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Abstract In this work we study wavefront propagation for a chemotaxis reaction-
diffusion systemdescribing the demyelination inMultiple Sclerosis. Through aweakly
non linear analysis, we obtain the Ginzburg–Landau equation governing the evolution
of the amplitude of the pattern. We validate the analytical findings through numerical
simulations. We show the existence of traveling wavefronts connecting two different
steady solutions of the equations. The proposed model reproduces the progression of
the disease as a wave: for values of the chemotactic parameter below threshold, the
wave leaves behind a homogeneous plaque of apoptotic oligodendrocytes. For values
of the chemotactic coefficient above threshold, the model reproduces the formation of
propagating concentric rings of demyelinated zones, typical of Baló’s sclerosis.
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1 Introduction

Multiple Sclerosis (MS) is an autoimmunedebilitating pathologyof the central nervous
system. In the early stages it is characterized by inflammation and demyelination, with
the appearance of focal areas of myelin loss in the white matter of the brain, called
plaques or lesions [16]. The pathological hallmark of the initial stages, also common to
the so-called type-III pattern of the disease [2,18], mainly consists of an inflammatory
statewhich induces activatedmacrophages to respond to a chemical stimulus produced
by pro-inflammatory mediators, such as cytokines. The whole process results in tissue
damage through the destruction of the oligodendrocytes, of the myelin sheath around
nerves and of the axons.

Although the immunological mechanisms involved are very complex, some math-
ematical models, that are able to reproduce the essential features of the disease, have
been recently proposed [3,15].

In the present work we shall investigate the dynamics of the following non-
dimensional PDE system, describing the interaction between the density of activated
macrophages m = m(t, x), the concentration of the cytokine c = c(t, x) and the
density of the destroyed oligodendrocytes d = d(t, x):

⎧
⎪⎪⎨

⎪⎪⎩

∂m
∂t = �m + Γm (1 − m) − ∇ · (χh(m)∇c) , with h(m) = m

1+m ,

∂c
∂t = 1

τ
[ε�c + Γ (δd − c + βm)] ,

∂d
∂t = rΓ f (m, d), with f (m, d) = m2

1+m (1 − d).

(1)

We shall solve the above system for (t, x) ∈ R
+ ×Ω , whereΩ = [0, L], imposing

initial condition and no-flux boundary conditions.
In the above system, themotion of themacrophages is described by two terms: undi-

rected random diffusion and a chemotactic-driven migration term, which accounts for
the finite volume of the cells. We therefore adopt a cell-kinetics version of the Keller-
Segel model [14] whose density-dependent sensitivity function displays saturation at
high cells densities to prevent the blow-up of the solution. The nonnegative parameter
χ measures the maximal chemotactic rate. The local dynamics of the macrophages
is modeled by an activation front with logistic growth and saturation. The evolution
of the cytokine is ruled by a linear diffusion term, whose diffusivity coefficient is
ε, plus a linear kinetic term, which describes the interaction between species: the
nonnegative parameters δ and β are the production rates of cytokine by destroyed
oligodendrocytes and macrophages, respectively. The positive constant τ allows for
themodeling of the chemoattractant evolution on a different time scale compared to the
other two species. The oligodendrocytes are considered fixed in their spatial positions
and their dynamics is described by the damaging function f (m, d), that is positive,
increasing with respect to m(x, t) and bounded for high values of the macrophages
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density. The positive parameter r gives a measure of the destructive strength of the
macrophages on the oligodendrocytes. Finally, the non-dimensional parameter Γ is
introduced, which governs the spatial and the temporal scales. More details about
the derivation of the system (1) and the numerical estimate of the parameters are
presented in [3], where an analytical and numerical exploration of the model is also
presented.

Themathematical properties of theKeller-Segel system and its numerous variations
have been extensively studied, see for example [8,12,13,28] and references therein.
Moreover the Keller-Segel chemotaxis model has been proposed to describe aggre-
gation and self organization processes in several biological phenomena. In particular,
chemotaxis and motility of macrophages are assumed in some spatially distributed
mathematical models of inflammation [7,17,21,22,26].

In this work we first focus on the investigation of the conditions which yield
the appearance of stationary non constant solutions for the chemotaxis reaction-
diffusion model (1). As the disease-free equilibrium is always unstable, the proposed
model prescribes two scenarios. When the chemoattraction is weak (in a sense to
be specified after the Turing stability analysis), the activated macrophages do not
aggregate and the solutions of the system converge towards the uniform steady state,
which corresponds to the formation of a spatially homogeneous plaque [6]. When
the chemoattraction is strong, we prove the appearance of periodically spatially dis-
tributed clusters of cells. The numerical simulations performed close to the threshold
show that, starting form a small perturbation of the disease-free equilibrium, the sys-
tem evolves towards the formation of a spatially periodic pattern for the macrophages
and cytokines. The dynamics of the destroyed oligodendrocytes follows the evo-
lution of the macrophages, forming zones of aggregation which, on a time scale
ruled by the system parameters, subsequently evolve towards a spatially uniformly
degraded state. This process reproduces the formation of expanding concentric layers
of demyelinated white matter, typical of Baló Sclerosis, a very aggressive variant
of MS but also frequently seen in the early stages of the pattern III MS lesions
[1].

The second goal of the present paper is to study the process of progression of the
disease in the form of a wave. We show that, if the chemotactic coefficient is above
the critical value, the pattern evolves as a traveling wavefront invading the whole
domain.Conversely,when the chemotaxis isweak, awavefront connecting the disease-
free equilibrium to the stable equilibrium corresponding to a homogeneous plaque
is found. The issue of existence of traveling wave solutions for reaction-diffusion
models has been addressed in many papers, which show that a small perturbation near
a homogeneous steady state may lead to a wavefront invasion with the consequent
pattern formation [4,9,11,27].

The paper is organized as follows: in Sect. 2 we briefly review some results of the
Turing stability analysis obtained in [3]. Section 3 is devoted to derive the Ginzburg-
Landau equation governing the amplitude of the pattern, the shape and the speed of
the traveling wave. Section 4 provides the numerical simulations, some comparisons
with the theoretical results of Sect. 3 and the conclusions.
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2 Turing instability analysis

In this Section we briefly outline the results of the Turing stability analysis which
describes the mechanism of pattern formation for the system (1).

The two uniform steady states of the system are the disease-free equilibrium P0 =
(0, 0, 0) and the non trivial point P∗ = (m∗, c∗, d∗) = (1, β + δ, 1).

The equilibrium P0 is unstable while P∗ is a stable attractive node for the kinetics
for all non negative values of the parameters.

The following Turing analysis is aimed to characterize the spacing between cells
and the critical value of the chemotactic coefficient above which the pattern may form.
This is intended to describe the asymptotic behavior of the solutions of system (1),
which corresponds to the case when the macrophage populations is mostly activated
and well-delimited zones of destroyed oligodendrocytes are formed.

Linearization around P∗ gives:

ẇ = Lχw = Γ Jw + Dχ�w, where w =
⎛

⎝
m − m∗
c − c∗
d − d∗

⎞

⎠ , (2)

J =
⎛

⎝
−1 0 0
β
τ

− 1
τ

1
τ

0 0 − r
2

⎞

⎠ , Dχ =
⎛

⎝
1 −χ

2 0
0 ε

τ
0

0 0 0

⎞

⎠ . (3)

The computation of the linear stability analysis can be found in full length in [3].
Here, for brevity, we only report the critical values of the chemotaxis coefficient and
of the wavenumber of the resulting pattern, namely:

χc = 2(
√

ε + 1)2

β
, k2c = Γ√

ε
. (4)

For χ > χc the system admits a range [k12, k22] of unstable wavenumbers. These
modes are proportional to Γ , thus for the pattern formation to arise, Γ must be big
enough so that at least one of the modes admitted by the boundary conditions lays
within the interval [k12, k22].

We present this result in the following

Theorem 1 For all non negative values of the parameters β, δ, ε, r, τ, and Γ the
equilibrium P∗ = (m∗, c∗, d∗) is stable for the kinetics of model (1). Then, if χ > χc,
with χc given by (4), P∗ is an unstable equilibrium for the reaction-diffusion system
(1) and spatial patterns may occur close to P∗.

3 Traveling wavefront equations

In this section we perform a weakly non linear analysis close to the uniform steady
state P∗ = (1, β + δ, 1) to derive the Ginzburg–Landau amplitude equation for the
spatio-temporal pattern for the system (1). In fact, the aim here is to investigate the
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process of pattern invasion as a traveling wavefront when the domain is large and to
find the form and the amplitude of the resulting wave.

We first assume that the conditions for the Turing instability derived above are
satisfied. Following the approach based on themultiple scalesmethod adopted by [5,9,
10], we set a small control parameter η2 = (χ−χc)/χc, which gives the dimensionless
distance from the bifurcation value of χ . Upon translation of the equilibrium P∗ to
the origin, the system (1) can be written as:

∂w
∂t

= Lχw + Nw, (5)

where w and Lχ are defined in (2) and N is a nonlinear operator containing higher
order powers in w.

We then expand w, the time derivative ∂/∂t and the bifurcation parameter χ as
follows:

w = ηw1 + η2w2 + η3w3 + O(η4), (6)

χ = χc + ηχ1 + η2χ2 + η3χ3 + O(η4), (7)
∂

∂t
= η

∂

∂T1
+ η2

∂

∂T2
+ η3

∂

∂T3
+ O(η4), (8)

where wi = (w
(1)
i , w

(2)
i , w

(3)
i )T .

To describe the phenomenon of wavefront invasion, we need to take into account
the slow modulation in space of the pattern amplitude. Therefore, we separate the fast
(x) and slow (X ) dependencies, so that the spatial derivative and the diffusion operator
write as follows:

∂x → ∂x + η∂X , ∂xx → ∂xx + 2η∂x X + η2∂XX . (9)

Here, the leading term of the nonlinear expansion of the solution is the product
of the basic pattern, which is the solution of the linearized system (2), and a slowly
varying amplitude A, depending on both time and the slow spatial variable X . Thus,
by substituting the above expansions (9) and (6)–(8) into (2) and collecting the terms
at each order of η, we obtain the following systems:

O(η) : Lχc
x w1 = 0, (10)

O(η2) : Lχc
x w2 = F, (11)

O(η3) : Lχc
x w3 = G, (12)

withLχc
x = Γ J +Dχc∂xx . The expressions for F andG are too cumbersome and they

are not reported here.
From Eq. (10) and taking into account the Neumann boundary conditions, one gets

a solution of the form:

w1 = ρA(X, T1, T2, . . .) cos (kcx), with ρ ∈ Ker(Γ J − k2c D
χc), (13)
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where A(X, T1, T2, . . .) is the amplitude of the pattern (still arbitrary at this level) and
ρ is normalized as follows:

ρ = (
M, 1, N

)T =
(

Γ +εk2c
Γβ

, 1, 0
)T

.

The solvability condition for the Eq. (11) is given by 〈F, ψ cos (kcx)〉 = 0, with

ψ = (
M̄, 1, N̄

)T =
(

Γβ

τ(Γ +k2c )
, 1, 2δ

τr

)T ∈ Ker(L∗),

where we have denoted by L∗ the adjoint of Lχc
x and by 〈·, ·〉 the scalar product in

L2(0, 2π/kc).
Requiring T1 = 0 and χ1 = 0 to avoid the occurrence of secular terms, the solution

to the second-order system (11) is given by:

w2 = A2w20 + A2w22 cos (2kcx) + ∂A

∂X
w21sin(kcx), (14)

where the vectors w2i = (w
(1)
2i , w

(2)
2i , w

(3)
2i )T for i = 0, 1, 2 are the solutions of the

following linear systems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Γ Jw20 =
(

Γ M2

2 , 0, 0
)T

,

(Γ J − k2c D
χc)w21 = 2kcDχcρ,

(Γ J − 4k2c D
χc )w22 =

(
Γ M2

2 − Mχch
′
(m∗)k2c , 0, 0

)T
.

(15)

Finally, substituting the expressions of w2 and w1 into (12), and imposing the
solvability condition at the third order, we get the followingGinzburg-Landau equation
for the amplitude A(X, T2):

∂A

∂T2
= ν

∂2A

∂X2 + σ A − L A3, (16)

where:

ν = 〈2kcDχcw21 + Dχcρ,ψ〉
〈ρ,ψ〉 , σ = 〈G(1)

1 , ψ〉
〈ρ,ψ〉 , L = 〈G(3)

1 , ψ〉
〈ρ,ψ〉 , (17)

and

G(1)
1 =

⎛

⎝
χ2h(m∗)k2c

0
0

⎞

⎠ , G(3)
1 =

⎛

⎜
⎜
⎜
⎜
⎝

2MΓ

(

w
(1)
20 + w

(1)
22
2

)

− χck2c h
′
(m∗)(Mw

(2)
22 + w

(1)
20 )

+χc
2 h

′
(m∗)k2cw

(1)
22 − χc

8 h
′′
(m∗)k2c M2

0
0

⎞

⎟
⎟
⎟
⎟
⎠

.
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Theorem 2 Assume that:

1. The parameterΓ is sufficiently large (or, equivalently, the spatial domain is large);
2. The control parameter η2 = (χ − χc)/χc is small;
3. The Landau coefficient L in (17) is greater than zero.

Then the emerging solution of the reaction-diffusion system (1) is given by:

⎛

⎝
m
c
d

⎞

⎠ =
⎛

⎝
m∗
c∗
d∗

⎞

⎠ + ηρA(X, T2) cos(kcx) + O(η2), (18)

where ρ ∈ Ker(Γ J − k2c D
χc ) and A(X, T2) is the exact solution of the GL equation

(16) in R:

A(X, T2) = 1

2

√
σ

L

(

1 − tanh

(√
σ

ν

z − z0

2
√
2

))

, z = X − cT2, (19)

with c = 3
√

σν
2 , and σ , L and ν given by (17).

In the subcritical case, i.e. when the coefficient L is negative, the third order
Ginzburg–Landau equation (16) is not able to capture the amplitude of the pattern. In
this case we shall restrict our analysis to a numerical investigation.

4 Numerical simulations and discussion

In this section we present a numerical exploration of system (1). The numerical simu-
lations shown are performed using a finite differences scheme based on the method of
the lines. We adopt a 800 points grid for the spatial domain that is able to ensure grid
independence of our results. Diffusion terms are approximated by second-order central
differences, the taxis term is approximated by a finite difference scheme that conserves
the number of macrophages. The time integration is realized using the CVODE stiff
integrator included in the XPPAUT computational software package. We set error
tolerances of 10−10 in CVODE and use a time-step �t = 10−4.

We fix the following parameter set β = 1, δ = 1, r = 1, τ = 1, Γ = 1 and vary
the values of ε and χ so as to explore the system behavior under and above the critical
threshold χc.

We first validate the results obtained by the weakly nonlinear analysis derived in
Sect. 2, by reproducing the pattern forming traveling wave solutions for system (1).
In the simulation shown in Fig. 1, we choose the parameter values so that they satisfy
the hypotheses of Theorem 2, i.e. χ > χc, σ, L > 0 and η2 = 0.033. We perturb the
equilibrium P∗ at the left end side of the spatial interval imposing an initial condition
of the form (m0, c0, d0)T = (m∗, c∗, d∗)T + ηA(X, 0)ρ cos (kcx), where A(X, T2)
is given by (19). After a transient, the solution of the Ginzburg-Landau equation Eq.
(16) (shown by the dashed red line) is in good agreement with the amplitude of the
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Fig. 1 A localized perturbation of the equilibrium P∗ produces a pattern which invades the domain as
a modulated traveling wave. The dashed line is the exact solution (19) of GL Eq. (16), the solid line
is the numerical solution of the system (1) with initial condition (m0, c0, d0)

T = (m∗, c∗, d∗)T +
ηA(X, 0)ρ cos(kcx) at the times indicated. The parameter values are: β = 1, δ = 1, r = 1, τ = 1, ε =
0.01, Γ = 1, χ = 2.5 > χc = 2.42 and η2 = 0.033

Fig. 2 Pattern invasion as a modulated traveling wave in the supercritical case for the macrophages (left)
and the cytokine (right). In the case of the initial conditions imposed here, the species d remains at the
homogeneous equilibrium. The parameter values are chosen as in Fig. 1

numerical solution of the system (1) (solid blue line), and the pattern invades the
domain as a traveling wavefront (see Fig. 2).

We now consider the subcritical case, namely the parameters are picked so as to
satisfy the conditions of (1) and the coefficient L < 0. The simulation in Fig. 3 is
performed choosing ε = 0.8, χ = 7.24 > χc = 7.17 and η2 = 0.009. We impose as
initial condition a random perturbation of the equilibrium P∗ = (1, δ + β, 1) at the
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0
0

0.5

1

1.5

2

X 2π

m(X,T2=4.3)

Fig. 3 (Left) Pattern invasion as a modulated traveling wave in the subcritical case. (Right) Numerical
solution of the system (1) with a localized random perturbation of the equilibrium P∗ as initial condition
at the time indicated. The parameter values are: β = 1, δ = 1, r = 1, τ = 1, ε = 0.8, Γ = 1, χ = 7.24 >

χc = 7.17 and η2 = 0.009

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

X

d(X,T2=0.93)

Fig. 4 (Left) A traveling wave connects the equilibrium P∗ = (1, b+ d, 1) to (0, 0, 0). (Right) Numerical
solution of the system (1) for the oligodendrocytes d species at the time indicated. The initial condition
is (m0, c0, d0) = ηA(X, 0)ρ. The parameter values are β = 1, δ = 1, r = 1, τ = 1, ε = 0.03, Γ = 1,
χ = 2.65 < χc = 2.75 and η2 = 0.037

left end of the spatial domain which produces the formation of a traveling wavefront
leaving behind a stationary pattern, whose wavenumber is still predicted by the linear
stability analysis. The propagation of the pattern as a traveling wavefront, in both
the supercritical and subcritical cases, reproduces the well known phenomenon of the
formation of the concentric demyelinated rings [1], typical of Baló’s Sclerosis but also
found in some early active MS lesions. A similar dynamics was also observed in the
2D numerical simulations of system (1) presented in [3], where the disease progresses
as a target pattern, forming spaced concentric demyelinated annuli.

On the other hand, it is also of great biological interest to describe the mechanism
of disease invasion, starting from a healthy initial condition. This corresponds to the
existence of an orbit connecting the unstable disease-free equilibrium to the stable
equilibrium P∗. We therefore choose the chemotactic parameter χ under the thresh-
old χc and impose the following small perturbation of the equilibrium P0 as initial
condition: (m0, c0, d0) = ηA(X, 0)ρ. The numerically found traveling wave solu-
tion connecting P∗ to P0 is shown in Fig. 4, where the profile of d(x, t) is depicted.
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Therefore, when the conditions of Theorem 1 are not satisfied, namely the value of
χ is below criticality, the proposed model describes the formation and propagation
of a homogeneous plaque which invades the domain. The analytical description of
this phenomenon will be the subject of a forthcoming paper. It would be also of inter-
est to rigorously prove that, when the chemotactic coefficient is below the threshold,
the disease-free equilibrium is globally asymptotically stable, using the techniques
adopted, e.g., in [19,20,23–25].

Since for χ > χc the equilibrium P∗ is unstable, whereas the Turing pattern is
stable, one could look for an orbit connecting the free-disease state to theTuring pattern
prescribed by the weakly nonlinear expansion. The above described scenario was
simulated for two different values of the control parameter χ : close to the bifurcation
and well-above the critical threshold. In the former case, shown in Fig. 5, one can see
that the species m evolves on two different time scales: on an O(1)-scale a wavefront
propagates connecting the disease-free equilibrium to the unstable steady state P∗ [the

0
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

X

m(X,T2=3.4)

2π

Fig. 5 (Left) A traveling wave initially propagates connecting P0 to P∗. After the wavefront has invaded
the domain, a second wave is formed, leaving behind the Turing pattern. (Right) Numerical solution of the
system (1) for the macrophagesm species at the time indicated. The initial condition is a small perturbation
of the homogeneous equilibrium P0 at the left end of the domain. The parameter values are β = 1, δ =
1, r = 1, τ = 1, ε = 0.03, Γ = 1, χ = 2.8 > χc = 2.75 and η2 = 0.01
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X
2π

d(X,T2=0.5)

Fig. 6 (Left) Fully nonlinear solutions in the form of a traveling wave connecting the pattern to P0. (Right)
Numerical solution of the system (1) for the oligodendrocytes d species at the time indicated. The initial
condition is a small perturbation of the homogeneous equilibrium P0 at the left end of the domain. The
parameter values are β = 1, δ = 1, r = 1, τ = 1, ε = 0.03, Γ = 1, χ = 8.5 
 χc = 2.75 and η2 = 2.09
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dark zone in the bottom of Fig. 5(Left)]. Once the homogeneous plaque has invaded
the domain, on an O(η−2) temporal scale a second wave is initiated, leaving behind
the pattern prescribed by the linear stability analysis.

If the chemotaxis coefficient is chosen far away from the bifurcation value, the value
of η is big and the two different time scales observed in Fig. 5 can be made of the same
order. Then the observed spatio-temporal dynamics of the d describes the onset ofwell-
defined spatially structured plaques around the unstable equilibrium P∗, analogous to
the Baló’s concentric rings. This is reported in Fig. 6, where χ = 8.5 
 χc = 2.75.
In this fully nonlinear regime, the wavelength and the form of the pattern do not match
with the expected solution found through the weakly nonlinear analysis and nonlinear
effects in the form of amplitude instabilities and defects appear.
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