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Abstract

A new interface constitutive model based on damage mechanics and frictional
plasticity theory is presented. The model is thermodynamically consistent, it is
able to accurately reproduce arbitrary mixed mode debonding conditions and
it is proved that the separation work is always bounded between the fracture
energy in mode I and the fracture energy in mode II. Analytical results are
given for proportional loading paths and for two non-proportional loading paths,
confirming the correct behaviour of the model for complex loading histories.
Numerical and analytical solutions are compared for three classical delamination
tests and frictional effects on 4ENF are also considered.
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1. Introduction

The challenge of modeling the progressive formation, development and prop-
agation of displacement discontinuities, such as fracture or delamination phe-
nomena, has been successfully faced by the introduction of Cohesive Zone Mod-

els (CZMs). CZMs are constitutive non-linear relations able to model the tran-
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sition between virgin material, partially broken ligaments and full opening along
a surface. The first pioneering papers goes back to the early 60s by Dugdale
(1960) and Barenblatt (1962) who established the physical basis of the constitu-
tive framework. Since then many developments have been done, with the main
assessment of joining the surface cohesive constitutive model with the concept
of interface elements (Xu and Needleman, 1993; Allix et al., 1995; Alfano and
Crisfield, 2001). The introduction of non-linear interface elements in conjunc-
tion with standard Finite Element analysis gave rise to one of the most powerful
approach to non-linear structural failure analysis.

In the last years, several crucial aspects have been accurately investigated
such as: isotropic and orthotropic cohesive interface models (Corigliano and
Allix, 2000), coupling damage and plasticity (Spada et al., 2009; Kolluri et al.,
2014), different mode I and mode II fracture energies (Alfano and Crisfield,
2001; Benzerga et al., 2008), thermodynamic consistency (Parrinello et al., 2009;
Mosler and Scheider, 2011; Guiamatsia and Nguyen, 2014; Serpieri et al., 2015),
time dependent and viscous effects (Corigliano and Ricci, 2001; Giambanco and
Fileccia Scimemi, 2006; Zreid et al., 2013; Musto and Alfano, 2013)

Recently, special attention has been focused on the assessment of an energy
rational behavior of interfaces models loaded under arbitrary mixed mode con-
ditions. It is actually required a physical sound behavior for monotonic and
cyclic loading for different mixity rate loadings. It is also of paramount interest
to ensure, for any loading path, the satisfaction of thermodynamic principles.

In order to control mixed loading in traction and shearing Park et al. (2009)
proposed a potential-based cohesive zone model for mixed-mode fracture, which
is defined as a particle debonding potential at the material point level. The
model is based on a unique potential which is function of both normal and
tangential component of the separation displacement. The work of separa-
tion is evaluated for some loading paths, producing physically consistent re-
sults. On the contrary, Park et al. (2009) show that, when the mode I and
mode II fracture energies are G;; > Gy, the potential based of Xu and Needle-

man (1993) produces work of separation, Wrp, in a mixed mode loading paths
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which is Wpr > Gy > Gy, in disagreement with experimental evidence (see
Benzeggagh and Kenane (1996)). Analogously, when G5 < Gy, the separation
work in a mixed mode loading path is Wr < G < G.

McGarry et al. (2014) analyze potential and non-potential based models for
mixed mode separation loading paths and under over-closure conditions showing
some shortcoming of the model of Xu and Needleman (1993).

Dimitri et al. (2014) carefully evaluate the response performances of four
well-known interface constitutive models under mixed mode loading and whether
they are always consistent in terms of stress and energy dissipation. In Dim-
itri et al. (2014), the authors show that the CZMs proposed by McGarry et al.
(2014); Hogberg (2006); Camanho et al. (2003), under particular mixed loading
condition, may produce unphysical results. Moreover, in the model of van den
Bosch et al. (2006) the unloading law, different than the loading one, is not
explicitly defined and energy dissipation can not be directly evaluated. In such
model two independent laws are defined respectively for the tangential traction
component and for the normal one and, as already stated in Mosler and Scheider
(2011), symmetry the tangent stiffness matrix is not achieved.

On the basis of the above criticism, Dimitri et al. (2014) propose a ther-
modynamically consistent model, defined as an improvement of the van den
Bosch et al. (2006) model, but derived by an Helmholtz free energy function.
The same tangential and normal traction interface laws of van den Bosch et al.
(2006) are rigorously derived by applying the Coleman and Noll (1963) proce-
dure. The cost of such achievement is the necessity of employ four independent
scalar damage variables. Mosler and Scheider (2011) pointed out the relevance
of the thermodynamical consistency for finite strains and anisotropic interface
models.

In Serpieri et al. (2015) a thermodynamic consistent cohesive frictional model
with different mode I and mode II fracture energies is presented. The model is
defined by means of a single scalar damage variable and a single scalar equivalent
displacement. The authors prove, that under the above hypothesis the total

dissipation of energy, which is equal to the separation work, in pure mode I (Gy)
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and in pure mode Il (G) has to be the same, that is G; = Gy;. Moreover,
the authors ascribe the greater mode II fracture energy Gy with respect to G,
which is an experimental evidence, to frictional effects, and they state that such
effects are always present at the mesoscale level.

The possibility to have an interface model which can reproduce a smooth
transition between cohesive and frictional deformation modes has been presented
in several papers (see e.g. Ganghoffer and Schultz (1997); Alfano and Sacco
(2006); Parrinello et al. (2009); Spada et al. (2009); Sacco and Lebon (2012);
Guiamatsia and Nguyen (2014)). The contribution of frictional behaviour to the
the mode II dissipation energy has been analyzed under increasing cycling load
in Parrinello et al. (2013) by the cohesive-frictional interface model proposed in
Parrinello et al. (2009).

The availability of a model with a single scalar damage variable, thermody-
namically consistent, with two different fracture energies in mode I and in mode
II, which behaves also correctly under any cyclic loading in mixed mode, is, in
the authors’ knowledge, a goal not yet reached.

In the present paper a new thermodynamically consistent CZM is proposed.
It is based on a predefined Helmholtz free energy density with a single scalar
damage variable and it produces two independent work of separation in pure
mode I and pure mode IT delamination conditions. The proposed model can also
take in to account frictional effects with a smooth transition of the mechanical
behavior, from the initial elastic one of the virgin material, to the fully debonded
behavior with frictional residual strength. The cohesive-frictional behavior is
based on the same mesoscale interpretation of the scalar damage variable, pre-
viously proposed in Alfano and Sacco (2006); Parrinello et al. (2009). In fact,
the model proposed in this paper can be considered as a rational evolution of
the interface model developed by Parrinello et al. (2009), whose main limit is
that it produces a unique separation work, excluding the presence of frictional
effects, independently of the debonding mode condition. The proposed formu-
lation is defined by a new damage activation function. Traction components,

damage evolution and the relevant constitutive equations are derived by follow-
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ing classical thermodynamic arguments (Coleman and Noll, 1963). The model
implicitly verify the second thermodynamic law by proving that dissipation is
non-negative for every loading path; it produces two independent fracture en-
ergies in pure mode I and pure mode II debonding conditions and produces
physically consistent results under mixed mode debonding ones.

The paper is organized as follows: the new model is presented in Section 2.
The solutions of monotonic and non-proportional loading paths are analytically
derived in respectively in Section 3 and in Section 4. Numerical results of three
delamination tests are compared with the relevant analytical solutions in Section

5 and, finally, closing remarks are reported in section 6.

2. The cohesive-frictional model with different fracture energy in

mode I and in mode II

Damage mechanics concepts are widely used for cohesive interface models
(Corigliano, 1993; Daudeville et al., 1995; Allix et al., 1995; Corigliano and Allix,
2000; Mosler and Scheider, 2011) since they possess all the necessary features
to properly describe cohesive fracture processes.

As recently pointed out for damage based interface constitutive models (Al-
fano and Sacco, 2006; Parrinello et al., 2009; Spada et al., 2009; Serpieri and
Alfano, 2011; Guiamatsia and Nguyen, 2014) effective formulations can be de-
rived considering the classical scalar damage variable w in a geometrical setting

as

dS. dS —dS;
-~ dS  dS )

where, at a generic point, the reference interface surface dS is associated to a

W

sound (virgin) fraction, dSs and to a complementary cracked fraction dS. (see
Figure 1 a))

Adopting a mixture approach, at the sub-scale where the two fractions are
defined, a specific kinematic, static and constitutive relations can be established,

which are then reported at the macro interface level. Since interface are used to



Figure 1: Geometrical sketch showing the decomposition in two fractions: a) Decomposition of
the damaged surface dS in the cracked fraction w dS and the sound fraction (1—w) dS with the
respective traction vectors t. and ts. By the equilibrium condition ts + t. = t. b) kinematic
representation of the displacement jump [u], with [u.] and [us] jump displacement vectors

across the cracked and the sound fractions. By kinematic consistency [u] = [uc] = [us].
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drive decohesion along a prefixed zero-thickness surface, the kinematic variable
adopted to measure the actual deformation is the displacement jump vector
across the interface, namely [u] = u™ —u~, where u™ and u™ are the displace-
ment vector at the upper (+) and lower (—) side of the interface. Moreover,
in order to simplify the notation, we write the displacement jump without the
brackets, i.e. [u] := u.

Since the present approach is based on a mixture theory with two fractions,
it is allowed to define for each fraction a specific displacement jump vector,
[uc] := u. and [us] := us, where the indexes ¢ and s stands for cracked and
sound fraction (see Figure 1 b)).

The internal kinematic consistency requires that each strain measure of the

two fractions has to be equal to the global displacement jump, namely
U= U = Usg (2)

Having in mind the different constitutive relation to adopt for each fraction,
it is convenient to introduce a specific additive decomposition which account for
elastic and inelastic deformations. Namely:

For the Sound fraction no inelastic deformation develops and only elastic
component is considered

w, = 6° (3)

S

For the Cracked fraction the total deformation is considered as the sum of

three different contributions, namely:
u, = 8¢ 4 6% + 8¢ (4)

where 8¢ is the elastic component (due to micro elastic deformation modes in
contact and/or in sliding), 8% is the plastic component (due to to frictional
deformation modes including dilatancy), and 6'01 is the detachment component
or gap vector (due to opening or even sliding without compressive state).

The displacement jump contributions defined in Eq. (4) have also to satisfy

some kinematic conditions related to the unilateral contact (for opening/closing
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conditions), as well as for frictional effects. All the components jump vectors
have a Cartesian component along the normal to the interface oriented from the
(=) lower surface to the (4) upper surface, which is denoted by an extra index
n, and a tangential component along the interface denoted by an extra index t.

Considering the cracked fraction, the normal elastic component ¢, has to be

non-positive, since it is active only in a contact compressive state. Conversely,
d

cno?

the detachment normal component, 6% , has to be non-negative, since it describe
the opening mechanism. Moreover, the two quantities d¢, and 6%, cannot be
both different from zero at the same time. As a conclusion the following classic

elastic contact complementarity conditions holds

6, <0, 8t >0, 6504 =0 (5)

cn ' cn

€

Considering the elastic tangential component, J¢,,

it is observed that no sign
restriction is required, but it has also to satisfy the mutual activation condition
in the form

68,62, =0. (6)

ct Yen

Finally, no sign restriction are imposed on the detachment tangential com-
ponent Jgt, which means that in case of re-closing deformation mode tangential
components previously produced in a opening state, may be accounted for,
(5% #0).

As a final remark, it can be easily proved that Eqgs. (2)-(6) hold also if

written in rate form.

2.1. Thermodynamic consistency

In order to comply thermodynamic principles, the Helmholtz free energy
density function (for unit surface) is introduced, playing the role of potential
with respect to the state variables, either external, or internal ones. Since the
adopted model is based on the superposition of two fractions, in which the sound
fraction is weighted by the integrity coefficient (1 — w), whereas the cracked
fraction is weighted by the damage coefficient w, it follows that the Helmholtz

free energy can be given in the following form:
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(85,02, w, ) = (1 — w)ipg(89) + wie(82) +¢i(6) (7)

where ¢ and 1)¢ are the elastic free energy densities for the unweighted sound
and cracked fractions, both function of the respective elastic deformations. ;
is the internal free energy related to a scalar internal variable £, introduced for
a specific description of the post-peak traction — relative displacement regime
(softening).

In what follow linear elasticity behavior is assumed, either for the sound, or
for the cracked fraction, which implies a quadratic form for the two elastic free

energies, namely

U0 = 0T KB L) = ST KL Q

Equations (8) give the stored strain energies of the two fractions each of
which, in agreement with Eq. (7), is weighted by the coefficients (1 — w) and w
respectively.

K, and K. are two positive definite diagonal stiffness matrices in which
K? and K are positive stiflness coefficients and the index (i = n,t) stands for
normal and tangential component.

Thermodynamic consistency, in the form of the second principle, can be
enforced by the Clausius-Duhem inequality, which gives an explicit form for the

non-negative mechanical energy dissipation density:
D=t"i4—-¢>0 (9)

Expanding ¢, considering the specific form given in Egs. (7) and (8), and making

also use of the decomposition of the total interface strains, given in Egs. (3) and
.e . e . .d

(4) written in the following rate form: d, = % and §, = u — 55 —d,, gives

B oy o\ . (0T o a\ 0% i
D<t05§a¢sz) ”*(aag) (‘50*56)*%“’* ge ¢ =0 (0)

No dissipation (D = 0) is produced in the case of any purely reversible defor-

. . .d
mation modes (elasticity) in which & = ¢ = 0 and &8, = &, = 0, which gives as
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0y oY
b= 267 T 950 (11)
—~
tS tC
where it has been set
_ 9 _ e. _ o0 ¢
ts = 876(2 = (1 (.U)Ks(ss, tc = ?sz = WKC(SC (12)

The two tractions, ts and t. (See Figure 1 a) play the role of traction vectors
acting on each of the two fractions of the model and the relation t = t5 + t. is
a form of internal linear momentum balance equation.

Following a well established procedure, the state equation (11) holds also
for dissipative deformation processes, so that the dissipation function can be
rewritten as

D=Yo+tls —xé>0. (13)

d

where the orthogonality condition '8, = 0 has been used. The energy release
rate Y and the static like conjugate internal variable x introduced in Eq. (13)
complete the set of state equations defined as

31/1 7.e 7.e
_% - ﬁfs wc
_168TK &5¢ 166TK S5¢
- 9 s s¥s 2 c c¥c

Y =

and

_ o
Equation (13) states that the total dissipation D is given by a first term

(15)

related to the energy for a possible increment of damage Yw, a second term for
a possible frictional mechanism t(Tﬁf (including dilatancy effects) and finally
the third (negative) term x¢ is the rate energy spent in the reorganizing the
internal microstructure for the evolution of the softening behavior. Moreover,
observing Eq. (14) it can be stated that the energy release rate Y is given as
the strain energy in the sound fraction minus the strain energy of the cracked

fraction, the latter being not available for further damage increments.

10
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A further relevant feature shown by Eq.(13) is that there are no dissipa-
tive interactions between damage and friction modes. This uncoupled struc-
ture means that a damage increment (decohesion growth) does not necessarily
requires a change in the frictional state and, of course, the vice-versa. Equa-

tion (13) can then be split as
D=D;+ D, (16)

where Dy and D, are the dissipation functions related to damage and to fric-
tional increment, given as
Dy(@,§) =Y & —x£>0 an
17
Dp(‘si) = tcT‘Si) >0
The structure of the dissipation split in two term suggests the introduction of
two distinct activation criteria which drive damage and friction activation as

well as the related flow rules.

2.2. Activation functions and flow rules

In order to derive an activation function able to properly describe mode I
(opening), mode II (sliding) and all the possible mixed modes, the following

interface damage activation condition is considered:

Pa(Y,xiu) =Y —x =V (u) =Yy <0 (18)

in which Yj is a positive constant value accounting for the initial unloaded dam-
age threshold; the internal variable x describes the damage threshold increment,

X > 0 due to the damage evolution, and finally Y (u) is a positive term given as

function of the kinematic state

. 1

1 1
Y(u) 2uTAu = §Anui + §Atut2 (19)

where A is a positive definite diagonal matrix collecting two positive constitutive

parameters A, > 0 and A; > 0. The associated flow rules and loading-unloading

11
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conditions can be obtained as

. 0 ; ~

W = aTAd = Ad;

. o, .

=005 =, (20)
X

A >0, ¢ara=0, ¢ahg=0

where Aq is the damage multiplier.

Unlike what presented previously by the authors (Parrinello et al., 2009),
where the damage activation function is driven only by Y, producing the same
separation work in pure model I, in mode I and for any mixed mode, in the
present paper a new formulation is proposed, which is enhanced by the inser-
tion of a state displacement dependent damage activation function, as shown
by Eq.(18). This new approach, even if still based on a single scalar damage
variable, produces a different separation work in pure mode I and in pure mode
II, and as it will be shown in the next Section does not suffer of any inconsis-
tency in mixed modes. The values of the two new constitutive parameters, A,
and A, are related to the values of the Fracture Energies, G; and Gy;. If it
is assumed Gy > Gy, as it is usually shown by experimental evidences, it is
necessary to set A; > A,. Otherwise, in the case of G; > G; the parameters
have to be set as A, > A;. Details on choice and on the physical meaning of
the two constants will be given in the next Section.

The dissipation associated with the damage activation can be computed con-
sidering that the flow rules shows w = Aa>0 only if ¢4 = 0, which considering

the first of Eq.(17) gives
2 P T :
Dg=Yw—x{= §Anun + §Atut +Y0)Aa =0 (21)

showing the unconditioned positiveness of the dissipation rate for any damage
increment, being Dy = 0 only if Aa = 0.

Finally, in order to prevent damage activation under pure compressive stress
state, normal stiffness of the sound fraction and normal stiffness of the cracked

fraction are imposed to be equal, that is K = K. In fact, for a displacement

12
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un, < 0 and u; = 0, and assuming null plastic deformation 6% = 0, the relevant
energy release rate is
1

1
Y = —Kiu? — —~K°u? =0,
g ntn 97inTn

(22)
and no damage increment, is achieved.

Activation function and flow rules for the plastic displacement jump 6? are
achieved in the framework of non-associative plasticity theory. The activation

function has the form of the classical Mohr-Coulomb yield function

Pp(te) = |tet] + aten <0 (23)
and by means of the following plastic potential

Qp(te) = [tet] + Bten <0 (24)

where t., and t.; are the normal and tangential components of the traction
vector t.; o and B, with o > 8 are the frictional and the dilatancy coeflicients
respectively. The plastic (or frictional) flow rules and the loading/unloading

conditions read

. 90, . )
oP = 5 Py = sgn(te) Ny,

T .

o= ’t’Ap = B, (25)

Ap >0, A, =0, ¢ph, =0

The dissipation rate associated with frictional active mechanisms is evaluated
considering that }\p > 0 only if ¢, = 0 which, considering the second of the
Eqs.(17), gives

Dp = tér(sp = (|tct| + Btcn)}‘p > (‘tct‘ + atcn)}‘p =0 (26)

which shows that dissipation is always positive for any frictional rate displace-
ment rate, with D, = 0 only if A, = 0
The cohesive model is then completed by the state laws for the internal vari-

able x which drive the damage evolution law. In case of simple linear softening

13
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in normal traction-opening displacement (mode I), it can be shown that internal

free energy and internal state law read:

(27)

b _ . ue ug :
MO =g =Gy, [(uf(lmueg) 1}

where u. and uy are the separation displacements for the limit elastic threshold
and for the full damage condition (w = 1, i.e. full detachment) in pure mode
I opening condition, Gy = 1/2K;u.uys is the fracture energy in mode I and
finally, K is the stiffness normal component of the interface sound fraction. As

far as the other material parameters are concerned, it is set

1 Ue
= §Kflug = G]i

The two constants A,, and A; have been fixed under the condition that the

Yo
(28)

fracture energy in mode II (Gyy) is greater than the fracture energy in mode
I1(Gr), i.e. Grr > Gp. Finally, the relations in Eqs.(28) among the fracture

energies and the parameters Yy and A; will be explained in detail in Sect. 3.

3. Monotonic loading paths

In this Section the monotonic mixed delamination path, represented in Fig-
ure 2 for a linear interface element, is analyzed. The displacement jump w is

decomposed in the local Cartesian components as

U= ue; + upe, = ucosye; +usinye, (29)

where u = (u"u)/?

and e;, and e, are the unit tangential and normal vectors
to the interface plane.

The pure mode I delamination condition is produced by a loading angle
~v = /2 and the pure mode IT delamination condition is obtained by assuming

a loading angle v = 0.

14
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The imposed displacement v monotonically increases up to the complete
interface delamination. The same problem is analyzed in Park et al. (2009)

where the separation work is computed for some significant values of angle ~.

i)

Figure 2: Monotonic mixed mode loading scheme. The displacement jump u decomposed as

U = utet + uneén.

The separation work W = W,,+W; can be defined as the sum of two different
contributions, namely: the normal separation work W,, and the tangential one

W, which are mathematically defined as

+oo
Wn = / tn(% ’LL) dun
0 (30)

—+o0
Wt = / tt(’y, u) dut
0

Due to the assumed non-negative opening displacement (u,, > 0), the frictional
traction has not to be considered, as well as its effect on the separation work.
Traction components are
t, = (1 —w)K, u sin(y)
(31)
t: = (1 — w)K; u cos(7)
The initial interface behavior is elastic with null damage and null internal vari-
able (w = 0 and £ = 0) and the maximum elastic traction is reached when
the damage activation condition is attained ¢g (Y, ut, x) = 0, where x(0) = 0,

A, =0, A; > 0 and the energy release rate is

1 . 1
Y = 5 S u? sin?(7y) + §Kf u? cos?(v), (32)

15
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329

therefore

1
(bd (YvuhX) = fo(é') - iAtU? Y, =

— %KZUQ sin?(v) + %(Kf — Apu® cos*(7) — Yo = (33)
1 K3u?
= — =5, <~ Yo = O
2C%(y)
where 1/2
Ki— A -
C(y) = (sin2 (v) + tht cos® (7)) (34)

is a loading angle dependent function. For v = 7/2 (opening in mode I)
C(m/2) = 1, whereas for v = 0 (sliding in mode II) C(0) = /K3 /(K; — A).
By substitution of the first of Eqs. (28) in Eq. (33), the imposed separation

displacement #. at the limit elastic is
Ue = ue C() (35)

The linear-elastic branch is followed by a descending (softening) one with in-
creasing damage and, in virtue of flow rules of Eqs. (20), damage activation
function (18) and softening law (27), kinematic internal variable and damage

variable are

f=w= - [1-Sro0)] (36)

and separation displacement % at the fully damaged condition (w = 1) is
up =uyC(v) (37)

The traction components at the descending branch are obtained from Egs. (31)
and (36)
ufte C(y) — Ueu

() = IR i) "
uste C(7) —ue g
te(u,v) = ry— K7 cos(v).

The work done by normal traction and the work done by tangential one can be
computed by Egs. (30) and are
1 s 2 202
Wa(7) = 555 weuy C7(7) sin®(v),

(39)

1
Wi(y) = in Ul f 02(7) cos? ().

16
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In Figure (3) the qualitatively response of the interface subjected to the mono-

Modell,a =0
[ Model, a =172
=)
<
Ule Uﬁ U‘|f UII Un, '-Tt

separation displacement

Figure 3: Mode I response and mode II response for monotonic loading path.

tonic loading path is represented in terms of traction vs separation displacement
for the two limit cases of pure mode I and pure mode II.

In the pure mode I debonding condition (y = 7/2) limit elastic displacement
4§, the fully debonding displacement ﬂ{ and the maximum normal traction ¢,

respectively are

ul = Ue
] =y (40)
2?I = KySLUEa

whereas, in the pure mode IT debonding condition (v = 0) limit elastic displace-

ment 4§, fully debonding displacement ﬁfl and maximum normal traction fpr,

17
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respectively are

S
ty =4 —2— Kju
I KtS_At t Ue

Finally, the mode I fracture energy can be computed as the normal separation
work for v = 7/2, that is

1
Gy =W, (r/2) = QKfLueuf (42)

whereas the tangential separation work is Wy (7/2) = 0. The mode II fracture

energy is given by the tangential separation work for v = 0, that is

1. K} K}
G[[ = Wt (0) = §K;ueuf e jAt = G] K jAt (43)
t t

and the normal separation work is W,, (0) = 0. Equation (43) confirms that for
A¢ > 0 mode IT fracture energy is greater the the mode I value, Gj; > G7.
It can also be shown from Eqgs. (39) that

Wa() = GrC2() () Wily) = Gr 2-C%(3) cos?(7); (44)
and then
W) = Waly) + Wiln) = Gr C(0) [sin?(7) + 25 co(3)| . (45)

K S

n
In Figures 4 the work of separation for the monotonic loading path is qual-
itatively represented as function of angle v, where it can be observed that, for

any mixed mode debonding condition, the separation work is
Gr <Wi(a) <Gn (46)

and it monotonically increases from the pure mode I condition to the pure mode

IT condition. Several experimental investigations confirm that fracture energy
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in mixed mode debonding condition gradually and monotonically increases from
the pure mode I value G to the pure mode II value G;. Such a result is reported
by Benzeggagh and Kenane (1996), who measured the fracture energy of a
unidirectional glass/epoxy composite for six different mixed mode conditions,

by the mixed mode bending apparatus developed by Crews and Reeder (1998)

C;II

S~

Work of separation W(y)
o

0 4 2
Mixed mode angley

Figure 4: Work of separation in the monotonic loading path, in function of delamination angle

Y-

4. Non-proportional loading paths

The behaviour of the proposed model is also analyzed for two non-proportional
loading paths, well known in literature (van den Bosch et al., 2006; Park et al.,
2009; Dimitri et al., 2014) for the validation of debonding models with different
fracture energies in mode I and in mode II.

The first non-proportional loading path (a) is applied by an initial open-
ing displacement, which increases up to a maximum value u,, = u41, and by
a subsequent sliding displacement u; = ug42, which increases up to complete
delamination.

The second non-proportional loading path (b) is applied by an initial slid-

ing displacement, which increases up to a maximum value u; = up;, and by

19



e a subsequent opening displacement u,, = w2, which increases up to complete
se0 delamination. The two non-proportional loading paths are represented respec-

tively in Fig.(5a) and in Fig.(5b).

,,,,,,,,,,,,,,

Upz

,,,,,,,,,,,,,,

[

a) b)

,,,,,

Figure 5: Non-proportional loading paths: a) path (a) opening displacement and subsequent
sliding displacement; b) path (b) sliding displacement and subsequent opening displacement.

370

sin 4.1. Non-proportional loading path (a)

372 The solution of non-proportional loading can be developed analytically and

373 two different cases has to be distinguished:

374 e the initial normal displacement is less than or equal to the mode I limit
375 elastic displacement (uq1 < T§ = ue);

376 e the initial normal displacement is greater than or equal to the mode I
377 limit elastic displacement and less than the fully debonding displacement
378 (ﬂ? < Ugr < 12{)

379 In the first case, the normal displacement u, = ug produces elastic re-

se0  sponse and the second loading branch, with tangential displacement u; = u42,
ss1 18 initially elastic. The first damage activation is reached at following tangential

32 displacement
K5
Ky — A,

(“5 - uil) (47)

—e
Uy =
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386
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388

and the fully debonding condition (w = 1) is reached at the following tangential
displacement

af =

K (-] (48)

Koa,

The traction components after damage activation, for uf < ugs < ﬂ{ , are

U U K — Ay -1/2
tn (ua17ua2) - _r_eugKrslual + r_quKyslueual |:Ui1 + tKS u22:|
n
—1/2
Ue uf 2 Kf - At 2
ty (Ug1, Ug2) = ————— Kl Uugo + ———— K] Ul |usy + ————u
t( al a2) Up — e t a2 Up — te t Ye a2|: al K a2

The qualitatively behaviour of the proposed model, in terms of traction
components vs separation displacements, for the non-proportional loading path
(a) is represented in Fig.(6a) for an initial normal displacement less than the

mode T elastic limit value (u% < 4§ = u.).

(49

tn, t{ tn\tr

separation displacement

2)

‘
separation displacement
b)

> ———— Mode II /\\\ ———— Mode II
/BN — == Mode] // ~ — == Mode 1
i _—— = ~.
5 Iﬁ RN —_ S| ~. ———t
= } - 2 <
S | SN tn s |/ ~o tn
! ~
& ! ~ ~. > & / S
I RN \\\\\ // ~ >
N ~._ \\\\\  om=< ~_
N \\\\ / =~ e o~
| ~ ~O 4 S~ AN
| ~
—e = 1/ —f =
Uall, u, Up, U Ual Up, Uy

Figure 6: Non-proportional loading path (a): a) initial normal displacement less than the

mode I elastic limit value (uq1 < @$); b) initial normal displacement greater than the mode I

elastic limit value (4§ < uq1 < ﬁf).

Finally, the work done by normal traction, the work done by tangential

traction and total work-of-separation, respectively, are

1 S
Wy, = 5 nugl
ol
1 .. . e K, 1
Wy = §Kt g + /ﬁf teduy = G — Kfi—tAtiK"uil
A 1
W=W,+W, =Gy — ——-K3u?,.

Kig —At 2
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The second case of non-proportional loading path (a) is obtained with an
initial normal displacement greater than or equal to the mode I limit elastic
value and less than the fully debonding displacement (a§ < u,; < a{) The
damage value at the end of the first loading branch (u, = ua1,us = 0) is

Uf  Ugl — Ue

w (Uq1,0) = 51
(v, 0) = (51)
and the relevant traction components are
U — U
tn (Ug1,0) = kaueu

ty (uq1,0) = 0.
The behaviour in the second loading branch (u,, = w1, ur = us2) is completely
nonlinear and the traction components are given by Egs. (49a, b). The tangen-
tial displacement at the fully debonded condition is again given by Eq. (48),
obtained for the first case.

The qualitatively behaviour of the proposed model, in terms of traction
components vs separation displacements, for the non-proportional loading path
(a) is represented in Figure (6b) for an initial normal displacement greater than
the mode I elastic limit value (4§ < uq1 < 1];)

Finally, the work done by normal traction, the work done by tangential

traction and total work-of-separation, respectively, are

Ual _ 2
Wn = / tndun = G] - G[i(uf ual)
0 up(up — ue)
af _ 2
W, = / tyduy = Gy (Y Y1) (53)
0 ugp(up — ue)
(uf — tq1)?

WZWn—FWt:G1+(G]]—G1)uf(uf_u )

4.2. Non-proportional loading path (b)

The non-proportional loading path (b) is schematically represented in Fig.(5b)
and it imposes an initial tangential displacement up; and than a monotonically
increasing normal displacement upe is applied up to the fully debonding.

Similar to the previous loading path (a), the analytical solution of the loading

path (b) has to be developed for two different cases:
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e the initial tangential displacement is less than or equal to the mode II

limit elastic displacement (up1 < @5);

e the initial tangential displacement is greater than or equal to the mode II
limit elastic displacement and less than the fully debonding displacement

(g < up < ﬂf[)

In the first case, the tangential displacement wuy; produces elastic response
and the second loading branch, with normal displacement usg, is initially elastic.

The first damage activation is reached at following normal displacement

1
K — A 2
- 2 t t 2
= (54)
while the fully debonding condition (w = 1) is reached at normal displacement,
1
K —A 2
_ 2 t t, 2
ul = { s TR ubl} . (55)
Traction components after damage activation, for af < upe < u{j, are
1
Ue K;—A T2
tn (Up2, upr) = ————— K3 upy + K > Up2le |:qu + tugl]
Uf — Ue Uf — Kn
Ks—A ,]°¢ (%)
Ue s Uy s 2 t 2
ty (upo,up1) = ———Kju ——— K] upte |u —u
¢ (up2, up1) w b1+Uf—Ue ¢ ble|:b2+ K bl}

The qualitatively behaviour of the proposed model, in terms of traction
components vs separation displacements, for the non-proportional loading path
(b) is represented in Figure (7a) for an initial tangential displacement less than
the mode II elastic limit value (up < @$;).

Finally, the work done by normal traction, the work done by the tangential

one and the total work-of-separation, respectively, are
1 s e2 ﬁfL 1 s 2
Wn = §Kn n - tn dun = GI - §(Kt - At)ubl
ue

n

W, = Kk (57)

1
W =W, +W;,=Gr+ 5Atugl.

The second case of non-proportional loading path (b) is obtained with an

initial tangential displacement greater than or equal to the mode II limit elastic
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Figure 7: Non-proportional loading path (b): a) initial tangential displacement less than the
mode IT elastic limit value (up; < 4%); b) initial tangential displacement greater than the

mode 1 elastic limit value (@$; < up < @l;).

value and less than the fully debonding displacement (4} < up < 12{[) The

damage value at the end of the first loading branch (u, = 0,u; = up1) is

uf Upl — ﬂ‘l}

w(0,upy) = 58
(0,u) = (5)
and the relevant traction components are
tn (0, ubl) =0
= f (59)
uy —u
te (0,up1) = Ktsa?z_?i_zl~
Up — Uy

The behavior in the second loading branch (u,, = up2,us = up1) is completely
nonlinear and the traction components are defined by the same relations of
previous case, that are given by Egs. (56 a, b). The tangential displacement at
the fully debonded condition is again given by Eq. (55), obtained for the first
case.

The qualitatively behavior of the proposed model, in terms of traction com-
ponents vs separation displacements, for the non-proportional loading path (b)
is represented in Figure (7b) for an initial tangential displacement greater than
the mode II elastic limit value (4§ < up < aﬁ)

Finally, the work done by normal traction, the work done by tangential
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traction and total work-of-separation, respectively, are

¥ 2
al (ﬁH — ubl)
0 wyr (“H - U?I)

s 2
af U — ubl)
Wi = tyduy = G — Gllﬁ (60)
0 U \ U — U?I)

(#h )
W=w,+W; :GU+(G1—GH)T.
Uy (UU - “U)

The work done by the normal traction, the work done by the tangential one and
the total work-of-separation, performed in the non-proportional loading path
(a), are plotted in Figure (8) in function of the initial normal displacement ;1.
The work done by the normal traction, the work done by the tangential one and
the total work-of-separation, performed in the non-proportional loading path
(b), are plotted in Figure. (9) in function of the initial tangential displacement
Up1-

The results plotted in the Figs. (8) and (9) have been evaluated with the
following constitutive parameters: k3 = kf = 1000N/mm?, A, = 500N/mm3,
ue = 0.005mm, uy = 0.04mm; which produces the mode I fracture energy G1 =
0.1N/mm = 100J/m? and the mode II fracture energy G;; = 0.2N/mm =
200.J/m?. Moreover, displacements at the initial damage condition and at
the fully debonded one, in pure mode I loading law, are: @§ = 0.005mm,
@} = 0.04mm; and in pure mode 11 loading law: %, = 0.00707mm, aj, =
0.05657mm.

The graphs in Figures (8) and (9) show the path dependency of work-of-
separation and, especially, its smooth and monotonic transition from the mode
I fracture energy G to the mode II fracture energy G and vice versa.

For the first non-proportional loading path (Figure 5 a), a null initial nor-
mal displacement u,; = 0 produces a pure mode II failure and, as shown in
Figure (8), the total work-of-separation is W = W; = Gy and work done by

normal traction is W, = 0. On the contrary, the initial normal displacement
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Figure 8: Work done by the normal traction, work done by the tangential traction and the

total work-of-separation, performed in the non-proportional loading path (a).
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Figure 9: Work done by the normal traction, work done by the tangential traction and the

total work-of-separation, performed in the non-proportional loading path (b).
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Ugl = ﬂ{ produces a pure mode I failure and the total work-of-separation is
W = W, = G; and work done by tangential traction is W; = 0, as con-
firmed in Figure (8). In Figure (8), the other values of the normal displacement
0 <ug < ﬂ}f produce mixed mode failure conditions with smooth and mono-
tonic variation of normal work W,,, tangential work W} and total work W from
the pure mode II condition to the pure mode I condition.

Analogous results can be observed in Figure (9) for the second non-proportional
loading path (Figure 5 b), where an initial tangential displacement up; = 0 pro-
duces a pure mode I failure and uy; = ﬂ{ ; produces a pure mode II failure.

In Dimitri et al. (2014) the response to the non-proportional loading paths
(a) and (b) of some interface constitutive models (van den Bosch et al., 2006;
McGarry et al., 2014; Hogberg, 2006; Camanho et al., 2003) are reported in
terms of total work-of-separation, work done by normal traction and work done
by tangential traction, as function of the ratios uq1 /ﬂ{ for the path (a) and as
function of the ratios ubl/ﬂ{I for the path (b).

In order to compare the proposed model with models available in literature,
the results of the two non-proportional loading paths (a) and (b) plotted in
Figures (8) and (9) are based on the same values of mode T fracture energy G
and mode II fracture energy G assumed in Dimitri et al. (2014).

Several CZMs proposed in literature (Xu and Needleman, 1993; Hogberg,
2006; Camanho et al., 2003) are inaccurate in mixed mode failure conditions (see
Dimitri et al. (2014) for a comparative analysis), producing work-of-separation
less than mode I fracture energy (W < Gy) or greater than mode II fracture
energy (W > Gr). On the contrary, the CZMs proposed in van den Bosch et al.
(2006); Dimitri et al. (2014); Park et al. (2009) produce normal work, tangential
work and total work-of-separation qualitatively similar to the results plotted
respectively, in Figure (8) for the first non-proportional loading path and in
Fig.(9) for the second non-proportional loading path. However, CMZs proposed
in van den Bosch et al. (2006); Park et al. (2009) are not based on an Helmholtz
free energy and are not thermodynamically consistent; the CZM proposed in

Dimitri et al. (2014) is fully thermodynamically consistent, but it is based on
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four scalar damage variable, whose physical or mechanical interpretation is not
evident. Moreover, such model does not allows to consider frictional effects on
the damaged fraction, by the mesoscale interpretation proposed in Parrinello

et al. (2009) and Alfano and Sacco (2006).

5. Numerical simulation

The proposed model has been implemented in the finite element code FEAP
(Zienkiewicz and Taylor, 2000) and three different delamination tests have been

numerically simulated, namely:
e end-notched double cantilever beam test;
e a mixed mode bending test on end-notched specimen.
e 3 four points end-notched flexural delamination test;

The numerical simulations have been performed using 2D nine nodes plane
stress elements and six nodes interface elements. The bulk is modeled as
isotropic and linear elastic with Young modulus E = 35300 N/mm? and Poisson
ratio v = 0.3 (standard parameters for E-glass/epoxy composite material). Two
different sets of interface constitutive parameters have been considered, both
with the same fracture energies (Gr = 1N/mm and Grr = 4N/mm) but with
different normal tensile strength and shear strength. The first set is reported in
Table 1 and produces normal tensile strength £; = 20 N/mm? and shear strength
ty = 40 N/mm?, whereas the second set of constitutive parameters produces
normal tensile strength #; = 40 N/mm? and shear strength £;; = 80 N/mm?

The analytical solutions of the three delamination tests are known in litera-
ture and developed in the framework of classical linear elastic fracture mechanics

coupled with bending beam theory.

5.1. DCB test

Sizes and geometry of analyzed specimen are represented in Fig.10 and the

analytical response, under bending beam theory and linear fracture mechanics
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Cohesive Parameters

Normal elastic stiffness
Tangential elastic stiffness
Mixed mode parameter
Mode T elastic displ.
Mode I debonding displ.
Tensile strength

Mode 1T elastic displ.
Mode II debonding displ.
Shear strength

Mode I Fracture energy
Mode II Fracture energy

K3 = 50000 N/mm3
K3 = 50 000 N/mm3
Ay = 37500 N/mm?
u§ = u, = 0.0004 mm
ﬂ}c =uy =0.1mm
tr = 20 N/mm?

u$; = 0.0008 mm
ur; = 0.2mm

trr = 40 N/mm?
Gr=1N/mm

Gy =4N/mm

Frictional Parameters

Normal elastic stiffness
Tangential elastic stiffness
Frictional coeflicient

Dilatancy coefficient

K} = 50000 N/mm?
K{ = 5000 N/mm?
o =0.8391

B=0

Table 1: Model constitutive parameters used for the numerical simulations.

theory is given, in terms of imposed displacement u and relevant load P, by

Gr
u = 4a>
= 243

with I = bh3/12. Results of numerical simulation are plotted in Fig.11 in terms
of horizontal normal stress at the initial delamination condition. Results of
analytical solution and numerical simulations are compared in Figure 12. The
numerical results properly reproduce the analytical solution in the descending
branch, whereas the numerical solution is less stiff than the analytical one in the
initial elastic path. In fact the analytical solution is based on the linear elastic

fracture mechanics theory, which assumes an ideally brittle traction-separation
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law. As a consequence, the initially elastic behaviour of the interface produces
a less stiff response.

The initial elastic behaviour assumed for the interface can be considered
as a penalty approach in order to impose the rigidity constrain. The interface
elastic stiffness, or equivalently the tensile strength #; for fixed fracture energy,
represents the penalty parameter. Is well known that analytical solution can
not be caught by penalty method and, as penalty parameter increases over a
specific value, error in numerical solution increases too. Such a problem has

been observed in the numerical solution of the DBC test for £; > 40 N/mm?.

P, u

2h =10mm

e —7

a=50mm

Figure 10: Sizes and geometry of specimen for the double cantilever beam test.

STRESS Sxx

-1.3338E+02
-9.5270E+01
-5.7156E+01
-1.9042E+01
1.9072E+01
5.7186E+01
9.5300E+01
1.3341E+02

Figure 11: Map of normal stress Sxx obtained by the numerical simulation of the double

cantilever beam test at the initial delamination condition.

5.2. MMB test

The second numerical simulation is the mixed mode bending test of an end
notched specimen, performed by the apparatus developed by Reeder and Crews
(1990). The MMBT has been standardized by ASTM (2006). The mixed mode
bending apparatus is represented in Fig.13, with sizes and geometry of specimen,

boundary conditions and applied load.
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Figure 12: Response of double cantilever beam test, in terms of applied load vs imposed

displacement. Analytical solution and numerical solutions with two different tensile strengths.

The analytical solution is defined in terms of crack opening displacement d
(see Figure 13) and applied load P, and it is derived in the framework of fracture
mechanics and beam theory. Analytical solution at the first delamination, for
crack length less than the beam half-span (a < L), is given in Mi et al. (1998)

as

_ 1\/ 8EIb
T a\l 8 (3c—L\? 3 (C+L\2
“ GT( ir ) e (%) (62)
B 2Pa*3C — L
" 3EI AL

with I = bh3/12. The second analytical solution, for crack extended behind the
beam mid-span (a > L), was initially given in Mi et al. (1998), but a corrected
formulation was proposed in Tenchev and Falzon (2007) in term of crack opening
displacement

P (a®+3a?L — L?) (L + C) — 4a®L

and the applied load can be derived by the following mixed mode interaction

fracture criterion

Y Yr
Ik | 64
Gr Gpn (64)
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where Y7 and Yj; are the following energy release rates

P2l a® (C N\ a (C C c c

P22 | 342 (C > a/C C 1/C C
Y”Mlz‘sL?(LJrl) L<L“> <2L+1)+2(L+1> (%“

The results of numerical simulations, performed with the two sets of consti-
tutive parameters, are compared to the analytical solution in Fig.15, in terms of
applied load vs crack opening displacement. Good agreement between numer-
ical and analytical results can be observed. Map of tangential stress obtained
by the numerical simulation, at the loading condition of imposed displacement

u = lmm, is plotted in Fig.14.
|P

b =20mm

a=25mm

(~— L =65mm ——=t=—— L = 66mm

Figure 13: Sizes and geometry of specimen for the mixed mode test (MMBT).

STRESS Sxy

-3.8027E+01
-2.8665E+01
-1.9302E+01
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-5.7698E-01
8.7856E+00
1.8148E+01
2.7511E+01

Figure 14: Map of tangential stress Sxy obtained by the numerical simulation of the MMBT

at the loading condition of imposed displacement u = 1mm.
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Figure 15: Response of mixed mode bending test, in terms of applied load vs crack opening

displacement. Analytical solution and numerical solutions with two different tensile strengths.

5.8. 4JENF test

The third numerical simulation is the four points bend end-notched flexure
test (4ENT), represented in Figure 16 with the relevant sizes.
The analytical solution can be developed in the framework of beam theory

and fracture mechanics (Martin and Davidson, 1999) and is given by

4 B
=-——VEWGg
3L-D
ooy (66)

with I = bh®/12 . Map of tangential stress obtained by the numerical simula-
tion, at the loading condition of imposed displacement u = 3mm, is plotted in
Fig.17. Results of numerical simulation and analytical solution are compared
in Figure 18 in terms of applied load P and relevant displacement u, for both
the two set of constitutive parameters. Moreover, two solutions with positive
frictional coefficients have been carried out and results are compared to the
analytical (frictionless) solution.

4ENF test is known in literature (Schuecker and Davidson, 2000) for its
accuracy on the determination of mode II delamination toughness, which is

influenced by frictional effects, over than by ratio between inner span and outer
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Figure 16: Sizes and geometry of specimen for the four point bend end-notched flexure test

(4ENF).

STRESS Sxy
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Figure 17: Map of tangential stress Sxy obtained by the numerical simulation of the 4ENF at

the loading condition of imposed displacement u = 3mm.
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Figure 18: Response of 4ENF test, in terms of applied load vs imposed displacement. An-
alytical solution and numerical solutions with two different tensile strengths and with three

different frictional coefficients.
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span (D/L with reference to Fig.16).

The proposed model can numerically reproduce the standard 4PBT and it
can also take into account the presence of frictional effects. Numerical simu-
lations with two frictional coefficients (o = tan20° and o = tan40°) and null
dilatancy coefficient (5 = 0) have been performed and results are shown in
Fig.18 and compared the frictionless numerical results and with analytical so-
lution. Diagrams plotted if Fig. 18 show that applied load at delamination
condition is 7.5% greater than frictionless response, for the frictional coefficient
a = tan20°, and 19% greater than frictionless response, for the frictional coef-
ficient o = tan40°.

Finally, the differences between numerical and analytical responses in the
initial elastic branch, observable in the three delamination tests, are intrinsic to
the cohesive zone formulations. In fact, the analytical solution are developed
in the linear fracture mechanics, for which the behaviour is linear elastic up to
delamination starts. On the contrary, in cohesive zone models the delamination
phenomenon is subsequent the nonlinear behaviour in the cohesive zone and the

response is less stiff than the analytical one.

6. Closing remarks

The paper presents as a main innovative finding an interface unified constitu-
tive framework based on a single damage variable in a thermodynamic consistent
context, which has a proper free energy, dissipation function, activation func-
tion and evolution rules, all derived in the context of dissipative mechanics with
internal variables.

The proposed CZM, produces two independent fracture energies, Gy in pure
mode I debonding condition and Gj; in pure mode II debonding one. G and
G771, as analytically shown, are minimum and maximum values of the work-of-
separation for any proportional and non-proportional loading paths. The model
can also evaluates the presence of frictional tractions both at the fully debonded

zones and at the partially debonded ones.
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The proposed model is able to accurately reproduce with a unique set of
few constitutive parameters, very different and general proportional and non-
proportional, monotonic and cyclic, loading paths, either in opening mode or in
sliding mode and in any mixed condition, recovering also closing conditions and
frictional effects.

Finally, three classical delamination tests (DBC, MMB, 4ENF) have been
numerically reproduced and the results compared with the analytical ones, show-

ing good agreement.
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