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Abstract. We consider the mild solutions of the Prandtl equations on the half space. Requiring
analyticity only with respect to the tangential variable, we prove the short time existence and the
uniqueness of the solution in the proper function space. The proof is achieved applying the abstract
Cauchy–Kowalewski theorem to the boundary layer equations once the convection-diffusion operator
is explicitly inverted. This improves the result of [M. Sammartino and R. E. Caflisch, Comm. Math.
Phys., 192 (1998), pp. 433–461], as we do not require analyticity of the data with respect to the
normal variable.
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1. Introduction. In this paper we shall be concerned with the unsteady Prandtl
equations on the half space. They describe the behavior of an incompressible fluid
close to a physical boundary in the limit of small viscosity [19]. The system we shall
deal with is the following:

(∂t − ∂Y Y )uP + uP∂xu
P + vP∂Y u

P + ∂xp
P = 0 ,(1.1)

∂Y p
P = 0 ,(1.2)

∂xu
P + ∂Y v

P = 0 ,(1.3)

uP (x, Y = 0, t) = vP (x, Y = 0, t) = 0 ,(1.4)

uP (x, Y → ∞, t) −→ U(x, t) ,(1.5)

pP (x, Y → ∞, t) −→ pE(x, y = 0, t) ,(1.6)

uP (x, Y, t = 0) = uP
in .(1.7)

In the above equations (uP , vP ) and pP represent the components of the fluid velocity
and the pressure inside the boundary layer. Equation (1.3) is the incompressibility
condition and equations (1.4) are the boundary conditions: uP (x, Y = 0, t) = 0 is the
no-slip condition and vP (x, Y = 0, t) = 0 is the no-influx condition. Equation (1.5)
is the matching condition between the flow inside the boundary layer and the outer
Euler flow; U(x, t) is the tangential component of the Euler flow at the boundary;
x = (x1, x2) is the tangential variable, and Y the normal variable.

The Prandtl equations can be regarded as asymptotic equations of the Navier–
Stokes equations in the limit of vanishing viscosity (ν → 0). In the limit case ν = 0,
the higher derivative term is dropped from the Navier–Stokes system and one gets
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988 M. C. LOMBARDO, M. CANNONE, AND M. SAMMARTINO

the Euler equations, which rule the behavior of inviscid flows. Since the Euler system
is first order, we have a reduction of the order of the equations, and a corresponding
reduction must be done in the number of the boundary conditions: only the normal
component of the velocity can be imposed at the boundary. Since the Navier–Stokes
equations impose the value of both the velocity components at the boundary, one
must allow a thin layer where there is a rapid variation of the fluid velocity from
zero (imposed by the no-slip condition) to the value prescribed by the inviscid equa-
tions. Hence, in the boundary layer (whose size is O(

√
ν)), vorticity is generated so

that the viscosity term ν∆u is O(1), even as the viscosity goes to zero. The fluid
develops an internal length scale so that one is faced with a singular perturbation
problem. Rescaling the normal variable with the square root of the viscosity, and
writing the solution to the Navier–Stokes equations in the form of an asymptotic se-
ries, one gets the equations which rule the fluid inside the boundary layer, i.e., Prandtl
equations.

The equations were first derived by Prandtl in 1904, and the practical success of
the boundary layer theory was soon overwhelming. Nevertheless, the theoretical foun-
dation of the boundary layer theory was rather unsatisfactory, and many fundamental
questions are still debated. For instance, the problem of establishing a well-founded
mathematical connection to the Navier–Stokes equation has been solved only recently,
and neither existence, uniqueness, nor well-posedness of the boundary layer equation
is proved in the general case.

Regarding the problem of the convergence of the Prandtl equations to the Navier–
Stokes equations, a major complication is given by the fact that no uniqueness theorem
with Sobolev-type initial data for the three-dimensional Navier–Stokes (nor Euler)
equations has been proved, and the time of existence of a regular solution depends
on the data and on the viscosity (see Marsden [13] and the monographs Constantin
and Foias [7] and Temam [21]). In the absence of boundaries the convergence of
viscous planar flow to ideal planar flow was shown by Swann [20] for a time which
is independent of the viscosity and, lately, in the case of concentrated vorticity, by
Constantin and Wu [8].

In the presence of boundaries the problem is harder. Kato [10] proved that a
necessary and sufficient condition for the convergence of uNS to the solution of Euler
equations, uE , in L2(Ω) uniformly in t ∈ [0, T ] is that the energy dissipation for uNS

in a small layer close to the boundary of size O(ν), during the interval [0, T ], tends to
zero. However, such result gives no ultimate solution to the problem because of the
unverified energy estimate on the Navier–Stokes solution. With a similar condition
on the L2-norm of the gradient of the pressure, Temam and Wang [22] proved the
convergence of the Navier–Stokes solution to the solution of the Euler equation in a
strip.

Analogously it is also hard to prove the convergence of the Navier–Stokes solution
to the Prandtl solution under satisfactory hypotheses: the few existence and unique-
ness theorems proved for the unsteady case hold in particular cases. For instance,
Oleinik proved the existence and uniqueness of the Prandtl equations on the half
space requiring prescribed horizontal velocities positive and strictly increasing. See
[14] for a review.

The first results which do not require monotonicity of the initial data were proved
by Sammartino and Caflisch, after the earlier work of Asano [2]. In [17], assuming
analyticity of the initial data with respect to the spatial variables, they proved the
existence and uniqueness of the Prandtl equations on the half space. They achieved the
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WELL-POSEDNESS OF THE BOUNDARY LAYER EQUATIONS 989

result using an abstract formulation of the Cauchy–Kowalewski theorem in the Banach
spaces of analytic functions. In [18] they performed the asymptotic analysis of the
Navier–Stokes equation in the limit of zero viscosity. They constructed the solution
in the form of an asymptotic series in

√
ν, whose zeroth order term is constituted by

the sum of the Euler and the Prandtl solutions. The norm of the first order correction
term is then proved to be bounded in the proper function space. They also proved an
analogous result in the case of a curved boundary (see [5]).

In the linear case it has been possible to prove the convergence of the linearized
Navier–Stokes equations to the corresponding inviscid equations for Sobolev-type ini-
tial data. The asymptotic analysis has been successfully performed for the Stokes
equations on the half space (Sammartino [16]) and on the exterior of a disk (Lom-
bardo, Caflisch, and Sammartino [11]). Similar results were achieved for the Oseen
equations, i.e., the Navier–Stokes equations linearized around a nonzero flow, on a
strip (see Lombardo and Sammartino [12] and Temam and Wang [23]).

Temam and Wang analyzed the linear case for a general 2 −D exterior domain
(see [24] and [25]), but they obtained weaker convergence results. In the nonlinear
case, with blowing and suction boundary conditions [26], they were able to prove that
these boundary conditions stabilize the boundary layer.

In the opposite direction Grenier [9] proved that a solution of the Prandtl equa-
tions is linearly and nonlinearly unstable, and, therefore, it does not converge in H1

to the Navier–Stokes solutions.
A review about the mathematical aspects of the boundary layer theory can be

found in [4].
In this paper we extend the result of [17] to a wider class of initial data, namely,

the functions which are analytic only with respect to the tangential variable and
L2, together with their derivatives, with respect to the normal variable. Through
the explicit expression of the Green’s function, we invert the second order parabolic
operator appearing in the Prandtl equation, including the first order Y -derivative. We
are thus able to obtain a mild form of the system. The existence and the uniqueness of
the solution are then proved using a slightly modified version of the abstract Cauchy–
Kowalewski (ACK) theorem in the Banach spaces.

The results presented in this paper were previously announced in [6].
The paper is organized as follows. In section 2 we define the function spaces

where existence and uniqueness will be proved. In section 3 we state the abstract
Cauchy–Kowalewski theorem in the Banach spaces. In section 4 the parabolic initial-
boundary value problem is explicitly solved and the norm of the corresponding oper-
ators bounded in the proper function spaces. The mild form of the Prandtl equation
is given in section 5. In sections 6 and 7 the source term of the Prandtl equation is
proved to satisfy the hypotheses of the ACK theorem. Finally the main theorem is
stated in section 8. For convenience two appendices are inserted. In Appendix A a
sketch of the proof of the ACK theorem is given. In Appendix B the estimates of the
pseudodifferential operator defined in section 4 are proved.

2. Function spaces. In this section we introduce the function spaces used in
the proof of the existence and uniqueness of the Prandtl equations. We first define
the domain of analyticity with respect to the tangential variable:

D(ρ) = {x ∈ C : �x ∈ (−ρ, ρ)} .

We now introduce the ambient spaces for the Prandtl equations.
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990 M. C. LOMBARDO, M. CANNONE, AND M. SAMMARTINO

Definition 2.1. The space Kl,ρ is the space of the functions f(x) such that
• f is analytic in D(ρ);
• if �x ∈ (−ρ, ρ) and 0 ≤ j ≤ l, then ∂j

xf(�x + i�x) is square integrable in
�x;

• |f |l,ρ ≡∑l
j=0 sup�x∈(−ρ,ρ) ‖∂j

xf(· + i�x)‖L2(�x) < ∞.

Definition 2.2. The space Kl,ρ,µ, with µ > 0, is the space of the functions
f(Y, x) such that

eµY ∂i
x∂

j
Y f ∈ L∞(R+,K0,ρ) when i + j ≤ l and j ≤ 2.

The norm in Kl,ρ,µ is defined as

|f |l,ρ,µ ≡
∑
j≤2

∑
i≤l−j

sup
Y ∈R+

eµY |∂j
Y ∂

i
xf(Y, ·)|0,ρ.

Definition 2.3. The space Kl,ρ
β,T , with β > 0 and ρ−βT > 0, is the space of the

functions f(x, t) such that

∂i
t∂

j
xf(x, t) ∈ Kl,ρ−βt ∀0 ≤ t ≤ T, where 0 ≤ i + j ≤ l and 0 ≤ i ≤ 1.

Moreover,

|f |l,ρ,β,T ≡
∑

0≤j≤1

∑
i≤l−j

sup
0≤t≤T

|∂j
t ∂

i
xf(·, t)|0,ρ−βt < ∞ .

Definition 2.4. The space Kl,ρ,µ
β,T , with β > 0, ρ − βT > 0 and µ − βT > 0, is

the space of the functions f(x, Y, t) such that

f ∈ Kl,ρ−βt,µ−βt and ∂t∂
i
xf ∈ K0,ρ−βt,µ−βt ∀0 ≤ t ≤ T, where 0 ≤ i ≤ l − 2.

Moreover,

|f |l,ρ,µ,β,T ≡
∑

0≤j≤2

∑
i≤l−j

sup
0≤t≤T

|∂j
Y ∂

i
xf(·, ·, t)|0,ρ−βt,µ−βt

+
∑

i≤l−2

sup
0≤t≤T

|∂t∂i
xf(·, ·, t)|0,ρ−βt,µ−βt < ∞ .

3. The abstract Cauchy–Kowalewski theorem. To prove the existence and
the uniqueness of the mild solution to the Prandtl equations, we shall give a slightly
modified version of the abstract Cauchy–Kowalewski (ACK) theorem as given in [15]
or [1] and [3].

For t in [0, T ], consider the equation

u + F (t, u) = 0.(3.1)

Let {Xρ : 0 < ρ ≤ ρ0} be a Banach scale with norms | · |ρ such that Xρ′ ⊂ Xρ′′ and
| · |ρ′′ ≤ | · |ρ′ when ρ′′ ≤ ρ′ ≤ ρ0.

Theorem 3.1 (ACK theorem). Suppose that ∃R > 0, ρ0 > 0, and β0 > 0 such
that if 0 < t ≤ ρ0/β0, the following properties hold:
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WELL-POSEDNESS OF THE BOUNDARY LAYER EQUATIONS 991

(1) ∀ 0 < ρ′ < ρ ≤ ρ0 and ∀u such that {u ∈ Xρ : sup0≤t≤T |u(t)|ρ ≤ R} the map
F (t, u) : [0, T ] �→ Xρ′ is continuous.

(2) ∀ 0 < ρ < ρ0 the function F (t, 0) : [0, ρ0/β0] �→ {u ∈ Xρ : sup0≤t≤T |u(t)|ρ ≤
R} is continuous and

|F (t, 0)|ρ ≤ R0 < R .(3.2)

(3) ∀0 < ρ′ < ρ(s) < ρ0 and ∀ u1 and u2 ∈{u ∈ Xρ : sup0≤t≤T |u(t)|ρ−β0t ≤ R},

|F (t, u1) − F (t, u2)|ρ′ ≤ C

∫ t

0

ds

( |u1 − u2|ρ(s)
ρ(s) − ρ′

+
|u1 − u2|ρ′√

t− s

)
.(3.3)

Then ∃β > β0 such that ∀0 < ρ < ρ0, (3.1) has a unique solution u(t) ∈ Xρ with
t ∈ [0, (ρ0 − ρ)/β]; moreover supρ<ρ0−βt |u(t)|ρ ≤ R.

The proof of the above theorem is given in Appendix A.

4. A parabolic equation. The next section will be devoted to writing Prandtl
equations in the form given by (3.1). The main difficulty in doing this is in the
parabolic nature of the Prandtl equation. We shall solve this difficulty by inverting
the parabolic operator (∂t − ∂Y Y + αY ∂Y ), giving the explicit expression of the
Green’s function.

We introduce the kernels

Fα(x, Y, t) =
1√
4π

1

Ψ(x, t)
exp

(
−Y 2e−2A(x,t)

4(Ψ(x, t))2

)
,(4.1)

Eα(x, Y, t) =

∫ ∞

0

dY ′ [Fα(x, Y − Y ′, t) − Fα(x, Y + Y ′, t)] ,(4.2)

Hα(x, Y, t) = −∂Fα

∂Y
(x, Y, t) + α(x, t)Y Fα(x, Y, t) − 1

2
α(x, t)Eα(x, Y, t),(4.3)

where α is a function of x and t, and A(x, τ) is defined as

A(x, τ) =

∫ τ

0

dθ α(x, θ)(4.4)

and

Ψ(x, t) =

(∫ t

0

dτ e−2A(x,τ)

)1/2

.(4.5)

The operator M0 is the convolution of the kernel Fα with the odd extension to
Y < 0 of the function u0(x, Y ):

M0u0 =

∫ ∞

0

dY ′ [Fα(Y − Y ′, t) − Fα(Y + Y ′, t)] u0(x, Y ′).(4.6)

It solves the following system:

(∂t − ∂Y Y + αY ∂Y )M0u0 = 0,(4.7)

M0u0(x, Y = 0, t) = 0,(4.8)

M0u0(x, Y, t = 0) = u0.(4.9)
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992 M. C. LOMBARDO, M. CANNONE, AND M. SAMMARTINO

We now introduce the operator M2:

M2f =

∫ t

0

ds

∫ ∞

0

dY ′ [Fα(Y − Y ′, t− s) − Fα(Y + Y ′, t− s)] f(x, Y ′, s).(4.10)

It solves the parabolic equations with zero boundary and initial data:

(∂t − ∂Y Y + αY ∂Y )M2f = f,(4.11)

M2f(x, Y = 0, t) = 0,(4.12)

M2f(x, Y, t = 0) = 0.(4.13)

The operator M1 acts on functions defined on the boundary, namely,

M1g = 2

∫ t

0

ds Hα(Y, t− s) g(x, s),(4.14)

and solves the following system:

(∂t − ∂Y Y + αY ∂Y )M1g = 0,(4.15)

M1g(x, Y = 0, t) = g,(4.16)

M1g(x, Y, t = 0) = 0.(4.17)

Finally we define the operator M3h:

M3h = −
∫ t

0

ds

∫ ∞

0

dY ′ ∂Y [Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)] h(x, Y ′, s).

(4.18)

Notice that if h(x, Y = 0, t) = 0, then, integrating by parts, one gets M3h ≡ M2∂Y h.
We shall now give some estimates on the above operators. We begin with the

estimates on the operator M2.
Proposition 4.1. Let α ∈ Kl,ρ

β,T , f ∈ Kl,ρ,µ
β,T with f |Y =0 = 0. If ρ′ < ρ− βt and

µ′ < µ− βt, then the following estimate holds:

|M2f |l,ρ′,µ′ ≤ c

∫ t

0

ds |f(·, ·, s)|l,ρ′,µ′ ≤ c |f |l,ρ,µ,β,T ,

where the constant c depends on |α|l,ρ,β,T .

Proposition 4.2. Let α ∈ Kl,ρ
β,T , f ∈ Kl,ρ,µ

β,T . Then M2f ∈ Kl,ρ,µ
β,T and the

following estimate holds:

|M2f |l,ρ,µ,β,T ≤ c |f |l,ρ,µ,β,T .

The following estimate of M3h will be crucial in handling the nonlinear term
containing the Y -derivative.

Proposition 4.3. Suppose α ∈ Kl,ρ
β,T , h ∈ Kl,ρ,µ

β,T with h|Y =0 = 0, ∂Y h|Y =0 = 0.

If 0 < µ′ < µ(s) < µ− βs, then M3h ∈ Kl,ρ,µ′
for each 0 < t < T and the following

estimate holds:

|M3h|l,ρ,µ′ ≤ c

∫ t

0

ds

( |h(·, ·, s)|l,ρ,µ′√
t− s

+
|h(·, ·, s)|l,ρ,µ(s)

µ(s) − µ′

)
.
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WELL-POSEDNESS OF THE BOUNDARY LAYER EQUATIONS 993

The proofs of the above propositions are given in Appendix B.
We finally give some bounds on the operators M0 and M1.
Proposition 4.4. Let α ∈ Kl,ρ

β,T and u0(x, Y ) ∈ Kl,ρ,µ. Moreover let the com-

patibility condition u0(x, Y = 0) = 0. Then M0u0 ∈ Kl,ρ,µ
β,T and the following estimate

holds:

|M0u0|l,ρ,µ,β,T ≤ c |u0|l,ρ,µ .

Proposition 4.5. Let α, g ∈ Kl,ρ
β,T and g(x, t = 0) = 0. Then M1g ∈ Kl,ρ,µ

β,T and
the following estimate holds:

|M1g|l,ρ,µ,β,T ≤ c |g|l,ρ,β,T .

We will also need the following lemma.
Lemma 4.6. Let α ∈ Kl,ρ

β,T , w = u+g with u ∈ Kl,ρ,µ, and g ∈ Kl,ρ, i.e., constant
with respect to Y and t. Moreover, let u(x, Y = 0) = −g(x). Then M0(t)w − g ∈
Kl,ρ,µ ∀t and the following estimate holds:

sup
0≤t≤T

|M0(t)w − g | l,ρ,µ ≤ c (|α|l,ρ,β,T + |u|l,ρ,µ + |g|l,ρ) .

5. The mild form of the Prandtl equations. In this section, following the
same procedure used in [17], we shall recast the Prandtl equations in a form suitable
for the application of the ACK theorem.

First, one can get rid of the pressure gradient introducing the new variable u:

u = uP − U .(5.1)

In fact, written in terms of the variable u and using the Euler equation at the
boundary,

∂tU + U∂xU + ∂xp
E |y=0 = 0,(5.2)

equations (1.1)–(1.7) become

(∂t − ∂Y Y + Y ∂xU ∂Y )u + u ∂xu−
(∫ Y

0

dY ′∂xu

)
∂Y u + U ∂xu + u ∂xU = 0,(5.3)

u(x, Y = 0, t) = −U,(5.4)

u(x, Y → ∞, t) = 0,(5.5)

u(t = 0) = uP
in − U(t = 0) ≡ u0,(5.6)

where we have also used the incompressibility condition, written as

vP = −
∫ Y

0

∂xu
P dY ′ = −

(∫ Y

0

∂xu dY ′ + Y ∂xU

)
.(5.7)

We can now define the quantities

K1(u, t) = − (2u ∂xu + U ∂xu + u ∂xU) ,(5.8)

K2(u, t) = ∂Y

(
u

∫ Y

0

dY ′ ∂xu,

)
(5.9)
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994 M. C. LOMBARDO, M. CANNONE, AND M. SAMMARTINO

and the operator F (u, t) as

F (u, t) = M2K1(u, t) + M2K2(u, t) + C,(5.10)

where we have identified the α(x, t) appearing in the kernel Fα with −∂xU(x, t), and
where C is defined by

C = M0(t) (u0 + U(t = 0)) −M1 (U − U(t = 0)) − U(t = 0).(5.11)

Given that (u
∫ Y

0
dY ′ ∂xu) |Y =0 = 0, F (u, t) can be written as

F (u, t) = M2K1(u, t) + M3K3(u, t) + C,(5.12)

where K3(u, t) is defined as

K3(u, t) = u

∫ Y

0

dY ′ ∂xu.(5.13)

Therefore (5.3), together with the boundary and initial condition (5.4)–(5.6), can
finally be written in the form

u = F (u, t).(5.14)

We call (5.14) with F (u, t) defined in (5.12), and with M2,M3,K1,K3 defined in
(4.10), (4.18), (5.8), (5.13), respectively, the mild form of the Prandtl equations. We
are now left to prove that the operator F (u, t), given by (5.12), satisfies the hypotheses
of the ACK theorem.

6. The forcing term. It is obvious that the operator F (u, t) satisfies assump-
tion 1 of the ACK theorem. In this section we shall show that it satisfies assumption 2,
namely, that F (0, t) ∈ Kl,ρ,µ and that ∀t ∈ [0, t]

|F (0, t)|l,ρ,µ ≤ R0.(6.1)

Since

F (0, t) = C,(6.2)

using Lemma 4.6 and Proposition 4.5, one gets the following.
Proposition 6.1. Suppose that u0 ∈ Kl,ρ,µ with u0(·, Y = 0) = −U(t = 0) and

U ∈ Kl,ρ
β,T . Then F (0, t) ∈ Kl,ρ,µ

β,T and the following estimate holds:

|F (0, t)|l,ρ,µ,β,T ≤ c (|U |l,ρ,β,T + |u0|l,ρ,µ) .

This proves that the forcing term can be estimated in terms of the initial con-
dition for Prandtl equations and the outer Euler flow. Notice that the compatibility
condition u0(·, Y = 0) = −U(t = 0) is necessary for the hypotheses of Lemma 4.6 to
be verified.

7. The contractiveness property of the operator F . In this section we
shall prove that the operator F , given by (5.10), satisfies assumption 3 of the ACK
theorem. Namely, we shall prove the following.
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WELL-POSEDNESS OF THE BOUNDARY LAYER EQUATIONS 995

Theorem 7.1. Suppose that u1 and u2 are in Kl,ρ0,µ0

β0,T
. Suppose 0 < ρ′ < ρ(s) <

ρ0s and 0 < µ′ < µ(s) < µ0. Then the following estimate holds:∣∣ F (u1, t) − F (u2, t)
∣∣
l,ρ′,µ′

≤ c

∫ t

0

ds

( |u1 − u2|l,ρ(s),µ
ρ(s) − ρ′

+
|u1 − u2|l,ρ,µ(s)

µ(s) − µ′ +
|u1 − u2|l,ρ′,µ′√

t− s

)
.(7.1)

To prove the above theorem we have to bound the operators M2K1 and M3K3.
The first one contains two different kinds of terms: the nonlinear term, u∂xu, and
two linear terms. They all will be estimated through the Cauchy estimate in the
x-variable. The operator M3K3, which contains the nonlinear term involving the
Y -derivative, will be estimated using the properties of the kernel of the operator M3.

7.1. The operator M2K1. We start with the estimate of the nonlinear term
involving the x-derivative. One has the following Cauchy estimate for the derivative
of an analytic function.

Proposition 7.2. Let f ∈ Kl,ρ′′
. If ρ′ < ρ′′, then

|∂xf |l,ρ′ ≤ |f |l,ρ′′

ρ′′ − ρ′
.(7.2)

Therefore the following proposition can be proved.
Proposition 7.3. Suppose that u1 and u2 are in Kl,ρ0,µ0

β0,T
. Suppose 0 < ρ′ <

ρ(s) < ρ0. Then the following estimate holds:

∣∣ u1∂xu
1 − u2∂xu

2
∣∣
l,ρ′,µ′ ≤ c

|u1 − u2|l,ρ,µ
ρ− ρ′

,(7.3)

where the constant c depends only on |u1|l,ρ0,µ0,β,T and |u2|l,ρ0,µ0,β,T .
The proof of the above proposition can be found in [17].
The estimate of the linear terms is easily achieved using the following lemma.
Lemma 7.4. Let U ∈ Kl,ρ

β,T and let ρ′ < ρ; then ∀ 0 < t ≤ T

sup
x∈D(ρ′)

|∂l
xU(·, t)| ≤ c |U |l,ρ,β,T .

The proof of the above lemma is a consequence of the Cauchy estimate for an
analytic function and of the Sobolev inequality.

Finally, using Proposition 4.1 and the above lemmas, we get the following.
Proposition 7.5. Suppose that u1 and u2 are in Kl,ρ,µ

β,T . Suppose 0 < ρ′ <
ρ(s) < ρ . Then the following estimate holds:

∣∣ M2K1(u1, t) −M2K1(u2, t)
∣∣
l,ρ′,µ ≤ c

∫ t

0

ds
|u1 − u2|l,ρ(s),µ

ρ(s) − ρ′
,(7.4)

where the constant c depends only on |u1|l,ρ,µ,β,T and |u2|l,ρ,µ,β,T .

Notice that the difference K1(u1, t) − K1(u2, t) has to be considered only for
functions which satisfy the condition u(x, Y = 0, t) = −U , so that K1(u1, t) −
K1(u2, t) |Y =0 = 0. Therefore the requirement of Proposition 4.1 is fulfilled.
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996 M. C. LOMBARDO, M. CANNONE, AND M. SAMMARTINO

7.2. The operator M3K3. In this subsection we shall estimate the term con-
taining the Y -derivative using Proposition 4.3. Since it involves also the x-derivative,
one must pay attention to the way the derivatives are distributed. In the estimate of
the term involving the ∂2

Y ∂
l−2
x -derivatives, one has to invoke Proposition 4.3. On the

other hand, in the estimate of the term involving the ∂Y ∂
l−1
x -derivatives, one has to

Cauchy estimate the x-derivative.
The following proposition then holds.
Proposition 7.6. Suppose that u1 and u2 are in Kl,ρ,µ

β,T . Suppose 0 < ρ′ <
ρ(s) < ρ, 0 < µ′ < µ(s) < µ. Then the following estimate holds:

(7.5)
∣∣M3K3(u1, t) −M3K3(u2, t)

∣∣
l,ρ′,µ′

≤ c

∫ t

0

ds

( |u1 − u2|l,ρ(s),µ′

ρ(s) − ρ′
+

|u1 − u2|l,ρ′,µ(s)

µ(s) − µ′ +
|u1 − u2|l,ρ′,µ′√

t− s

)
,

where the constant c depends only on |u1|l,ρ,µ,β,T and |u2|l,ρ,µ,β,T .
We stress the fact that we are allowed to use Proposition 4.3, as both the hypothe-

ses are satisfied. In fact the first hypothesis reads [u1
∫ Y

0
dY ′∂xu1−u2

∫ Y

0
dY ′∂xu2]Y =0

= 0 and the second one[
∂Y

(
u1

∫ Y

0

dY ′∂xu1 − u2

∫ Y

0

dY ′∂xu2

)]
Y =0

=

[
∂Y u

1

∫ Y

0

dY ′∂xu1 − ∂Y u
2

∫ Y

0

dY ′∂xu2

]
Y =0

+
[
u1∂xu

1 − u2∂xu
2
]
Y =0

=
[
(u1 − u2)∂xu

1 + u2∂x(u1 − u2)
]
Y =0

= 0,

where the last equality holds since both u1 and u2 have the same datum at the
boundary.

This concludes the proof of Theorem 7.1.

8. The main result. In the previous sections we have proved that the operator
F satisfies all the hypotheses of the ACK theorem. Hence the following theorem,
which is the main result of this paper, has been proved.

Theorem 8.1. Suppose U ∈ Kl,ρ0

β0,T
and uP

in − U ∈ Kl,ρ0,µ0 . Moreover let the
compatibility conditions

uP
in(x, Y = 0) = 0,(8.1)

uP
in(x, Y → ∞) − U −→ 0(8.2)

hold. Then there exist 0 < ρ1 < ρ0, 0 < µ1 < µ0, β1 > β0 > 0, and 0 < T1 < T such
that (1.1)–(1.7) admit a unique mild solution uP . This solution can be written as

uP (x, Y, t) = u(x, Y, t) + U,(8.3)

where u ∈ Kl,ρ1,µ1

β1,T1
.

9. Concluding remarks. In this paper we have proved short time existence and
uniqueness of the solution of the Prandtl equations. The main hypothesis we have
imposed is the analyticity of the initial data and of the prescribed (Euler) flow with
respect to the tangential variable. This improves the results of [17], where analyticity
with respect to the normal variable was also imposed.
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WELL-POSEDNESS OF THE BOUNDARY LAYER EQUATIONS 997

The main ideas in our proof are the following.
First, we inverted the convection-diffusion (in the normal variable) operator. This

led us to introduce the mild form of the Prandtl equations and allowed us to put the
Prandtl equations in a form (see (5.14)) suitable for the application of the ACK
theorem.

Second, we introduced a modified form of the ACK theorem to deal with a term
which has a mild singularity in time (see (3.3)). The origin of this mild singularity is
in the fact that, due to the lack of analyticity with respect to the normal variable, we
had to use the regularizing properties of the Green’s function of the diffusion operator.
The gain of regularity in the normal space variable was paid with a mild singularity
in time.

Third, the analyticity in the tangential variable was used to deal with the non-
linear convection in the tangential direction. Application of our version of the ACK
theorem gave the existence and uniqueness of the solution.

The result of this paper is more general than the results of [17]. Moreover it
seems a necessary step toward a rigorous mathematical analysis of the boundary layer
theory for curved boundaries. In fact, when the curvature is present, the requirement
of analyticity with respect to the normal variable would not allow the asymptotic
matching between the exterior and the interior solutions. Therefore the problem of
proving the well-posedness of the boundary layer equations when geometries other
than very special ones (e.g., the half space or the exterior of a circular domain)
are involved does not seem to be out of reach. This would open the possibility of
the analysis of the zero viscosity problem for a fluid confined in a general bounded
domain.

Appendix A. Proof of the ACK theorem. The proof of Theorem 3.1 follows
along the same lines as that of [15].

In fact we prove the ACK theorem by proving that F (u, t) is contractive in an
auxiliary Banach space S

γ .
For γ > 0, we consider the weighted Banach space S

γ of continuous functions u(t)
with values in Xρ, where ρ + βt < ρ0. The norm in S

γ is defined as

‖u‖(γ) = sup
ρ+βt<ρ0

(ρ0 − ρ− β0t)
γ |u(t)|ρ.(A.1)

The contractiveness of the F (u) in S
γ can be proved as follows.

Let 0 < ρ′ < ρ(s) < ρ0. We set

ρ(s) = ρ′ +
λ(s)

2
,(A.2)

where

λ(s) = ρ0 − ρ′ − βs.(A.3)

Therefore

ρ0 − ρ(s) − βs =
λ(s)

2
= ρ(s) − ρ′.(A.4)
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998 M. C. LOMBARDO, M. CANNONE, AND M. SAMMARTINO

We can now make the estimate

|F (t, u1) − F (t, u2)|ρ′ ≤ C

∫ t

0

ds

( |u1 − u2|ρ′√
t− s

+
|u1 − u2|ρ(s)
ρ(s) − ρ′

)

≤ C

∫ t

0

ds

( |u1 − u2|ρ′√
t− s

(ρ0 − ρ′ − βs)γ

(ρ0 − ρ′ − βt)γ
+

|u1 − u2|ρ(s)
ρ(s) − ρ′

(ρ0 − ρ(s) − βs)γ

(ρ0 − ρ(s) − βs)γ

)

≤ C‖u1 − u2‖(γ)

[
2
√
t(ρ0 − ρ′ − βt)−γ +

∫ t

0

ds
2γ+1

(ρ0 − ρ′ − βs)γ+1

]

≤ C
‖u1 − u2‖(γ)

(ρ0 − ρ′ − βt)γ

[
2

√
ρ0

β
+

2γ+1

γβ

]
,(A.5)

where C is the constant appearing in assumption 3. Passing from the second to the
third line, we have used (A.3) and (A.4).

Taking the sup of (A.5) over ρ′ + βt < ρ0, we get

‖F (t, u1) − F (t, u2)‖(γ) ≤ 2

(√
ρ0

β
+

2γ

γβ

)
‖u1 − u2‖(γ).(A.6)

Therefore, to prove that the operator F is contractive in the (γ)-norm, it is enough

to choose β big enough so that
√

ρ0

β + 2γ

γβ < 1
2 .

Appendix B. Proofs of Propositions 4.1, 4.2, 4.3, 4.4, and 4.5. We first
prove some simple lemmas. Set

Ψ(x, t) =

(∫ t

0

dτ e−2A(x,τ)

)1/2

.(B.1)

Lemma B.1.

sup
x∈D(ρ)

∣∣∣∣ e−2A(x,t)

(Ψ(x, t))2

∣∣∣∣ ≤ e4T supx,t |α|

t
.

Proof.

sup
x∈D(ρ)

∣∣∣∣ e−2A(x,t)

(Ψ(x, t))2

∣∣∣∣ ≤ e2T supx,t |α|

inf
x∈D(ρ)

∣∣∣∫ t

0
dτ e−2A(x,τ)

∣∣∣ ≤
e2T supx,t |α|∣∣∣∫ t

0
dτ e−2 supx∈D(ρ) A(x,τ)

∣∣∣
≤ e2T supx,t |α|∫ t

0
dτ e−2T supx∈D(ρ) |α(x,τ)| ≤

e4T supx,t |α|

t
.

Using the above bound it is straightforward to prove the following lemmas.
Lemma B.2.

sup
x∈D(ρ)

∣∣∂l
xFα(·, Y, t)∣∣ ≤ c

exp
(
−Y 2 e−4T supx,t |α|

4t

)
√
t

l∑
i=0

(
Y 2 e4T supx,t |α|

2t

)i

.

Lemma B.3.

sup
x∈D(ρ)

|∂Y Fα(·, Y, t)| ≤ c
Y e4T supx,t |α|

t

exp
(
−Y 2 e−4T supx,t |α|

4t

)
√
t

.
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WELL-POSEDNESS OF THE BOUNDARY LAYER EQUATIONS 999

Lemma B.4.

sup
x∈D(ρ)

∣∣∂Y ∂l
xFα(·, Y, t)∣∣

≤ c
exp

(
−Y 2 e−4T supx,t |α|

4t

)
√
t

l∑
i=0



(
Y 2 e4T supx,t |α|

2t

)i
Y e−4T supx,t |α|

2t

+

(
Y 2 e4T supx,t |α|

2t

)i−1
Y e4T supx,t |α|

2t


 .

In the proof of Proposition 4.5 we shall also need the following two lemmas.
Lemma B.5.

sup
x∈D(ρ)

∣∣∣∣∣ exp

(
−Y 2e−2A(·,Y 2/4η2)

4Ψ2(·, Y 2/4η2)

) ∣∣∣∣∣ ≤ c e−η2

.

Lemma B.6.

sup
x∈D(ρ)

∣∣ Ψn(·, Y 2/4η2)
∣∣ ≥ c

Y n

2nηn
e−nT sup |α|.

We now start with the proof of Proposition 4.3.

Proof of Proposition 4.3. In order to estimate |M3h|l,ρ,µ′ we have to estimate
|∂i

xM3h|0,ρ,µ′ with i ≤ l, |∂Y ∂i
xM3h|0,ρ,µ′ with i ≤ l−1, |∂t∂i

xM3h|0,ρ,µ′ with i ≤ l−1,

and |∂Y Y ∂
i
xM3h|0,ρ,µ′ with i ≤ l − 2.

We begin with |∂i
xM3h|0,ρ,µ′ with i ≤ l.

|∂i
xM3h|0,ρ,µ′

= sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′∂Y

[
Fα(x, Y−Y ′, t− s)−Fα(x, Y+Y ′, t− s)

]
h(x, Y ′, s)

∥∥∥∥
L2

≤ sup
Y ≥0

eµ
′Y
∫ t

0

ds

∫ ∞

0

dY ′
i∑

k=0

sup
x

∣∣∣∂k
x∂Y

[
Fα(·, Y − Y ′, t− s) − Fα(·, Y + Y ′, t− s)

]∣∣∣
× sup

|�x|≤ρ

‖∂i−k
x h(·, Y ′, s)‖L2

≤ c sup
Y ≥0

eµ
′Y
∫ t

0

ds√
t− s

i∑
k=0



∫ ∞

−Y e−2T sup |α|
2
√

t−s

dη e−η2

η2k+1

× sup
|�x|≤ρ

∥∥∥∂i−k
x h(x,Y+ 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

−Y e−2T sup |α|
2
√

t−s

dη e−η2

k η2k−1 sup
|�x|≤ρ

∥∥∥∂i−k
x h(x, Y+ 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

Y e−2T sup |α|
2
√

t−s

dη e−η2

η2k+1 sup
|�x|≤ρ

∥∥∥∂i−k
x h(x,−Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

Y e−2T sup |α|
2
√

t−s

dη e−η2

k η2k−1 sup
|�x|≤ρ

∥∥∥∂i−k
x h(x,−Y+ 2ηe2T sup |α|√t− s, s)

∥∥∥
L2




≤ c

∫ t

0

ds
1√
t− s

|∂i
xh|0,ρ,µ ≤ c

∫ t

0

ds
1√
t− s

|h|l,ρ,µ,
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1000 M. C. LOMBARDO, M. CANNONE, AND M. SAMMARTINO

where, in passing from the third to the fourth line, we have used Lemma B.4 and have

posed η = (Y ′−Y )e−2T sup |α|

2
√
t−s

in the first two integrals and η = (Y ′+Y )e−2T sup |α|

2
√
t−s

in the

third and fourth integrals.
We now pass to the estimates of |∂Y ∂i

xM2∂Y h|0,ρ,µ′ with i ≤ l − 1.

|∂Y ∂i
xM3h|0,ρ,µ′

= sup
Y ≥0

eµ
′Y sup
|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ ∂Y

[
Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)

]
×∂Y ′h(x, Y ′, s)

∥∥∥∥
L2

≤ sup
Y ≥0

eµ
′Y
∫ t

0

ds

∫ ∞

0

dY ′
i∑

k=0

sup
x

∣∣∣∂k
x∂Y

[
Fα(·, Y − Y ′, t− s) − Fα(·, Y + Y ′, t− s)

]∣∣∣
× sup

|�x|≤ρ

∥∥∥∂i−k
x ∂Y ′h(·, Y ′, s)

∥∥∥
L2

≤ c sup
Y ≥0

eµ
′Y
∫ t

0

ds√
t− s

i∑
k=0



∫ ∞

−Y e−2T sup |α|
2
√

t−s

dη e−η2

η2k+1

× sup
|�x|≤ρ

∥∥∥∂i−k
x ∂Y h(x, Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

−Y e−2T sup |α|
2
√

t−s

dη e−η2

k η2k−1 sup
|�x|≤ρ

∥∥∥∂i−k
x ∂Y h(x, Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

Y e−2T sup |α|
2
√

t−s

dη e−η2

η2k+1 sup
|�x|≤ρ

∥∥∥∂i−k
x ∂Y h(x,−Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

∫ ∞

Y e−2T sup |α|
2
√

t−s

dη e−η2

k η2k−1 sup
|�x|≤ρ

∥∥∥∂i−k
x ∂Y h(x,−Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2




≤ c

∫ t

0

ds
1√
t− s

|∂i
x∂Y h|0,ρ,µ ≤ c

∫ t

0

ds
1√
t− s

|h|l,ρ,µ.

The estimate of |∂Y Y M2∂Y h|0,ρ,µ′ is easily achieved by transforming the deriva-
tive ∂Y Y acting on the kernel into ∂Y ′∂Y and integrating by parts. It then proceeds
analogously to the one given above, as the appearance of singular boundary terms is
prevented by the condition ∂Y h(x, Y = 0, t) = 0.

Finally we have to bound the term |∂tM3h|0,ρ,µ′ . We notice that ∂tM3h =
∂Y Y M3h − αY ∂Y M3h; hence we need to estimate |Y ∂Y ∂

i
xM3h|0,ρ,µ′ with i ≤ l − 2

and use the estimate given above.

|Y ∂Y ∂i
xM3h|0,ρ,µ′

= sup
Y ≥0

eµ
′Y Y sup

|�x|≤ρ

∥∥∥∥∂Y ∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ [Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)
]

×∂Y ′h(x, Y ′, s)

∥∥∥∥
L2

≤ sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ Y
[
Fα(x, Y − Y ′, t− s) + Fα(x, Y + Y ′, t− s)

]
×∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2
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WELL-POSEDNESS OF THE BOUNDARY LAYER EQUATIONS 1001

≤ sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ (Y − Y ′) Fα(x, Y − Y ′, t− s) ∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2

+ sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ (Y + Y ′) Fα(x, Y + Y ′, t− s) ∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2

+ sup
Y ≥0

eµ
′Y sup

|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ Y ′ [Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)
]

×∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2

≤ c sup
Y ≥0

eµ
′Y
∫ t

0

ds√
t− s




i∑
k=0

∫ ∞

−Y e−2T sup |α|
2
√

t−s

dη e−η2

η2k+1

× sup
|�x|≤ρ

∥∥∥∂i−k
x ∂2Y h(x, Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2

+

i∑
k=0

∫ ∞

Y e−2T sup |α|
2
√

t−s

dη e−η2

η2k+1 sup
|�x|≤ρ

∥∥∥∂i−k
x ∂2Y h(x,−Y + 2ηe2T sup |α|√t− s, s)

∥∥∥
L2




+ c sup
Y ≥0

sup
|�x|≤ρ

∥∥∥∥∂i
x

∫ t

0

ds

∫ ∞

0

dY ′ e
µ′(Y −Y ′)

µ− µ′
[
Fα(x, Y − Y ′, t− s) − Fα(x, Y + Y ′, t− s)

]
× sup

Y ′≥0

eµY ′
∂2Y ′h(x, Y ′, s)

∥∥∥∥
L2

≤ c

∫ t

0

ds

(
|∂i

x∂
2
Y h|0,ρ,µ√
t− s

+
|∂i

x∂
2
Y h|0,ρ,µ

µ− µ′

)
,

where, in passing from the second to the third line, we have integrated by parts
and used the condition ∂Y h(x, Y = 0, t) = 0. In the last step, the third integral
was estimated using Lemma B.2 and the boundedness of the integral with respect to
Y ′.

Proofs of Propositions 4.1, 4.2, and 4.4. The proofs of Propositions 4.1, 4.2,
and 4.4 are easily achieved by adopting the same techniques used to prove Proposi-
tion 4.3.

Proof of Proposition 4.5. To prove Proposition 4.5 it is useful to introduce
the following change of variable into the expression (4.14) for the operator M1g:

η =
Y

2Ψ(x, t− s)
,(B.2)

where the function Ψ(x, t−s) has been defined by (B.1). Since Ψ(x, t−s) is a monotone
function of the time variable, one can express t−s as a function of η. Namely, it exits
the function Φ such that

s = t− Φ(Y/2η).
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1002 M. C. LOMBARDO, M. CANNONE, AND M. SAMMARTINO

Therefore the expression (4.14) becomes

(B.3) M1g = 4

∫ ∞

Y
2Ψ(x,t)

dη exp
(
−η2e−2A(x, Φ(Y/2η))

)
g(x, t− Φ(Y/2η))

×
[
1 +

Y 2

2η2
α(x, Φ(Y/2η)) e2A(x, Φ(Y/2η))

]

−
∫ t

0

dz g(x, t− z) α(x, z)

[∫ ∞

− Y e−2A

2Ψ(x,z)

dη e−η2 −
∫ ∞

Y e−2A

2Ψ(x,z)

dη e−η2

]
,

where, in the last integral, we have also posed t− s = z.
To estimate |M1g|l,ρ,µ we have to estimate |∂i

xM1g|0,ρ,µ with i ≤ l, |∂t∂i
xM1g|0,ρ,µ

with i ≤ l − 1, |∂Y ∂i
xM1g|0,ρ,µ with i ≤ l − 1, and |∂Y Y ∂

i
xM1g|0,ρ,µ with i ≤ l − 2.

The estimate of the term |∂i
xM1g|0,ρ,µ with i ≤ l is easily achieved by letting the

operator ∂i
x act and by using the same techniques of Proposition 4.3.

Analogously, one can get the estimate of the term |∂t∂i
xM1g|0,ρ,µ with i ≤ l − 1,

noticing that, in the expression (B.3), the time derivative commutes with the integral
because g(x, t = 0) = 0.

We now estimate the term |∂Y ∂i
xM1g|0,ρ,µ with i ≤ l − 1. Recalling that if

f = f(Φ(Y/2η)), one has

∂Y f =
∂f

∂Φ

∂Φ

∂(Y/2η)

1

2η
= −Y e2A(x, Φ(Y/2η) )

2η2

∂f

∂Φ
,

we obtain the expression for ∂Y M1g:

∂Y M1g = 8Y

∫ ∞

Y
2Ψ(x,t)

dη exp
(
−η2e−2A(x, Φ(Y/2η))

)
g(x, t− Φ(Y/2η))

×
[
1 +

Y 2

2η2
α(x, Φ(Y/2η)) e2A(x, Φ(Y/2η))

]

+ 2

∫ ∞

Y
2Ψ(x,t)

dη exp
(
−η2e−2A(x, Φ(Y/2η))

) Y e2A(x, Φ(Y/2η))

η2
∂tg(x, t− Φ(Y/2η))

×
[
1 +

Y 2

2η2
α(x, Φ(Y/2η)) e2A(x, Φ(Y/2η))

]

+ 4

∫ ∞

Y
2Ψ(x,t)

dη exp
(
−η2e−2A(x, Φ(Y/2η))

) Y e2A(x, Φ(Y/2η))

η2
g(x, t− Φ(Y/2η))

×
[
α− Y 2

η
e2A(x, Φ(Y/2η))

(
α− ∂tα

2

)]

−
∫ t

0

g(x, t− z) α(x, z)
exp
(
−Y 2e−2A(x,z)

4Ψ2(x,z)

)
Ψ(x, z)

.

Using the above expression and Lemmas B.5 and B.6, the estimate of the terms
|∂Y ∂i

xM1g|0,ρ,µ with i ≤ l− 1 and |Y ∂Y ∂
i
xM1g|0,ρ,µ with i ≤ l− 1 is straightforward.

The proof of Proposition 4.5 is thus achieved.

D
ow

nl
oa

de
d 

09
/2

6/
16

 to
 1

28
.9

7.
46

.5
4.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



WELL-POSEDNESS OF THE BOUNDARY LAYER EQUATIONS 1003

Acknowledgments. The second author acknowledges K. Asano, C. Bardos, and
T. Yanagisawa for fruitful suggestions and enlightening discussions on the topic during
his stay at Kyoto University in November 2001.

REFERENCES

[1] K. Asano, A note on the abstract Cauchy-Kowalewski theorem, Proc. Japan Acad. Ser. A, 64
(1988), pp. 102–105.

[2] K. Asano, Zero-viscosity limit of the incompressible Navier-Stokes equations. II, in Mathemat-
ical Analysis of Fluid and Plasma Dynamics, Sūrikaisekikenkyūsho Kōkyūroku 656, Kyoto
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