JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 11 NOVEMBER 2001

Multi-resolution analysis and fractional quantum Hall
effect: An equivalence result

F. Bagarello®
Dipartimento di Matematica ed Applicazioni, Fac. Ingegneria, Univerdit®alermo,
1-90128 Palermo, ltaly

(Received 26 January 2001; accepted for publication 10 August)2001

In this article we prove that any multi-resolution analysist3{R) produces, for

some values of the filling factor, a single-electron wave function of the lowest
Landau levelLLL ) which, together with it§magneti¢ translation, gives rise to an
orthonormal set in the LLL. We also discuss the inverse construction. Moreover, we
extend this procedure to the higher Landau levels and we discuss the analogies and
the differences between this procedure and the one previously proposed by J.-P.
Antoine and the author. @001 American Institute of Physics.
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[. INTRODUCTION

The role of wavelets in various applications of mathematics and to some physical problems
like signal analysis is now completely established: the existence of a wide literature on this field
is sufficient to give an idea of the amount of people involved in this and related topics. For a clear
reading on this subject a standard quotation is Ref. 1. Reference 2 is an updated book where other
interesting aspects of wavelets are discussed. What cannot be found in many textbooks, since is
still to be understood, is the relevance of wavelets in quantum mechanics: at this moment, to our
knowledge, very few of the applications proposed in this fiféf. 3—8 among the others

One of the most useful features of wavelets concerns their localization properties in both
configuration and frequency space. This fact is at the basis of a series of papérsre different
families of orthonormalo.n) bases inC?(R) are used in the search for the ground state of a
two-dimensional electron ga2DEG) in a uniform positive background and subjected to a uni-
form electro-magnetic field. This is the physical system which produces the well-known fractional
guantum Hall effecFQHE). The key fact behind this approach is the existence of an unitary map
betweenl?(R) and the lowest Landau levélLL ), that is, the subspace 6f(R?) corresponding
to the lowest eigenvalue of the free Hamiltonian of the 2DEG. This implies that any o.n. basis in
L£?(R) (not necessarily a wavelet ongiroduces an o.n. basis in the LLL; for this reason the role
of wavelets does not seem so crucial. We will comment again on this approach in Sec. V.

In this articles we establish a deeper connection between wavelets and FQHE. In particular we
will show that any multi-resolution analysidRA) of £2(R) producesautomaticallya wave
function in £2(R) and, as a second step, a wave function in the LLL which turns out to be o.n. to
its own (magneti¢ translation. This procedure, which works for an even value of the inverse
filling factor, is only possible when we start from a MRA, contrary to what happens in Ref. 3, and
can also be inverted: to any o.n. basis in the LLL which is generated by a single wave function via
the action of magnetic translations can be associated a MRA.

The article is organized as follows:

In the next section we quickly review some of the main properties of a MRA and of the
kg-representatiof which turns out to be a technical tool useful to implement the orthonormality
condition.
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In Sec. Ill we state the problem of orthonormality of the single electron wave functions in
connection with the FQHE.

In Sec. IV we show how, for fillings factors=1/2L, L € N, a MRA produces in a completely
natural way a wave function for the 2DEG with the desired orthonormality requirement. We also
discuss the inverse procedure.

Section V is devoted to the comparison between this approach and the one proposed in Ref. 3.
In particular, the example of the Haar o.n. basis is considered in detail. We also extend our
procedure to higher Landau levels.

Section VI contains the conclusions and the plans for the future.

IIl. MATHEMATICAL TOOLS

In order to keep the article self-contained we now quickly review, for the reader’s conve-
nience, the main properties of the mathematical tools we will use in the rest of the article.

A. Multi-resolution analysis

The main result in the theory of MRA is the recipe which allows us to construct an orthonor-
mal basis inC?(R) starting from a single functiogh and acting ony with dilation and translation
operators, generating the set

{#6(0)=2"2y(2)x—K),j ke Z}. (2.1)

Such a basis has the good properties of wavelets, including sypadeesquency localization.
This is the key to their usefulness in many physical and mathematical applications. Let us now
sketch the construction of these o.n. bases of wavelets. The full story may be found, for instance,
in Ref. 1.

A multi-resolution analysi®f L2(R) is an increasing sequence of closed subspaces

"'CV_2CV_1CVOCV1CV2C"' y (22)

with U; .2V, dense inL?(R) andN;.;V;={0}, and such that

(D) f(x)eVief(2x) V1.
(2) There exists a functiog € V, called ascalingfunction, such thaf¢(x—k),ke Z} is an o.n.
basis ofV.

Combining(1) and(2), one gets an o.n. basis ¥f, namely{ ¢; \(x)=212¢(2/x—k) ke Z}. The
role of V; as an approximation space and in the direct decompositidl{Rj is discussed in Ref.
1.

Here we only need to know that the theory asserts the existence of a fugctaailed the
mother of the wavelets, explicitly computable from, such that{; \(x)=2""2y(2'x—k),j,k
e Z} constitutes an orthonormal basisIof(R): these are therthonormal wavelets

The construction ofy proceeds as follows. First, the inclusid3CV, yields the relation

$O)=VZ 2 hpp(2x=n),  hy=(b1,]$). (2.3

Taking Fourier transforms, this gives

d(w)=my(w/2) p(wl2), (2.4
where
)1§h—m (2.5
m =— .
)= g 2 e
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is a 2m-periodic function. Iterating2.4), one gets the scaling function as tteenvergent) infinite
product

g“b(w)z(zw)*l’zﬂl my(2 1 w). (2.6)
&

Then one defines the functiohe WyC V4 by the relation
P w)=e“2my(wl2+7) $(wl2), (2.7)

or, equivalently,

P)=V2 3 (=" hop g ¢(2xn), 29

and proves that the functio#iindeed generates an o.n. basis with all the required properties.

Actually, this procedure does not produce a unique result. Another possibility, which is the one
we will use in the example given later in this work, gives for the mother wavelet the following
expansion:

z/f(x>=v2n§_m (—1)"h_pi1¢(2x—n). (2.9

Various additional conditions may be imposed on the funcilofihence on the basis wave-
lets): arbitrary regularity, several vanishing momefitsany casejs has always meant zerdast
decrease at infinity, even compact support. For instaideas compact support if only finitely
many h,, differ from zero.

Simple examples of this construction are the Haar basis, which comes from the scaling
function ¢(x) equal to 1 for B=x<1 and 0 otherwise, the spline functichand so on.

What is more interesting for our purposes is the role of the coefficigims defining the
two-scale relatior{2.3). These are complex quantities which¢i{x) is normalized, must satisfy
the following relation:

EZ lhpl2=1. (2.10

Furthermore, it can be proved using the-geriodicity of the functiorm,(w), together with the
orthogonality of the sefé(x—k)} for ke Z, that

|mo(w)|2+|mo(w+77)|2:1 (2.11

almost everywheré This equation can be written in two equivalent forms where the coefficients
h, explicitly appear:

nEZ hnhns 2= 8o, VkeZ, (2.12
or

> hphyene®ke=1, ae., (2.13

nkeZ

or yet, in a more convenient form,
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1 —
> > hyhe Mo+ (-1 =1, ae. (2.14
nlez

We end this rapid excursus on MRA with the following remark: the set of coefficignfs

can be considered as the main ingredient of a MRA since it genemg(es), ¢(w) and, finally,
the mother wavelet/(x).

B. kg-representation

The relevance of kg-representation in many-body physics has been established since its first
appearancéWhat was originally a physical tool has become, during the years, also a mathemati-
cal interesting object, widely analyzed in the literatisze Refs. 10 and 11, for instancé/e give
here only a few definitions and refer to Refs. 9 and 11-13 for further reading and for applications.

The genesis of the kg-representation consists in the well-known possibility of a simultaneous
diagonalization of any two commuting operators. In Ref. 12 it is shown that the following distri-
butions,

2 )
wkq(x)legnzz eknas(x—g—na), ke[0,a], qe

2
0,?[, (2.15

are (generalizejl eigenstates of botfi(a) =e'P? and r(27/a) =e*?™'2. Herea is a positive real
number which plays the role of a lattice spacing.

How it is discussed in Ref. 12, theglgy(x) are Bloch-like functions corresponding to infi-
nitely localized Wannier functions. They also satisfy orthogonality and closure properties. This
implies that, roughly speaking, they can be used to define a new representation of the wave
functions by means of the integral transfo@nC?(R)— £%(]), where[d=[0,a[ X[0,2x/a[,
defined as follows:

h(k,Q)==(ZH)(k;OI)==fRdwdfkq(w)H(w), (2.16

for all functionsH(w) € £3(R). The result is a functiom(k,q) e £2(0).

To be more rigorousZ should be defined first on the functions@f(R) and then extended to
L£?(R) using its continuity® In this way it is possible to give a rigorous meaning to formula
(2.16.

From now on we will work in the following hypothesis:
a’=2m, (2.17
which, also in view of the next section, will correspond to fixing the spacing of the lattice
underlying the 2DEG.
Replacingi(x) with its explicit expression, formulé2.16) produces

1 )
h(k,q)=(ZH)(k,q):=ﬁnEZ e knay(g+na), (2.19

which can be inverted and gives therepresentatiorH(w) e £2(R) of a function h(k,q)
e £2(0) as follows:

H()=(Zh)(w)= fmdkdqwkqm)h(k,q). (2.19

Due to(2.15), this equation gives
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1 (fa .
= —= knay (S e L. .
H(x+na)= \/afodke' h(k,x), Vxe[0a[, VneZ (2.20

In all the literature concerning kg-representation, the role of the boundary conditions is widely
discussed, also in connection with the continuity properties of the functions. For instance, in Ref.
14, a functionh(k,q) e £2(0) is said to be continuous if it is the restriction to the kg-cell of a
function continuous in thextendedqg-plane k,q e R), and if it satisfies the following boundary
conditions:

h(k+a,q)=h(k,q),
) (2.21)
h(k,q+a)=e*eh(k,q),

which are typical of any function in kg-representation and which will always be assumed here.

lll. STATING THE PROBLEM

In this section we will discuss a many-body model of the FQHE looking, in particular, for the
single-electron wave function which generates the ground state of the physical system in the way
described next. This system is simply a two-dimensional electron gas, 2B@&Gis a gas of
electrons constrained in a two-dimensional lay&r a positive uniform background and subjected
to a uniform magnetic field alongand an electric field along.

The Hamiltonian of the system can be written as

HN=HMN £\ (HN + 1) 3.

whereH{V is the sum ofN contributions:

N
HOV =2 Ho(i). 3.2

HereHg(i) describes the minimal coupling of the electrons with the fields:

2 1 2
3

X
py+ E

1 , 1 y
Ho=5 (P+A(N)*=5|Px— 5 (3.3

Notice that we are adopting here the symmetric gafigel/2(—y,x,0) and the same unit as in
Ref. 15.H§N) is the canonical Coulomb interaction between charged particles:

2 1

N
= |[i_[j|

N| =

HV = (3.9

anngN) is the interaction of the charges with the background, whose explicit form can be found
in Ref. 15.

In the following we will consider, as it is usually done in the literatur¢H™ + H(Y) as a
perturbation of the free Hamiltonia{") , and we will look for eigenstates ¢f{"’ in the form of
Slater determinant built up single electron wave functions. This approach is known to give good
results for low electror{or hole densitiest® The easiest way to attack this problem consists in
introducing the new variables

P'=px—Yy/2, Q'=p,+x/2. (3.5

In terms of P’ andQ’ the single electron Hamiltoniat,, can be written as
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Ho=3(Q'?+P’?). (3.6

The transformation(3.5) can be seen as a part of a canonical map frogy,p,,p,) into
(Q,P,Q’,P’) where

P=p,—x/2, Q=py+yl/2. (3.7
These operators satisfy the following commutation relations:
[Q.P]=[Q"P']=i, [Q,P']=[Q",P]=[Q,Q"]=[P,P']=0. (3.8

It is shown in Refs. 16 and 17 that a wave function in they)-space is related to its
P P’-expression by the formula

|xy/2
W (xy)=—— f f e XP" +YPEPPOY (P P’y dP dP . (3.9

The usefulness of thE P’ -representation stems from the expres<i@®) of Hy. Indeed, in this
representation, the single electron Sahinger equation admits eigenvectob{P,P’) of H of
the formW¥ (P,P’)=f(P’)h(P). Thus the ground state ¢8.6) must have the fornfi,(P")h(P),
where

fo(P)=m e P2, (3.10

and the functiorh(P) is arbitrary, which manifests the degeneracy of the LLL. Wittas above,
formula (3.9) becomes

ei xyl2

i f elYPe~ (x*P’2(p) ¢ P, (3.11)

P(X,y)=

It is worthwhile to stress that at this stage the Coulomb interaction has not yet been considered
(and it will not in this articlg, but the common belief is that the explicit form le¢P) should be
fixed by this interaction.

Now the problem arises of how to construct the ground state of theNrelectron Hamil-
tonianHE,N) . We use a suggestion coming from the classical counterpart of this quantum problem.
It is very well known that the ground state for a classical 2DEG (&iangulay Wigner crystal:
the classical electrons are sharply localized on the sites of a lattice whose lattice spacing is fixed
by the electron density. What we expect, and what was proven in Ref. 15, is that, at least for
certain regions of the filling factor, the quantum ground state should not be very different from this
classical picture. Here we only sketch the procedure which is analyzed in more detail Refs. 15 and
3.

We start introducing the so-called magnetic translation operdi@g defined by

T(a)=expill.-&), i=1,2, (3.12
wherell.=(Q,P) and4&, are the lattice basis vectofd,=a(1,0), 4,=(a/2)(1¥3) for a trian-
gular latticd.

From now on, for simplicity we will work in a square lattice with unit cell of area 2

=a(1,0, &,=a(0,), a*=2m. (3.13

This choice is quite useful to keep the notation simple: moreover, its generalization to lattices of
arbitrary shape is only a technical step.
The aboverationality condition on the area has the following useful consequence:
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[T(d1),T(a)]=0. (3.19

This is not the only commutativity condition satisfied by the magnetic translations. Due to the
commutation relation$3.8), we also find

[T(&1),Ho]l=[T(&2),Ho]=0. (3.19
With the choice(3.13 of the lattice’s basis the magnetic translations take a simple form
Ty=T(d)=€", T,:=T(&,)=€"", (3.16
and they act on a generic functid(x,y) e £2(R?) as follows
fnn(%Y) :=TTTEf(X,y)=(—1)™e' @MY= (x + may+na). (3.17)

We see from this formula that, if for instan€éx,y) is localized around the origin, them, ,(x,y)
is localized around the lattice sitg —m,—n).

Now we have all the ingredients to construct the ground stateg'& mimiking the classical
procedure. We simply start from the single electron ground staté,adiven in (3.11), #(X,y).
Then we construct a set of copigsg, ,(x,y) of  as in(3.17), with m,ne Z. All these functions
still belong to the lowest Landau level for any choice of the functidR) due to(3.15. N of
these wave functiong,, ,(x,y) are finally used to construct a Slater determinant for the finite
system:

¢m1,n1(£l) lpml,nl(EZ) ’ﬁml,nl(EN)
d/mz,nz(il) 'r/fmz ,nz(iz) . ‘ﬁmz ,nZ(EN)

1 . : .
lﬁ(N)(Lll[z,-..!EN): \/ﬁ ) . . . (3.18

g ng(FD) Py n(T2) oo m o (TN)
It is known' that in order to get ), yN)y=1 we need to have

('pmi,niwmj,nj>:5mi,m15ninj- (3-19)
In fact, if these translated functions were not o.n., then we wouldé8||= 1+ O(N), which is
obviously divergent folN diverging. It is clear, therefore, that if we want to perform easily the
thermodynamical limit, orthonormality between differently localized single electron wave func-
tions must be required!

In the rest of this section we will discuss how the requiren{8rt9 can be handled and, in
particular, we will show that the use of kg-representation is quite a useful tool since it produces a
very simple constraint. Some of the results we are now going to describe in this section are also
due to G. Morchio and F. StroccHiwhile the original idea of using kg-representation in connec-
tion with an orthonormality constraint is already contained in Ref. 13 in the proof of completeness
of lattice states proposed by the authors.

Let #(x,y) be as in(3.1) and ¥, n(X,y) =TTT5¢(X,y) = (—1)™"e @2MY=m)y(x + ma,y
+na). After few computations and using the rationality condita= 2 we obtain

ei(xy/2)+iamy Jw

lﬂm,n(X,Y)= W dPé(y+na)P—(x+ma+p)2/2h(P)_ (3_2()
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We are interested now in finding some conditions lg®) such that condition3.19), or its
equivalent form

Sm,n::<(/fo,01¢m,n>:5m,05n,0a (3.2)

is satisfied. With the previous definitions we find

Sna= | _dperhip=maih(p), (322

which restates the problem of the orthonormality of the wave functions in terms of the
P P’-representation. In particular we see that, fiee=n=0, this equation implies that in nor-
malized in£2(R?) if and only if h(P) is normalized in£2(R). This reflects the unitarity of the
transformation(3.9), which, more in general, implies that any o.n. setZff(R) is mapped in an

o.n. set inC%(R?).

In order to use now kg-representation it is convenient to split the integral Rvieto an
infinite sum of integrals restricted foa,(r +1)a[,r e Z, use the kg-representation, and, then,
write everything in terms of a single integral over the unit €éllWe have, using2.20 and the
well-known equality

3 eixI(ZW/c):CIEZ S(x—cl), (3.23

(r+l)a . -
Smn= > dpe"@Ph(p+ma)h(p)

rez ra

. a . ———eeeeeeeee.
=> e””azf dpe"®Ph(p+(r+m)a)h(p+ra)
0

rez

_y 1

rez @

a a a X ’ . et
f dqf dkf dk/ew(kfk )aemaqflk mah(k,q)h(k',(]),
0 0 0
so that
%,n=f dkdgénaa=kman k,q)|2. (3.24
O

Due to the completeness of the get"29- kM3 n me Z} in the unit celld, we conclude that

Sin= mo0n 0 if and only if h(k,q) is a phase, so thdh(k,q)| is independent ok andq. This

result can be considered as a slight generalization of the procedure discussed in Ref. 13 to the
FQHE for filling factorv=1.

It is easy to generalize this result to a filling=1/2. The idea is the following:

A filling factor v=1 corresponds to all the sites of our square latfisespacinga= \27)
occupied. Av=1/2 2DEG can be seen, on the other hand, as if the same lattice was only partially
occupied: one lattice site is free and the other is occupied. If we require the orthonormality of the
related set of single electron wave functions, it is enough to askSfpf= 6modn 0. This is
equivalent also to choose a different lattice, with a unit cell twice that before and basis vectors
a(1,0) and 2&(0,1). Of course, we would as well have chosen another lattice with basis vectors
a(0,1) and &(1,0), or also any other lattice with unit cell of area.4Ne use the first choice just
to fix ideas. Equatiorni3.24) gives

Sm,Zn: JDd kdqéznaq_ikma| h(kaQ)|2: 5m,06n,01 (325)
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which can be rewritten as

lf dkdgénaa-ikma| | [ I
2 )g '2

This implies, again using the completeness of the funct@®f§ ™2 n me Z, in O, that

2

g+a
+ -

hik =3

2
K, ) (3.29

2
+

q+a\l?

2

q

Jz(k,q):h(k,E hl k,

1
= almost everywhere fok,qe[]. (3.27

The generalization to=1/M is straightforward: we simply require the orthonormality of the
wave functions located at a distanceMfsites:

Snan= |_dkda€" ™ KNP 5050

and, proceding as above, we deduce ti(&;, q) must satisfy the equality

q q+a) g+(M—-1)a
M —wm

2
JM(k,q)::h(k,M v

+

2 2

h _M 3.2

+---+h(k,

almost everywhere fok,q e 1.

The extension to a fillingg=L/M, with L and M relatively prime, can be performed by
imposing that conditiors,, ,= & 06n o holds only for thosém,n corresponding to a square lattice
in which only L amongM lattice sites are occupied. We will not consider this extension in this
article.

IV. WHAT WE GET FROM MRA

In this section we will describe how two subjects which are so different, at a first sight, as the
MRA and the orthonormality condition for a 2DEG discussed previously, are indeed very close.
Let us consider a given MRA of2(R). We have seen in Sec. Il that to this MRA is associated
a certain set of square-summable complex numbegs, ., satisfying, for instance, condition
(2.12. This set produces am2periodic functionm,(w) and, through this, the scaling function
g%(w) and the mother wavelet.
Now we use the sequenél,},,. 7 to define the following function, which strongly reminds us
of my(w):

1 —ilwa
T(w)— \/agzme , wel0al, .

0, otherwise.

It is clear thatT,(w) is square integrable and is not periodic. In particular, due to the normaliza-
tion condition (2.10, we have|T,|5=fg|To(w)|?dw=1. Therefore the kg-transform of this
function, t,(k,q) =(ZT,)(k,q), is well defined inc%(0).

In particular, using2.18 we find

1 )
to(k,q)= ? 2 e KT (q+na). 4.2

aneZ

The boundary condition$2.21) are obviously satisfiedt,(k+a,q)=t,(k,q) and t,(k,q+a)
=e3t,(k,q). It is easy to check thab(k,q) satisfies also the orthonormality conditiof827).
In fact, since we are interested to the valuefk,q) only in [J, and sincel ,(w) is different from
zero only formwe[0,a[, we conclude that, fork,q) € [J,
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g+a
2

2

2
Jo(k,q)= é(‘T(g) )= a%E hihye!(71922(1+ (~1)!*9),

which is equal to 1t a.e. ink,q e [J, due to(2.14). This implies that,(k,q) gives rise to a family
of functions iy, n(X,y) in the LLL mutually orthonormal and correspondingite 3. We will find
the explicit form of these), ,(X,y) in the next section, where we will also compare these results
with the ones obtained in Ref. 3.

The above-mentioned procedure can be easily extended to fiinds2L. The extension to
odd denumerator is not so straightforward and will be given elsewhere.

The starting point is again the sgt,},.~, producing a MRA of£?(R), satisfying condition
(2.12. Now we define

i —ilwLa P
T(w)={ Jare e eetoal 3

0, otherwise.

Again, this is a square-integrable function satisfyifi,, [|?=1. Defining t, (k,q)=(ZT,.)

% (k,q) we have, fok,qe 0, t, (k,q) = (1/\a) To () = (1/a) S, . -h,e”"92. We also stress that

to (k,q) satisfies the correct boundary conditions. With these definitions, using the rationality
conditions a?=2x and collecting contributions of the formt, (k,a/2L)|?, |ty (k,(q
+2a)/2L)|?,..., and the‘ddd ones,” |t (k,(q+a)/2L)|?,|to (k,(q+3a)/2L)|?,..., weobtain

2

Jo(k,q) =t (k i + [t kqua 2+ +t kq+(2L_1)a i
2L(K, Q) =1z oL al %50 2L| Ky oL
q|® q+a)|?
=L{[ty | k,—]|| +|to | k,——
2L oL 2L oL
L —
= — 2 hihe!S7092(1 4 (— 1)), (4.4
a I,s

which is again independent &fandq since it is equal td./ 7 a.e. in], due to condition(2.14).

Finally, Eq. (3.29 is a consequence of the equality '=M=2L. We conclude that, (k,q)
produces, in the configuration space, a set of mutually orthonormal wave functions spanning the
LLL for v=1/2L.

This result, which is in a certain sense rather unexpected because it relates two distant fields
as MRA and FQHE, is only half of the surprise. In fact, in the rest of this section, we will also
show that this relation works in the opposite direction. More in detail, we will show how to
construct, starting from a functidm(k,q) which produces an o.n. set of translated functions in the
LLL, a set of coefficientdh,} satisfying condition2.14), and, therefore, generating a MRA.

The recipe is rather simple and requires only few lines: let us suppose to have a function
h(k,q) belonging to£?([]) satisfying the boundary conditiorts’k+a,q)=h(k,q) andh(k,q
+a)=e*3h(k,q) and such that

|h(k,q/2)|2+|h(k,(q+a)/2)|2=% a.e. in 0. (4.5

This means that in the configuration space the relatediyagh(x,y)} is an o.n. set. Let us now
define

hn(k)= joadqé“aqh(k,q), ke[Oa[. (4.6)
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Even if h,(K) is, in general, a function df, it is straightforward to check that if we takek,q)
coinciding witht,(k,q) in (4.2), thenh,(k) =h,, for all ne Z. This means that the dependence on

k may disappear in some relevant situation. It is not so surprising, therefore, to check that
2nezhn(K)h, .0 (k) does not depend ok for any choice ofh(k,q), if the equality (4.5) is
satisfied. In fact, using equality3.23 and condition(4.5), we find

> hn(k)m:af dglh(k,q)|2e~ 2124
neZ 0
a(a ,
:EJ dge "aa(|h(k,q/2)|2+ |h(k,(q+a)/2)|?)
0

a (a .
=Zf0dqe*'aq=5|,o. 4.7

This result shows that any o.n. basis in the LLL for a filling facior 1/2 produces a set of
coefficients satisfying the summation r212 and, therefore, the basic condition giving rise to
a MRA of £2(R) (which, in general, will depend on an external paramktef0,a[). The exten-
sion to a fillingv=1/2L, L e N, is straightforward.

V. EXTENSION TO HIGHER LANDAU LEVELS AND FURTHER REMARKS

In the first part of this section we analyze the relation between the approach we have discussed
here with the one originally proposed in Ref. 3 and further developed in Refs. 4 and 5. In those
papers we used wavelet analysis in connection with the FQHE as we have done here. In Ref. 5, in
particular, we discussed a toy model suggesting the relevance of single electron wave functions
arising from wavelet theory in the construction of a Slater-like ground state for a 2DEG. This
construction was carried out in detail for the FQHE in Refs. 3 and 4 using the canonical transfor-
mation(3.11) and theP P’ -representation to generate an o.n. basis of functions in the LLL starting
from an o.n. set of wavelets i?(R). This procedure is only apparently close to the one proposed
in this article. The first difference is related to the possibility of extending the approach in Ref. 3
to anyo.n. basis ofZ?(R), a possibility which does not exist here since the procedure proposed in
this article only works for an o.n. basis generated by a MRA. The second difference concerns the
nature of the operators acting on thmetherfunction which generates the o.n. set in the LLL: in
Refs. 3 and 4 these operators are dilation and translation operators. Here, on the other hand, we
use the magnetic translations defined3rl2).

Since, however, these two procedures have something in common, we expect that the resulting
wave functions should not be very different. And, in fact, this is the outcome of this section, where
we will explore the details of the easiest example: the Haar wavelet. For this choice the set
{h,}ncz reduces tdhy=h,;=1W2, and all the other coefficients are zero. We have shown in Ref.

3 that this choice produces a function in the LLL localized around the origin which looks like

_e’i"y/ze’yzl2 x—iy+1/2 x—iy x—iy+1
HolX.Y) = —— 1 2¢ 7 —¢ /5 - s , (5.0

where ¢(2) :=(2/\/;)f0e*‘2dt is the error functiort® The whole setH ,,(x,y) is discussed in

Ref. 3, where its asymptotic behavior is also discussed in connection with the localization of the
electrons. Here we only state the result which will be compared with the one resulting by the
approach proposed here. We have

eixylze—x2/2 \/5 1 e~ L2—x+iy o L8 (x—iy)/2
= — — + - - .
Hodx.y) 24 w(x—ly x—iy+1 2 x—iy+1/2 ) (5.2

which displays the Gaussian localization of the wave function in the varialaled shows the
rather poor localization iry.
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Let us now proceed in a different way. For a fillimg= 1/2 and a generic MRA, the function
T, which produces an o.n. set of translates in the LLL is givefdift). Using the transformation
rule (3.11) we obtain

PUSTZAN 5 Jag*y2 a 2
T.(X, :_f elYQ-(x+ Q22T () = hj iRy —1a)~ (x+ Q%12
W)= | 2AQ= 5w 2 i |

which, for the above choice of coefficients corresponding to the Haar wavelet, gives

/aeixylz a )
Ty(x,y)= 5302514 elef(x+Q)2/2(1+ e 9% dQ. (5.3
0

HereT, can be written in terms of error functiofi(z) as follows:

) Jae =y [ [y g iy . x+a—i(y—a)) . X—iy
X,y)= —
2(X,Y a7 v v v
X—i(y—a)
-l ——| |, 5.4
¢( vz )) o4
whose asymptotic behavior can be found with the help of Ref. 19:
\/ge+ixy/2—x2/2 1 e7r—ia(x—iy) e—v—a(x—iy) e—a(x—iy)(1+i)
ToXY)= 2 5 (x—iy * x—i(y—a) x+(a—iy) x+a—i(y—a)/’ 6.5

This formula shows that, even if the two procedures produce different results, the asymptotic
behaviors, that is, the localization features of the electrons, coinciddpandT,. This result
can be considered as a consequence of the Balian—Low theorem applied to the present situation
(see Refs. 1 and)@nd of the Battle theorem for our previous proposale Refs. 3, 20, and.6
Both these theorems give severe constraints on the localization properties of a wave function when
orthonormality requirements of a different kind are imposed. We refer to Ref. 6 for a rather
complete review of the localization problem in a generic Landau level.

The functionT, can be used to construct a Slater determinant fol\#fedectron system as
sketched above: we start considering(iteagneti¢ translated as i3.17),

\/ae’ ixy/2—ianx— (y+na)2/2

4,”_3/4

X+(m+1)a—i(y+na)
V2

X+ma—i(y+na)
V2

|

(Tz)m,n(xyy):

Xx+(m+1l)a—i(y+(n—1)a)
V2

X+ma—i(y+(n—1)a)
V2

These are the functions used to build up the antisymmetric wave function

(T2)ml,nl(£l) (T2)ml,nl(£2) (TZ)ml,nl(EN)
(TDmy (1) (T2myny(T2) o (T2dm, ()

1 . : .
T(N)(il’iz"”{N)z\/ﬁ . - . ,
(Tz)mN,nN(El) (TZ)mN,nN(EZ) (TZ)mN,nN(EN)

where (n;,n;) are those indexes compatible with an electron densityl/2.
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It is evident that our procedure produces many pos$ibétectron wave functions in the LLL,
one for each different MRA of2(R). Among all these possibilities, the one physically relevant is
that choice which minimizes the Coulomb energy. Of course, before comparing these results with
those obtained using the Laughlin wave function, we first need to generalize our procedure to a
triangular lattice. The details of this extension will be considered in a future work.

In the last part of this section we extend the orthonormality const(aigf) to levels higher
than the lowest.

We begin this analysis with a general remark, which already suggests the final result: ortho-
normality is required on a set of functions obtained by a single wave function via the action of the
magnetic translation3;. On the other hand, the passage from a Landau level to the other is
obtained with the action of the raising and lowering opera#drsandA’ defined by

I+'PI
il = 5.6

whereQ’ andP’ are given in(3.5. We have already remarked that the translatibnsommute
with Q" andP’, and withA’ andA’T as a consequence, so that it is reasonable to expect that the
orthonormality constraint does not change very much moving from the lowest to some higher
Landau level. This is exactly what happens, as we will now show explicitly for the first excited
level.

All the wave functions of the first Landau level, ILL, are given by formy8&9 with
V(P,P")=f,(P)h(P). Heref,(P')=(2/7")P'e P'*2 is the first excited function of the
harmonic oscillator. Performing the integrationRr we obtain

ie—ixy/Z w )
P(X,y)= — eYPe P2Ph(P—x) dP. (5.7)

Acting on ¢(x,y) with T; as in(3.17) and definingS,, , as in(3.21) we obtain

Srn,n:;lsﬁf d2r jjo dpjjo dpre—ianx—iyp+i(y+na)p’—(p2+p’2)/2pp/mh(p/_X_ma)
2 o o0 ) - 2
:\/—_f dxf dqé"@%h(qg)h(q—ma)(q+x)%e (@™
aqJ—x — o

- | apereritprmarn(p),

which coincides with the result obtained for the LLL. This means that, when passing to the
kg-representation, the wave function originating the o.n. set in the ILL is exactly the same function
originating the o.n. set in the LLL. Needless to say, this does not imply that in the configuration
space the two different o.n. sets coincide, because they are generated by diffeiPeRt),
belonging to different Landau levels.

Even if the above-mentioned result has been obtained only for the ILL, it gives a strong
indication that the orthonormality condition in termshgfP) takes exactly the same form for all
the;r Landau levels. This also follows form our original remark on the commutativity aripagd
Al

VI. OUTCOME

In this article we have proven a deep connection between a MRE@) and the FQHE. In
particular we have shown how a single electron wave function, which, together with its magnetic
translates, produces an o.n. set in the LLL, can be constructed starting from a MRA. This proce-
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dure works forr=1/2L,L € N. We have also shown that this procedure can be essentially inverted

since to any o.n. basis of translated functions of the Iitarresponding tar=1/2L) corresponds

a set of coefficients satisfying the main condition of a MRA £#(R). Moreover, we have

compared this approach with a similar one, Ref. 3, which is close for the final result but is very

different for the philosophy. We have finally extended this procedure to other Landau levels.
What is still to be done is a computation of the energy of the 2DEG for such a basis, in order

to see if this procedure can give some hints about the ground state for the FQHE. We also plan to

extend this procedure to filling of the formv=1/(2L + 1) and, more generallg;=L/L’, with L

andL’ relatively prime natural numbers.
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