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Abstract

A new interface constitutive model based on damage mechanics and frictional

plasticity theory is presented. The model is thermodynamically consistent, it is

able to accurately reproduce arbitrary mixed mode debonding conditions and

it is proved that the separation work is always bounded between the fracture

energy in mode I and the fracture energy in mode II. Analytical results are

given for proportional loading paths and for two non-proportional loading paths,

con�rming the correct behaviour of the model for complex loading histories.

Numerical and analytical solutions are compared for three classical delamination

tests and frictional e�ects on 4ENF are also considered.
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1. Introduction1

The challenge of modeling the progressive formation, development and prop-2

agation of displacement discontinuities, such as fracture or delamination phe-3

nomena, has been successfully faced by the introduction of Cohesive Zone Mod-4

els (CZMs). CZMs are constitutive non-linear relations able to model the tran-5
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sition between virgin material, partially broken ligaments and full opening along6

a surface. The �rst pioneering papers goes back to the early 60s by Dugdale7

(1960) and Barenblatt (1962) who established the physical basis of the constitu-8

tive framework. Since then many developments have been done, with the main9

assessment of joining the surface cohesive constitutive model with the concept10

of interface elements (Xu and Needleman, 1993; Allix et al., 1995; Alfano and11

Cris�eld, 2001). The introduction of non-linear interface elements in conjunc-12

tion with standard Finite Element analysis gave rise to one of the most powerful13

approach to non-linear structural failure analysis.14

In the last years, several crucial aspects have been accurately investigated15

such as: isotropic and orthotropic cohesive interface models (Corigliano and16

Allix, 2000), coupling damage and plasticity (Spada et al., 2009; Kolluri et al.,17

2014), di�erent mode I and mode II fracture energies (Alfano and Cris�eld,18

2001; Benzerga et al., 2008), thermodynamic consistency (Parrinello et al., 2009;19

Mosler and Scheider, 2011; Guiamatsia and Nguyen, 2014; Serpieri et al., 2015),20

time dependent and viscous e�ects (Corigliano and Ricci, 2001; Giambanco and21

Fileccia Scimemi, 2006; Zreid et al., 2013; Musto and Alfano, 2013)22

Recently, special attention has been focused on the assessment of an energy23

rational behavior of interfaces models loaded under arbitrary mixed mode con-24

ditions. It is actually required a physical sound behavior for monotonic and25

cyclic loading for di�erent mixity rate loadings. It is also of paramount interest26

to ensure, for any loading path, the satisfaction of thermodynamic principles.27

In order to control mixed loading in traction and shearing Park et al. (2009)28

proposed a potential-based cohesive zone model for mixed-mode fracture, which29

is de�ned as a particle debonding potential at the material point level. The30

model is based on a unique potential which is function of both normal and31

tangential component of the separation displacement. The work of separa-32

tion is evaluated for some loading paths, producing physically consistent re-33

sults. On the contrary, Park et al. (2009) show that, when the mode I and34

mode II fracture energies are GII > GI , the potential based of Xu and Needle-35

man (1993) produces work of separation, WT , in a mixed mode loading paths36
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which is WT > GII > GI , in disagreement with experimental evidence (see37

Benzeggagh and Kenane (1996)). Analogously, when GII < GI , the separation38

work in a mixed mode loading path is WT < GII < GI .39

McGarry et al. (2014) analyze potential and non-potential based models for40

mixed mode separation loading paths and under over-closure conditions showing41

some shortcoming of the model of Xu and Needleman (1993).42

Dimitri et al. (2014) carefully evaluate the response performances of four43

well-known interface constitutive models under mixed mode loading and whether44

they are always consistent in terms of stress and energy dissipation. In Dim-45

itri et al. (2014), the authors show that the CZMs proposed by McGarry et al.46

(2014); Högberg (2006); Camanho et al. (2003), under particular mixed loading47

condition, may produce unphysical results. Moreover, in the model of van den48

Bosch et al. (2006) the unloading law, di�erent than the loading one, is not49

explicitly de�ned and energy dissipation can not be directly evaluated. In such50

model two independent laws are de�ned respectively for the tangential traction51

component and for the normal one and, as already stated in Mosler and Scheider52

(2011), symmetry the tangent sti�ness matrix is not achieved.53

On the basis of the above criticism, Dimitri et al. (2014) propose a ther-54

modynamically consistent model, de�ned as an improvement of the van den55

Bosch et al. (2006) model, but derived by an Helmholtz free energy function.56

The same tangential and normal traction interface laws of van den Bosch et al.57

(2006) are rigorously derived by applying the Coleman and Noll (1963) proce-58

dure. The cost of such achievement is the necessity of employ four independent59

scalar damage variables. Mosler and Scheider (2011) pointed out the relevance60

of the thermodynamical consistency for �nite strains and anisotropic interface61

models.62

In Serpieri et al. (2015) a thermodynamic consistent cohesive frictional model63

with di�erent mode I and mode II fracture energies is presented. The model is64

de�ned by means of a single scalar damage variable and a single scalar equivalent65

displacement. The authors prove, that under the above hypothesis the total66

dissipation of energy, which is equal to the separation work, in pure mode I (GI)67
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and in pure mode II (GII) has to be the same, that is GI = GII . Moreover,68

the authors ascribe the greater mode II fracture energy GII with respect to GI ,69

which is an experimental evidence, to frictional e�ects, and they state that such70

e�ects are always present at the mesoscale level.71

The possibility to have an interface model which can reproduce a smooth72

transition between cohesive and frictional deformation modes has been presented73

in several papers (see e.g. Gangho�er and Schultz (1997); Alfano and Sacco74

(2006); Parrinello et al. (2009); Spada et al. (2009); Sacco and Lebon (2012);75

Guiamatsia and Nguyen (2014)). The contribution of frictional behaviour to the76

the mode II dissipation energy has been analyzed under increasing cycling load77

in Parrinello et al. (2013) by the cohesive-frictional interface model proposed in78

Parrinello et al. (2009).79

The availability of a model with a single scalar damage variable, thermody-80

namically consistent, with two di�erent fracture energies in mode I and in mode81

II, which behaves also correctly under any cyclic loading in mixed mode, is, in82

the authors' knowledge, a goal not yet reached.83

In the present paper a new thermodynamically consistent CZM is proposed.84

It is based on a prede�ned Helmholtz free energy density with a single scalar85

damage variable and it produces two independent work of separation in pure86

mode I and pure mode II delamination conditions. The proposed model can also87

take in to account frictional e�ects with a smooth transition of the mechanical88

behavior, from the initial elastic one of the virgin material, to the fully debonded89

behavior with frictional residual strength. The cohesive-frictional behavior is90

based on the same mesoscale interpretation of the scalar damage variable, pre-91

viously proposed in Alfano and Sacco (2006); Parrinello et al. (2009). In fact,92

the model proposed in this paper can be considered as a rational evolution of93

the interface model developed by Parrinello et al. (2009), whose main limit is94

that it produces a unique separation work, excluding the presence of frictional95

e�ects, independently of the debonding mode condition. The proposed formu-96

lation is de�ned by a new damage activation function. Traction components,97

damage evolution and the relevant constitutive equations are derived by follow-98
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ing classical thermodynamic arguments (Coleman and Noll, 1963). The model99

implicitly verify the second thermodynamic law by proving that dissipation is100

non-negative for every loading path; it produces two independent fracture en-101

ergies in pure mode I and pure mode II debonding conditions and produces102

physically consistent results under mixed mode debonding ones.103

The paper is organized as follows: the new model is presented in Section 2.104

The solutions of monotonic and non-proportional loading paths are analytically105

derived in respectively in Section 3 and in Section 4. Numerical results of three106

delamination tests are compared with the relevant analytical solutions in Section107

5 and, �nally, closing remarks are reported in section 6.108

2. The cohesive-frictional model with di�erent fracture energy in109

mode I and in mode II110

Damage mechanics concepts are widely used for cohesive interface models111

(Corigliano, 1993; Daudeville et al., 1995; Allix et al., 1995; Corigliano and Allix,112

2000; Mosler and Scheider, 2011) since they possess all the necessary features113

to properly describe cohesive fracture processes.114

As recently pointed out for damage based interface constitutive models (Al-115

fano and Sacco, 2006; Parrinello et al., 2009; Spada et al., 2009; Serpieri and116

Alfano, 2011; Guiamatsia and Nguyen, 2014) e�ective formulations can be de-117

rived considering the classical scalar damage variable ω in a geometrical setting118

as119

ω :=
dSc

dS
=

dS − dSs

dS
(1)

where, at a generic point, the reference interface surface dS is associated to a120

sound (virgin) fraction, dSs and to a complementary cracked fraction dSc (see121

Figure 1 a))122

Adopting a mixture approach, at the sub-scale where the two fractions are123

de�ned, a speci�c kinematic, static and constitutive relations can be established,124

which are then reported at the macro interface level. Since interface are used to125
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Figure 1: Geometrical sketch showing the decomposition in two fractions: a) Decomposition of

the damaged surface dS in the cracked fraction ω dS and the sound fraction (1−ω) dS with the

respective traction vectors tc and ts. By the equilibrium condition ts + tc = t. b) kinematic

representation of the displacement jump [[u]], with [[uc]] and [[us]] jump displacement vectors

across the cracked and the sound fractions. By kinematic consistency [[u]] = [[uc]] = [[us]].
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drive decohesion along a pre�xed zero-thickness surface, the kinematic variable126

adopted to measure the actual deformation is the displacement jump vector127

across the interface, namely [[u]] = u+−u−, where u+ and u− are the displace-128

ment vector at the upper (+) and lower (−) side of the interface. Moreover,129

in order to simplify the notation, we write the displacement jump without the130

brackets, i.e. [[u]] := u.131

Since the present approach is based on a mixture theory with two fractions,132

it is allowed to de�ne for each fraction a speci�c displacement jump vector,133

[[uc]] := uc and [[us]] := us, where the indexes c and s stands for cracked and134

sound fraction (see Figure 1 b)).135

The internal kinematic consistency requires that each strain measure of the136

two fractions has to be equal to the global displacement jump, namely137

u = uc = us (2)

Having in mind the di�erent constitutive relation to adopt for each fraction,138

it is convenient to introduce a speci�c additive decomposition which account for139

elastic and inelastic deformations. Namely:140

For the Sound fraction no inelastic deformation develops and only elastic141

component is considered142

us = δes (3)

For the Cracked fraction the total deformation is considered as the sum of143

three di�erent contributions, namely:144

uc = δec + δpc + δdc (4)

where δec is the elastic component (due to micro elastic deformation modes in145

contact and/or in sliding), δpc is the plastic component (due to to frictional146

deformation modes including dilatancy), and δdc is the detachment component147

or gap vector (due to opening or even sliding without compressive state).148

The displacement jump contributions de�ned in Eq. (4) have also to satisfy149

some kinematic conditions related to the unilateral contact (for opening/closing150
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conditions), as well as for frictional e�ects. All the components jump vectors151

have a Cartesian component along the normal to the interface oriented from the152

(−) lower surface to the (+) upper surface, which is denoted by an extra index153

n, and a tangential component along the interface denoted by an extra index t.154

Considering the cracked fraction, the normal elastic component δecn has to be155

non-positive, since it is active only in a contact compressive state. Conversely,156

the detachment normal component, δdcn, has to be non-negative, since it describe157

the opening mechanism. Moreover, the two quantities δecn and δdcn cannot be158

both di�erent from zero at the same time. As a conclusion the following classic159

elastic contact complementarity conditions holds160

δecn ≤ 0, δdcn ≥ 0, δecn δ
d
cn = 0 (5)

Considering the elastic tangential component, δect, it is observed that no sign161

restriction is required, but it has also to satisfy the mutual activation condition162

in the form163

δect δ
d
cn = 0. (6)

Finally, no sign restriction are imposed on the detachment tangential com-164

ponent δdct, which means that in case of re-closing deformation mode tangential165

components previously produced in a opening state, may be accounted for,166

(δdct ̸= 0).167

As a �nal remark, it can be easily proved that Eqs. (2)�(6) hold also if168

written in rate form.169

2.1. Thermodynamic consistency170

In order to comply thermodynamic principles, the Helmholtz free energy171

density function (for unit surface) is introduced, playing the role of potential172

with respect to the state variables, either external, or internal ones. Since the173

adopted model is based on the superposition of two fractions, in which the sound174

fraction is weighted by the integrity coe�cient (1 − ω), whereas the cracked175

fraction is weighted by the damage coe�cient ω, it follows that the Helmholtz176

free energy can be given in the following form:177
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ψ(δes, δ
e
c, ω, ξ) = (1− ω)ψ̄e

s(δ
e
s) + ωψ̄e

c(δ
e
c) + ψi(ξ) (7)

where ψ̄e
s and ψ̄e

c are the elastic free energy densities for the unweighted sound178

and cracked fractions, both function of the respective elastic deformations. ψi179

is the internal free energy related to a scalar internal variable ξ, introduced for180

a speci�c description of the post-peak traction � relative displacement regime181

(softening).182

In what follow linear elasticity behavior is assumed, either for the sound, or183

for the cracked fraction, which implies a quadratic form for the two elastic free184

energies, namely185

ψ̄e
s(δ

e
s) =

1

2
δeTs Ksδ

e
s; ψ̄e

c(δ
e
c) =

1

2
δeTc Kcδ

e
c; (8)

Equations (8) give the stored strain energies of the two fractions each of186

which, in agreement with Eq. (7), is weighted by the coe�cients (1− ω) and ω187

respectively.188

Ks and Kc are two positive de�nite diagonal sti�ness matrices in which189

Ks
i and Kc

i are positive sti�ness coe�cients and the index (i = n, t) stands for190

normal and tangential component.191

Thermodynamic consistency, in the form of the second principle, can be192

enforced by the Clausius-Duhem inequality, which gives an explicit form for the193

non-negative mechanical energy dissipation density:194

D = tT u̇− ψ̇ ≥ 0 (9)

Expanding ψ̇, considering the speci�c form given in Eqs. (7) and (8), and making195

also use of the decomposition of the total interface strains, given in Eqs. (3) and196

(4) written in the following rate form: δ̇
e

s = u̇ and δ̇
e

c = u̇− δ̇
p

c − δ̇
d

c , gives197

D =

(
t− ∂ψ

∂δes
− ∂ψ

∂δec

)T

u̇+

(
∂ψ

∂δec

)T (
δ̇
p

c + δ̇
d

c

)
− ∂ψ

∂ω
ω̇ − ∂ψin

∂ξ
ξ̇ ≥ 0. (10)

No dissipation (D = 0) is produced in the case of any purely reversible defor-198

mation modes (elasticity) in which ω̇ = ξ̇ = 0 and δ̇
p

c = δ̇
d

c = 0, which gives as199
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result200

t =
∂ψ

∂δes︸︷︷︸
ts

+
∂ψ

∂δec︸︷︷︸
tc

(11)

where it has been set201

ts :=
∂ψ

∂δes
= (1− ω)Ksδ

e
s; tc :=

∂ψ

∂δec
= ωKcδ

e
c (12)

The two tractions, ts and tc (See Figure 1 a) play the role of traction vectors202

acting on each of the two fractions of the model and the relation t = ts + tc is203

a form of internal linear momentum balance equation.204

Following a well established procedure, the state equation (11) holds also205

for dissipative deformation processes, so that the dissipation function can be206

rewritten as207

D = Y ω̇ + tTc δ̇
p

c − χξ̇ ≥ 0. (13)

where the orthogonality condition tTc δ̇
d

c = 0 has been used. The energy release208

rate Y and the static like conjugate internal variable χ introduced in Eq. (13)209

complete the set of state equations de�ned as210

Y = −∂ψ
∂ω

= ψ̄e
s − ψ̄e

c

=
1

2
δeTs Ksδ

e
s −

1

2
δeTc Kcδ

e
c

(14)

and211

χ :=
∂ψi

∂ξ
(15)

Equation (13) states that the total dissipation D is given by a �rst term212

related to the energy for a possible increment of damage Y ω̇, a second term for213

a possible frictional mechanism tTc δ̇
p

c (including dilatancy e�ects) and �nally214

the third (negative) term χξ̇ is the rate energy spent in the reorganizing the215

internal microstructure for the evolution of the softening behavior. Moreover,216

observing Eq. (14) it can be stated that the energy release rate Y is given as217

the strain energy in the sound fraction minus the strain energy of the cracked218

fraction, the latter being not available for further damage increments.219
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A further relevant feature shown by Eq.(13) is that there are no dissipa-220

tive interactions between damage and friction modes. This uncoupled struc-221

ture means that a damage increment (decohesion growth) does not necessarily222

requires a change in the frictional state and, of course, the vice-versa. Equa-223

tion (13) can then be split as224

D = Dd +Dp (16)

where Dd and Dp are the dissipation functions related to damage and to fric-225

tional increment, given as226

Dd(ω̇, ξ̇) = Y ω̇ − χ ξ̇ ≥ 0

Dp(δ̇
p

c) = tTc δ̇
p

c ≥ 0
(17)

The structure of the dissipation split in two term suggests the introduction of227

two distinct activation criteria which drive damage and friction activation as228

well as the related �ow rules.229

2.2. Activation functions and �ow rules230

In order to derive an activation function able to properly describe mode I231

(opening), mode II (sliding) and all the possible mixed modes, the following232

interface damage activation condition is considered:233

ϕd(Y, χ;u) = Y − χ− Ȳ (u)− Y0 ≤ 0 (18)

in which Y0 is a positive constant value accounting for the initial unloaded dam-234

age threshold; the internal variable χ describes the damage threshold increment,235

χ̇ ≥ 0 due to the damage evolution, and �nally Ȳ (u) is a positive term given as236

function of the kinematic state237

Ȳ (u) =
1

2
uTAu =

1

2
Anu

2
n +

1

2
Atu

2
t (19)

whereA is a positive de�nite diagonal matrix collecting two positive constitutive238

parameters An ≥ 0 and At ≥ 0. The associated �ow rules and loading-unloading239
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conditions can be obtained as240

ω̇ =
∂ϕd
∂Y

λ̇d = λ̇d,

ξ̇ = −∂ϕd
∂χ

λ̇d = λ̇d,

λ̇d ≥ 0, ϕdλ̇d = 0, ϕ̇dλ̇d = 0

(20)

where λ̇d is the damage multiplier.241

Unlike what presented previously by the authors (Parrinello et al., 2009),242

where the damage activation function is driven only by Y , producing the same243

separation work in pure model I, in mode II and for any mixed mode, in the244

present paper a new formulation is proposed, which is enhanced by the inser-245

tion of a state displacement dependent damage activation function, as shown246

by Eq.(18). This new approach, even if still based on a single scalar damage247

variable, produces a di�erent separation work in pure mode I and in pure mode248

II, and as it will be shown in the next Section does not su�er of any inconsis-249

tency in mixed modes. The values of the two new constitutive parameters, An250

and At, are related to the values of the Fracture Energies, GI and GII . If it251

is assumed GII > GI , as it is usually shown by experimental evidences, it is252

necessary to set At > An. Otherwise, in the case of GI > GII the parameters253

have to be set as An > At. Details on choice and on the physical meaning of254

the two constants will be given in the next Section.255

The dissipation associated with the damage activation can be computed con-256

sidering that the �ow rules shows ω̇ = λ̇d > 0 only if ϕd = 0, which considering257

the �rst of Eq.(17) gives258

Dd = Y ω̇ − χξ̇ =

(
1

2
Anu

2
n +

1

2
Atu

2
t + Y0

)
λ̇d ≥ 0 (21)

showing the unconditioned positiveness of the dissipation rate for any damage259

increment, being Dd = 0 only if λ̇d = 0.260

Finally, in order to prevent damage activation under pure compressive stress261

state, normal sti�ness of the sound fraction and normal sti�ness of the cracked262

fraction are imposed to be equal, that is Ks
n = Kc

n. In fact, for a displacement263
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un < 0 and ut = 0, and assuming null plastic deformation δpc = 0, the relevant264

energy release rate is265

Y =
1

2
Ks

nu
2
n − 1

2
Kc

nu
2
n = 0, (22)

and no damage increment is achieved.266

Activation function and �ow rules for the plastic displacement jump δ̇
p

c are267

achieved in the framework of non-associative plasticity theory. The activation268

function has the form of the classical Mohr-Coulomb yield function269

ϕp(tc) = |tct|+ αtcn ≤ 0 (23)

and by means of the following plastic potential270

Ωp(tc) = |tct|+ βtcn ≤ 0 (24)

where tcn and tct are the normal and tangential components of the traction271

vector tc; α and β, with α ≥ β are the frictional and the dilatancy coe�cients272

respectively. The plastic (or frictional) �ow rules and the loading/unloading273

conditions read274

δ̇pn =
∂Ωp

∂tcn
λ̇p = sgn(tct)λ̇p,

δ̇pt =
∂Ωp

∂tct
λ̇p = βλ̇p,

λ̇p ≥ 0, ϕpλ̇p = 0, ϕ̇pλ̇p = 0

(25)

The dissipation rate associated with frictional active mechanisms is evaluated275

considering that λ̇p > 0 only if ϕp = 0 which, considering the second of the276

Eqs.(17), gives277

Dp = tTc δ̇
p
= (|tct|+ βtcn)λ̇p ≥ (|tct|+ αtcn)λ̇p = 0 (26)

which shows that dissipation is always positive for any frictional rate displace-278

ment rate, with Dp = 0 only if λ̇p = 0279

The cohesive model is then completed by the state laws for the internal vari-280

able χ which drive the damage evolution law. In case of simple linear softening281
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in normal traction-opening displacement (mode I), it can be shown that internal282

free energy and internal state law read:283

ψi(ξ) = GI
ue
uf

(
u2f/(uf − ue)

uf (1− ξ) + ueξ
− ξ

)

χ(ξ) :=
dψi(ξ)

dξ
= GI

ue
uf

[(
uf

uf (1− ξ) + ueξ

)2

− 1

] (27)

where ue and uf are the separation displacements for the limit elastic threshold284

and for the full damage condition (ω = 1, i.e. full detachment) in pure mode285

I opening condition, GI = 1/2Ks
nueuf is the fracture energy in mode I and286

�nally, Ks
n is the sti�ness normal component of the interface sound fraction. As287

far as the other material parameters are concerned, it is set288

Y0 =
1

2
Ks

nu
2
e ≡ GI

ue
uf

At = Ks
t

(
1− GI

GII

)
; An = 0

(28)

The two constants An and At have been �xed under the condition that the289

fracture energy in mode II (GII) is greater than the fracture energy in mode290

I (GI), i.e. GII > GI . Finally, the relations in Eqs.(28) among the fracture291

energies and the parameters Y0 and At will be explained in detail in Sect. 3.292

3. Monotonic loading paths293

In this Section the monotonic mixed delamination path, represented in Fig-294

ure 2 for a linear interface element, is analyzed. The displacement jump u is295

decomposed in the local Cartesian components as296

u = utet + unen = u cos γ et + u sin γ en (29)

where u = (uTu)1/2 and et, and en are the unit tangential and normal vectors297

to the interface plane.298

The pure mode I delamination condition is produced by a loading angle299

γ = π/2 and the pure mode II delamination condition is obtained by assuming300

a loading angle γ = 0.301
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The imposed displacement u monotonically increases up to the complete302

interface delamination. The same problem is analyzed in Park et al. (2009)303

where the separation work is computed for some signi�cant values of angle γ.304

Figure 2: Monotonic mixed mode loading scheme. The displacement jump u decomposed as

u = utet + unen.

The separation workW =Wn+Wt can be de�ned as the sum of two di�erent305

contributions, namely: the normal separation work Wn and the tangential one306

Wt, which are mathematically de�ned as307

Wn =

∫ +∞

0

tn(γ,u) dun

Wt =

∫ +∞

0

tt(γ,u) dut

(30)

Due to the assumed non-negative opening displacement (un ≥ 0), the frictional308

traction has not to be considered, as well as its e�ect on the separation work.309

Traction components are310

tn = (1− ω)Ks
n u sin(γ)

tt = (1− ω)Ks
t u cos(γ)

(31)

The initial interface behavior is elastic with null damage and null internal vari-311

able (ω = 0 and ξ = 0) and the maximum elastic traction is reached when312

the damage activation condition is attained ϕd (Y, ut, χ) = 0, where χ(0) = 0,313

An = 0, At > 0 and the energy release rate is314

Y =
1

2
Ks

n u
2 sin2(γ) +

1

2
Ks

t u
2 cos2(γ), (32)
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therefore315

ϕd (Y, ut, χ) = Y − χ (ξ)− 1

2
Atu

2
t − Y0 =

=
1

2
Ks

nu
2 sin2(γ) +

1

2
(Ks

t −At)u
2 cos2(γ)− Y0 =

=
1

2

Ks
nu

2

C2(γ)
− Y0 = 0

(33)

where316

C(γ) =

(
sin2(γ) +

Ks
t −At

Ks
n

cos2(γ)

)−1/2

(34)

is a loading angle dependent function. For γ = π/2 (opening in mode I)317

C(π/2) = 1, whereas for γ = 0 (sliding in mode II) C(0) =
√
Ks

n/(K
s
t −At).318

By substitution of the �rst of Eqs. (28) in Eq. (33), the imposed separation319

displacement ūe at the limit elastic is320

ūe = ue C(γ) (35)

The linear-elastic branch is followed by a descending (softening) one with in-321

creasing damage and, in virtue of �ow rules of Eqs. (20), damage activation322

function (18) and softening law (27), kinematic internal variable and damage323

variable are324

ξ = ω =
uf

uf − ue

[
1− ue

u
C(γ)

]
(36)

and separation displacement ūf at the fully damaged condition (ω = 1) is325

ūf = uf C(γ) (37)

The traction components at the descending branch are obtained from Eqs. (31)326

and (36)327

tn(u, γ) =
ufue C(γ)− ueu

uf − ue
Ks

n sin(γ)

tt(u, γ) =
ufue C(γ)− ueu

uf − ue
Ks

t cos(γ).

(38)

The work done by normal traction and the work done by tangential one can be328

computed by Eqs. (30) and are329

Wn(γ) =
1

2
Ks

n ueuf C
2(γ) sin2(γ),

Wt(γ) =
1

2
Ks

t ueuf C
2(γ) cos2(γ).

(39)
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In Figure (3) the qualitatively response of the interface subjected to the mono-

tII

tI

uII
euI

e uIIuI
f f

Mode II, α = 0
Mode I, α = π/2

tr
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on

 

t

u  , u
separation displacement

n       t

Figure 3: Mode I response and mode II response for monotonic loading path.

330

tonic loading path is represented in terms of traction vs separation displacement331

for the two limit cases of pure mode I and pure mode II.332

In the pure mode I debonding condition (γ = π/2) limit elastic displacement333

ūeI , the fully debonding displacement ūfI and the maximum normal traction t̄I ,334

respectively are335

ūeI = ue

ūfI = uf

t̄I = Ks
nue,

(40)

whereas, in the pure mode II debonding condition (γ = 0) limit elastic displace-336

ment ūeII , fully debonding displacement ūfII and maximum normal traction t̄II ,337
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respectively are338

ūeII =

√
Ks

n

Ks
t −At

ue

ūfII =

√
Ks

n

Ks
t −At

uf

t̄II =

√
Ks

n

Ks
t −At

Ks
t ue

(41)

Finally, the mode I fracture energy can be computed as the normal separation339

work for γ = π/2, that is340

GI =Wn (π/2) =
1

2
Ks

nueuf (42)

whereas the tangential separation work is Wt (π/2) = 0. The mode II fracture341

energy is given by the tangential separation work for γ = 0, that is342

GII =Wt (0) =
1

2
Ks

nueuf
Ks

t

Ks
t −At

= GI
Ks

t

Ks
t −At

(43)

and the normal separation work is Wn (0) = 0. Equation (43) con�rms that for343

At > 0 mode II fracture energy is greater the the mode I value, GII > GI .344

It can also be shown from Eqs. (39) that345

Wn(γ) = GI C
2(γ) sin2(γ); Wt(γ) = GI

Ks
t

Ks
n

C2(γ) cos2(γ); (44)

and then346

W (γ) =Wn(γ) +Wt(γ) = GI C
2(γ)

[
sin2(γ) +

Ks
t

Ks
n

cos2(γ)

]
. (45)

In Figures 4 the work of separation for the monotonic loading path is qual-347

itatively represented as function of angle γ, where it can be observed that, for348

any mixed mode debonding condition, the separation work is349

GI ≤W (α) ≤ GII (46)

and it monotonically increases from the pure mode I condition to the pure mode350

II condition. Several experimental investigations con�rm that fracture energy351

18



in mixed mode debonding condition gradually and monotonically increases from352

the pure mode I valueGI to the pure mode II valueGII . Such a result is reported353

by Benzeggagh and Kenane (1996), who measured the fracture energy of a354

unidirectional glass/epoxy composite for six di�erent mixed mode conditions,355

by the mixed mode bending apparatus developed by Crews and Reeder (1998)356

Mixed mode angle γ

W
or

k 
of

 s
ep

ar
at

io
n 

W
(γ

)

GI

GII

π/2π/40

Figure 4: Work of separation in the monotonic loading path, in function of delamination angle

γ.

4. Non-proportional loading paths357

The behaviour of the proposed model is also analyzed for two non-proportional358

loading paths, well known in literature (van den Bosch et al., 2006; Park et al.,359

2009; Dimitri et al., 2014) for the validation of debonding models with di�erent360

fracture energies in mode I and in mode II.361

The �rst non-proportional loading path (a) is applied by an initial open-362

ing displacement, which increases up to a maximum value un = ua1, and by363

a subsequent sliding displacement ut = ua2, which increases up to complete364

delamination.365

The second non-proportional loading path (b) is applied by an initial slid-366

ing displacement, which increases up to a maximum value ut = ub1, and by367

19



a subsequent opening displacement un = ub2, which increases up to complete368

delamination. The two non-proportional loading paths are represented respec-369

tively in Fig.(5a) and in Fig.(5b).

a) b)

Figure 5: Non-proportional loading paths: a) path (a) opening displacement and subsequent

sliding displacement; b) path (b) sliding displacement and subsequent opening displacement.

370

4.1. Non-proportional loading path (a)371

The solution of non-proportional loading can be developed analytically and372

two di�erent cases has to be distinguished:373

• the initial normal displacement is less than or equal to the mode I limit374

elastic displacement (ua1 ≤ ūeI = ue);375

• the initial normal displacement is greater than or equal to the mode I376

limit elastic displacement and less than the fully debonding displacement377

(ūeI ≤ ua1 < ūfI ).378

In the �rst case, the normal displacement un = ua1 produces elastic re-379

sponse and the second loading branch, with tangential displacement ut = ua2,380

is initially elastic. The �rst damage activation is reached at following tangential381

displacement382

ūet =

[
Ks

n

Ks
t −At

(
u2e − u2a1

)] 1
2

(47)
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and the fully debonding condition (ω = 1) is reached at the following tangential383

displacement384

ūft =

[
Ks

n

Ks
t −At

(
u2f − u2a1

)] 1
2

. (48)

The traction components after damage activation, for ūet ≤ ua2 ≤ ūft , are385

tn (ua1, ua2) = − ue
uf − ue

Ks
nua1 +

uf
uf − ue

Ks
nueua1

[
u2a1 +

Ks
t −At

Ks
n

u2a2

]−1/2

tt (ua1, ua2) = − ue
uf − ue

Ks
t ua2 +

uf
uf − ue

Ks
t ueua2

[
u2a1 +

Ks
t −At

Ks
n

u2a2

]−1/2
(49)

The qualitatively behaviour of the proposed model, in terms of traction386

components vs separation displacements, for the non-proportional loading path387

(a) is represented in Fig.(6a) for an initial normal displacement less than the388

mode I elastic limit value (ua1
n ≤ ūeI = ue).
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Figure 6: Non-proportional loading path (a): a) initial normal displacement less than the

mode I elastic limit value (ua1 ≤ ūe
I); b) initial normal displacement greater than the mode I

elastic limit value (ūe
I ≤ ua1 < ūf

I ).

389

Finally, the work done by normal traction, the work done by tangential390

traction and total work-of-separation, respectively, are391

Wn =
1

2
Ks

nu
2
a1

Wt =
1

2
Ks

t ū
e 2
t +

∫ ūf
t

ūe
t

tt dut = GII −
Ks

t

Ks
t −At

1

2
Ks

nu
2
a1

W =Wn +Wt = GII −
At

Ks
t −At

1

2
Ks

nu
2
a1.

(50)
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The second case of non-proportional loading path (a) is obtained with an392

initial normal displacement greater than or equal to the mode I limit elastic393

value and less than the fully debonding displacement (ūeI ≤ ua1 < ūfI ). The394

damage value at the end of the �rst loading branch (un = ua1, ut = 0) is395

ω (ua1, 0) =
uf

uf − ue

ua1 − ue
ua1

(51)

and the relevant traction components are396

tn (ua1, 0) = ksnue
uf − ua1
uf − ue

tt (ua1, 0) = 0.

(52)

The behaviour in the second loading branch (un = ua1, ut = ua2) is completely397

nonlinear and the traction components are given by Eqs. (49a, b). The tangen-398

tial displacement at the fully debonded condition is again given by Eq. (48),399

obtained for the �rst case.400

The qualitatively behaviour of the proposed model, in terms of traction401

components vs separation displacements, for the non-proportional loading path402

(a) is represented in Figure (6b) for an initial normal displacement greater than403

the mode I elastic limit value (ūeI ≤ ua1 < ūfI ).404

Finally, the work done by normal traction, the work done by tangential405

traction and total work-of-separation, respectively, are406

Wn =

∫ ua1

0

tndun = GI −GI
(uf − ua1)

2

uf (uf − ue)

Wt =

∫ ūf
t

0

ttdut = GII
(uf − ua1)

2

uf (uf − ue)

W =Wn +Wt = GI + (GII −GI)
(uf − ua1)

2

uf (uf − ue)
.

(53)

4.2. Non-proportional loading path (b)407

The non-proportional loading path (b) is schematically represented in Fig.(5b)408

and it imposes an initial tangential displacement ub1 and than a monotonically409

increasing normal displacement ub2 is applied up to the fully debonding.410

Similar to the previous loading path (a), the analytical solution of the loading411

path (b) has to be developed for two di�erent cases:412
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• the initial tangential displacement is less than or equal to the mode II413

limit elastic displacement (ub1 ≤ ūeII);414

• the initial tangential displacement is greater than or equal to the mode II415

limit elastic displacement and less than the fully debonding displacement416

(ūeII ≤ ub1 < ūfII).417

In the �rst case, the tangential displacement ub1 produces elastic response418

and the second loading branch, with normal displacement ub2, is initially elastic.419

The �rst damage activation is reached at following normal displacement420

ūen =

[
ūe 2
I − Ks

t −At

Ks
n

u2b1

] 1
2

(54)

while the fully debonding condition (ω = 1) is reached at normal displacement421

ūfn =

[
ūf 2
I − Ks

t −At

Ks
n

u2b1

] 1
2

. (55)

Traction components after damage activation, for ūen ≤ ub2 ≤ ūfn, are422

tn (ub2, ub1) = − ue
uf − ue

Ks
nub2 +

uf
uf − ue

Ks
nub2ue

[
u2b2 +

Ks
t −At

Ks
n

u2b1

]− 1
2

tt (ub2, ub1) = − ue
uf − ue

Ks
t ub1 +

uf
uf − ue

Ks
t ub1ue

[
u2b2 +

Ks
t −At

Ks
n

u2b1

]− 1
2

(56)

The qualitatively behaviour of the proposed model, in terms of traction423

components vs separation displacements, for the non-proportional loading path424

(b) is represented in Figure (7a) for an initial tangential displacement less than425

the mode II elastic limit value (ub1 ≤ ūeII).426

Finally, the work done by normal traction, the work done by the tangential427

one and the total work-of-separation, respectively, are428

Wn =
1

2
Ks

nū
e 2
n +

∫ ūf
n

ūe
n

tn dun = GI −
1

2
(Ks

t −At)u
2
b1

Wt =
1

2
Ks

t u
2
b1

W =Wn +Wt = GI +
1

2
Atu

2
b1.

(57)

The second case of non-proportional loading path (b) is obtained with an429

initial tangential displacement greater than or equal to the mode II limit elastic430

23



u ub1
u  , uu

e

n
f

n ub1 u
f

nn       t u  , un       t

Mode I

separation displacement

tr
a

ct
io

n
 Mode I

separation displacement

tr
a

ct
io

n
 

Mode II Mode II

t  , tn      t n      tt  , t

tn

tt

tn

tt

a) b)

Figure 7: Non-proportional loading path (b): a) initial tangential displacement less than the

mode II elastic limit value (ub1 ≤ ūe
II); b) initial tangential displacement greater than the

mode II elastic limit value (ūe
II ≤ ub1 < ūf

II).

value and less than the fully debonding displacement (ūeII ≤ ub1 < ūfII). The431

damage value at the end of the �rst loading branch (un = 0, ut = ub1) is432

ω (0, ub1) =
uf

uf − ue

ub1 − ūeII
ub1

(58)

and the relevant traction components are433

tn (0, ub1) = 0

tt (0, ub1) = Ks
t ū

e
II

ūfII − ub1

ūfII − ūeII
.

(59)

The behavior in the second loading branch (un = ub2, ut = ub1) is completely434

nonlinear and the traction components are de�ned by the same relations of435

previous case, that are given by Eqs. (56 a, b). The tangential displacement at436

the fully debonded condition is again given by Eq. (55), obtained for the �rst437

case.438

The qualitatively behavior of the proposed model, in terms of traction com-439

ponents vs separation displacements, for the non-proportional loading path (b)440

is represented in Figure (7b) for an initial tangential displacement greater than441

the mode II elastic limit value (ūeII ≤ ub1 < ūfII).442

Finally, the work done by normal traction, the work done by tangential443
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traction and total work-of-separation, respectively, are444

Wn =

∫ ūf
n

0

tn dun = GI

(
ūfII − ub1

)2
ūfII

(
ūfII − ūeII

)
Wt =

∫ ūf
t

0

tt dut = GII −GII

(
ūfII − ub1

)2
ūfII

(
ūfII − ūeII

)
W =Wn +Wt = GII + (GI −GII)

(
ūfII − ub1

)2
ūfII

(
ūfII − ūeII

) .
(60)

The work done by the normal traction, the work done by the tangential one and445

the total work-of-separation, performed in the non-proportional loading path446

(a), are plotted in Figure (8) in function of the initial normal displacement ua1.447

The work done by the normal traction, the work done by the tangential one and448

the total work-of-separation, performed in the non-proportional loading path449

(b), are plotted in Figure. (9) in function of the initial tangential displacement450

ub1.451

The results plotted in the Figs. (8) and (9) have been evaluated with the452

following constitutive parameters: ksn = kst = 1000N/mm3, At = 500N/mm3,453

ue = 0.005mm, uf = 0.04mm; which produces the mode I fracture energy GI =454

0.1N/mm = 100J/m2 and the mode II fracture energy GII = 0.2N/mm =455

200J/m2. Moreover, displacements at the initial damage condition and at456

the fully debonded one, in pure mode I loading law, are: ūeI = 0.005mm,457

ūfI = 0.04mm; and in pure mode II loading law: ūeII = 0.00707mm, ūfII =458

0.05657mm.459

The graphs in Figures (8) and (9) show the path dependency of work-of-460

separation and, especially, its smooth and monotonic transition from the mode461

I fracture energy GI to the mode II fracture energy GII and vice versa.462

For the �rst non-proportional loading path (Figure 5 a), a null initial nor-463

mal displacement ua1 = 0 produces a pure mode II failure and, as shown in464

Figure (8), the total work-of-separation is W = Wt = GII and work done by465

normal traction is Wn = 0. On the contrary, the initial normal displacement466
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Figure 8: Work done by the normal traction, work done by the tangential traction and the

total work-of-separation, performed in the non-proportional loading path (a).
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Figure 9: Work done by the normal traction, work done by the tangential traction and the

total work-of-separation, performed in the non-proportional loading path (b).
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ua1 = ūfI produces a pure mode I failure and the total work-of-separation is467

W = Wn = GI and work done by tangential traction is Wt = 0, as con-468

�rmed in Figure (8). In Figure (8), the other values of the normal displacement469

0 < ua1 < ūfI produce mixed mode failure conditions with smooth and mono-470

tonic variation of normal work Wn, tangential work Wt and total work W from471

the pure mode II condition to the pure mode I condition.472

Analogous results can be observed in Figure (9) for the second non-proportional473

loading path (Figure 5 b), where an initial tangential displacement ub1 = 0 pro-474

duces a pure mode I failure and ub1 = ūfII produces a pure mode II failure.475

In Dimitri et al. (2014) the response to the non-proportional loading paths476

(a) and (b) of some interface constitutive models (van den Bosch et al., 2006;477

McGarry et al., 2014; Högberg, 2006; Camanho et al., 2003) are reported in478

terms of total work-of-separation, work done by normal traction and work done479

by tangential traction, as function of the ratios ua1/ū
f
I for the path (a) and as480

function of the ratios ub1/ū
f
II for the path (b).481

In order to compare the proposed model with models available in literature,482

the results of the two non-proportional loading paths (a) and (b) plotted in483

Figures (8) and (9) are based on the same values of mode I fracture energy GI484

and mode II fracture energy GII assumed in Dimitri et al. (2014).485

Several CZMs proposed in literature (Xu and Needleman, 1993; Högberg,486

2006; Camanho et al., 2003) are inaccurate in mixed mode failure conditions (see487

Dimitri et al. (2014) for a comparative analysis), producing work-of-separation488

less than mode I fracture energy (W < GI) or greater than mode II fracture489

energy (W > GII). On the contrary, the CZMs proposed in van den Bosch et al.490

(2006); Dimitri et al. (2014); Park et al. (2009) produce normal work, tangential491

work and total work-of-separation qualitatively similar to the results plotted492

respectively, in Figure (8) for the �rst non-proportional loading path and in493

Fig.(9) for the second non-proportional loading path. However, CMZs proposed494

in van den Bosch et al. (2006); Park et al. (2009) are not based on an Helmholtz495

free energy and are not thermodynamically consistent; the CZM proposed in496

Dimitri et al. (2014) is fully thermodynamically consistent, but it is based on497
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four scalar damage variable, whose physical or mechanical interpretation is not498

evident. Moreover, such model does not allows to consider frictional e�ects on499

the damaged fraction, by the mesoscale interpretation proposed in Parrinello500

et al. (2009) and Alfano and Sacco (2006).501

5. Numerical simulation502

The proposed model has been implemented in the �nite element code FEAP503

(Zienkiewicz and Taylor, 2000) and three di�erent delamination tests have been504

numerically simulated, namely:505

• end-notched double cantilever beam test;506

• a mixed mode bending test on end-notched specimen.507

• a four points end-notched �exural delamination test;508

The numerical simulations have been performed using 2D nine nodes plane509

stress elements and six nodes interface elements. The bulk is modeled as510

isotropic and linear elastic with Young modulus E = 35300N/mm2 and Poisson511

ratio ν = 0.3 (standard parameters for E-glass/epoxy composite material). Two512

di�erent sets of interface constitutive parameters have been considered, both513

with the same fracture energies (GI = 1N/mm and GII = 4N/mm) but with514

di�erent normal tensile strength and shear strength. The �rst set is reported in515

Table 1 and produces normal tensile strength t̄I = 20N/mm2 and shear strength516

t̄II = 40N/mm2, whereas the second set of constitutive parameters produces517

normal tensile strength t̄I = 40N/mm2 and shear strength t̄II = 80N/mm2
518

The analytical solutions of the three delamination tests are known in litera-519

ture and developed in the framework of classical linear elastic fracture mechanics520

coupled with bending beam theory.521

5.1. DCB test522

Sizes and geometry of analyzed specimen are represented in Fig.10 and the523

analytical response, under bending beam theory and linear fracture mechanics524
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Cohesive Parameters

Normal elastic sti�ness Ks
n = 50 000N/mm3

Tangential elastic sti�ness Ks
t = 50 000N/mm3

Mixed mode parameter At = 37 500N/mm3

Mode I elastic displ. ūeI = ue = 0.0004mm

Mode I debonding displ. ūfI = uf = 0.1mm

Tensile strength t̄I = 20N/mm2

Mode II elastic displ. ūeII = 0.0008mm

Mode II debonding displ. ūfII = 0.2mm

Shear strength t̄II = 40N/mm2

Mode I Fracture energy GI = 1N/mm

Mode II Fracture energy GII = 4N/mm

Frictional Parameters

Normal elastic sti�ness Kf
n = 50 000N/mm3

Tangential elastic sti�ness Kf
t = 5 000N/mm3

Frictional coe�cient α = 0.8391

Dilatancy coe�cient β = 0

Table 1: Model constitutive parameters used for the numerical simulations.

theory is given, in terms of imposed displacement u and relevant load P , by525

u = 4a2
√

GI

3Eh3

P =
3EI

2a3
u

(61)

with I = bh3/12. Results of numerical simulation are plotted in Fig.11 in terms526

of horizontal normal stress at the initial delamination condition. Results of527

analytical solution and numerical simulations are compared in Figure 12. The528

numerical results properly reproduce the analytical solution in the descending529

branch, whereas the numerical solution is less sti� than the analytical one in the530

initial elastic path. In fact the analytical solution is based on the linear elastic531

fracture mechanics theory, which assumes an ideally brittle traction-separation532
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law. As a consequence, the initially elastic behaviour of the interface produces533

a less sti� response.534

The initial elastic behaviour assumed for the interface can be considered535

as a penalty approach in order to impose the rigidity constrain. The interface536

elastic sti�ness, or equivalently the tensile strength t̄I for �xed fracture energy,537

represents the penalty parameter. Is well known that analytical solution can538

not be caught by penalty method and, as penalty parameter increases over a539

speci�c value, error in numerical solution increases too. Such a problem has540

been observed in the numerical solution of the DBC test for t̄I > 40N/mm2.541

a = 50mm

P, u
2h = 10mm

b = 20mm

Figure 10: Sizes and geometry of specimen for the double cantilever beam test.
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Figure 11: Map of normal stress Sxx obtained by the numerical simulation of the double

cantilever beam test at the initial delamination condition.

5.2. MMB test542

The second numerical simulation is the mixed mode bending test of an end543

notched specimen, performed by the apparatus developed by Reeder and Crews544

(1990). The MMBT has been standardized by ASTM (2006). The mixed mode545

bending apparatus is represented in Fig.13, with sizes and geometry of specimen,546

boundary conditions and applied load.547
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Figure 12: Response of double cantilever beam test, in terms of applied load vs imposed

displacement. Analytical solution and numerical solutions with two di�erent tensile strengths.

The analytical solution is de�ned in terms of crack opening displacement d548

(see Figure 13) and applied load P , and it is derived in the framework of fracture549

mechanics and beam theory. Analytical solution at the �rst delamination, for550

crack length less than the beam half-span (a ≤ L), is given in Mi et al. (1998)551

as552

P =
1

a

√
8EIb

8
GI

(
3C−L
4L

)2
+ 3

8GII

(
C+L
L

)2
d =

2Pa3

3EI

3C − L

4L

(62)

with I = bh3/12. The second analytical solution, for crack extended behind the553

beam mid-span (a ≥ L), was initially given in Mi et al. (1998), but a corrected554

formulation was proposed in Tenchev and Falzon (2007) in term of crack opening555

displacement556

d =
P

EI

(
a3 + 3a2L− L3

)
(L+ C)− 4a3L

6L
(63)

and the applied load can be derived by the following mixed mode interaction557

fracture criterion558

YI
GI

+
YII
GII

= 1 (64)
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where YI and YII are the following energy release rates559

YI =
P 2L2

8bEI

[
a2

2L2

(
C

L
− 3

)2

+
a

2L

(
C

L
+ 1

)(
5
C

L
− 13

)
+

(
C

L
+ 1

)(
C

L
+ 3

)]

YII =
P 2L2

8bEI

[
3a2

8L2

(
C

L
+ 1

)2

− a

L

(
C

L
+ 1

)(
2
C

L
+ 1

)
+

1

2

(
C

L
+ 1

)(
5
C

L
+ 1

)]
.

(65)

The results of numerical simulations, performed with the two sets of consti-560

tutive parameters, are compared to the analytical solution in Fig.15, in terms of561

applied load vs crack opening displacement. Good agreement between numer-562

ical and analytical results can be observed. Map of tangential stress obtained563

by the numerical simulation, at the loading condition of imposed displacement564

u = 1mm, is plotted in Fig.14.
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C = 50mm

P

a = 25mm

d

Figure 13: Sizes and geometry of specimen for the mixed mode test (MMBT).
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Figure 14: Map of tangential stress Sxy obtained by the numerical simulation of the MMBT

at the loading condition of imposed displacement u = 1mm.
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Figure 15: Response of mixed mode bending test, in terms of applied load vs crack opening

displacement. Analytical solution and numerical solutions with two di�erent tensile strengths.

5.3. 4ENF test566

The third numerical simulation is the four points bend end-notched �exure567

test (4ENF), represented in Figure 16 with the relevant sizes.568

The analytical solution can be developed in the framework of beam theory569

and fracture mechanics (Martin and Davidson, 1999) and is given by570

P =
4

3

B

L−D

√
E h3GII

u = P
(L−D)2

24EI
(3a+ 4D − 2L)

(66)

with I = bh3/12 . Map of tangential stress obtained by the numerical simula-571

tion, at the loading condition of imposed displacement u = 3mm, is plotted in572

Fig.17. Results of numerical simulation and analytical solution are compared573

in Figure 18 in terms of applied load P and relevant displacement u, for both574

the two set of constitutive parameters. Moreover, two solutions with positive575

frictional coe�cients have been carried out and results are compared to the576

analytical (frictionless) solution.577

4ENF test is known in literature (Schuecker and Davidson, 2000) for its578

accuracy on the determination of mode II delamination toughness, which is579

in�uenced by frictional e�ects, over than by ratio between inner span and outer580
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Figure 16: Sizes and geometry of specimen for the four point bend end-notched �exure test

(4ENF).

-3.0412E+02

-1.9721E+02

-9.0309E+01

 1.6595E+01

 1.2350E+02

 2.3040E+02

-4.1102E+02

 3.3731E+02

 S T R E S S  Sxy  

Figure 17: Map of tangential stress Sxy obtained by the numerical simulation of the 4ENF at

the loading condition of imposed displacement u = 3mm.
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Figure 18: Response of 4ENF test, in terms of applied load vs imposed displacement. An-

alytical solution and numerical solutions with two di�erent tensile strengths and with three

di�erent frictional coe�cients.
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span (D/L with reference to Fig.16).581

The proposed model can numerically reproduce the standard 4PBT and it582

can also take into account the presence of frictional e�ects. Numerical simu-583

lations with two frictional coe�cients (α = tan 20o and α = tan 40o) and null584

dilatancy coe�cient (β = 0) have been performed and results are shown in585

Fig.18 and compared the frictionless numerical results and with analytical so-586

lution. Diagrams plotted if Fig. 18 show that applied load at delamination587

condition is 7.5% greater than frictionless response, for the frictional coe�cient588

α = tan 20o, and 19% greater than frictionless response, for the frictional coef-589

�cient α = tan 40o.590

Finally, the di�erences between numerical and analytical responses in the591

initial elastic branch, observable in the three delamination tests, are intrinsic to592

the cohesive zone formulations. In fact, the analytical solution are developed593

in the linear fracture mechanics, for which the behaviour is linear elastic up to594

delamination starts. On the contrary, in cohesive zone models the delamination595

phenomenon is subsequent the nonlinear behaviour in the cohesive zone and the596

response is less sti� than the analytical one.597

6. Closing remarks598

The paper presents as a main innovative �nding an interface uni�ed constitu-599

tive framework based on a single damage variable in a thermodynamic consistent600

context, which has a proper free energy, dissipation function, activation func-601

tion and evolution rules, all derived in the context of dissipative mechanics with602

internal variables.603

The proposed CZM, produces two independent fracture energies, GI in pure604

mode I debonding condition and GII in pure mode II debonding one. GI and605

GII , as analytically shown, are minimum and maximum values of the work-of-606

separation for any proportional and non-proportional loading paths. The model607

can also evaluates the presence of frictional tractions both at the fully debonded608

zones and at the partially debonded ones.609
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The proposed model is able to accurately reproduce with a unique set of610

few constitutive parameters, very di�erent and general proportional and non-611

proportional, monotonic and cyclic, loading paths, either in opening mode or in612

sliding mode and in any mixed condition, recovering also closing conditions and613

frictional e�ects.614

Finally, three classical delamination tests (DBC, MMB, 4ENF) have been615

numerically reproduced and the results compared with the analytical ones, show-616

ing good agreement.617
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