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Abstract: The trailers of heavy-duty articulated lorries are usually linked to 

the tractors by auxiliary dollies to improve the manoeuvrability along curved 

paths. Connecting the dolly to the tractor by a four-bar linkage, some 

performance improvement may be achieved in comparison with the 

conventional single pin. The correct path along a road curve may be 

obtained exerting control moments on the horizontal plane by means of 

differential braking of the wheels. The results of the analysis show that the 

forward-converging and the crossing bar quadrilaterals are mostly yaw-

stable, whereas the backward-converging bars prove to be inherently 

unstable. 
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1. Introduction 

The transverse conduct of a vehicle 
mainly depends on the cornering stiffness 
of the tyres, which is in turn influenced by 

the vertical load, the inflation pressure, the 

cross-section shape and the ply wrapping.
Increasing the speed, instability thresholds 

may be reached even on straight paths and 

besides, the off-tracking of the long 
vehicles must be controlled, as the 

different paths of the first and last axle 

may involve invasion of the opposite or the 
emergency lanes.

The vehicle engineers must scrupulously

ponder all these aspects, particularly for 
the long heavy articulated lorries.

Electronic stability control systems (ESC) 

may help in limiting the anomalous 
steering response [1].They may be of 

various types: differential braking; steer-

by-wire; limited slip differential.

The first theoretical analysis of the 
vehicle lateral dynamics was perhaps given 

by Rocard [2]. He stated that the transverse 
force F exerted by the road on the tyre is 

roughly proportional to the drift angle εof 
the wheel and moreover, increases with the 

vertical load. The treatise of Gillespie 

reports many experimental results in the 
chapter on the tyre cornering, highlighting
the influence of the inflation pressure, the 

ply composition and the tyre aspect ratio, 
[3]. Also, the "magic formula" of Pacejka

is worth remembering, as it contains 

several parameters that may be properly 
adjusted to fit all types of tyre response 
[4].

The lateral stability of multi-trailer 
trucks was examined in the eighties 

considering several connection 

arrangements, e. g. by articulated linkages,
which often offer interesting stabilizing 
properties [5]. The promising properties of 

the four-bar connections motivated
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previous researches by the author, [6] and 
[7], and the present analysis, where the 

self-arising lateral motions along the 

straight paths are studied and the response 
to the steering manoeuvres of the driver 
are quantified. The possible active control 

of the critical swerve is also considered.
The model is linearized, in the 

hypothesis of small lateral movements, in 

order to simplify the study of the influence 
of the various system characteristics. 

2. Mathematical model 

2.1. System geometry - The lorry-dolly-

semi-trailer system is schematized in 
Figure 1, where the dolly is assumed 
massless and:

- the frames Oxy and Glξη are fixed to the 
ground and to the leading unit 

respectively;

- θl, θd and θt are the angles formed by the 
lorry, the dolly and the trailer with the 

fixed direction y, whence the relative 

rotations are θld = θl−θd,θlt = θl−θt;
- Gl and Gt are the centres of mass of the 

leading and trailing units;

- FIξ and FIη are the components along 

ξand η of the resultant traction force 
acting on the dolly through the two 
connecting bars, which may be applied 

at the instant centre I of the relative 

rotation. Notice that the component FIηis 
approximately the resistant road force 

acting on the trailer, whence FIη≅
Frolling,t+ Fair,t (where Fair,t = cxρAv

2
/2);

- δ is the steering angle imposed by the 
driver, which is assumed of the same 
small order of magnitude of the yaw 

rotations and equal for the left and right 

wheels for simplicity;
- v is the speed of the lorry (|v| = v).

Let us define the angles of the left and 

right bars, αL = α +∆αL, αR = α +∆αR, 

where α is their common value in the 
central configuration. Assuming small 

transverse displacements, the incremental 

angles,∆αL and∆αR, and the rotations, θld

and θlt, are of the same small order of 

magnitude, which is also ascribed to the 

cornering slip angles εof the wheels. Then, 
imposing proper closure equations to the 

quadrilateral LlRlRdLd and to the triangle 
LlIRl like in [7], one gets

1
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this will be needed in the formulation of 
the equation of motion.

2.2. Cornering forces and slip angles – 

The cornering coefficient k=−F/ε depends 
on many working conditions and several 

formulas were proposed in the past. For 

example, some diagrams of [3] show the 

dependence of k on the vertical load on the 
tyre (% of rated load) for a typical 

passenger car. An excellent fit may be
obtained by third degree polynomial laws 
[7]. 

3

0 0

z z

z z

F F F
k a b c

F F

  
= − = + −  ε   

(4)

where Fz0 is the rated load and a = 5.092 
kN, b = 39.735 kN, c = 6.955 kN. Here, 

these coefficients will be multiplied by a 
factor 10, which is roughly the weight ratio 
of a typical lorry and a saloon car.
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The slip angle is calculable as the ratio 
of the components of the wheel centre 

velocity along the directions orthogonal 

and parallel to the rim plane. In practice, 
the former is equal to the lateral slip 

velocity at the ground print and the latter is 
equal to the vehicle velocity v. The slip
velocities of the two wheels of each axle 

are both equal to the midpoint velocity 

(bicycle model).

Indicating the component of the velocity 

of Gl along ξwith ul, so that the component 

along x is 
lGx& = ul− vθl, the wheel slip 

velocities of axles 1 and 2 are\

1 1

2 2

  (front axle) 

   (rear axle)  

l l

l l

u u a v

u u a

= − θ + δ

= + θ

&

&
(5)

The wheel slip velocity of axle 3 is 

equal to the sum of the transverse 
velocities of I and of the axle midpoint M 
with respect to I, plus the transverse 

component of v, i. e.−vθld. Figure 1 gives
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Fig. 1. Scheme of the articulated vehicle 
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( )3

(dolly axle)

Ml I l I ld du u v= −η θ + η − η θ − θ& &

(6)

Likewise, the wheel slip velocity of axle 
4is obtainable summing, to the transverse 

velocity of M, the velocity of its midpoint 

with respect to M, plus the 

component−v(θlt−θld)

( ) ( )3 3 44

(trailer axle)

+ + += θ θ − θ&
ld lttu a a vu

(7)

Hence, the slip angles areεi = ui /v, and 

the cornering forces are Fi= −2kiεi for each 
axle.

2.3. Equations of motion - All sway 
motions are characterized by four state 

variables, ul, lθ& , θld, and θlt, but six 

dynamical equations must be formulated in 
total for the three units, three translational 

ones along x and three rotational ones on 

the horizontal plane. Yet, two equations
drop when summing all translational 
equations to eliminate the mutual

transverse forces, FIξ exchanged at I, and 

FMξ exchanged at M. It is remarkable that 

the coordinates of Gl and the orientation θl

of the leading unit with respect to the fixed 

frame Oxy are irrelevant, because this 

frame might be placed in any arbitrary 
position with any arbitrary orientation.

Thus, we get at last
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Here ρl and ρt are the radii of gyration of 

the tractor and the trailer and mz,l and mz,t

indicate the correction moments exerted on 
the leading and trailing units by some 

possible correction system.

2.4. Non-dimensional formulation -
Introduce the reference cornering stiffness 

k0 = a+b−c and the reference 

speed 0 0 1 / lv k a m= , and define

dimensionless parameters and variables by 

capital letters: Ai = ai/a1, Ki = ki /k0, V = 

v/v0, U = ul /v0,Ω= a1 lθ& /v0, Ρj = ρj/a1, Mz,j= 

mz,j/(2a1k1δ). Moreover, indicate for 
brevity:

ca = Fair,t /(k0V
2),cr = Frolling,t/k0,µ = mt/ml

Hl= − ηI /a1 = (a2 + h+ ltanα /2) /a1

Ht= (ηI − ηM + a3)/a1=

          = (a3 +hc +rsinα−ltanα /2) /a1L = 

1

1
sin 2 2 cos

l l

a r

 − α α 
Also, introduce the dimensionless time 

variable τ = v0t /a1 and the differential 
operators

D
(i)

(...) = d
i
(...) /dτ i  

= (a1 /v0)
i
d

i
(...) /dt 

i
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The equations of motions (8-11) may be 
made non-dimensional dividing the 

translational equation, Equation (8), by k0

and the moment equations,  Equations (9-
11), by k0a1. Hence, one obtains

,

1

3 ,

3

1

1
2

l z l

ld z t

lt t

U

H M
K

A M

A H

−   
   Ω + +   

= δ   
θ +   
   θ −   

Z (12)

where the coefficients of the dynamical 

matrix Z are linear functions of D
(0)

, D
(1)

, 

D
(2)

, and depend on V.

3. Results 

 
The stability analysis requires the 

examination of the negative ness of the 

real part of the eigenvalues of Z. The 

response of the articulated vehicle to a 
steering maneuver of the driver is 
obtainable by solving the complete non-

homogeneous system.

3.1. Stability - Replacing the operators D
(i)

of Z with the i
th

powers of the 

characteristic number λ, we get a sixth 
degree algebraic equation, whose 
coefficients ci  are functions of the 

dimensionless vehicle velocity V,

4
1 2

6 5
5 6... 0c c c cλ + λ + λ + λ + =+ (13)

The divergent instability threshold is 
determined equating c6 to zero, whereas the

oscillating instability threshold may be 

obtained putting λ = ± iω and equating the 
real and imaginary parts of the 

characteristic equation to zero separately:

( )

6 4 2

6
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1 5
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2
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0

c c

i

c

c c c

ω − ω + −

+

ω =

± ω ω − ω =
(14)

Hence, choosing one significant 
parameter of the car train, for example the 

dimensionless distance A4 of the fourth 

axle from the trailer mass centre, one has 
to explore the operative velocity region of 

the vehicle in search of instability. For 

each velocity V, it is possible to vary A4 by 
steps and search the divergent instability 
threshold, where c6 vanishes. At the same 

time, it is possible to look for the 

oscillating instability threshold where, 

after calculating the two roots ω2
of the 

second of Equations (14) and checking that 

either or both of them are real and positive, 

they are found to satisfy the first equation 

as well. Mind also that, apart from this 
search, the stability of any point of the map 

(A4,V) may be checked by the Hurwitz 
criterion.

Several connection configurations of the 

four bar linkage may be analysed this way 

and stability maps may be traced. The 
range of A4must not be too large for a well-

balanced load distribution on the axles, 

whereas the range of V = v/v0 is here 
chosen between 0 and 5, which is 
consistent somehow with the lorry 

operation, as the usual values of k0, a1 and 

ml give v0≅3-4 m/s (10-15 km/h). The other 
parameters of the articulated vehicle may 

be held fixed.
The results indicate in general that the 

configurations with forward converging 

side bars show wide region of stability in 
their operating range. On the contrary, the 

backward converging bars may be stable if 
they intersect before point M, but always 
lead to divergent instability if they 

intersect behind M, independently of the 

vehicle speed, due to a real positive 

eigenvalue. This is an intrinsic instability 
of the latter trailer connection. Actually, 

neglecting the resistance FIη and looking 
for natural modes that do not involve the 

tractor (ul= θl  = 0), Equations (9,11) would 
be identically satisfied, whereas Equations 

(8,10) would reduce to
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where ηIM = ηI−ηM. The characteristic 
equation of the system (15) is now of the 
fourth degree, its constant term c4 is equal 

to 4k3k4(a3 + a4) /(mt
2ρt

2ηIM) and is 

negative for ηIM < 0: any occasional 
deformation of the quadrilateral is 
exponentially amplified without limit. 

Therefore, only cases with ηI − ηM = r sinα

+ hc− (l /2) tanα > 0 must be considered 
(including also the forward converging 
bars).

3.2. Vehicle behaviour along road curves 
-The steady response of the vehicle to a 

steering command δof the driver is 
obtained cancelling all operators D(i) of the 

matrix Z for i> 0,  taking into account the 
terms at the right side of Equation (12), all 

proportional to δ and solving with respect 

to U, Ω, θld andθlt. It is advisable in general 
to control two important undesired trends:

1 - the under- or over-steering behaviour of 

the leading unit, which may be measured 
by the ratio of the actual radius of 
curvature of the path and the ideal 

Ackermann radius;
2 - the off-tracking along a bend, which 

may be measured by the difference of the 

path radii of the midpoints P1 and P4 of the 

first and fourth axles.
The first phenomenon tends to drive 

away the vehicle inadvertently from the 

desired curved path, whereas the off-
tracking may involve the invasion of the 

opposite or the emergency lanes.

As the ideal radius of a bend in the 

absence of under- and over-steering is ρid.≅
(a1 + a2)/δ and the actual radius is ρ = 

v / ,lθ& their ratio is given by

( )id. 21

V

A

ρ δ
=

ρ Ω +
(16)

Moreover, assuming steady running
along a road bend, it is possible to evaluate

the different path radii of points P1 and 

P4.Assigning the initial time (t = 0) to 
some arbitrary position of the vehicle, one 
may fix a new reference frameO*x*y*whose

x
*

axis contains P4 and whose y
*
axis 

coincides with the symmetry axis of the 
leading unit (see Figure 1). Thus, x

*
1(0) = 0 

and θl(0) = 0, whereas x*
4(0) ≅ξM− (a3 + 

a4)θlt = −a1[(Ht−A3)θld + (A3+ A4)θlt] (see 
Equation (3) and definition of Ht).

Going back in time along the circular 

path of P1 as far as the position P1'
occupied when crossing the x* axis, the 

correspondent time is t '= − y1(0)/v ≅ −a1(1 

+ Hl + Ht + A4) /v. As 1 1 l l lx u v a= − θ − θ&& , 

where  and l lu θ& are constant, one gets the 

abscissa x
*
1 of point P1' and then the off-

tracking x
*
1' −x

*
4 using the previous results:
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' ld lt
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δ δ
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l t

l t

U
H H A
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H H A
V

−Ω
− + + + +

+ + +
δ

Ω
δ

−
(17)

The two characteristic indicators of 

Equations (16-17) are calculable after 

solving Equation (12) for U, Ω, θld, θlt.
Considering the simple arrangement of 

Figure 1, without any type of correction 

equipment, and giving realistic values to 

the parameter set, the stability target may 

be easily attained according to the 
discussion of the previous subsection. On 

the contrary, the vehicle response along the 

road bends may be quite unsatisfactory, at 
least with regard to the off-tracking error 

(17) and even if acceptable steering 

response may be generally obtained by 
(16). Therefore, it may be advisable to 
correct the vehicle behaviour somehow.
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ı ı ∗′−ı ı ∗ı ı ı  

Using sophisticated electronic systems, 
which detect the anomalous trend of the 

vehicle run through the signals coming 

from accelerometers or gyroscopic sensors, 
it is possible to apply anti-yaw correction 
moments on the two units, by use of 

differential braking systems or availing of 

limited slip differential. Nonetheless, much 
simpler devices are also conceivable, 

which apply the correction moments in a 
constant way, independently of the vehicle 
speed, but proportionally to the steering 

angle δ. This type of correction might be 
easily realized by simple hydraulic or 

pneumatic devices, which exploit possible 
installations already existing on board and 

supply an output proportional to δ for the 
differential braking.

Due to the linearity of Equation (12), the 

steady displacement solution vector, d = 

{U, Ω, θld, θlt}
T

may be expressed in the 
form

0,0 , 1,0 , 0,1z l z tM M= + +d d d d (18)

where the subscripts i,j of di,j indicate the 

values imposed to Mz,l and Mz,t, 

respectively, when solving Equation (12) 

for d. Of course, the vectors di,j are 
functions of the speed V, whence one 

obtains, by Equations (16-17),

( ) ( ) ( )0 ,

id.

,1 l z l t z tV b V Mb b V M
ρ
− + +=

ρ

( ) ( ) ( )
* *
1

0 , ,

1

4'
l z l t z t

x x
c V c V M c V M

a

−
= + +

δ
(19)

An excellent correction of the vehicle 
response along the bends may be obtained 

by imposing opposite values to each of the 

two indicators, ρ/ρid.− 1 and (x
*
1' 

−x*
4)/(a1δ), for V = 0 and V = Vx, where Vx

is a properly chosen upper limit of 

response acceptableness, e. g. Vx = 4. This 
constraints permit to write

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

, ,

0 0

, ,

0 0

0 0

                                   0

0 0

                                   0

l l x z l t t x z t

x

l l x z l t t x z t

x

b b V M b b V M

b b V

c c V M c c V M

c c V

   + + +   

 = − + 

   + + +   

 = − + 
(20)

and solve for the desired moments, Mz,l and 

Mz,t, which are independent of the speed V. 

According to the previous definition of the 
non-dimensional moments Mz, the true 

physical moments mz are proportional to δ, 

Fig. 2. Steering response and off-tracking for an example case. Empty and full circles 

refer to non-corrected and corrected response. The correction gives a maximum 

steering error of less than 3% and nearly cancels the off-tracking. 

Data:   Mz,l = −0.0359     Mz,t = −2.33     

α = 92°    r/a1 = 0.5    l/a1 = 0.75    ml = mt= 20000 kg    ca = 0.001    cr = 0.02

a2/a1 = 0.67     a3 = a4 = a1     ρl /a1 = ρt /a1 = 0.6     h/ a1 = 0.5     hc / a1 = 0.25 

ı ı ı ı

ı ı ı .
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which is then the only quantity ruling the 
anti-yaw control.

Figure 3 reports the results for an 

example case, where the side bars are 
slightly diverging backward. It is 
observable that the correction aid, as 

described above, is very beneficial in 

nearly cancelling the path errors, especially 
with regard to the off-tracking. The 

correction moment Mz,l is just small, but its 
implementation is convenient all the same, 
as some significant over-steering would 

appear without it.

4. Conclusion 

 
The four bar linkage may offer a good 

connection configuration of the tractor-
dolly-trailer systems for heavy duty 

operation, provided that the side bars 

diverge backward, or their convergence 
point is at least ahead of the trailer 

coupling point, in order to preserve the 
lateral stability en route.

A good correction of the undesired 
motions along the road bends may be 

achieved by applying differential braking 

to the wheels, to produce proper anti-

swerve moments, which are independent of 
the speed and proportional to the steering 

angle.
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