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The existence and uniqueness of the mild solution of the boundary layer (BL)
equation is proved assuming analyticity of the data with respect to the tangential
variable. Moreover we use the well-posedness of the BL equation to perform an
asymptotic expansion of the Navier-Stokes equations on a bounded domain.

1 Introduction

Prandtl’s boundary layer equations were first formulated in 1904 in order to
solve the differences between the viscous and inviscid theory of fluids. In par-
ticular inviscid flow does not account for the total drag on a body. Moreover,
in presence of a boundary, a perfect flow allows only vanishing normal veloc-
ity, while a viscous flow imposes all the components of the velocity to be zero
on the surface of a stationary object.

Introducing the proper scaling to make the viscous forces to be of the
same order of magnitude of the inertial forces, one derives Prandtl equations.
They hold inside a narrow ”boundary layer” region of thickness O (1/v) where
viscous drag and no-slip boundary conditions occur. The BL equations are:

(8; — Byy) uf +ufduf +vF0yur +0,pF =0, (1)
oyp" =0, (2)

o.uf + 6yt =0, (3)

u’ (z,Y =0,t) =0, (4)

u’ (z,Y = 00,t) — Ul(z,t), (5)

p(z,Y — 0o, t) — pE(a:,y =0,t) , (6)

ut (z,Y,t =0) =ul . (7)

In th? above equations (u?,vf ) and p? represent the components of the fluid
velocity and the pressure inside the BL, Y is the rescaled normal variable
?’ = y/v/v. Equation (5) is the matching condition between the velocity of
inside the BL and the outer Euler flow; U (z,t) is the tangential component
of the Euler flow at the boundary. Up to date the well-posedness of the
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.bove system of equations is an open question and an exhaustive theory of
the Prandtl equations is far from being achieved (see !). Relevant results have
been obtained by Oleinik and coworkers (see ° for an update review) but they
have to require quite restrictive monotonicity assumptions on the initial data.

Existence and uniqueness of the Prandtl system Eqgs. (1)-(7) was proved
by Caflisch and Sammartino in 6 without any monotonicity restriction but
imposing analitycity on the initial data with respect to both the tangential
and the normal component of the velocity. The main tool of their proof was
the abstract formulation of the Cauchy Kowalewski theorem (ACK) in the

Banach spaces of analytic functions.

In this paper we extend the results of °, proving existence and unique-
ness for the Prandtl equations requiring analyticity only with respect to the
tangential variable. The well-posedness of the Boundary Layer equations is
then used to address the study of the zero viscosity limit of the Navier-Stokes
equations on a bounded domain. The results of this paper are valid in 3D as
well as in 2D. To simplify the notation we shall restrict to the 20 case.

2 Function spaces

In this section we introduce the function spaces used in the proot of existence
and uniqueness of the Prandtl equations.

Definition 2.1 K'* is the space of the analytic functions f (z) defined in
{xeC : 3z € (—p,p)} such that:

» if Sz € (—p,p) and 0 < j <, then 8] f(Rz +iSz) € L*(Rz) ;

® If'hﬂ = E;_—_g " ES?P ) Haif( + iﬁx)”Lg(ﬂ?z) < 00 .
L = PP

Definition 2.2 K“#* with u > 0, is the space of the functions f(Y,z) such
that:

¢ 4Y9igl f e Lo(R+, K%?) when i+j <landj<2;
® |flipn = ngz Zf.fg:_j SUPy R+ er¥ |3:§;5if(y= Yo,p <00 -

Definition 2.3 Kg‘},with B > 0, is the space of the functions f(z,t) such
that: ’ ’

¢ 5i0if(zt) € Klo-Bt o< t<T,where0<i+j<land0stsl;

® lf|£,p,,3,'r = ZOSjgl Ziﬂ_}_ SUPg<i<T I@{@if(-,t)lo,p—ﬁt < 00 .
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Definition 2.4 Kgﬂi" is the space of the functions f(z,Y,t) such that:

o fc KhoBtu-Bt, §,0if € KOp—Pbr=Pt VOt < T, for0<i<l-2;

o |flipuBT = Zogjgz Ei_{.!-—j SUPp<t<T |3'Jy6;f(= s tWo,p—Bt.u—p5t
+ S i<1_a SUPo<t<T 1002 (- tMo.p—pBt,u—pt < 00 .

3 A parabolic equation

In this section we shall be concerned with the following equations:
(6; — Byy)u+afz,t) Y Oyu = f, (1)

u(z,Y =0,t) = g, (2)

u(z, Y, t=0) = uy:

To solve the above system, we first introduce the following kernel:

Fo(z.Yt) = 1 1 - ( Y 2e—2A(z.t) )’ (1)
U Vi (Jtar 6_2,4(:,1-))” g 4 (fy dr e=2A(z7))
where A(7) and E, are defined as:
Az, 1) =/0c;9 a(z,8) ; Ex(z,Y, t)==/;§Y' (Fo(z, Y=Y t) — F,(z, Y+Y t)].

We can introduce the following operators:

o0
Moo= / dY' [Fa(Y = Y',1) — Fo(Y + Y, )] uo(z, Y"), (5)
0
t o0
szzfds dY' [Fo(Y =Y t—s) - F (Y +Y',t - 5)] f(z,Y',s), (6)
0 0
¢ OF,
Mg =2 0 ds | ~2—= +2YaF, - aE, | (z,Y,t - s) g(z, 5), (7)

t 00
Msh = [ ds| Y0y [FalY ~Y',t = 5)= Fu(Y +Y',t— 5)] {2, V",

NOtice th&t,. if h(ﬂ:, Y = 01 t) = 0: then: iﬂtegrating by pa.I'tS, one gets Mﬁh —
M>0y h. Using the operators Mo, M; and M, given by (5), (6) and (7), one
can write the explicit expression of the initial boundary value problem (1)-(3),
and prove the following Proposition:
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proposition 3.1 Suppose a, g € KBE"’ IS KEE"“# and ug € K"»#. More-

over let the compatibility condz'tz’c;n g(z,t = 0) = 0 be satisfied. Then the
solution u of Egs. (1)-(3) is in K ’&“, and the following estimate holds:

|uh=p1#!ﬁ:T S C(,ahwptﬁ!T + 'fh,p,j.l,ﬁ,T + 'gh:ﬂ1ﬁ,T) .

We will also need the following estimates for the operators M, and M;:

Lemma 3.1 Suppose a € Ké’fl} and f € Ké’ﬂ;'«“ with f(z,Y =0,t) = 0. If
o < p- Bt and p' < p— pt then the following estimate holds:

t
(Mo fli,prur < f ds|f(s - 8)lupr o S el flipppr .
0

Lemma 3.2 Suppose a € K5, h € Kg%" with hly—o = 0, 8yh|y_o = 0.

If 0<yp <pls) <p-—[Bs then Mzh € KhpH for each 0 <t < T and the
following estimate holds:

t |R(y 8o 1RG5 8)
M ht; r ! S C/ dS ( — Lok L ] =L *P‘j“(S)) .
| 3 | pi . \/t_:_s #(S) — !

For the details of the proofs of the above statements see 3.

4 The mild form of the Prandtl équations

Following 3, we introduce the new variable u = u* — U, so that using the
Euler equation at the boundary, Eqs. (1)-(7) can be written in the form:

where; u = F(u,t), (9)
F(u,t) = MyK1(u,t) + M3K(u,t) +C, (10)
Ki(u,t) = - (2ud,u + U Gzu +ud,U), (11)
Y
K(u,1) = u / Ay’ d,u, (12)
0

_where C takes into account the initial and boundary conditions and we have
ldentified the o appearing in the kernel F, with the Euler datum at the
boundary U/. We shall call the Eq. (9) the mild form of the Prandtl equations.

9 The main result

To Prave the existence and the uniqueness of the mild solution of the Prandt!
;f:luatlﬁns, we shall use a slightly modified version of the Abstract Cauchy-
Owalewski Theorem (ACK) as given in 6. We refer to * and 3 for the formal
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statement and the proof of the Modified ACK theorem while here we sha]]
only give an informal version.

Theorem 5.1 (Modified ACK) Let {X,: 0 <p < po} be a Banach scale
For t in [0,T], consider the equation

Suppose that the function F(t,u) : [0,7] = X, is continuous ang
IF(t,0)|p~8¢ < Ro < R . Moreover Y0 < p' < p(s) < po — Bys and

Vulandu? e{u€e X,: sup |u(t)|p—p,t < R},
0<t<T
<t< ul :

F(t,u') — F(t,u?)], < O/t ds ( O Ul ) (14)
| S S RV RN S
Then 38 > Bo and 0 < Ty < T such that Eq. (18) has a unique solution

u(t) € Xp,—pt with t € [0,T1]; moreover sup |u(t)|p—pt < R.
0<t<Ty

To apply the ACK theorem to the Prandtl equation, we have to prove that the
right hand side of Eq. (10) satisfies an estimate like (14). Using Proposition
3.1, Lemma 3.1, Lemma 3.2 and through the Cauchy estimate for the deriva-
tive of an analytic function (see also °), one can easily prove the following
Proposition.

Proposition 5.1 Suppose that u' and u? are in Kgi*’q:““. Suppose 0 < p’' <
p(s) < po — Bos and 0 < p' < u(s) < po — Bos. Then the following estimate
holds:

| F(u',t) = F(u?,t)

ilL.p.u

S c/t ds (|'Ur1 - u? I,pgs),ﬁ E "Url . uglf-mﬂmfi(ﬂ) 4 I‘H e uzlf_’pf,pr) | (15)
0 p(s) —p u(s) — p Vi—s
Therefore using the above Proposition and the ACK Theorem, the main result
of this paper can be proved.

Theorem 5.2 Suppose U € KE;""?&, and uf, — U € Khpoko . Moreover let

the compatibility conditions uﬂ(m,Y = 0)= 0; uﬁl(:r,}’ - o00)-U — 0
hold. Then there ezists a unique mild solution uf of Egs. (1)-(7), which can
be written as u’ (z,Y,t) = u(z,Y, t)+ U where u € Kg’fg.:fl with 0 < p1 < Po;
0 <y <po, Br>Bo>0and0< Ty <T. ’

6 Zero Viscosity Limit on Bounded Domains

In this section we shall show how one could address the problem of the Zero-
viscosity limit of the Navier-Stokes equations in domains with curved bound-
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aries. We define adapted coordinates (s,n) and, as we can g
.nitial data with respect to the normal variable, we
fanction m(n/e*), with 0 <'a <1, such that:

m(n/e%) = 1 for0<n<ex
0 formn>2ex

. low non-analytic
Introduce g (' cut-off

We thus construct an approximate solution to the Navier-
the form:

u® =(1-m) (u§+6uf+52 u§)+m(U§+eUf+32 UQP)

where the uf terms satisfy the 1 —th order Euler equations and the U f terms

satisfy the i —th order Prandtl equations with proper boundary and matching

conditions (see ). Then the solution to the Navier-Stokes equation can be
written as:

Stokes equations of

]

where the correction term w satisfies a Navier-Stokes-type equation with
bounded source term. The possibility of giving a rigorous estimate of the

norm of w in the appropriate function space is under current investigation.
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