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In this paper nonlocal boundary conditions for the Navier–Stokes equations are
derived, starting from the Boltzmann equation in the hydrodynamic limit. Basing
on phenomenological arguments, two scattering kernels which model non–local
interactions between the gas molecules and the wall boundary are proposed. They
satisfy the global mass conservation and a generalized reciprocity relation. The
asymptotic expansion of the boundary value problem for the Boltzmann equation,
provides, in the continuum limit, the Navier–Stokes equations associated with a
new class of nonlocal boundary conditions.

1. Introduction

In many practical cases, like geophysical models or turbulence modelling,
the no–slip boundary conditions usually imposed for the Navier–Stokes
Equations (NSE) fail to correctly describe the interactions between the
fluid and a solid boundary and the problem of finding appropriate bound-
ary conditions is a major one.

In the framework of turbulence modelling, the approach known as Large
Eddy Simulation (LES) seeks to predict local spatial averages of the fluid’s
velocity above a preassigned length scale. The mathematical problem of
finding appropriate boundary conditions in LES has been tackled in4,5. The
nonlocal boundary condition for the coarse grained Navier–Stokes that have
been proposed for the averaged flow ū are5:

ū · n = 0 and βū · τ + 2 Re−1n · D(ū) · τ = 0, (1)

where ū represents the velocity averaged with a gaussian filter, n and τ are
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the wall normal and tangential unit vectors, respectively, Re is the Reynolds
number and Dij(u) = 1

2 ( ∂ui

∂xj
+ ∂uj

∂xi
) is the velocity deformation tensor.

Conditions (1) are the Robin boundary conditions for the averaged velocity.
Recently1 a mean field approach to the Boltzmann equation, filtering out
subgrid scales, led to a subgrid turbulence model. It was shown1 that, as
for the Navier–Stokes equations, the Smagorinsky subgrid model enjoys a
consistent derivation from the kinetic theory.

Motivated by the above considerations, in this paper we want to derive
Robin–type boundary conditions for the macroscopic variables taking into
account the effect of nonlocal interactions at the wall, starting from a kinetic
description. We shall investigate the steady behavior of a fluid on the basis
of the Boltzmann equation on a 3-dimensional half space. Two simple
models are introduced whose corresponding scattering kernels generalize the
Maxwell gas–surface interaction law. The first model describes a situation
in which particles can penetrate the wall (thought as a lattice) and can
experience a specular reflection from the inner layers of the wall. In the
hydrodynamical limit this model leads to BC for the NS equations weakly
non local; in the sense that the heat flux at the boundary is driven from
(besides the classical term expressing the temperature difference between
the fluid and the wall) the divergence of the velocity at the wall. In the
second model (from which, in the hydrodynamical limit, we derive (1)) large
structures (in the Fourier sense) of the fluid are specularly reflected, while
small structures penetrate the wall, get in thermal equilibrium with it and
are re–emitted through a Maxwellian. The proposed kernels are shown to
satisfy a nonlocal mass conservation and a generalized reciprocity relation.

2. Notations

We shall consider a fluid confined to the 3−D half space D = R+×R×R, the
x = xi(i = 1, 2, 3) are the dimensionless Cartesian coordinates of the physi-
cal space, x̂1 is the unit vector normal to the boundary wall, y = (x2, x3) is
the position of a point on the plane x1 = 0, ζ = (ζ1, ζ2, ζ3) is the dimension-
less molecular velocity; f̂(x, ζ) is the dimensionless distribution function of
the fluid molecules; ρ̂ is the dimensionless density, ui the dimensionless
fluid velocity, T̂ , p̂ are the dimensionless temperature and the pressure of
the fluid, T̂w, ρ̂w, p̂w, uiw are the dimensionless wall temperature, density,
pressure and velocity, respectively and R is the fluid constant per unit mass.
We also introduce the Maxwellian f0 with vi = 0, p = p0 and T = T0:

f0 =
ρ0

(2πRT0)
E(ζ); E(ζ)

1
π

exp
(−ζ2

)
, ζ = (ζ2

i )1/2 = |ζi|. (2)
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In what follows we shall consider the state of the gas close to the
Maxwellian distribution function f0 given by Eq. (2). The nondimensional
perturbed variables are given by:

φ = f̂/E − 1, ω = ρ̂− 1, τ = T̂ − 1, P = p̂− 1,

τw = T̂w − 1, ωw = ρ̂w − 1, Pw = p̂w − 1.
(3)

The steady Boltzmann equation in dimensionless form reads:

ζi
∂φ

∂xi

1
ε

[L(φ) + J (φ, φ)] , ε =
√

π

2
Kn (4)

where J (φ) and L(φ) are the collision integral and the linearized collision
integral respectively, and Kn is the Knudsen number6. The relations be-
tween the nondimensional macroscopic variables and the nondimensional
velocity distribution function φ are:

ω =
∫

φEdζ, (1 + ω)ui =
∫

ζiφEdζ,

(1 + ω)τ =
∫ (

ζ2
i − 1

)
φEdζ − (1 + ω)u2

i , P = ω + τ + ωτ.
(5)

Let us consider a particle hitting the wall: let ζ′ = (ζ ′1, ζ
′
2, ζ

′
3) and ζ =

(ζ1, ζ2, ζ3) be the velocity of the impinging and of the outgoing particle. For
a simple boundary one usually assumes a fluid particle-surface interaction
law of the following form: for x1 = 0, ζ · n > 0

|ζ·n|E(ζ) (1 + φ(y, ζ))=

Z

ζ′·n< 0
|ζ′·n| R(ζ′ → ζ;y)E(ζ′)

�
1 + φ(y, ζ′)

�
dζ′, (6)

where n is the unit vector normal to the boundary and R(ζ′ → ζ;y) is the
scattering kernel, i.e. the probability that a molecule impinging the wall at
point y with velocity ζ′ is scattered with velocity between ζ and ζ + dζ.

The scattering kernel has to satisfy the positivity condition, the con-
servation of mass and the Reciprocity relation3. A widely used scattering
kernel is the one proposed by Maxwell:

R(ζ′ → ζ,y) = (1−α) δ(ζ1+ζ′1) δ(ζ2−ζ′2)+α
2√

π (T̂w)3/2
ζ1 exp

�
− (ζi − uiw)2

T̂w

�
,

where ζ ′1 < 0, ζ1 > 0 and uiw is the wall velocity. The above model pre-
scribes that an 1−α fraction of the molecules is specularly reflected at the
surface of the wall, while the remaining α fraction of the molecules is in
thermal equilibrium with the wall. All the interactions are local in space.

3. The nonlocal scattering kernel I

In this section we want to propose a different model of the interaction be-
tween the gas and the wall. We suppose that, other than being reflected
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at the surface, the molecule can pass some layers of the wall without ex-
periencing any impact and then can be specularly reflected by some inner
molecule of the wall lattice. This introduces a nonlocality effect into the
scattering kernel: in fact if the molecule hits the wall at point y′ on the wall
x1 = 0, it will travel for some distance inside the wall, will hit the lattice
and will come out at a different point y. Since it is specularly reflected, the
impact will take place half-way between y′ and y. Let y = (x2, x3),

y − y′=ρy

�
cos αy

sin αy

�
; ζy = (ζ2, ζ3)=ρζ

�
cos αζ

sin αζ

�
; ζ′y = (ζ′2, ζ′3)=ρ′ζ

�
cos α′ζ
sin α′ζ

�
(7)

where (ρy, αy) are the polar coordinates on the plane (x2, x3) centered in
y′, and (ρζ , αζ) are the polar coordinates on the plane (ζ2, ζ3). Let ζ′y
be the tangential velocity of the incident particle. The probability of the
above process taking place is the product of three different probabilities:
the probability of the particle travelling for a distance ρy/2 = (|y − y′|)/2
without hitting any other molecule; the probability of having an impact
between ρy/2 and ρy/2+dρy and the probability of travelling again for ρy/2
without impacts. We shall assume each process to be governed by a Poisson
distribution function with 1

ε as mean value. Moreover the tangential part
of the incident velocity ζ′y has to be parallel (with the same sign) to the
vector y − y′, which will introduce the term δ(αy − α′ζ). Then one has:

Probability
of having only one
impact at y′ + ρy

2

' ρy

ε2
exp

�
−ρy

ε

�
δ(αy − α′ζ)dρydαy (8)

This term will affect the specular reflection part of the scattering kernel.
On the other hand, we suppose that the molecules which experience

multiple scattering inside the solid will obey the diffusive reflection law
at the boundary. Hence the nonlocal scattering kernel which takes into
account both the nonlocal specular reflection and the diffusive reflection is:

R(ζ′ → ζ,y′ → y) = (1− εβ) δ(ζ1 + ζ′1) δ(ζy − ζ′y)
1

ε2
e−

|y−y′|
ε δ(αy − α′ζ)

+ εβ
2

π(1 + τw)2
ζ1 exp

�
− (ζi − uiw)2

1 + τw

�
δ(y − y′), for ζ′1 < 0 , ζ1 > 0 (9)

The above scattering kernel satisfies the positivity condition. Moreover it
satisfies a nonlocal mass conservation law and the reciprocity relation in
a nonlocal form2. The asymptotic procedure to derive the Navier–Stokes
equations and the corresponding boundary conditions for the fluid dynamic
variables is standard6. To first order in ε we get2 the following BC:

u1 = 0, (10)
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√
π γ1

∂ui

∂x1
− 8 β (ui − uiw) = 0, (i = 2, 3) (11)

4
√

π γ2
∂τ

∂x1
− 5β (τ − τw)−√π

�
∂u2

∂x2
+

∂u3

∂x3

�
= 0, (12)

Equations (10), (11) and (12) are the boundary conditions for the fluid dy-
namic equations: Eq. (10) is the usual no–flux boundary condition. Eq. (11)
are the Robin boundary conditions for the tangential component of the ve-
locity. Eq. (12) is the usual Robin BC for the temperature plus an extra
term which is proportional to the tangential divergence of the velocity.

Introducing the Fourier transform with respect to y, denoting by ω =
(ω2, ω3) the dual variable of y, namely: f̂(ζ, ω) = F(f(ζ,y)), and denoting
with K the specular reflection part of the scattering kernel (9), one easily
verifies that:

K̂(ζ′ → ζ, ω) ≡ F(K(ζ′ → ζ,y)) = (1− εβ)
δ(ζ1 + ζ′1) δ(ζ2 − ζ′2)δ(ζ3 − ζ′3)

(1 + ε2|ω|2)3/2
,

(13)

where |ω|2 = ω2
2 + ω2

3 . Therefore the kernel can be interpreted as a low–
pass filter: it allows large structures (small ω) to pass the filter and hence
to experience specular reflection. On the other hand, small structures are
cut-offed, do not experience specular reflection and finally get in thermal
equilibrium with the wall (that is, they enter in the count of the Maxwellian
part of the scattering kernel). It is with this interpretation in mind that,
in the next section, we shall suggest a different scattering kernel.

4. The nonlocal scattering kernel II

In this section we pursue the idea of constructing a nonlocal scattering
kernel that can act as low–pass filter. Instead of a power-law low–pass
filter, as the one in Eq. (13), we propose a Gaussian filter, as it is common
in turbulence modelling. Namely, for ζ1 > 0, and with β > γ:

R(ζ′ → ζ,y′ → y) = (1− εβ) δ(ζ1 + ζ′1) δ(ζ2 − ζ′2) δ(ζ3 − ζ′3) δ(y − y′)

+ εγ δ(ζ1 + ζ′1) δ(ζ2 − ζ′2) δ(ζ3 − ζ′3)
e−

(x2−x′2)2+(x3−x′3)2

4λ2

4λ2 π

+
2ε(β − γ)

π(1 + τw)2
δ(y − y′) ζ1 e−

(ζi−uwi)
2

1+τw . (14)

The first and the third term on the right hand side of (14) are the same
as in the Maxwell kernel. The second term accounts for a small (O(ε))
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fraction of molecules which are nonlocally specularly reflected: particles
that hit the wall at y′ are reflected from a inner layer of wall molecules and
exit at y with Gaussian probability.
The scattering kernel given by (14) acts as a Gaussian low–pass filter, whose
filter width is λ. The above scattering kernel satisfies the positivity condi-
tion, the conservation of mass and the reciprocity relation.

We now consider the limit ε → 0. Following the same lines as in Sec.3,
one finds the following boundary conditions for the fluid dynamic variables:

u1 = 0, (15)

4
√

π γ1
∂ui

∂x1
− β (ui − uiw)− γ[uiw −G(λ, x2, x3) ∗ ui] = 0 (i = 2, 3) (16)

10
√

π γ2
∂τ

∂x1
+ 8β (τw1 − τ)− 9γ[τ −G(λ, x2, x3) ∗ τ] = 0 (17)

where with G(λ, x2, x3) we have denoted the 2D Gaussian with standard
deviation λ, while ∗ denotes the convolution in R2. Equations (15)-(16)-
(17) are the boundary conditions for the Navier–Stokes equations: (16) is
the Robin boundary condition for the tangential component of the velocity
plus an additive term, which is proportional to the difference between the
wall velocity and a filtered flow. Notice that, if one takes the convolution of
Eq. (16) with the gaussian kernel, one obtains the same boundary conditions
of the near wall model5. Analogously, Eq. (17), prescribes a Robin condition
for the temperature plus a nonlocal extra term. It is interesting to notice
that, to second order, one gets the following BC for the mass flux:

u
(2)
1 =

γ

4
√

π
[τ −G(λ, x2, x3) ∗ τ ] (18)

The above condition prescribes (locally) a non zero mass flux at the bound-
ary. This effect is due to the penetrative BC for the Boltzmann equation.
If one integrates (18) on the whole boundary one gets that the total mass
flux is zero.
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