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There is considerable information on the clinical manifestations and mode of inheritance for many genetic chaperonopathies but little is
known on the molecular mechanisms underlying the cell and tissue abnormalities that characterize them. This scarcity of knowledge is
mostly due to the lack of appropriate animal models that mimic closely the human molecular, cellular, and histological characteristics. In
this article we introduce zebrafish as a suitable model to study molecular and cellular mechanisms pertaining to human chaperonopathies.
Genetic chaperonopathies manifest themselves from very early in life so it is necessary to examine the impact of mutant chaperone
genes during development, starting with fertilization and proceeding throughout the entire ontogenetic process. Zebrafish is amenable to
such developmental analysis as well as studies during adulthood. In addition, the zebrafish genome contains a wide range of genes encoding
proteins similar to those that form the chaperoning system of humans. This, together with the availability of techniques for genetic
manipulations and for examination of all stages of development, makes zebrafish the organism of choice for the analysis of the molecular
features and pathogenic mechanisms pertaining to human chaperonopathies.
J. Cell. Physiol. 231: 21072114, 2016. © 2016 Wiley Periodicals, Inc.

The Chaperoning System and Its Alterations

Molecular chaperones, many of which are heat-shock proteins
(Hsp), are widespread protein molecules typically involved in
protein homeostasis (Ellis, 1996). They play a variety of roles:
(1) canonical, which pertain to maintenance of protein
homeostasis, and include assisting folding of nascent
polypeptides, protecting proteins from denaturing stressors,
promoting degradation of irreversibly misfolded or aggregated
proteins, and facilitating protein translocation across
membranes; and (2) non-canonical, which include participation
in a variety of cellular phenomena unrelated to protein
homeostasis. The new concepts of chaperoning system (the
whole complement of molecular chaperones, both intra- and
extracellular, of an organism), chaperonopathies (diseases due
to impairment of chaperone functions), and chaperonotherapy
(a novel way to treat human diseases by the restoring of
functioning chaperones as well as their use as drugs or
vaccines) have recently been reviewed (Macario et al., 2013).

In brief, malfunctioning of the chaperoning system, due to an
impairment of one or more of its components, can cause
diseases, the chaperonopathies, including pathologies affecting
nervous, cardiovascular, respiratory, gastrointestinal, and
other physiological systems. A chaperonopathy can be due to a
structural defect in the chaperone molecule, or to mechanisms
in which the affected chaperones are structurally normal but do
not work properly, or work abnormally, or work to the
advantage of the disease (Macario and Conway de Macario,
2005).

Chaperonopathies from an etiological point of view may be
sorted out into genetic or acquired, while from a pathogenic
standpoint can be classified into “by defect,” “by excess,” or
“by mistake” (the latter also called “by collaborationism”)
categories (Table |). In the chaperonopathies by mistake,
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chaperones are not necessarily decreased or increased in
quantity, or structurally abnormal (as much as it can be
determined with the limited means available today to study
protein molecules directly, in the cell) but they work to the
advantage of the disease (e.g., cancer or autoimmune diseases)
rather than protecting the host. In all these situations, the
affected chaperone is the etiological-pathogenic factor, or at
least a determinant secondary etiologic factor, necessary to
cause a pathologic condition.

Since long time ago, the use of chaperones as targets or
agents for therapeutics has been reported by many authors but,
recently, the concept has been defined more precisely as
chaperonotherapy and extended to include various modalities
(Macario and Conway de Macario, 2007; Almeida et al., 201 I;
Kondoh and Osada, 2013; Aguila et al., 2014; Reddy and Reddy,
2015). For example, positive chaperonotherapy, in which a
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TABLE |. Classification of chaperonopathies according to their pathogenic
mechanism

Chaperonopathies Mechanism, features

By excess Quantitative, for example, due to gene dysregulation
and overexpression; post-transcriptional
mechanisms

Qualitative, for example, gain of function
By defect Quantitative, for example, gene downregulation;

post-transcriptional mechanisms

Qualitative, for example, due to structural defect
genetic or acquired

Normal chaperones contribute to disease, for
example, some tumors that need chaperones to
grow, and some autoimmune conditions in which a
chaperone is the autoantigen

By mistake or
collaborationism

Modified from: Macario AJL, Conway de Macario E, Cappello F. 2013. The
Chaperonopathies. Diseases with defective molecular chaperones. New York London:
Springer Dordrecht Heidelberg.

chaperone gene, or protein, is utilized to replace a
malfunctioning chaperone, as it would be the case of
chaperonopathies by defect caused by mutation of a chaperone
gene. Alternatively, negative chaperonotherapy, would be
applicable in cases of chaperonopathies by excess or by
mistake, when it is necessary to block or eliminate a chaperone
that is promoting disease.

Many chaperones are heat shock proteins (Hsps), but many
others are not. However the use of the terms “Hsp” and
“chaperone” indiscriminately in the literature and databases
has made a distinction between them very difficult or at least
impractical. This is why we will use both terms interchangeably
in this review.

Classification of Human Chaperonopathies

Chaperones can be classified in several ways, but one which is
commonly used by physicians and pathologists is based on
molecular weight, Table 2, and as far as nomenclature is
concerned, there are in the literature and databases a variety of
names for each chaperone gene and protein, which is confusing.
To alleviate this situation a nomenclature system has recently
been proposed based largely on the HUGO Gene Nomenclature
Committee and the National Center of Biotechnology
Information Entrez Gene databases (Kampinga et al., 2009).

As shown in Table 2, the classification of chaperones
includes families of phylogenetically related proteins, for
example, the Hsp90, Hsp70, Hsp60, Hsp40, and the small Hsp
(sHsps) families. Other members of these groups are not part
of those families although they have molecular weights within
the stipulated ranges. Chaperonopathies involve chaperones
pertaining to all these groups.

Mutations in chaperone genes have been found associated
with diseases and syndromes affecting one or more of the
various physiological systems, for example the nervous system,
as illustrated by hereditary chaperonopathies due to Hsp60
mutations, Table 3. Diseases associated with mutations in the
genes encoding proteins within the Hsp70 and Hsp40 families
are shown in Table 4. The chaperonopathies associated with
defects in members of the sHsp group are shown in Table 5.
Surprisingly, there are no known chaperonopathies due to a
mutation in the genes encoding Hsp90. A number of non-
genetic pathologic conditions due to chaperone malfunction or
collaborationism have been described. They may be divided
into these main groups:

(1) Sepsis, fever, fatigue: these are pathological conditions in
which the levels of Hsps may be increased and they contribute
to disease initiation-progression (Essig and Nosek, 1997; Singh
and Hasday, 2013).
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(2) Cancer: there are a number of neoplasms in which Hsps
promote tumor-cell growth by various mechanisms, including
blockage of the apoptotic cascade and escape from immune
surveillance (Joly et al., 2010; Rappa et al., 2012). These are
conditions in which Hsps “collaborate” with the disease rather
than with the host.

(3) Autoimmune conditions: since Hsps are evolutionarily very
conserved and, therefore, very similar across species, the
bacterial counterparts of some human Hsps can induce
antibodies against themselves and these antibodies are
crossreactive with the human equivalents. By this mechanism,
known as molecular mimicry (Cappello etal., 2009; Rajaiah and
Moudgil, 2009), foreign Hsps can trigger initiation of
autoimmune diseases. These conditions are considered
chaperonopathies by mistake or collaborationism.

(4) Cardiovascular diseases: the pathogenesis of atherosclerosis
and heart failure can involve chaperone malfunction. The
former has been proposed as an autoimmune disease due to
autoimmunity against Hsps (Wick et al., 2014), while heart
failure can be due to a dysregulation of a Hsp gene
accompanied by the gain of a new, extrachaperoning, function
of its protein product (Knowlton et al., 1998).

(5) Aging: this condition has been associated to a malfunction of
molecular chaperones, for example, due to post-translational
modifications that reduce their functionality. During aging,
altered Hsps may reduce the efficacy or misdirect some
functions of the immune system, which, during the rest of the
life of a subject, can be abnormally modulated by aged
extracellular Hsps (Macario et al., 2010).

(6) Neurodegenerative diseases: Hsps have been implicated in the
pathogenesis of Alzheimer’s disease and other forms of
dementia; this pathogenic effect seems to be related, at least in
some instances, to the impairment of the Hsps functions that
occur during aging (Deture etal., 2010; Bolshette et al., 2014).

Zebrafish as Animal Model for the Study of Chaperones
and Chaperonopathies

There is considerable information on the clinical manifestations
of the chaperonopathies in general, and on the inheritance
patterns of the genetic cases that have been studied in detail.
However, there is very little information on the molecular
features and mechanisms pertaining to chaperonopathies,
genetic or acquired. Part of this lack of information is due to the
scarcity of model systems amenable to the study of human
chaperonopathies. A prokaryotic model has recently been
used to elucidate some molecular aspects of a chaperonopathy
caused by a mutation in the CCT subunit 5 (Min et al., 2014).
Nevertheless, eukaryotic models are still necessary and, in this
article, we will discuss the potential of zebrafish as a convenient
system for investigating molecular mechanisms pertinent to
human chaperonopathies.

In the past 30 years, zebrafish has successfully scaled up the
list of the best animal models to study conditions affecting
humans (Kinth et al., 2013). Initially, this simple vertebrate
caught the attention of developmental biologists and geneticists
because of its external fertilization; fast growth; transparency
of the embryo and ease to apply classic embryological,
biochemical, molecular biological techniques; and the use of
rudimentary yet effective mutagenesis by irradiation
(Grunwald et al., 1988). Later, thanks to its fast life cycle,
inexpensive maintenance costs and the possibility of applying
sing N-ethyl-N-nitrosourea (ENU) mutagenesis, zebrafish
became widely used for forward genetic mutagenesis screens
(Mullins and Nusslein-Volhard, 1993; Haffter etal., 1996). Once
it was clear that many genes and biological mechanisms were
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TABLE 2. Classification of molecular chaperones according to their molecular weight: Some illustrative examples for each category

Other members in this range implicated in the causation of chaperonopathies

MW (kDa)

range Classical family

200 or higher None

100-199 Hsp100-110

81-99 Hsp90

65-80 Hsp70

55-64 Hsp60 (groups | and Il
chaperonins)

35-54 Hsp40

34 or less Small Hsp (sHSP): crystallins

Sacsin
Paraplegin
Spastin; LARP7

Myocilin; protein disulphide-isomerases

AIP; AIPLI; torsin A; clusterin; DNAJCI9

Hsp10; Alpha hemoglobin-Stabilizing Protein; cyclophilin type peptidyl-prolyl cis-trans isomerases;

alpha-synuclein; HSPBI |

Modified from: Macario AJL, Conway de Macario E, Cappello F. 2013. The Chaperonopathies. Diseases with defective molecular chaperones. New York London: Springer Dordrecht

Heidelberg.

conserved from the zebrafish to human, the use of the
zebrafish animal model for modeling human diseases gained
acceptance by many scientists.

Modeling of human diseases is now one of the preferred uses
of zebrafish because it has become a common laboratory
routine to knock-down genes via morpholinos (Nasevicius and
Ekker, 2000), to create transgenic fish (Higashijima et al., 2000;
Balciuniene et al.,, 2013) and, to apply the more recently
developed reverse genetic techniques to the fish (Jao et al,,
2013; Hwang et al., 2013; Auer and Del Bene, 2014). Many
studies are demonstrating still more similarities between
human and zebrafish also at the cellular and organismal levels. In
this regard, particularly revealing have been the studies on
angiogenesis, cardiac development, and regeneration, function
of the nervous system, and nociception and cancer (Nicoli
et al,, 2007; Siekmann and Lawson, 2007; Kikuchi and Poss,
2012; Malafoglia et al., 2013, 2014; Yen et al,, 2014). Despite
intrinsic metabolic differences in mammalian and fish species,
lately zebrafish has been used for studying metabolism and
modelling metabolic diseases (Seth et al., 2013). Moreover, in
2013 the whole zebrafish genome was completely sequenced
(Howe et al., 2013) further supporting, at the genetic level, a
plethora of previous studies that had already indicated the high
degree of similarities between human and zebrafish. Finally, it
has become evident that zebrafish is useful even if some of its
peculiar characteristics are not shared with mammals, such as
its ability to regenerate nerves as well as fins and heart tissue
(Gemberling et al., 2013). The high relevance for human health
of such mechanisms made the zebrafish the centerpiece of
research aiming to uncover the basis of tissue and nerve
regeneration and, hopefully, to use it for developing new
therapeutic approaches.

Heat-Shock Proteins and Chaperone Genes in Zebrafish

The analysis of the zebrafish genome and other molecular
genetic studies have revealed a large set of genes encoding
members of the chaperoning system, Table 6, with extensive

overlapping with that of humans. From these data, it becomes
clear that zebrafish offers the possibility of modeling human
genetic chaperonopathies because its genome has the
homologs of the pertinent human genes.

Two decades ago the zebrafish animal model begun to be
employed for studying the expression and function of a variety
of genes in the vertebrates. This included the expression and
function of the heat-shock genes. Despite the fact that zebrafish
live in water and at temperatures ranging from 25°C to 33°C,
which are conditions different from those typical of the
environment in which most mammals reside, they do show
heat-shock response and express heat shock factors | and 2
(HSFI and 2) (Wang et al., 2001). In addition to the heat shock-
inducible chaperone genes, many other genes not inducible by
heat shock but nonetheless pertinent to the stress response
are also expressed in the zebrafish, and many of them are
expressed during embryogenesis. Some of the Hsp genes
studied in zebrafish are individually discussed below.

Hsp90

Hsp90 is present in two isoforms, a and b, in the zebrafish.
While the a isoform is heat inducible the b isoform is
constitutively expressed at high levels (Krone and Sass, 1994).
It was shown by way of a morpholino-based knock-down
approach that the a form is involved in muscle development. It
associates with Unc45b and together co-localize in the muscle
close to the myosin filaments (Etard et al., 2007). Consistently
with this localization, embryos in which hsp90a expression was
chemically disrupted are paralyzed, that is, partially or totally
incapable of moving (Lele et al., 1999; Etard et al., 2008). In
addition, hsp90a has been connected with the apoptotic
mechanism involved in lens degradation in another teleost, the
blind cavefish (Hooven et al., 2004). hsp90b/ is maternally
expressed in the zebrafish and later, during development, is
expressed in the floor plate, hatching gland, optic placode, and
otic vesicle, in which it is involved in otolith formation (Sumanas
et al., 2003).

TABLE 3. Examples of chaperonopathies due to mutations in the genes encoding chaperonins of Groups | and Il

Gene/protein affected

Disease/syndrome

Chaperonin group |, Hsp60
Mitochondrial Hsp60 (Cpn60)
Chaperonin group I, CCT subunits
MKKS, BBS10, and BBSI2

CCT4, CCT5

Hereditary spastic paraplegia (SPGI3); MitCHAP-60 disease (Pelizaeus-Merzbacher-like)

McKusick—Kaufman (MKKS); Bardet—Bied! (BBS)
Hereditary sensory neuropathy

Modified from: Macario AJL, Conway de Macario E, Cappello F. 2013. The Chaperonopathies. Diseases with defective molecular chaperones. New York London: Springer Dordrecht

Heidelberg.
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TABLE 4. Examples of chaperonopathies due to mutations in the Hsp70 and Hsp40 genes

Gene/protein affected

Disease/syndrome

Hsp70
STCH Stomach cancer
mtHsp70 (HSPA9B; HSPA9) Parkinson’s diseases; EVEN-PLUS syndrome
Hsp40
DNAJB6 Autosomal dominant limb-girdle muscular dystrophy (LGMD) with skeletal muscle vacuoles
HSJI Distal hereditary motor neuropathy
DNAJCé6 Juvenile Parkinsonism

Modified from: Macario AJL, Conway de Macario E, Cappello F. 2013. The Chaperonopathies. Diseases with defective molecular chaperones. New York London: Springer Dordrecht

Heidelberg. For EVEN-PLUS syndrome, see Royer-Bertrand et al., 2015.

Despite its involvement in muscle and lens development and
function, there is no clear evidence that Hsp90 is involved in
genetic chaperonopathies, namely, no hsp90 mutation has been
found associated with any disease so far (Haslbeck et al., 2012).
This may be due to an important property suggested for Hsp90,
that is, ability to buffer at the phenotypic level genetic
mutations that, thus, become silent. For instance, it has been
reported, that in Drosophila Hsp90 has the function of capacitor
for morphological evolution thus playing a key role in the
evolution of species (Rutherford and Lindquist, 1998). Hsp90
would function as a buffer mechanism, able to minimize or
cancel at the phenotypic level the effect of genetic mutations.
Therefore, genetic mutations may accumulate silent in the
genome of a given population. Similar functions of Hsp90 have
been proposed for other organisms, including zebrafish and
other teleosts (Yeyati et al., 2007; Rohner et al., 2013).

Hsp70

The human Hsp70 family is composed of at least 17 genes
(Brocchieri et al., 2008). Most of these genes are present in
zebrafish, but only few of them have been characterized. For
instance, HspA8 is maternally expressed and accumulates also
in the brain and somites (Santacruz et al., 1997; Yeh and Hsu,
2002). Four isoforms of Hsp70 are expressed in the lens, in
which they attenuate apoptosis in post-mitotic lens fibers and
are also involved in lens development, probably during the
differentiation of post-mitotic lens fibers (Blechinger et al.,
2002; Evans et al., 2005).

HspAl2b has been shown to be essential for the
development of the vascular system and for endothelial cell
migration (Hu et al., 2006). Consistent with these functions,
HspAl2b is expressed in the ventral mesoderm territory, a
precursor region of the hematopoietic/vascular system.
HspA9b is important for the proper function of the
hematopoietic system (Craven et al., 2005).

Hsp40

The Hsp40 family is large: in humans it is composed of at least
47 genes divided in three groups (DnaJa, Dna)b, and DnaJc)

TABLE 5. Examples of chaperonopathies due to mutations in the sHsp

characterized by conserved domains in comparison with the
reference E. coli Hsp40; an extensive comparison of these
genes from coelacanth to human has recently been carried
out (Tastan Bishop et al,, 2014). The common function of
these Hsp genes is to serve as co-chaperones for Hsp70.
Hsp40 proteins bind ribosomes and histones and recruit
Hsp70 for the folding of nascent polypeptides (Huang et al,,
2005). Examples of Hsp40 co-operation with Hsp70 are: (1)
the close association to the ER translocon, allowing for the
transport of proteins within the ER, again in concert with
Hsp70 (Zimmermann and Blatch, 2009); and (2) involvement
in endocytosis as they stimulate Hsp70 during the clathrin-
mediated endocytosis (Eisenberg and Greene, 2007).
However, more recent work has shown that they may have
also independent functions: (I) protein degradation via
interaction with the ubiquitin-proteasome system (Westhoff
et al., 2005; Parfitt et al., 2009); (2) protein folding (Hageman
et al,, 2010; Kampinga and Craig, 2010); (3) prevention of
protein aggregation (Hageman et al., 2010; Kampinga and
Craig, 2010); and (4) association with endosome membranes
and participation in intracellular trafficking of growth factors
(Girard et al., 2005).

Another Hsp40 is required for clathrin-mediated
endocytosis during lung development in Drosophila and loss of
this Hsp40 results in incomplete respiratory tube development
and lack of clearance of airways (Behr et al., 2007).

In the zebrafish, an Hsp40 mutant (dnajbéb) has been
identified via a transposon-mediated insertional
mutagenesis screen (Ding et al., 2013). dnajbéb is expressed
in the myocardium and co-localizes with actin in a striated
arrangement, indicating that also in zebrafish, this Hsp40,
like its human homolog (Sarparanta et al., 2012), is localized
to the muscle Z-disk. A second Hsp40, Dnaj-like, gene has
been cloned in the zebrafish and it has been shown to be
expressed in the central nervous system (CNS) and during
caudal fin morphogenesis. Interestingly, this gene is neither
induced by heat-shock nor by ethanol exposure, but its
expression is specifically induced in all ray segments beneath
the wound epidermis during caudal fin regeneration from
24 h post-amputation till 5 days post amputation (Tawk
et al., 2000).

Gene/protein affected

Disease/syndrome

CRYAA (crystallin, alpha A)

CRYAB (crystallin alpha B)

CRYAC (heat shock 22kDa protein 8)

HSPBI (heat shock 27kDa protein 1)

HSPBé6 (heat shock protein alpha-crystallin-related Bé)

Hereditary cataracts

Desmin-related myopathy with lens opacity

Charcot-marie-tooth disease; distal hereditary motor neuropathies
Charcot-marie-tooth disease; distal hereditary motor neuropathies
Dilated cardiomyopathy

Modified from: Macario AJL, Conway de Macario E, Cappello F. 2013. The Chaperonopathies. Diseases with defective molecular chaperones. New York London: Springer Dordrecht

Heidelberg.
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TABLE 6. Hsp-chaperone genes in zebrafish as of November 20, 2015

Name Genes Mutants Transcripts Pseudogenes
hsp 97 44 6l 0
chaperone 34 19 0 0
cct 10 7 8 0

Source: http:/zfin.org/; ZFIN: The Zebrafish Model Organism Database.

sHsp

The small heat shock protein family is composed of 10 genes in
human and 13 in the zebrafish (Elicker and Hutson, 2007). All
these small proteins present a conserved a-crystallin domain of
about 80 amino acids. Most of the sHSPs are expressed in the
skeletal muscle. Some of these genes are heat inducible and the
majority of them function as chaperones. However, other
members of the sHSPs have different functions, like
stabilization of actin filaments, regulation of cell motility and
intermediate filaments assembly (HspB1/Hsp27), maintaining
the transparence of the lens (a#A-Crystallin and aB-crystallin).
Relevant to this review are sHSP27 (hspbl gene) and sHSP22
(hspb8 gene) because both have been linked to human diseases
determined by sHSPs malfunctions (see Table 5, and its
source).

Marvin et al. (2008) reported the expression pattern of all
sHSP in the zebrafish from 10 hpf to two dpf. hspb/ is
ubiquitously expressed at |0 hpf, while at 24—48 hpf it was
found expressed in lens, mid-hindbrain boundary, heart ocular
muscle, differentiating jaw, muscle and notochord. From 10 to
48 hpf hspb8 was expressed in the notochord while it was
transiently expressed in the ventral portion of the mid
hindbrain boundary at 10 hpf but not at later stages. Finally,
hspb8 starts to be expressed in the somites from 24 hpf
onwards. hspb8 was also expressed in neurons in the lateral
spinal cord, in the notochord, and probably the pronephric
ducts at least till 2 dpf, that was the last stage analyzed (Marvin
et al,, 2008).

Chaperonins

This class of heat shock proteins is composed of two groups:
Group |, including the mithocondrial Hsp60, and Group |,
of which the typical example is the cytosolic chaperonin
containing TCPI or CCT.

Humans have at least 14 cct genes, including canonical and
non-canonical genes and one hsp60 gene (Mukherjee et al.,
2010), many of which have counterparts in zebrafish. As
mentioned earlier, the genomic data for hsp60 and cct genes
indicate that zebrafish would be amenable to modeling genetic
chaperonopathies associated with alterations of these genes.

hsp60 is expressed both maternally and zygotically in the
majority of tissues and its function has been linked to fin- and
heart-tissue regeneration in the zebrafish. It is activated by
stress and immune response after Aeromonas hydrophila
infection in the grass carp (Xu et al,, 201 1). cct3 is expressed
ubiquitously starting from 12 h post fertilization and continues
at later stages being particularly enriched in the CNS and
somites (Matsuda and Mishina, 2004). cct5 is expressed
ubiquitously in the zebrafish starting from 30% epiboly, and by
5 day post-fertilization its transcripts are enriched in the CNS
and in the neuromasts (Rauch et al., 2003). cct8 is expressed in
particular in the CNS at all stages analyzed (24 hpf up 5 dpf)
(Petzold et al., 2009).

Zebrafish and Chaperone-Gene Mutations

The research reviewed so far describes a scenario in which
zebrafish and human heat shock proteins are highly conserved
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in sequence and function, suggesting that this non-mammalian
vertebrate could be a powerful tool to study
chaperonopathies. Indeed, zebrafish has been proposed as a
model to study both genetic (Haslbeck et al., 2012; Fink, 2013)
and acquired (Keller and Murtha, 2004) diseases due the
chaperones malfunction. However, despite this positive
starting point there are no reports that directly use the
zebrafish model to study human chaperonopathies. Instead, in
the few cases reported, hsp genes have been identified by
means of forward genetics screens, that usually involve
mutations presenting early stop codon or the insertion of a
large reporter gene (GFP), or viral DNA (Matsuda and Mishina,
2004; Petzold et al., 2009; Ding et al., 2013).

Due to the very complex roles in cell and tissue homeostasis
that Hsps play, these genes are highly conserved during
evolution. Chaperone function involves the precise binding of
other proteins, including other chaperons, and their
interactive-cooperative activity can likely be disrupted by null-
mutations. This could abolish the functionality of Hsps, a
situation that may not be compatible with life. This is supported
by the fact that the majority of Hsp mutations linked to a human
pathology are missense mutations that probably reduce but do
not abolish Hsp functions.

Two human mitochondrial Hsp70 (mit-Hsp70) variants
(P509S and R126W) have been found linked with Parkinson’s
disease (PD) (Goswami et al., 2012). Changes in human
Phe93Leu or Phe89lle in the ubiquitously expressed co-
chaperone DNAJB6 cause the autosomal dominant limb-girdle
muscular dystrophy (LGMD) with skeletal muscle vacuoles
(Sarparanta et al., 2012). Worth to notice, a dnajbéb mutation,
induced by a transposon insertion and resulting in cardiac
hypertrophy, has been recently identified in the zebrafish (Ding
et al., 2013). The transposon insertion affects the splicing
isoforms of Dnajbéb, it is a recessive mutation that dramatically
reduces the normal splicing event between exon 6 and 7 and
results into switching most Dnajbéb long isoform to Dnajbéb
short-like isoform. At the subcellular level, zebrafish Dnajbéb
appears to be expressed in the sarcomere and colocalized with
the Actn2-EGFP, which was consistent with the Z-disc
localization reported for DNAJB6(S) in human muscles (Ding
etal, 2013).

Hypomyelinating leukodystrophies (HMLs) and Pelizaeus-
Merzbacher-like disease (PMLD) are disorders involving
aberrant myelin formation that have been linked, respectively,
to mutations in Proteolipid Protein | (PLPI), which encodes
lipophilin, the most abundant myelin protein in the CNS
(Garbern etal., 1999; Schiffmann and Boespflug-Tanguy, 2001),
and to mutations in GJA12, which encodes the gap junction
protein connexin 47 (Cx47) (Uhlenberg et al., 2004; Bugiani
etal.,2006). Two related syndromes have been linked to sHSPs
misfunction, Distal Hereditary Motor Neuropathy end
Charcot-Marie-Tooth disease. In both cases missense
mutations targeting sHSP-27 in four different positions (three
within the a-crystallin domain transforming a polar residue into
a hydrophobic amino acid) were discovered in affected families
(Evgrafov etal., 2004). Two missense mutations of lysine 42| of
sHSP22 have been linked to distal motor neuron neuropathy in
a Belgian family and a Czech family (Irobi et al., 2004). Although,
neither sHSP27 nor sHSP22 are expressed in motor neurons
during zebrafish development (Marvin et al., 2008), it is yet not
known if these genes are expressed in the adult motor neurons
of the zebrafish, keeping open both possibilities that these
sHSPs may work either cell-autonomously or non-cell
autonomously. The zebrafish has been already proven to be a
good model for Charcot-Marie-Tooth disease, by means of an
ENU-induced nonsense mutation in zebrafish Mitofusin 2
(MNF2) (Lahvic et al., 2013). MFN2 is a protein involved in the
velocity and frequency of mitochondria retrograde
movements, which in turn requires actin activity. Even though,

21
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direct correlations between sHSPs actin regulation and MFN2
mediated mitochondria retrograde movements has not been
yet evaluated, this model provided further proofs of the value
of the zebrafish for modeling human diseases. A missense
mutation (D29G) in mithocondrial-Hsp60 causes MitCHAP-60
Disease (Magen et al., 2008). Hereditary spastic paraplegia
(SPGI3) is an autosomal-recessive neurodegenerative
disorder characterized by brain hypomyelination and
leukodystrophy that is caused by a missense mutation V98l in
Hsp60 (Hansen et al., 2002).

In the recent past, the genetic manipulations that were
technically feasible in the zebrafish included random chemical
mutagenesis, mostly using ENU (Mullins and Nisslein-
Volhard, 1993; Haffter et al., 1996), and viral and transposon
based mutagenesis (Amsterdam et al., 1999; Kawakami et al.,
2000; Balciunas et al., 2006). These techniques were
instrumental for pursuing forward genetic studies, while the
reverse genetic approach was feasible in part by the use of
morpholino antisense oligonucleotides with transient knock-
down of translation of a the target gene (Nasevicius and
Ekker, 2000). While, the transient knock-down approach by
morpholino antisense oligonucleotides did not lid to
phenotypes related to chaperonopaties, the mutagenetic-
based technologies linked some Hsps with specific functions,
for example: transposon insertion mutagenesis screen
recently carried in the zebrafish revealed that a DNAJB6
protein, which has a GFP inserted in frame in its ORF, thus
with reduced functionality, is associated with heart
hypertrophy (Ding et al., 2013). A point mutation (G > A)
that produces a glycine-to-glutamate conversion at amino
acid 492 in zebrafish HsA9b also dramatically affects
mitochondrial functions and induces oxidative stress and
blood cell death (Craven et al., 2005). This mutant
(crimsonless) displays also erythroid dysplasia and multilineage
cytopenia, all phenotypes that closely resemble in their
complexity the Myelodysplastic Syndrome in humans. In this
regard, it is pertinent to remark that of the many human 5q-
chromosome deletions causing such syndrome, the deletion
involving a critical region in 5931 contains 9 genes, including
that coding hspa9b (Horrigan et al., 2000).

In the zebrafish, three mutant forms of hsp60 (hspdl) have
been identified: a transgenic insertion called 1a0269 | | Tg by the
Burgess and Lin laboratories (Varshney et al.,, 2013), and two
ENU induced point mutations, sal | 157 (Busch-Nentwich etal.,
2013) and zp7 (Makino et al., 2005). Interestingly, this last
mutant presents a missense mutation in V324E that is linked to
a blastema phenotype resulting into a fin and hart regeneration
defective zebrafish (Makino et al., 2005). Viral insertion in the
zebrafish cct5 gene (cct5"2?72°7¢) shows at day 3 mild necrosis
of the CNS and small head and eyes; while by day 5 they present
in addition a pericardial edema and underdeveloped liver/gut
(Amsterdam et al., 2004). In another forward genetic screen in
the zebrafish, a mutation was uncovered, called bette davies
(bdev), which shows insertion of their transposon, GBT-P9, in
cct8 (Petzold et al., 2009). The resulting fish larvae presented a
markedly reduced nicotine response profile. Interestingly,
there is no such association between CCT8 and nicotine
response in humans; one possible explanation for this
difference is that the zebrafish phenotype was analyzed at the
larval stage, and a second possibility is that CCT8 mutation,
even though it is hypomorphic in the zebrafish, because they
present a reduced but not absent levels of cct8, may not be a
viable mutation in humans.

The phenotypes of these zebrafish Hsp mutants that show
clear differences with the human counterparts are always
presenting null or hypomorph mutations that may affect many
of the functions of the Hsp, while the human mutations are
missense mutations of amino acids that specifically affect only
one of the many functions of the Hsp.
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In the past 3 years, a simple yet powerful genome editing
technology, using the CRISPR/Cas9 technique, has been
developed, which made possible the targeting of specific
regions in the genome of virtually all organisms in which it has
been applied (Jao etal., 2013; Dow, 2015). This has allowed not
only for the creation of mutants of target genes, but also for the
reversion of mutations linked to diseases (Schwank etal., 2013;
Long et al.,, 2014), the introduction of tags in frame to ORFs
(Kimura et al.,, 2014), and the precise modification of a wild-
type gene into a specific mutant sequence (Matano etal., 2015).
This latest approach holds great promise to improve the use of
the zebrafish as animal model for the study of
chaperonopathies because it would allow the specific
modification of one codon such to match exactly the missense
mutation in human. Then, the very high degree of similarity
between zebrafish and human Hsp sequences would support
the idea that the same missense mutations would produce the
same phenotypes, an encouraging hypothesis that should
stimulate research.
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