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Multiresolution analysis generated by a seed function

F. Bagarello® )
Dipartimento di Matematica ed Applicazioni, Fac. Ingegneria, Univerdit®alermo,
1-90128 Palermo, ltaly

(Received 14 October 2002; accepted 17 December)2002

In this paper we use the equivalence result originally proved by the author, which
relates a multiresolution analysi#/RA) of £%(R) and an orthonormal set of
single electron wave functions in the lowest Landau level, to build up a procedure
which produces, starting with a certain square-integrable function, a MRA of
L?%(R). © 2003 American Institute of Physic§DOI: 10.1063/1.1556193

[. INTRODUCTION

In a series of recent papefs we have shown the existence of a relation between any
multiresolution analysi$MRA) of £2(R) and an orthonormalo.n) set of functions ofC ?(R?)
which (1) belong to the lowest Landau levélLL), (2) are closed under the action of two
commuting unitary translation operators, g8ilcan be used to produce a normalized trial ground
state for the gas ol electrons. This method has been used up to now to produce different trial
ground states for the well-known fractional quantum Hall effé@HE). In our previous papers
we were mainly interested in using known facts from MRA in order to get information about
FQHE. However, already in Refs. 1 and 2, we have also discussed the possibility of reversing the
construction, in order to get the coefficients of a MRA, in the sense of Refs. 6 and 7, simply
starting from a given single electron o.n. basis closed under the action dhtagnetig transla-
tion operators. To implement this proposal we only need such a set of wave functions: then we
immediately have the coefficients of the related MRZHowever, this approach is not really easy
to use, the reason being that there are not many examples of this kind of wave function in the LLL
in the literature®:®

In this paper we consider a different possibility. We will show how a given functiof @R)
satisfyizlg some extra condition can be used to generate a set of coefficients related to a MRA of
L?*(R).®

The paper is organized as follows. In Sec. Il we quickly review the method proposed in Refs.
1 and 2, without insisting too much on its physical aspects. In Secs. Il and IV we show how to use
a seed function in order to construct a set of coefficients giving rise to a MRA. In Sec. V we
discuss some examples, and we discuss our conclusions in Sec. VI. In the Appendix we prove
some easy results on the convolution of sequences which are used in the main body of the paper,
results which we were not able to find in the existing literature.

II. THE METHOD

We begin this section with the following remark: in Refs. 2 and 3 the method originally
introduced in Ref. 1 has been generalized. This generalization, which is crucial for concrete
applications in the analysis of the FQHE, is only an unnecessary complication here and, for this
reason, will not be used.

The many-body model of the FQHE consists simply in a two-dimensional electron gas
(2DEG—that is a gas of electrons constrained in a two-dimensional layer—in a positive uniform
backgrolund and subjected to a uniform magnetic field algnghose Hamiltoniar(for N elec-
trons is
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whereH{V is the sum ofN contributions:

N
HOV =2 Ho(i). 2.2

HereH(i) describes the minimal coupling of theh electron with the magnetic field:

2

AN

T
Ho=5 (P+A(N) =5 Px—3 Pyt 5] - 2.3

2
H(CN) is the canonical Coulomb interaction between charged patrticles,
N
1 1
HN=Z ,

¢ 2 IE#] lri—rjl

and Hg\‘) is the interaction of the charges with the background, Ref. 4.

We now considek (H)+H{Y) as a perturbation of the free Hamiltoniety) , and we look
for eigenstates ngN) in the form of Slater determinants built up with single electron wave
functions. The easiest way to approach this problem consists in introducing the new variables

P'=py—yl2, Q'=p,+x/2. (2.9
In terms of P’ andQ’ the single electron Hamiltonialt,, can be written as
Ho=32(Q'?+P'?). (2.5

The transformation(2.4) can be seen as a part of a canonical map frogy,p,,p,) into
(Q,P,Q’,P’) where

P=py,—x/2, Q=py+y/2. (2.6
These operators satisfy the following commutation relations:
[Q.P]=[Q",P']=i, [Q,P']=[Q",P]=[Q,Q"]=[P,P']=0. (2.7

It is shown in Refs. 8 and 9 that a wave function in tkey( space is related to it8P’ expression
by

ei><y/2 . © . .
wa f e XPHYPHPPOy (P p) dP dP’, (2.8

V(x,y)=
which can be easily inverted:

e PP ru e
P f f e | (XPTHYPEXYp (x v) dx dy. (2.9

W(P,P')=

The usefulness of thB P’ representation stems from the express@m®) of Hy. Indeed, in this
representation, the single electron Sclinger equation admits eigenvectob{P,P’) of H, of
the formW¥ (P,P’)=f(P’)h(P). Thus the ground state ¢2.5 must have the fornfi,(P")h(P),
where

fo(P')=m Ui P'*P2, (2.10
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while the functionh(P) is arbitrary, which manifests the degeneracy of the LLL, and should be
fixed by the interaction. Witl, as in Eq.(2.10, formula(2.8) becomes

eixy/2 w 5
xy)=— 3/4f eYPe~ *P)2h(p) dp, (2.11
ar — 0

while, using(2.9), h(P) can be written in terms ofs(x,y) as

—IPP P22 o o
h(P)=W4—f_ f_ e 1 XPTHYPEXYp (x y) dx dy . (2.12

Let us now define the so-called magnetic translation operdi@g for a square lattice with
basisd;=a(1,0), 4,=a(0,1), a’=2,* by

T;=T(8;)=€7Q, T,:=T(d,)=e"". (2.13
We see that, due t(2.7) and to the condition on the cell of the lattic?= 2,
[T(ay),T(d2)]=[T(d1),Ho]l=[T(d;),Ho]=0. (2.149
The action of theT’s on a generic functiori(x,y) € £?(R?) is the following:
frn(X,Y) =TT TEf(X,y) = (— 1)/ (@M= (x + ma,y+na). (2.15

This formula shows that, if for instandgx,y) is localized around the origin, thef, ,(X,y) is
localized around the sita(—m, —n) of the square lattice.

Now we have all the ingredients to construct the ground statde&'?ﬁ?f mimicking the classical
procedure. We simply start from the single electron ground staté,adiven in (2.11), #(X,y).
Then we construct a set of copigg, ,(x,y) of ¢ as in(2.19, with m,ne Z. All these functions
still belong to the lowest Landau level for any choice of the functidR) due to(2.14). N of
these wave functiong, ,(x,y) are finally used to construct a Slater determinant for the finite
system:

Ym0, () P (L) - P (IN)
Pm, (L) Pmyn,(F2) oo ) 0 (IN)
1 . . .
lp(N)([l![Z’"'![N):\/ﬁ . . . . (216)
Pmgng(L1) Pmy i (L2) oo Ym0y (IN)

It is known, Ref. 4, that in order to haa/"),s(\))=1 for all N we need to have
<¢mi,ni‘r//mj,nj>:5mi,mj5ni,nj- (2.17
Let #(x,y) be as in(2.1]) and ¥, o(X,y) = TTT5%(X,y) = (—1)™"e' @MY=y (x + ma,y
+na). After few computations and again using conditat= 2, we get

ei(xy/Z) +iamy ro
lﬂm,n(X,Y)= f

dpei(y+na)P—(x+ma+P)2/2h( P). (2.1&
‘/2773/4 -

We have discussed in Ref. 1 conditionsofP) such that equality2.17), or its equivalent form
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én,n’:<¢0,0a¢m,n>:5m,05n,01 VmneZ, (2.19

are satisfied. With the above-given definitions we find

5,.,= fiodp e 22h(p—1;a)h(p), (2.20

which restates the problem of the orthonormality of the wave functions in ternig R¥. In
particular we see that, fan=n=0, this equation implies thaty, is normalized inZ ?(R?) if and
only if h(P) is normalized inC 2(R). This reflects the unitarity of the transformati¢h8), which,
more in general, implies that any o.n. setd(R) is mapped into an o.n. set iH%(R?).

In the above-given construction we are considering a square lattice in which all the lattice sites
are occupied by an electron. We say thatfilieg factor v is equal to 1. We have seen in Ref. 1
that, in order to construct an o.n. set of functions in the LLL corresponding to a fiting (only
half of the lattice sites are occupledve have to replac€2.19 and (2.20 with the following
slightly weaker condition:

S,1,=5,2,= f_wdp e 2122Ph(p—1,a)h(p)= f _dp €'1%Ph(p—21,2)A(p) =8 08, 0,

i 2.21)

for all 1,1, Z, whereh(p) = (1/\27) [re~"P*h(x)dx is the Fourier transform di(x). If h(x)
satisfies(2.21), then, defining

1 (= .
h =—f dp e "™*®h(x), (2.22
)P (
it is easily checked that
2, Moy =8 0. (223

The proof of this claim, contained in Ref. 1, is based on conditb@1) and on the use of the
Poisson summation formul@ShH, which we write here as

> ei“X°=2—WZ 5(x—n2w). (2.24

nez |C neZ T

It is well known that the PSF does not always hold, and conditions for its validity are given in
several papers and books, see Ref. 10, p. 298, and references therein, for instance. In this paper we
will always assume its validity, and from time to time we will check it explicitly.
Equation(2.23 shows how a functiom(x), satisfying the orthonormality conditiofONC)
(2.21), can be used to generate, &22), a set of coefficients which are related to a MRAL!
This procedure can be extended in many ways which are not relevant Aem therefore will
not be considered in this paper. In Ref. 2 is also discussed in some detail the role of the Zak
transform in our procedure, while a detailed summary of our results can be found in Ref. 12.
Several problems arise at this point.

(1) Is there any simple way to construct functidms<) which solve the ONG2.21)? Of course,
any o.n. basigV,, (x,y) arising in the analysis of the FQHE could be used to construct such
ah(x), but the literature is rather poor of these examffes.

(2) Equation(2.23 is not the only condition which should be satisfied by a set of complex
numbers in order to get a MRA a?(R), see Refs. 6, 7, and 11 and the following definition.
What can be said about the other conditions?
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We will consider the first point above in Sec. Ill. Poi® will be analyzed in Sec. IV.

We end this section by the following.

Definition: We call relevantany sequenca={h,,ne Z} which satisfies the following prop-
erties:

() 2 hohoiz=di0;

(r2) h,=0 n>1;

1+|n|’-’)’
(r3) > h,=v2;
neZ

o T

"2'7

(14)  Hlo)=— he 20, Voe
V?nez " '

The role of relevant sequences in connection with MRA is explained in Refs. 6, 7, and 11, for
instance, and will not be discussed here.

lll. THE SEED FUNCTION, PART ONE

In this section we will show how to find, under very general assumptions, sequences satisfying
condition(rl) by making use of the approach outlined in Sec. Il. In particular we will show how,
starting with a giverseed function k& £?(R), we can obtain another functidd satisfying the
ONC (2.2)) and, as a consequence, a set of coefficients defined &&.48 which satisfies
condition(rl). As will appear evident, a crucial role is played by formu@s) and(2.12.

Let h(P) be a generic square integrable function. Using fornigl& we get a function

ixy/2 s
_ iyP o= (x+P)2/2
‘Ifh(x,y)—‘/iwmfgo e¥ e X h(P) dP,

which belongs to the LLL independently of the choiceh¢P). Using T, andT, we define other
functions, still belonging to the LLL, as if2.15:

Oy (1) =THTX2W, (x,y) = XY Y0y, (1 ~R)), (3.2)

where we use the notation=(I4,1,), and we have define® =(X,,Y,)=—a(l1,2!,). Notice
that, since we are considering even powerd of we obtain a set of normalized wave functions
of the LLL corresponding to a filling:=3 which are mutually orthogonal whenever the seed
functionh(P) satisfies the ONC2.21),! and, via(2.22) also a set of coefficients, satisfying(rl).
However, in generalh(P) does not satisfy2.21). We want to show here the way in which a
function H(P) satisfying the ONC can be obtained starting from this origimalThe function
H(P) will be used to define some coefficients as showi(2i22).

First of all we use the sef,={®y,,| € Z?} to construct another set of functions, still be-
longing to the LLL, by considering the following superposition:

Xo(D)= 2 fi®p (D), (3.2
[EZZ

wheren=(ny,n,). The setZ, ={x,,ne Z?%\ shares witlZ,, the property of being closed under the
action of the magnetic translations:
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Xo(D) =T T%xo(1). 3.3

For this reason we can consideg(r) as a function in the LLL obtained fromd(P), different
from the seed functioh, via the same transformatid@.8), xo(r) = ¢n(r), so thatH(P) can be
obtained fromy(r) by considering the inverse transformati@12. The coefficients, will now
be fixed by requiring that the s@, is made of o.n. functions: _

<Xn vX(_)): 50,92 5n1,05n2,01 (3.9
for all integersn; andn,. Using(3.2) and the following equality,

I+n =(Pp 110, Ph o) =(Pp 1, Pr —n), (3.5

which follows from the unitarity off; and from(3.3), the orthonormality constrairi8.4) becomes
fif Sy s= dno- (3.6

Incidentally we recall thasfh) can be rewritten in terms of the seed function ag2ii21). We use
hereth) instead of the simples$; to emphasize the role of the seed functfanintroducing the
following functions:

F(p)= 2 fe®? sWp=2 sPe??, 37
nez? nez?
Eq. (3.6) can be rewritten af=(p)|?S™(p)=1, whose solution is

ei¢(p)

F(p)= ——,
®= 5

(3.9

¢(p) being a generic real function. To simplify the treatment, we will p(p) =0 from now on.
We will comment on this choice at the end of Sec. V. Notice that since the coeffig@hisatisfy
the relationsgh)zg,ﬁz, thenS™(p) is a real function, which is surely non—negativé. In order to
avoid problefns with possible di§/ergences arising wBE&% p) =0, we will try to consider in the
following only those seed functions for whi@" (p) is strictly positive.

Once the functiorF-(p) is known, obtaining the coefficienfs is quite straightforward:

JZW 277 Ip S (3 9)
VSP(p)” '

It is not difficult to explicitly check this result: if we us@.9) in the expansior3.2), we recover
(Xn:X0)=6no. as expected. In the proof of this statement the PSF has to be used.

The coefficientss and Eq.(3.2) produce a functiorxy(r) which, together with its magnetic
translatedy,=T nlT ”2)(0 gives rise to an o.n. set in the LLL, for=3. By making use of Eq.
(2.12 we obtaln a square integrable functiblfP) which, as a consequence of this fact, satisfies
the ONC(2.21):

—iPP'+P'22
HP =S S 1 [ [T ererreoma, oy axay.
|EZ

After some minor computation and using the integral expressiod®for, we get
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H(P)= 22 fih(P—aly)e 2P, (3.10
lez

In other words, we conclude that, given a seed functi¢R), the functionH(P) as defined
earlier, with the coefficient$, given in(3.9), satisfies the following ONC:

H(PYH(P+X)eP1dP=5_¢d,0. (31D

fiH(P)I—I(?aIl)e’Z‘aP'ZdP:f

We can now uséi(P) to find the coefficients of the MRA as i{2.22:

Hﬁ%fidp e ™ay(x)=/aH(na), (3.12

whereH(p) is the Fourier transform of the functidd(x). These coefficients, for what has been
discussed in Sec. Il, automatically satisfy conditiot):

>, HoHni2= 380, (3.13
neZ

simply as a consequence @.11). Introducing the Fourier transform of the functibfx), ﬁ(p),
the integral in(3.12 can be written as

H,=va > fh((n+2ly)a), (3.14

|7EZ2

which is the expression of the coefficients in terms of the seed function. Making use of the PSF
this expression can be further simplified. In fact, summing dyemwe get

Ho= @;Z ch((n+2s)a), (3.15

where we have defined the new coefficieasas follows:

1 (27 e PSdp

“"27 )0 [SP(0p)

Remark:In the above-mentioned procedure we have made essentially no requirement on
h(x). In particular, we have not assumed thatatisfies the ONE2.21) from the very beginning,
but we have aske8™(0,p) to be nonzero ifi0,24]. This is the reason why we had to construct,
starting fromh, a new functionH which does satisfiythe ONC. It is interesting to remark that,
wheneverh is already a solution of conditiof2.21), H(x) coincides withh(x). In fact, under this
assumptionS" =5, o, so thatS™ (p) = 1. Thereforef, = 5, ; and, se€3.10, H(P)=h(P). This
will happen, for instance, in Examples 1 and 2 in the following.

Before going on to consider the other requirements of the relevant sequences, we give the
following summation rules, which can be deduced from the above-given definitions and from the
PSF. We have

(3.19

> SW =a > h(ar)h((r;—2r,)a), for all fixed roeZz, (3.17)
Z ’ riez
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> g 2
r,eZ

102 2I’ZEZ

ar,

—
5 h(z(rz—zrl)), for all fixed r,eZ, (3.18

S sh-a3 h@rhir-2ra-5 3 32 h(g(r2—2r1>)=s<h><o>,
rez rez rez
) ) ) (3.19
1 = dp
3, le =5 | e (3:20
E _; 3.2
2 = o) (329

The proofs of all these equalities are trivial and will not be given here.

IV. THE SEED FUNCTION, PART TWO

In the following we move our attention to the conditions that a seed funbijgj must satisfy
in order to produce, via formul&3.15, a set of coefficient{H,} which satisfies conditions
(r2)—(r4) of Sec. II. This will conclude the construction of our relevant sequences.

A. On the asymptotic behavior of H,,

We are interested here in finding conditions fofx) which implies condition(r2). Before
considering this problem, it may be interesting to observe that, due to defi(8tib?, there exists
an easy way to characterize the situation which produces a finite sequence of coeffigients
using the same notations as in Ref. 13 we sayhafH, ,ne Z} belongs tof, the set of all the

complex sequences with only a finite number of nonzero entries, if and oHlgpif is compactly

supported. Unfortunately, the analysis of the suppoH ¢6) could be a hard problem, so that this
result is of little practical use. More useful is to approach this problem within the framework of
convolutions of sequences. We refer to the Appendix for some results on this topic which will be
used here. In fact, it is not hard to check that form(8al5 can be rewritten in terms of

convolutions. Defining two sequences relatedifoa) as
h{eeW=h(2ka), hL=h((2k+1)a), (4.1)

which share withh the same asymptotic behavior, we can wkitg= \aS._, ch((n+2s)a) as
follows:

Hon= Va(cxh(even) |
Hone1= \/5(6* ﬁ(Odd))n )

where we have used thaf=c_¢ and we have defineda¢b),=>..,;ab,_s.

We see fron{4.2) thatH,, has the same behavior for largeas ©* h),,, whereh,,=h(na). In
order to get information about the asymptotic behavioHgf we therefore have to consider the

behavior of the sequencés,} and{h,}. In particular, the decay features lof are given by the

explicit expression of the seed functituiix) and of its Fourier transforrﬁ(p). The situation is
not so simple for the coefficients,, whose definition3.16 refers to the function

4.2

1

y——
7= TSop)
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and, via((2.21,(3.7)), to the seed function itself. The asymptotic behavior of thecan be
deduced using standard techniques in the Fourier series theory: wher{@ydrasn— 1 continu-
ous derivatives and theth derivative has a finite number of discontinuitied @2{, then thecg
goes like 1s|"*1. Of course, this hypothesis is satisfied whenes8H0,p) is n-times differen-
tiable and is strictly positive fop € [0,27[ . Instead of finding conditions on the seed function for
this hypothesis to be satisfied we mention here a clag®oflexamples which will be discussed
in more detail in the next section, together with many other examples.

Let k be a natural number and Iép(p) be defined as follows;

! pe[0,(2k+1)a]

he(p)=1{ V(2k+1)a’ 4.3

0 otherwise,

then the related coefficientd;gk) satisfy condition(rl) for all values ofk and decrease faster than
any inverse power ofn|, so that they also satisfy conditigr2). This follows from the compact

support ofh(p) and from theC* nature of the functiorr(p) generated by (p).

B. About the condition X,.;H,=v2

Here we want to find conditions on the seed functix) which ensures the validity of
condition(r3). Again, we will make use several times of the PSF, which will be assumed to hold.

Under this assumption it is not difficult to prove that

Proposition: The set of coefficient$3.15 satisfies conditiorir3) if and only if

nZZ h(na)= \/gs@(g). (4.4)

Proof: From the definition(3.15 we see that(r3) is satisfied WheneveEs,nezcsﬁ((n
+2s)a)=/2/a. Introducing the integem=n+2s and using Eq(3.21), we get equality(4.4).
The converse is straightforward.

Another result related to this is the following.

Corollary: Whenever the PSF can be applied, a necessary conditiqn3joto hold is that

EZ h(na)[h(ma)—2h((n—2m)a)]=0 (4.5

n,me

is satisfied. Furthermore, ff(p) has a finite support iR, then the above-given condition reads

> (—-1)"h(na)=0. (4.6)

neN

Proof: The first statement directly follows from the previous proposition and from(&Ed9).

Formula(4.6) follows from (4.5) and from a direct computation, assuming thép) is equal to
zero outside a given interva-N;a,N,a[, for anyN;,N,=0,1,2,3,... . Under these conditions
it is easy to check that

2
> (-1 h(na)| ,

neZ

> h(na)[h(ma)—2h((n—2m)a)]=—

nmeZ

so that(4.6) follows.
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C. About the condition H(w)#0, Yowe[— @/2, 7/2]
Let H(w) be defined as irnr4),

H(w)=i2 Hoe™'en, (4.7

2 nez

with H,, as in(3.15. Then we can rewritéd(w) as follows:

H(w)= \/glC(Zw)H(—w),

where

K(w)=2>, c€®s, H(w)=>, h(sa)“s. (4.9

seZ seZ

Due to the equality _s=cs we can check thak is a real function. Moreover, we can also check
that (2w) #0 for all we[— w/2,m/2] or, equivalently, thatC(v— m)+#0 for all ve[0,27].
The proof of this statement follows again from the PSF. In particular we can check that

1

——  if Osv<nm
VS j(0,11-1— )
K(v—m)= . (4.9
—— if 7=<v<2m,
JS 5(0,1/—77)

and for this reasorH(w) is different from 0 in[— #/2,#/2] if and only if H(w)#0 in
[— =2, 7/2], condition which is easier to verify since it is directly linked to the seed function
h(p). In the next section we will discuss examples of seed functions satisfying this condition.

Remarksi1) One can think that analogous results could be obtained in a completely different
(and, maybe, more natujalvay, that is by starting from a giveseed sequencgh,,neZ},
normalized inl?(Z), and by defining a new sequendg==_, csh,.s. The problem should be
now finding conditions orcg such that propertieg1)—(r4) are satisfied. It is not very hard to
check that, even if this approach does not seem to be very different from what we have done, it is
quite difficult to obtain reasonable conditions ogt what is missing, from our point of view, is
the possibility of mapping the problem into complete different settings, in which the requirement
ZhezHnHni2= 6o can be considered simply as an orthonormality requirement between wave
functions in a certain subspace 6£(R?).

(2) It may be useful to remark also that the generic use of the senteherever the PSF
holdsis related to the fact that several inequivalent hypotheses could be checked in order to ensure
the validity of the PSF. For instance, multiplying formua24) for a functione(x) and integrat-
ing overR, we know that the equality holds for instand® if ¢ belongs taS or (2) if ¢ belongs
to £L1(R) and is continuous and with bounded variation @) if ¢ is continuous and if
sup.cr(le(X)|+|2(X)|)(1+]|x]) 1T €<e. Moreover, we will find in the next section other situa-
tions in which none of these conditions are satisfied but, nevertheless, the validity of the PSF can
be explicitly proved. In conclusion, we find that the most economical way to handle with the PSF
is simply to check its validity whenever it is needed.

V. EXAMPLES

This section is devoted to an analysis of several applications of the construction outlined in
Secs. lll and IV.
Example 1:Let us consider the following function, defined in the momentum space:
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1

n —, e[0,a

hp={ & Pt (5.0
0 otherwise.

This is a normalized function id ?(R), and the coefficientSl(h) , defined as ir{2.21), are all zero
but whenl;=1,=0: S{V=4, ;. ThereforeS™(p)=1 and, as a consequence (.16, c;

=0ds0. ThereforeH,= \/Eﬁ(na)zénlo, which clearly satisfiegrl), (r2), and(r4) but does not
satisfy condition(r3). Furthermore, it is easy to check that all the sum rules given in Sec. Il are
satisfied. For instance, it is straightforward to check explicitly @21). This shows that the PSF
can be applied also for a functier(p) =1, which does not fit any of the hypotheses given before.
Example 2:Let us consider the following function, defined again in the momentum space:

1
A —_—, e[0,2a
h(p)=4 J2a pel [ (5.2

0 otherwise.

As before we findS{"= ¢, ,, S"W(p)=1 andc,= 8. Therefore H,=Jah(na)= (1#2) (6,
+ 6n.1). We have therefore obtained the coefficients of the Haar MRA: all the propéntjesr4)
are obviously satisfied, as well as all the sum rules given before.

We want to remark that in both these examples the QRI21 was already satisfied by the
seed function itself, and for this reason it is not a surprise that the new fundtion (3.10
coincides withh.

Example 3:Let us consider

1
hx)—{ Jaa Pelodd (5.3

0 otherwise,

whered=1,2,3,... . This time the seed function has compact support in the position space, so that
h(p) decayes rather slowhB™(0,p) is, in general, different from 1 but is independentpfso
that cq is again proportional tods,. Moreover an explicit computation shows tH%a(tna) is
different from zero only ifn=0, so thatH,, turns out to be nonzero only if=0. Therefore, even
if the seed function is quite different from that of Example 1, the resulting coefficients essentially
coincide with those obtained there. The sum rules again are verified.

Example 4:Let us define now

1
" —, e[0,3
hp)={ y3a. Pelo=l (5.4

0 otherwise.

We get easilys" =5, | &, ot (8, 1+ 8r,,—1)], which implies thatS™(p)=1+cosp,). We
see thas("(0,p) is always positive if0,27] and infinitely differentiable. We can deduce, there-
fore, that thec.'s decay faster than any inverse power|sf Sinceﬁ(p) is different from zero
only in the finite sef 0,3a] we can use the result of the Proposition given in the Appendix,
statementl), to conclude that the sequenidg in (3.15 satisfies condition§rl) and(r2). How-
ever, sincg4.4) is not verified, we do not expect conditi¢r8) to hold. All the sum rules can be
explicitly checked.
2 . .0 _p2 .
Example 5:Let h(x)= (1/7*% e %2, Its Fourier transform ifi(p) = (1/w% e P72, Using

) (12 ar2 ) -
formula  (2.2) we find SM=e ("2(1+42)  which implies that S™(0,p)
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2 2 .
=3, e (MN3, _,e”?™2eP'2. The sum inr; can be performed numerically and it gives
2
3, z€ (M"1=1.4195. Using now the usual techniques outlined earlier and in the Appendix we
can easily deduce that, not only conditiofh) but also condition$r2) and(r4) are automatically

satisfied, the reason being the very fast decay properties otpairhdﬁ. However, condition(r3)
is not verified since equaliti4.4) does not hold. On the contrary, all the sum rules deduced in Sec.
Il are verified.

Let us work out this example in more detail. Since the explicit computatio®&®§0,p) is
difficult, we consider here a perturbative computation. We will show that already a very crude
approximation gives interesting results, and that a slightly better approximation makes the result
almost exact. The main difficulty consists in the computation.dh (3.16). Using the expansion

1 1 1 +3 2.
= ——X —X ...’
V1+x 28

and observing thaEf’Zzle‘zwrgzOOOl 86, we can proced as follows:

1 1 1
() a v —om?
VSM(0p)  V1.4195/14 257 e 27 cogpry)

o

1 1

~ 1- > e 2cogpry) | =
1.4195 rp=1 1.4195

considering the crudest approximati@the rest is only 2/1000 of the main contributignin this

way we getcg= J50/\/1.4195, and thereforiel ,~ (2Y4(1.4195)e" ™. It is clear that bott{r2)

and (r4) are satisfied. As for thé&l), a numerical computation shows thag_ Hﬁ=0.999 992,
ShezHoHp+2=0.00186, an . ,H,H, 5 is even smaller fofl| larger than 1. We see that this
is already a good approximation (.23. Better results can be obtained simply considering the
next contribution in the previous expansion, which means considering also the term within

the above-given sum. In this case we ggt (1/11.4195) §so— 3(Ss1+ s, -1)), and

- Ee—qu(e— 7T(n+2)2+e— w(n—2)2) .

1/4 )
H e ™M —
" \/1.4194 2

We find now that®,,_, Hﬁ:0.999 992, whilez,,_7 H,H - ,=10"8, which is much smaller than
before. As for(r3), a numerical computation gives, .,H,=1.0844#v2, as expected. Again, all
the sum rules are satisfied.

Example 6This example generalizes Example 2, in the sense that we still refip)eto be

zero outsidd 0,2a] but we do not fix the analytic expression fofinside[0,2a[. Without going
into all the details we just want to remark that also nows proportional tods o, so thatH, is

proportional toh(na). More in detail we find

1
Hp= (h(0)8,0+h(a)8,1).

VIR(0) |2+ |h(a)?

It is clear that conditiongrl), (r2), and(r4) are automatically satisfied, while3) holds whenever
h(p) is such that
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h(0)+h(a)
V[h(0)[2+|h(a)|?

Example 7:This example can be considered as a generalization of Examples 1 and 4 and was
already mentioned in Sec. IV. L&tbe a fixed naturalk=0,1,2,..., and let

=v2.

! pe[0,2k+1)a[

he(p)=1{ V(2k+1)a’ (5.5

0 otherwise.

Obviously,k= 0 returns Example 1, while=1 gives Example 4. Computing the integralth21)
we find

2 k=1
SM(0p) =1+ (1 6o g 2 (21 +cogp(k—])),

which turns out to be strictly positive for all values kof This claim was analytically and numeri-
cally checked for many values &. For k increasing it is possible to see that the function
s (0,p) approaches more and more zero, but, at leask$ot00, it is always strictly positive.
We guess that this same positivity also holds Kdbigger than 100, but an analytical control is
quite difficult in this case and it is not very relevant here. Incidentally, this is the reason why the
seed functiorh,(p) is defined on, say, odd intervals. For even ones, in faot [0,2ka[), it is
easy to check tha®)(0,p) has a zero insidg0,27[, and the integral definings may diverge.

It is now clear that, for any fixeH, the function 15" (0,p) is in C*, so thatc, decays faster
than any inverse power ¢§|. Now, sinceﬁ(p) is different from zero only in a finite interval, it

is also clear that for the asymptotic behavior of the coefficiehts Va=.., ch((n+2s)a) we
can apply the Proposition given in the Appendix, staterm@&pnt so that we conclude that,
es, wheres is defined in the Appendix. Conditior3) does not hold since Eq4.4) is not
verified.

Example 8:Let us fix] e N and define

\E
h(x)=0{ Via® *

0 otherwise.

0Ia
2

(5.6

This class of seed functions is interesting because it produces, after the usual procedure, a set of
coefficientscg which are always zero but §=0. Therefore we obtain

B [ a .
H,= S(T(Q)m(na).

Whenevel is even the situation is not very interesting, since wekygt 6, 5. On the contrary, if
| is odd,l=2k+1, we find that

[ [2k+1 0
2a @ 7

0, n=%2,%£4*6,...

/ 2
——————— n=*x1+3,*5,....
inayma(2k+1)

N

hoks1(na) =4

\
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We therefore see that, even(ifl) is satisfied(r2) is not. Also(r3) does not hold since Ed4.4)
is not verified.
Example 9:As a final example here we consider the following seed function

2
h(p)= a1t p?)
which produces the following coefficients
. eIrila
St “Trom2
and the following functior§™(p):
a ipr
Sp)= T elp) Wit eip= S Too

It is an easy estimate to check thafp,)+#0 in [0,27[. However, we cannot use the same
arguments as for Example 5 to conclude thdp,) belongs toC*, the reason being that the
Fourier coefficients (1/4 27r3) of ¢ do not decay very fast. For this reason it is not difficult to
understand that conditiof2) is not satisfied whereas conditiofrd) and (r3) hold. In particular
this last condition can be controlled by checking directly Eg4).

Let us now go back to EJ3.8), where the phase(p) was chosen to be equal to zero. We
want to show here that this is really a very special choice. In fact, the following two simple
examples point out that a different choiceg(fp) produces coefficientsl,, which can be signifi-
cantly different from the ones we get ¢(p) =0.

First we remark that the expression foy must be a little bit modified. Instead ¢3.16) we
have

1 2 efips+i¢(0,p) dp
“2m)o ysMop)

A first application of this formula consists in choosipg0,p) = pKgy, Ky being a fixed integer. If

we consider, for instance, Example 2, we see that the only difference, in this case is that, instead
of havingcs= 59, we findcg= OsK, SO thatH ,= (1A2) (5n,'<o+ 6n‘Ko+1). More interesting is

the situation ife is not linear. Let us consider hetg(0,p) = yp?, yeR. Restricting ourselves

again to Example 2, for whicB™(0)=1, we can still compute analytically the coefficients

which turn out to be

(5.7

Cs

-1 T . i(47y—s
Cs ye—(|52/47<q)( ( 4 )

is
=— . +o ,
4w N -l 2\-iy ) (ZV—W))
whered is the erf function* Using its well-known asymptotic behavior, we find tatdecays as
|s| %, which is a very slow behavior when compared with that obtainedpfe.

VI. CONCLUSIONS

We have shown how to use the relation between the FQHE and the MRA recently established
by the author in order to construct a set of coefficients which produce a MRAZ(R). The
examples given show that while it is essentially automatic to obtain a sequence satisying condition
(r1), more care must be used to find a seed function which produces a relevant sequence. Condi-
tions on the seed function for the géd,,,ne Z} to be relevant are discussed.
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APPENDIX: CONVOLUTIONS OF SEQUENCES

In this appendix we prove some results concerning the asymptotic behavior of convolutions in
view of applications. We wish to stress that these results are given here since, though being quite
reasonable, they were not found by the author in the existing literature.

We use here the same notation as in Ref.f13, andl, are well-known spaces of sequences,
the first containing all thdinite sequences, that is, those sequences which are zero outside of a
finite set of indexes. The other sets are defined as follows:

>, lagl?

peZ

s={a:lim|n|Pa,=0, Vpel}, I,= [ a:l|al,=

Inl.

1/p
< OO] . (A1)

Given two sequencesa,b we define a third sequence=a*b as c,=Xs.,ab,_s
=>..78,_sbs. We have the following.
Proposition: Let a,b, andc be as above. Then the following statements hold:

(1) if aef then the asymptotic behavior ofis the same of that db;
(2) if aely andbel, thencel,, for all 1sp<o;
(3) if a,besthences.

Proof:

(1) This is clear becausz,=0 but for a finite number of indexes Of course the same result
can be obtained simply by exchanging the rolesa @ndb.

(2) The proof of this statement follows from well-known properties of the convolutions of
functions. We start defining two functions, definedRpas follows:

ax)=lag, xe[s,s+1[, b(x)=|by, xe[s,s+1[, seZ.
It is clear thata(x) e £1(R), while b(x) e LP(R). Then it is well known that*be £LP(R),
where @x*b)(x)=[ra(y)b(x—y)dy. In order to conclude thate |, we consider that

s+1 s+1
c(x)= fRa<y>b(x—y>dy=s§Z f a(y)b(x—y)dy=gzlas| f b(x—y)dy.

Using now the definition ob(x) it is easy to check that, for all integefsand for O a<1, we
have

c(l +01)=SZZ s/ ((1=a)[bj_s-1| +alb_¢) = (1= a)d|_ 1+ ad;, (A2)

where we have definedi == _,|ash,_¢=0, for all| € Z. The conclusion now follows from the
fact that c(x) belongs to£P(R) and from the inequality {1+ yo+- -+ y,)P= v+ y5+---
+ 9P, which holds whenevey;=0 and for allp=1. In fact we have

oc>J le(x)[Pdx= > J|+l|c(x)|pdx=2 Jllc(l+x)|pdx=2 fl((l—a)d|,1+ad|)pda
R lez JI lez JO lez JO

2

p+1isz ' p+1

| »
lez
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which proves thatel,.

(3) From the definitionc,= =z ash, s we easily get the following equality between func-
tions: C(p)=A(p)B(p), where A(p)=Z;.7a."P, B(p)=Zs.7be"P, and C(p)
=3,.7C.€'"°P. The coefficients; can now be found simply by

- FWC(p)e-ip' dp= iFWA(IO)B(|o)e‘i°' dp (A3)
! 27 Jo 27 Jo '

which is the starting point of our asymptotic analysis. In fact, due to the factathbt s, the
functionsA(p) andB(p) belong toC”, and so their product does. This implies, using well-known
fact about the Fourier series, that the coefficients (A3) decay faster than every inverse power
of |I|, so thatces.

Remark: It is clear that statemenf2) is not enough to ensure validity df2), which is
satisfied, on the contrary, & andb are both ins or if, e.g.,a is in f andb decays like 2.
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