4. MST vs w for white Figure 5. MST vs v for white
noise and different 7., v=0.5, noise and different values of T,
10=0.8 and A=0.7. w=0.5, A=1, 17=0.5.

The study of SJJs is performed in the framework of the resistive shunted junction (RSJ)
model formalism [34], with a fluctuating current term. The overdamped Langevin equation to
study the dynamics is [35]

dp _dU(¢)
E = —W¢ d¢ - wcC(t)a (10)
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where ¢ is the phase difference of the wave functions in the ground state between left and right
superconductive sides of the junction. The characteristic frequency of the Josephson junction is
we=2eRNI./h, where e is the electron charge, R;,l is the normal conductivity, I, is the critical
current and i =h/2r with h the Plank constant. In Eq. (10) the time is normalized to the inverse
of the characteristic frequency of the junction w.. In our analysis ( (%) is a colored noise source,
generated by an Ornstein-Uhlenbeck (OU) process

de(t) = —Tlg(t)dt + ?dW(t), (1)

Cc

where 7 is the noise intensity and W(t) is the Wiener process with the usual statistical properties:
(dW(t)) = 0, and (dW (t)dW (t')) = §(t — t')dt. The potential profile U(¢) of Eq. (10) is given
by

U(¢) =1 — cosp —i(t)¢, (12)

where i(t) = i9 + f(t), 10 = ip/I. is the constant dimensionless bias current and f(t)=Asinwt is
the driving current with dimensionless amplitude A = i,/ and frequency w (i, and 75 represent
the bias current and the driving current amplitude respectively). We investigate the dynamics
of the Brownian particle in the presence of a time-dependent nonlinear periodic potential, by
solving numerically Eq. (10), for w.,=1. To study the lifetime of the superconductive state we
take, as initial condition for the particle, the minimum of the potential profile, corresponding to
the condition ¢y =arcsin(iy) and we calculate the time spent by the particle to reach the next
maximum. In Fig. 4 we report the behavior of MST vs w, for the noise intensity v = 0.5, and
different values of 7.. The non-monotonic behavior of the curves shows that the RA phenomenon,
already found in the presence of white noise [8, 35], appears also with colored noise. The values
of MST around the minimum are influenced by the variation of 7.. Moreover, we find, in a wide
range of frequency (0.3 < w < 0.8) (see Fig. 4), a non-monotonic behavior of MST as a function
of the correlation time.

In Fig. 5, we show the behavior of MST as a function of the noise intensity for different
values of the correlation time. We note the appearance of noise enhanced stability (NES), a
phenomenon already found in short JJs in the presence of white noise [8, 35]. Here we observe
a range of values of correlation time, namely 0.01<7,<1, in which the curves present a non-
monotonic behavior. For 7.=5,10, the non-monotonic behavior disappears.

5.2. Long Josephson junctions
The investigation of LJJs is developed in the framework of the sine-Gordon model [34, 36]. The
dynamics of a LJJ is described by the motion of a phase string in a one dimensional washboard
potential. The transient dynamics is represented by a nonlinear partial differential equation
with a stochastic term [37, 38|

0? 0 0?
ﬂa—tf-l-a—f-l-a—x(f:'i(x)—sin¢+z'f(x,t), (13)
where f = w.RC, with R and C the LJJ equivalent resistance and capacitance, respectively.
Here i(x) and i¢(x,) are the bias current density and the fluctuating current density normalized
to the critical current density I. of the junction, respectively. In Eq. (13) time is normalized to
the inverse of the characteristic frequency, w, = 2eRI./h, of the junction. Analogously length is
normalized to the Josephson penetration depth (Ay). The boundary conditions for Eq. (13) are:

04(0,t) _ 0¢(L,t)
or =~ Oz

=0. (14)
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Figure 6. Left panel: MST vs 7., with i, = 0.9 and L=0.5. Right panel: MST vs 7., with i, = 0.9
and L=5, for different values of white noise intensity.

where L = [/A; with [ the length of the junction. As initial position of the phase string in
the washboard potential, we consider the minimum, represented by the condition ¢(z,0) =
arcsin(ip). We studied, first, the effects of a fluctuating current signal described by a correlated
noise and, then, the effects of both colored and white noise on the system, by inserting in Eq. (13)
a fluctuating term given by the sum of a correlated noisy current signal, i.,(z,%), and a thermal
current signal, iy, (,t), namely if(x,t) = icn(2,t) + iwn(z,t). In the presence of colored noise
we found the noise induced effects such as RA and NES. In particular in left panel of Fig. 6 the
non-monotonic behavior of MST as a function of the noise intensity -., indicates the presence
of the NES effect. The maxima of the curves depend by different values of 7.. The effects of
both colored and white noise are presented in right panel of Fig. 6, where the curves of MST
VS Yen are calculated for different white noise intensities 7y,y,, with L = 5. We note that when
Yun 18 greater than ., the effects of colored noise disappear. If we consider ,,, suitably lower
than ~.,, the effects of colored noise become evident. In fact, when ~., is at least five order
of magnitude higher than ,,,, the curve of MST vs 7., (empty triangles) matches with good
agreement that (black circles) obtained in the absence of white noise (see right panel of Fig. 6
for vyun=1078).

6. Metastability in a quantum system

Quantum tunneling effect occurs often in condensed matter physics, examples are JJs, hetero-
nanostructures, etc.. The tunneling effect plays an important role in the nonlinear relaxation
time from a metastable state in an open quantum system, interacting with a thermal bath.
Symmetrical and asymmetric bistable systems are good quantum model systems for analysis of
the ”superconducting quantum bits” and decoherence phenomena. To obtain very long coherence
times in the presence of interaction between the qubit and the noisy environment is one of the
greatest challenges of physics. The influence of the environment in quantum tunneling has been
in the focus of intense research over the last years [39]-[42]. The environment is commonly
described as an ensemble of harmonic oscillators (thermal bath) at thermal equilibrium at
temperature T, with a bilinear coupling between the quantum system and the thermal bath.
By this kind of coupling between system and environment the quantum mechanical analogue
of the generalized Langevin equation can be derived [39]. Time-dependent driving fields, such
as laser beams, have most interesting implications for quantum systems. These time-dependent
fields give rise to interesting effects, such as the coherent destruction of tunneling [43], the effect
of quantum stochastic resonance [44], and the control and reduction of decoherence in open
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quantum systems [45]. In this work we analyze a time-dependent asynmmetric bistable potential
by using the approach of the Feynman-Vernon functional [46] in discrete variable representation
(DVR) [47, 48].

6.1. The model

The starting point of our investigation is the Caldeira-Leggett model [39] for a quantum particle
with mass M interacting with a thermal bath. The particle, with position operator q and
momentum operator p is moving in an asymmetric one-dimensional double-well potential V; (q)
in the presence of a time-dependent external force, Asin(2¢). The unperturbed Hamiltonian of
the system is

p2
Hyn(t) = W+Vo() Asin(Qt), (15)

and the potential is
2
M*w§ , Muw§ ,

\% — 16
0@ =gapd — 7 4~ (16)
where € is the asymmetry parameter. The environment is modelled [39] as an ensemble of
harmonic oscillators

N1 p? cj ?

2
Hp = Z 3 # +mjw; (Xj 2q> a7
j=1 J mjw

The full Hamiltonian (system + bath) is H(t) = Hyn(t) + Hg. As N' = oo, in Eq. (17),
we have a continuous spectral density. We use an Ohmic spectral density with an exponential
cut-off J(w) = nwexp (w%) Because of the bilinear coupling between the coordinate q of the
system and the coordinate x of thermal bath we can consider this as a quantum analogue of the
multiplicative noise in classical systems.

By following the Feynman-Vernon approach [46] the reduced density operator can be written
as

plar, qf:t) = /dqo/d%K(qf,q},t;qo,qé,to)ps(qo,%,to), (18)
where the propagator K is given by
' ' a(t)=as q’(t):q} ' *[ 1 !
Kapdptiandut) = [ " Da[ " DIAGAVFiv o), (19)
q(to)=qo q (to)=qp

and Alg] = exp (ZSS [a ]) with Sg[q] being the classical action functional. In Eq. (19) Frv[q,q'] =

exp (%ﬁ’“) is the Feynman Vernon influence functional, which depends on the bath
correlation function [41].

6.2. Discrete variable representation

By using the discrete variable representation (DVR) [47], with the discrete eigenbasis of the
position operator q, and the generalized non-interacting cluster approximation [48] it is possible
to obtain a generalized Master Equation (GME)

p,UlL Z dt HNV t_t)pw/( I) +IN(t_t0)7 u = ]-7"'aM ’ (20)

neglecting all the intercluster interactions and taking into account the paths that start in an off-
diagonal element (see Ref. [48] for details). Since the inhomogeneities I,,(¢, ) do not contribute

10
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to the long-time dynamics because decay exponentially with time on a rather short time scale,
this term can be neglected. We assume furthermore that the characteristic memory time Tem,
of the kernels of Eq. (20) is the smallest time scale of the problem (Markovian limit). This
means that we can substitute the argument of p,, (t') under the integral by the time t and draw
P (t) in front of the integral. We then obtain the Markovian approzimated generalized master
equation

M
puu(t) = Z Ful/(t)pw/(t)’ (21)
v=1
with the time-dependent rate coefficients
o
T () = /0 drH, (t,t — 7). (22)

Since the diagonal elements p,,(t) obey Eq. (21), the long-time dynamics in this regime is
ruled by a single exponential decay. Thus the Eq. (21) is a set of coupled ordinary first-order
differential equations, which can be decoupled via a diagonalization procedure. The diagonalized

rate matrix reads
M

> (S Y ki TraraSrav = Mubpu, (23)

K1,k2=1

where S, denotes the element of the transformation matrix and A, the eigenvalues of the rate
matrix. The general solution of the Markov approximated GME is

M
i) = 3 S (S ™)™ g (t0). (24)

v,k=1

Since the diagonal elements of the rate matrix are the negative sum of the matrix elements of
the corresponding columns, one eigenvalue equals to zero, i.e., Ay = 0. Therefore,

M M
pMN(t) = plcfl); + Z Z S;w(S_l),uneAV(t_tO)pnn(tO)- (25)

v=2kKk=1

with ppf, = S 8,1(S7Y)1 kprx(to) being the asymptotic population of the DVR-state | g, >.
The rate which determines the dynamics on the largest time-scale is the smallest non-zero
absolute value of the real part of the eigenvalues of the rate matrix, i.e. the quantum relazation
rate

I'=min{| ReA, ;v =2,...,M}. (26)

6.3. Results

In Fig. 7 we report the first four global states < ¢ | 91 >,...,< q | ¥4 > for barrier height
Ep = AU/hwy = 1.4 and asymmetry parameter ¢ = 0.23. The corresponding potential profile
has a metastable state on the left well. The quantum relaxation rate I' as a function of
the asymmetry parameter is reported in Fig. 8 for different temperatures. There are many
overlapping regions where is visible a nonmonotonic behaviour of I' as a function of the
temperature. We can distinguish two different nonmonotonic behaviours: one with a maximum,
reported in Fig. 9, and the other one with a minimum. This last one corresponds to the
noise enhanced stability effect revealed in classical metastable systems, that is a noise enhanced
stability quantum effect.

11
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Figure 7. The first four global states < ¢ | %1 >,...,< g | %4 > for barrier height
Ep = AU/hwy = 1.4 and bias € = 0.23.

0.006

0.005

0.004

—  0.003

0.002

0.001

temperatures T'. The barrier height is Fp = 1.4 and the number of energy levels is M = 4.The
bath parameters are n = 0.1 and w, = 10.0.

€=0. 23
0.0016

0.0014

0.0012

0.001

L. 0.0008

0.0006

0.0004

0.0002

0 ! ! !
0 05 1 15 2

T
Figure 9. Quantum relaxation rate I' as a function of the temperature T for fixed asymmetric

parameter € = 0.23. The barrier height is Ep = 1.4 and the number of energy levels is M = 4.The
bath parameters are n = 0.1 and w, = 10.0.
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